
Improved High-Order Conversion From Boolean to Arithmetic
Masking

Luk Bettale1, Jean-Sébastien Coron2, and Rina Zeitoun1

1 IDEMIA, France
luk.bettale@idemia.com, rina.zeitoun@idemia.com

2 University of Luxembourg
jean-sebastien.coron@uni.lu

Abstract. Masking is a very common countermeasure against side channel attacks. When combining
Boolean and arithmetic masking, one must be able to convert between the two types of masking, and the
conversion algorithm itself must be secure against side-channel attacks. An efficient high-order Boolean
to arithmetic conversion scheme was recently described at CHES 2017, with complexity independent of
the register size. In this paper we describe a simplified variant with fewer mask refreshing, and still with
a proof of security in the ISW probing model. In practical implementations, our variant is roughly 25%
faster.

1 Introduction

The masking countermeasure. Masking with random values is a well known and effective
countermeasure against side-channel attacks. Every variable x in the circuit can be masked into
x′ = x⊕ r, where r is a random value with the same bitsize as x. When the two shares x′ and r
are manipulated separately, any first-order attack is thwarted because every intermediate variable
considered separately has the uniform distribution. However a second-order attack combining the
two shares x′ and r can still be feasible in practice, though it usually requires a much greater amount
of side-channel acquisitions; see for example [OMHT06].

To prevent first order attacks, Boolean masking can be naturally extended to n shares, where
every variable x in the circuit is written as:

x = x1 ⊕ · · · ⊕ xn

In that case, a side-channel countermeasure should be resistant against any t-th order attack, in
which the side-channel information from at most t < n variables is combined. More precisely, it
should have a proof of security in the t-probing model introduced by Ishai, Sahai and Wagner [ISW03].
In this model, the adversary can probe at most t wires in the circuit, and should not learn anything
about the secret inputs. It was shown in [ISW03] that any circuit C can be transformed into a new
circuit C ′ of size O(t2 · |C|) that is secure against t probes, using n ≥ 2t+ 1 shares.

Boolean vs arithmetic masking. Boolean masking is well adapted for algorithms that have
Boolean operations only, such as AES. However for algorithms that combine Boolean and arithmetic
operations (such as IDEA [LM90], RC6 [CRRY99], XTEA [NW97], SPECK [BSS+13] and SHA-
1 [NIS95]), it can be advantageous to use arithmetic masking to protect the arithmetic operations,
and switch between Boolean and arithmetic masking whenever necessary. Obviously the conversion

algorithm itself must be secure against side-channel attacks. More precisely, starting from a Boolean
masking with n shares xi such that:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

one must compute n arithmetic shares Ai such that:

x = A1 +A2 + · · ·+An (mod 2k)

without leaking information about x. In general all arithmetic operations are performed modulo 2k

for some fixed integer k; for example, k = 32 in SHA-1.

The first conversion algorithms between Boolean and arithmetic masking secure against first-
order attacks were described by Goubin in [Gou01]. Goubin’s first-order Boolean to arithmetic
conversion is very efficient with complexity independent of the register size k. This is based on a
surprising property of the function

ψ(x, y) = (x⊕ y)− y (mod 2k)

Although it contains an arithmetic operation, the function is affine in y with respect to the xor;
see [Gou01] for a proof. The other direction (from arithmetic to Boolean) is less efficient with
complexity O(k); this was later improved to O(log k) in [CGTV15]; however the O(log k) complexity
hides a larger constant, and in practice for k = 32 the number of operations is similar.

For security against high-order attacks (i.e. with n shares), the first conversion algorithms were
described in [CGV14], with complexity O(n2 · k) for n shares and k-bit addition in both directions,
with a proof of security in the ISW model. As in Goubin’s first-order case, the complexity can be
improved to O(n2 · log k) using the same technique as in [CGTV15]; however for k = 32 this does
not really improve the practical efficiency.

Recently, an efficient high-order Boolean to arithmetic conversion algorithm was described
in [Cor17c], with complexity independent of the register size k (as in Goubin’s first-order algorithm),
following an approach initiated by Hutter and Tunstall in [HT16]. The conversion algorithm has
a security proof in the ISW model; in contrast, the original algorithm described in [HT16] had
no such security proof, and quite unsurprisingly, a third-order attack was described in [Cor17c]
for any number of shares n; the updated Hutter-Tunstall algorithm is also vulnerable to a similar
third-order attack.1

Although the complexity of the new algorithm is O(2n), in practice for small values of n it is at
least one order of magnitude more efficient than [CGV14,CGTV15]. We summarize in Table 1 the
complexities of Boolean to arithmetic conversions in both directions, for first-order attacks, and for
high-order attacks.

1The attack against [HT16], version posted on 02-Mar-2018, works as follows. We only look at Step 1, which
computes the variable ω = x+ (α⊕ r1⊕ · · ·⊕ rn) + (µ1⊕ · · ·⊕µn−1) with the intermediate variable ζ = (x+ (α⊕ r1⊕
· · · ⊕ rn))⊕ (µ1⊕ · · · ⊕µn−1) which is computed in (26). We also have the intermediate variable f = (x′⊕ γ1⊕α) + γ1
which is computed in (24), where x′ = x⊕ r1 ⊕ · · · ⊕ rn.

We probe the 3 intermediate variables ω, ζ and f . Letting R = α ⊕ r1 ⊕ · · · ⊕ rn and U = µ1 ⊕ · · · ⊕ µn−1, we
obtain ω = x+R+ U , ζ = (x+R)⊕ U and f = (x⊕R⊕ γ1) + γ1. It is easy to check that for uniformly distributed
γ1, R and U , the triple (ω, ζ, f) leaks information about the secret x; intuitively this is because the pair (ω, ζ) leaks
information about x+R, while f leaks information about x⊕R, so the combination leaks information about x. This
gives a 3rd order attack that works for any n. In particular, in the authors’ explicit 3rd-order algorithm (Alg. 3), the
variables ω, ζ and f correspond to the variables v63, v52 and v29 respectively.

2

Direction
First-order High-order

complexity complexity

Goubin’s algorithm B → A O(1) -

[Gou01] A → B O(k) -

[CGV14]
B → A

- O(n2 · k)
A → B

[CGTV15]
B → A -

O(n2 · log k)
A → B O(log k)

[Cor17c] B → A - 14 · 2n +O(n)

This paper B → A - 10 · 2n +O(n)

Table 1. Complexities of Boolean to arithmetic conversions in both directions, for first-order attacks, and for high-order
attacks.

Our contribution. In this paper we describe a simplified variant of the Boolean to arithmetic
conversion algorithm from [Cor17c], with fewer mask refreshing, and still with a proof of security
in the ISW probing model. As illustrated in Figure 1, our new conversion algorithm is simpler
than [Cor17c]: it still makes two recursive calls to the same conversion algorithm C at order n− 1,
but performs only a single mask refreshing R instead of 3; moreover it does not use a compression
function F . The asymptotical complexity of our variant is still O(2n), that is exponential in the
number of shares n and independent of the register size k. More precisely, the number of operations
is 10 · 2n + O(n), instead of 14 · 2n + O(n) in [Cor17c]. In section 7, we describe a practical
implementation of our new algorithm, showing that for small n it is still one order of magnitude
faster than [CGV14], and roughly 25% more efficient than [Cor17c].

R ψ R F C +

R F C

x D

(a) The original countermeasure from [Cor17c].

R ψ C +

C

x D

(b) Our new countermeasure.

Fig. 1. The sequence of operations in the Boolean to arithmetic conversion algorithm.

3

Source code. A proof-of-concept implementation of our high-order conversion algorithm, using
the C language, is available at:

https://pastebin.com/WKnNyEU8

2 Security Definitions

The ISW probing model. The theoretical study of securing a circuit against an adversary who
can probe a fraction of its wires was initiated by Ishai, Sahai and Wagner [ISW03]. They showed
how to transform any circuit of size |C| into a circuit of size O(|C| · t2) secure against any adversary
who can probe at most t wires. The construction is based on secret-sharing every variable x into n
shares with x = x1⊕· · ·⊕xn, and processing the shares in a way that prevents a t-limited adversary
from learning any information about the initial variable x, for n ≥ 2t+ 1.

The ISW approach for proving security against an adversary who can probe at most t probes is
based on simulation. The goal is to show that any set of t probes in the circuit can be perfectly
simulated without the knowledge of any of the original (non-masked) input variables of the initial
circuit; in particular, for a block-cipher, such simulation can be performed without knowing the
secret key. This implies that probing those t wires is not going to help the adversary, since he could
simulate those t probes by himself.

A proof in the ISW model usually proceeds as follows: given any set of t probes, one constructs
iteratively a subset I of indices of the input shares xi that are sufficient to simulate the t probes.
If we can ensure that |I| < n, then only a proper subset of the input shares is required for the
simulation. Then if the shares xi are initially generated in such a way that any n− 1 subset of shares
are uniformly and independently distributed, the simulation can be performed without knowing the
original variable x.

t-SNI Security. Recently, a refined security definition under the ISW probing model was introduced
in [BBD+16], called t-SNI security. The t-SNI security definition enables to prove that a gadget
can be used in a full construction with n ≥ t+ 1 shares only, instead of n ≥ 2t+ 1 in the original
ISW security proof. The main advantage of the t-SNI approach is that it enables modular security
proofs, by first considering the t-SNI security of individual gadgets and then composing them in
a more complex construction. In this paper, the security of our Boolean to arithmetic conversion
algorithm will be proven under the t-SNI definition, as in [Cor17c].

We recall below the t-NI and t-SNI security notions introduced in [BBD+16]. We consider a
gadget taking as input a single n-tuple (xi)1≤i≤n of shares, and outputting a single n-tuple (yi)1≤i≤n.
Given a subset I ⊂ [1, n], we denote by x|I all elements xi such that i ∈ I.

Definition 1 (t-NI security). Let G be a gadget taking as input (xi)1≤i≤n and outputting the
vector (yi)1≤i≤n. The gadget G is said t-NI secure if for any set of tc ≤ t intermediate variables,
there exists a subset I of input indices with |I| ≤ tc, such that the tc intermediate variables can be
perfectly simulated from x|I .

Definition 2 (t-SNI security). Let G be a gadget which takes as input n shares (xi)1≤i≤n and
outputs n shares (yi)1≤i≤n. The gadget G is said to be t-SNI secure if for any set of tc probed
intermediate variables and any subset O ⊂ [1, n] of output indices, such that tc + |O| ≤ t, there exists
a subset I ⊂ [1, n] of input indices which satisfies |I| ≤ tc, such that the tc intermediate variables
and the output variables y|O can be perfectly simulated from x|I .

4

The difference between the t-NI and t-SNI security notions is that in the t-SNI definition the
upper-bound on the size of the input subset I does not depend on the number of output shares
|O| that must be simulated. As shown in [BBD+16], if several gadgets are t-SNI secure, then the
composition of those gadgets remains t-SNI secure. Moreover the t-SNI security notion enables to
prove the security of a full construction for n > t+ 1 shares, instead of n > 2t+ 1 in the original
ISW security proof.

3 Existing Boolean to Arithmetic Conversion Algorithms

3.1 Goubin’s First-order Conversion

We first recall Goubin’s first-order algorithm for conversion from Boolean to arithmetic masking
[Gou01]. The algorithm is based on the affine property of the function Ψ(x, r) : F2k × F2k→ F2k

Ψ(x, r) = (x⊕ r)− r (mod 2k)

More precisely, we have for any x, r1, r2 ∈ F2k :

Ψ(x, r1 ⊕ r2) = x⊕ Ψ(x, r1)⊕ Ψ(x, r2) (1)

In the remaining of this paper, all additions and subtractions are performed modulo 2k for some
fixed parameter k, so we omit the mod 2k. Moreover we grant higher precedence to xor than addition,
so we simply write Ψ(x, r) = x⊕ r − r.

Goubin’s Boolean to arithmetic conversion is based on the affine property of ψ, see (1). Given
as input two Boolean shares x1, x2 such that

x = x1 ⊕ x2

we can write from the definition of Ψ and from (1):

x = (x1 ⊕ x2 − x2) + x2 = Ψ(x1, x2) + x2

=
[(
x1 ⊕ Ψ(x1, r ⊕ x2)

)
⊕ Ψ(x1, r)

]
+ x2

where r ← {0, 1}k is a randomly generated value. One can therefore compute the arithmetic share:

A←
(
x1 ⊕ Ψ(x1, r ⊕ x2)

)
⊕ Ψ(x1, r)

which eventually gives two arithmetic shares of x, as required:

x = A+ x2 (mod 2k)

We note that the above Boolean to arithmetic conversion algorithm is quite efficient as it requires
only a constant number of operations, independent of k. Moreover it is easy to see that the above
algorithm is secure against first-order attacks, because the left term x1⊕Ψ(x1, r⊕x2) is independent
of x2 (thanks to the mask r), and the right term Ψ(x1, r) is also independent from x2; eventually
the arithmetic share A is uniformly distributed when x2 is uniformly distributed.

5

3.2 The High-Order Boolean to Arithmetic Conversion Algorithm from [Cor17c]

A high-order Boolean to arithmetic conversion algorithm was recently described at CHES 2017
[Cor17c], with a security proof in the ISW model for n ≥ t + 1. The algorithm can be seen as a
generalization of Goubin’s algorithm to any order, still with a complexity independent of the register
size k. The algorithm takes as input n Boolean shares xi such that

x = x1 ⊕ · · · ⊕ xn

and using a recursive algorithm computes n arithmetic shares Di such that

x = D1 + · · ·+Dn (mod 2k)

As illustrated in Fig. 2 the algorithm is recursive and makes two recursive calls to the same
algorithm C with n− 1 inputs. The algorithm works as follows. One first performs a mask refreshing
R, while expanding the xi’s to n+ 1 shares. One obtains, from the definition of the Ψ function:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn+1

= (x1 ⊕ · · · ⊕ xn+1 − x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= Ψ(x1, x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

From the affine property of the Ψ function, the left term can be decomposed into the xor of n shares
Ψ(x1, xi) for 2 ≤ i ≤ n+ 1, where the first share is (n ∧ 1) · x1 ⊕ Ψ(x1, x2):

x = (n ∧ 1) · x1 ⊕ Ψ(x1, x2)⊕ Ψ(x1, x3)⊕ · · · ⊕ Ψ(x1, xn+1) + x2 ⊕ · · · ⊕ xn+1

We obtain that x is the arithmetic sum of two terms, each with n Boolean shares; this corresponds
to the two branches in Fig. 2. One then performs a mask refreshing R on both branches, and then a
compression function F that simply xors the last two shares, so there remains only n− 1 shares on
both branches. One can then apply the Boolean to arithmetic conversion C recursively on both
branches, taking as input n − 1 Boolean shares (instead of n), and outputting n − 1 arithmetic
shares; we obtain:

x =
(
A1 + · · ·+An−1

)
+
(
B1 + · · ·+Bn−1

)
Eventually it suffices to do some additive grouping to obtain n arithmetic shares as output, as
required:

x = D1 + · · ·+Dn (mod 2k)

R ψ R F C +

R F C

x D
n n+1

n

n

n

n

n−1

n−1 n−1

n−1

n

Fig. 2. The sequence of gadgets in the Boolean to arithmetic conversion algorithm from [Cor17c].

As illustrated in Fig. 2, the algorithm starts with n Boolean shares, then expands to n+ 1 shares;
only n shares are used in the bottom branch, while the Ψ gadget on the upper branch decreases to

6

n shares. On both branches the compression function F decreases to n− 1 shares in order to apply
the algorithm recursively. Thus, on the whole, when calling Cn the number of shares follows the
sequence:

Cn : n→ n+ 1→ n→ n− 1

and Cn−1 is recursively called with n− 1 shares.
In this paper, our main contribution is to simplify the above Boolean to arithmetic conversion

algorithm with the more compact sequence:

Cn : n+ 1→ n

As illustrated in Fig. 3, our new recursive algorithm Cn takes as input n+ 1 shares (instead of n)
and recursively calls Cn−1 with n shares on both branches, and eventually outputs n arithmetic
shares after some arithmetic grouping. Actually we rely on the Ψ function to decrease the number
of shares by one; therefore the previous compression function F is not necessary anymore, and we
only need a single mask refreshing instead of 3. Finally, to obtain an algorithm that converts from n
Boolean shares (instead of n+ 1 as input of Cn) to n arithmetic shares, it suffices to initially fix
xn+1 = 0 as input. We describe our new algorithm in more details in the next section, and we show
that it achieves the same level of security as the original algorithm, namely t-SNI security with
n = t+ 1 shares.

R ψ C +

C

x D
n+1 n+1

n

n n−1

n−1

n

Fig. 3. The sequence of gadgets in our new Boolean to arithmetic conversion algorithm.

4 Improved High-order Conversion from Boolean to Arithmetic Masking

In this section, we describe our improved high-order Boolean to arithmetic conversion algorithm.
We first describe a recursive algorithm Cn which, given n + 1 Boolean shares as input, output n
arithmetic shares. Then as mentioned previously, to convert from n Boolean shares instead of n+ 1,
it suffices to initially let xn+1 = 0.

4.1 The new Algorithm

Our recursive algorithm Cn takes as input n+ 1 Boolean shares xi such that:

x = x1 ⊕ · · · ⊕ xn+1

and outputs n arithmetic shares Di such that

x = D1 + · · ·+Dn (mod 2k)

For n = 1, the algorithm takes as input two shares x1 and x2 and simply outputs D1 = x1 ⊕ x2. We
now assume that n ≥ 2; see Fig. 3 for an illustration of the algorithm.

7

1. We first perform a mask refreshing of the n+ 1 shares xi’s, so that we obtain the following n+ 1
shares:

y1, . . . , yn+1 ← RefreshMasksn+1(x1, . . . , xn+1)

See below for the definition of the RefreshMasks algorithm. We can write:

x = y1 ⊕ y2 ⊕ · · · ⊕ yn+1

= y2 ⊕ · · · ⊕ yn+1 + (y1 ⊕ · · · ⊕ yn+1 − y2 ⊕ · · · ⊕ yn+1)

= y2 ⊕ · · · ⊕ yn+1 + Ψ(y1, y2 ⊕ · · · ⊕ yn+1)

2. Thanks to the affine property of Ψ , this gives:

x = y2 ⊕ · · · ⊕ yn+1 + (n ∧ 1) · y1 ⊕ Ψ(y1, y2)⊕ · · · ⊕ Ψ(y1, yn+1)

Therefore, we let z1 ← (n ∧ 1) · y1 ⊕ Ψ(y1, y2) and zi ← Ψ(y1, yi+1) for all 2 ≤ i ≤ n. This gives:

x = y2 ⊕ · · · ⊕ yn+1 + z1 ⊕ · · · ⊕ zn (2)

3. We perform two recursive calls to the Boolean to arithmetic conversion algorithm Cn−1:

A1, . . . , An−1 ← Cn−1
(
y2, . . . , yn+1

)
B1, . . . , Bn−1 ← Cn−1

(
z1, . . . , zn

)
This gives from (2):

x = A1 + · · ·+An−1 +B1 + · · ·+Bn−1

4. We reduce the number of arithmetic shares from 2n − 2 to n by some additive grouping as
in [Cor17c], letting Di ← Ai +Bi for 1 ≤ i ≤ n− 2, and Dn−1 ← An−1 and Dn ← Bn−1. This
gives as required the n arithmetic shares as output:

x = D1 + · · ·+Dn (mod 2k)

This completes the description of the recursive algorithm. Note that our recursive algorithm takes
as input n+ 1 Boolean shares xi and outputs n arithmetic shares Di. To convert from n Boolean
shares only, we simply let xn+1 = 0. Formally, we obtain the following algorithm.

Algorithm 1 High-order Boolean to Arithmetic Conversion
Input: x1, . . . , xn
Output: D1, . . . , Dn such that x1 ⊕ · · · ⊕ xn = D1 + · · ·+Dn (mod 2k)
1: D1, . . . , Dn ← Cn(x1, . . . , xn, 0)
2: return D1, . . . , Dn

8

Algorithm 2 Cn: Recursive high-order Boolean to Arithmetic Conversion (n+ 1→ n shares)
Input: x1, . . . , xn+1

Output: D1, . . . , Dn such that x1 ⊕ · · · ⊕ xn+1 = D1 + · · ·+Dn (mod 2k)
1: if n = 1 then
2: return D1 ← x1 ⊕ x2
3: end if
4: y1, . . . , yn+1 ← RefreshMasks(x1, . . . , xn+1)
5: z1 ← (n ∧ 1) · y1 ⊕ Ψ(y1, y2)
6: for i = 2 to n do
7: zi ← Ψ(y1, yi+1)
8: end for
9: A1, . . . , An−1 ← Cn−1(y2, . . . , yn+1)

10: B1, . . . , Bn−1 ← Cn−1(z1, . . . , zn)
11: for i = 1 to n− 2 do
12: Di ← Ai +Bi

13: end for
14: Dn−1 ← An−1

15: Dn ← Bn−1

16: return D1, . . . , Dn

Algorithm 3 RefreshMasks
Input: x1, . . . , xn
Output: y1, . . . , yn such that y1 ⊕ · · · ⊕ yn = x1 ⊕ · · · ⊕ xn
1: y1 ← x1
2: for i = 2 to n do
3: ri ← {0, 1}k
4: yi ← xi ⊕ ri
5: y1 ← y1 ⊕ ri . y1,i = x1 ⊕

⊕i
j=2 rj

6: end for
7: return y1, . . . , yn

Theorem 1 (Completeness). Algorithm 1, when taking x1, . . . , xn as input, outputs D1, . . . , Dn

such that x1 ⊕ · · · ⊕ xn = D1 + · · ·+Dn (mod 2k).

Proof. The proof is straightforward from the above description. Since Algorithm 1 runs the recursive
Cn algorithm with xn+1 = 0, it suffices to prove the completeness of Cn. The completeness property
clearly holds for n = 1. Assuming that completeness holds for n− 1 shares, we obtain:

n∑
i=1

Di =

n−1∑
i=1

Ai +

n−1∑
i=1

Bi =

n+1⊕
i=2

yi +

n⊕
i=1

zi =

n+1⊕
i=2

yi + Ψ

(
y1,

n+1⊕
i=2

yi

)
=

n+1⊕
i=1

yi =

n+1⊕
i=1

xi

and therefore completeness of Cn holds for n shares. ut

4.2 Complexity Analysis

Time Complexity. We denote by Tn the number of operations of the Cn algorithm, with n+ 1
input shares and n output shares. Since C1 is a single xor, we have T1 = 1. The complexity of

9

RefreshMasks with n+ 1 shares is 3(n+ 1)− 3 = 3n operations. The computation of the Ψ function
requires 2 operations, and as in [Cor17c], we assume that computing (n ∧ 1) · y1 ⊕ Ψ(y1, y2) requires
5 operations, which gives a total of 2n+ 3 operations. Finally, the additive grouping requires n− 2
operations. We obtain:

Tn = [3 · n] + [2 · n+ 3] + 2 · Tn−1 + [n− 2]

= 2 · Tn−1 + 6 · n+ 1

which gives:
Tn = 10 · 2n − 6 · n− 13 ,

compared to Tn = 14 · 2n− 12 ·n− 21 in [Cor17c]. Therefore, the complexity of our algorithm is still
exponential in n, but with an expected speed-up factor of 29% for large n, compared to [Cor17c].

Note that the complexity of our algorithm is O(2n), instead of O(n2 ·k) in [CGV14]. However for
small values of n our conversion algorithm is still one order of magnitude more efficient than [CGV14];
see Table 2 for a comparison with existing algorithms; for [CGV14] we use the same operation count
as estimated in [Cor17c], for k = 32 bits. Concrete implementation results will be further given in
Section 7.

B → A conversion
Security order t

1 2 3 4 5 6 8 10 12

Goubin [Gou01] 7

Hutter-Tunstall [HT16] 36

CGV, 32 bits [CGV14] 2 098 3 664 7 752 10 226 14 698 28 044 39 518 56 344

Coron [Cor17c] 55 155 367 803 1 687 7 039 28 519 114 511

Our algorithm (Section 4.1) 49 123 277 591 1 225 5 053 20 401 81 829

Table 2. Operation count for Boolean to arithmetic conversion algorithms, up to security order t = 12, with n = t+ 1
shares. For the Hutter-Tunstall algorithm we have written 36 operations instead of 31 to include the generation of 5
randoms.

Memory Complexity. Along with the n+ 1 input shares, the algorithm requires 2n+ 1 other
shares yi and zi’s, 2 (n− 1) shares Ai and the Bi, and finally n output shares Di for a total of 5n− 1
shares (excluding the input shares). As the two recursive calls are done sequentially, we add the
memory consumption of a single call to Cn−1. Denoting Mn the memory consumption of Cn, we
obtain:

Mn = 5n− 1 +Mn−1

with M1 = 1. This gives:

Mn = 1 +
n∑

i=2

(5i− 1) =
5

2
n2 +

3

2
n− 3

which is quadratic in the number of shares n.
Note that if the algorithm Cn computes its result in place, the input shares xi can be used to

store successively yi, then Ai, then Di. Only n additional shares zi are required. They are also used

10

to store the Bi as the recursive call to Cn−1 also performs in place. In this context, the memory
complexity is reduced to

Mn = n+Mn−1 =
n (n+ 1)

2
.

Random Generation. We denote by Rn the number of random generations performed within the
Cn algorithm. Since the Cn algorithm executes a RefreshMasks with n+ 1 shares, which requires the
generation of n random values, and then recursively calls Cn−1 twice, we have:

Rn = n+ 2 ·Rn−1

where R1 = 0 since C1 only performs a xor. This gives the following complexity for Rn:

Rn = 3 · 2n−1 − n− 2 ,

which is also exponential in the number of shares, but about 50% smaller than in [Cor17c] for which
Rn = n+ 2 · (n− 1) + 2 ·Rn−1 with R2 = 2, which gives Rn = 3 · 2n − 3 · n− 4; see Table 3 for a
comparison.

B → A conversion
Security order t

1 2 3 4 5 6 8 10 12

Previous algorithm [Cor17c] 2 11 32 77 170 359 1505 6107 24533

Our algorithm (Section 4.1) 2 7 18 41 88 183 757 3059 12273

Table 3. Number of random generations for Boolean to arithmetic conversion algorithms from [Cor17c] and this
paper, up to security order t = 12, with n = t+ 1 shares.

5 Security Proof of Algorithm 1

We prove that our new algorithm achieves the same level of security as the previous algorithm
in [Cor17c], namely t-SNI security with n = t+1 shares, that is (n−1)-SNI security. This means that
the algorithm with n shares is secure against an adversary with at most n− 1 probes. Furthermore,
the t-SNI property allows to compose the algorithm in a larger construction, without decreasing the
security order.

Theorem 2 (t-SNI of Algorithm 1). Let (xi)1≤i≤n be the input and let (Di)1≤i≤n be the output
of the Boolean to arithmetic conversion Algorithm 1. For any set of tc intermediate variables and
any subset O ⊂ [1, n] with tc + |O| < n, there exists a subset I of input indices such that the tc
intermediate variables as well as D|O can be perfectly simulated from x|I , with |I| ≤ tc.

The rest of the section is devoted to the proof of Theorem 2.

11

5.1 Properties of RefreshMasks

In this section we first recall some security properties of the RefreshMasks algorithm for proving
Theorem 2; we refer to [Cor17c] for the proof of lemmas 1, 2, 3, 4 and 5 below; we then prove an
additional lemma. The following lemma shows that when RefreshMasks is not probed, any subset of
n− 1 output shares yi is uniformly and independently distributed; see Fig. 4 for an illustration of
RefreshMasks.

Lemma 1. Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output of RefreshMasks. Any subset
of n− 1 output shares yi is uniformly and independently distributed.

The following lemma shows that when RefreshMasks is not probed, the distribution of the n
output shares yi’s can be perfectly simulated from the knowledge of x1 ⊕ · · · ⊕ xn only; that is, the
knowledge of the individual shares xi’s is not required.

Lemma 2. Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output of RefreshMasks. The distri-
bution of (yi)1≤i≤n can be perfectly simulated from x1 ⊕ · · · ⊕ xn.

x1 x2 · · · xi · · · xn

r2

...

ri

...

rn

y1 y2 · · · yi · · · yn

Fig. 4. The RefreshMasks algorithm, with the randoms ri accumulated on the first column.

The following lemma shows that RefreshMasks achieves the (n−1)-NI property in a straightforward
way. Namely it is easy to show that any tc probes in RefreshMasks can be perfectly simulated from
the knowledge of x|I , with |I| ≤ tc.

Lemma 3 (t-NI of RefreshMasks). Let (xi)1≤i≤n be the input of RefreshMasks and let (yi)1≤i≤n
be the output. For any set of t < n intermediate variables, there exists a subset I of input indices
such that the tc intermediate variables can be perfectly simulated from x|I , with |I| ≤ tc.

The following lemma is a refinement of the basic t-NI property of RefreshMasks; namely it shows
that a slightly better bound on |I| can be obtained if we assume that y1 is among the probed
variables. Note that in this paper we consider a RefreshMasks algorithm where the randoms are
accumulated on x1, instead of xn in [Cor17c], and therefore we must assume that y1 is among the
probed variables, instead of yn. The improved bound will be required to prove the t-SNI property
of Algorithm 1. Namely the adversary can probe for example tc of the variables zi = Ψ(y1, yi+1),
whose simulation then requires the knowledge of tc + 1 variables yi; thanks to the stronger bound,
since y1 is always among the variables to be simulated, this requires the knowledge of only tc input
shares xi (instead of tc + 1), as required for the t-SNI bound.

12

Lemma 4 ([Cor17c]). Let x1, . . . , xn be the input of a RefreshMasks where the randoms are
accumulated on x1, and let y1, . . . , yn be the output. Let tc be the number of probed variables, with
tc < n. If y1 is among the probed variables, then there exists a subset I such that all probed variables
can be perfectly simulated from x|I , with |I| ≤ tc − 1.

The following lemma is similar, except that we consider an adversary with tc = n probes, instead
of tc < n. In that case the adversary could probe all yi’s and learn x1 ⊕ · · · ⊕ xn = y1 ⊕ · · · ⊕ yn;
as shown in Lemma 2, if only the yi’s are probed, then all yi’s can be perfectly simulated from
the knowledge of x1 ⊕ · · · ⊕ xn only, without the knowledge of the individual xi’s. The following
lemma shows that this is essentially the best that the adversary can do, when we assume that y1 is
among the probed variables; in that case, either all n probes in the circuit can be simulated from
x1 ⊕ · · · ⊕ xn only, or they can be simulated from x|I with the improved bound |I| ≤ n − 1. As
explained in [Cor17c], the restriction on probing y1 is necessary, otherwise one could probe the n
input shares xi directly, and learn the value of the individual shares xi (and not only their xor).

Lemma 5 ([Cor17c]). Let x1, . . . , xn be the input of a RefreshMasks where the randoms are
accumulated on x1, and let y1, . . . , yn be the output. Let tc be the number of probed variables, with
tc = n. If y1 is among the probed variables, then either all probed variables can be perfectly simulated
from x1⊕· · ·⊕xn, or there exists a subset I with |I| ≤ n−1 such that they can be perfectly simulated
from x|I .

Finally, we prove the following additional lemma for the proof of Theorem 2. We show that if
the adversary probes exactly one intermediate variable z in the RefreshMasks algorithm except y1,
then this variable can be simulated with at most one input xi, and moreover y1 has the uniform
distribution given z. In Section 6 we will describe a formal verification of the lemma.

Lemma 6. Let x1, . . . , xn be the input of RefreshMasks and let y1, . . . , yn be the output, for n ≥ 3.
Consider a single probe z on any intermediate variable of the circuit except y1. The distribution of z
can be simulated from x|I with |I| ≤ 1, and given z the distribution of y1 is uniform.

Proof. We consider the four possible cases for the probe z in RefreshMasks:

• if the probe is an input variable z = xi, then we set I = {i} and the variable xi can be perfectly
simulated from x|I with |I| ≤ 1. Furthermore, from Lemma 1, the variable y1 is uniformly
distributed given z.
• if the probe is a random variable z = ri, then we can perfectly simulate the variable ri by a

random value as in the real circuit, and we can take I = ∅. Furthermore, since we have n ≥ 3,
at least another random rj has not been probed, and therefore the value y1 has the uniform
distribution given z.
• if the probe is an output variable z = yi (recall that y1 is not probed), then one can apply

Lemma 1 since n ≥ 3 and therefore n− 1 ≥ 2, which ensures that the two variables y1 and yi are
uniformly and independently distributed. As a consequence, the variable z = yi can be perfectly
simulated by a random value, with I = ∅, and the distribution of y1 is uniform given z.
• if the probe is an intermediate variable z = y1,i = x1 ⊕ r2 ⊕ · · · ⊕ ri with 2 ≤ i < n (since by

assumption the probe cannot be y1,n = y1), then because the random ri has not been probed,
the variable y1,i can be perfectly simulated by a random value, with I = ∅. Furthermore, since
i < n and the random rn has not been probed, we deduce that y1 has the uniform distribution
given z.

13

Thus we have shown that if the probe z is not y1, then z can be simulated from x|I with |I| ≤ 1,
and given z, the value y1 has the uniform distribution. This concludes the proof of Lemma 6. ut

5.2 Security of the Recursive Algorithm Cn

In order to prove Theorem 2, it suffices to show that the recursive Cn algorithm (Algorithm 2) has
the (n − 1)-SNI property. As illustrated in Fig. 5, the algorithm is recursive, and therefore our
security proof will be also recursive, i.e. the (n− 1)-SNI property of Cn will be proven assuming the
(n− 2)-SNI property of Cn−1.

R ψ C +

C

x D
n+1 n+1

n

n n−1

n−1

n

Fig. 5. The sequence of gadgets in Cn.

Globally, our security proof is relatively similar to the security proof in [Cor17c]. However, to
make our recursive proof work, we must prove a stronger property for Cn. Namely when considering
the (n − 1)-SNI property of Cn, the adversary has n − 1 probes at his disposal, so he could use
all those n − 1 probes inside one of the two recursive calls to Cn−1 (see Fig. 5); in that case the
(n− 2)-SNI condition of Cn−1 would not be satisfied (since in principle Cn−1 can accommodate at
most n − 2 probes), and nothing could be said about the (n − 1)-SNI property of Cn. Therefore
we must prove recursively an additional property of Cn, similar to the property of RefreshMasks in
Lemma 5: when the adversary has n probes (which corresponds to n− 1 probes when considering
Cn−1), those n probes can be simulated either from the xor of the input shares xi, or from x|I with
|I| ≤ n (remember that Cn has n+ 1 input shares). Formally, we prove the following lemma.

Lemma 7 (Security of Cn). Let (xi)1≤i≤n+1 be the input and let (Di)1≤i≤n be the output of
the Boolean to arithmetic conversion algorithm Cn. For any set of tc intermediate variables and
any subset O ⊂ [1, n] with tc + |O| < n, there exists a subset I of input indices such that the tc
intermediate variables as well as D|O can be perfectly simulated from x|I , with |I| ≤ tc. Moreover, if
tc + |O| = n, either there exists a subset I of input indices such that the tc intermediate variables and
D|O can be simulated from x|I with |I| ≤ n, or those variables can be simulated from x1⊕ · · · ⊕ xn+1

only.

We prove Lemma 7 recursively, following the same process as in [BBD+16, Sect. 4.1], where the
t-SNI security of a construction is deduced from the t-NI or t-SNI property of its component gadgets.
The sequence of gadgets of our construction is illustrated in Figure 6. The gadgets are numbered
from 1 to 5, and we denote by Ii the set of probed variables in Gadget i. Gadget 5 corresponds
to the initial Refreshmasks at Step 1, which we denote by R. Gadget 4 is denoted by Ψ for the
application of the Ψ function at Step 2. Gadgets 2 and 3 denote the recursive application of the
conversion algorithm at Step 3. Finally, Gadget 1 denotes the additive grouping performed at Step
4.

14

R ψ C +

C

x D
y

A

B Oz
I1

I2

I3I4I5
S12

S11
S2

S3S4I

Fig. 6. The sequence of gadgets in the Boolean to arithmetic conversion algorithm.

It is easy to see that Lemma 7 is verified for n = 1, where only D1 = x1 ⊕ x2 is computed.
Namely the first condition is tc + |O| < 1, which implies tc = |O| = 0 and we can take I = ∅.
Secondly, when considering n = 1 probe, if xi is probed then we can let I = {i}, and if x1 ⊕ x2 is
probed, it can be simulated from the knowledge of x1 ⊕ x2 only.

Now we show the induction step. We denote by tc the total number of probes in the circuit, and
we let O ⊂ [1, n] be any subset of output shares. We must prove the following two properties from
Lemma 7:

• P1(n): if tc + |O| < n, then all tc probed variables in the circuit and all variables D|O can be
perfectly simulated from x|I , for some subset I satisfying |I| ≤ tc;
• P2(n): if tc + |O| = n, then either there exists a subset I of input indices such that the n variables

can be simulated from x|I with |I| ≤ n, or the n variables can be simulated from x1⊕ · · · ⊕ xn+1

only.

The two properties P1(n) and P2(n) will be proven by assuming that P1(n− 1) and P2(n− 1) are
satisfied. As explained previously, P1(1) and P2(1) are trivially satisfied.

Property P1(n). We first consider the property P1(n) and therefore we assume:

tc + |O| < n

As in [BBD+16], the technique consists in starting from the output variables D|O, which corresponds
to Gadget 1, and showing for each successive gadget that any subset of the output variables of the
gadget can be simulated from a subset of its input variables; that is, we proceed in reverse order
back to the input shares of the full algorithm.

Gadget 1. We have Di = Ai + Bi for 1 ≤ i ≤ n − 2, and Dn−1 = An−1 and Dn = Bn−1. For
simplicity, to avoid a change of index, we denote the last wire of the Bi’s by Bn instead of Bn−1,
so that we can write Dn = Bn. We denote by P1 the set of probed indices in Gadget 1, with
|P1| ≤ |I1|. To simulate Di for 1 ≤ i ≤ n− 2, we must know both Ai and Bi; to simulate Dn−1
we must know An−1 and to simulate Dn we must know Bn. The simulation of Gadget 1 can
therefore be performed from the shares A|S11 and B|S12 , where the subsets S11 and S12 are defined
as follows:

S11 =
(
O ∪ P1

)
∩ [1, n− 1] (3)

S12 =
(
O ∪ P1

)
∩
(
[1, n− 2] ∪ {n}

)
(4)

15

We obtain the upper bound:

|S11 |+ |S12 | = |S11 ∪ S12 |+ |S11 ∩ S12 | = |O ∪ P1|+ |(O ∪ P1) ∩ [1, n− 2]|
≤ |O|+ |P1|+ n− 2 ≤ |O|+ |I1|+ n− 2 (5)

Gadgets 2 and 3. The gadgets 2 and 3 are recursive applications of the Boolean to arithmetic
conversion, with n− 1 shares. The t-SNI conditions for gadgets 2 and 3 correspond to property
P1(n− 1) and are therefore respectively:

|S11 |+ |I2| < n− 1, |S12 |+ |I3| < n− 1 (6)

We highlight that both conditions in (6) are not necessarily simultaneously satisfied. Indeed,
the adversary could probe the n − 1 shares Ai’s which would give |S11 | = n − 1. However, we
show that at least one of the two conditions in (6) must be satisfied. Indeed, if none of the two
conditions is satisfied, we have |S11 |+ |I2| ≥ n − 1 and |S12 |+ |I3| ≥ n − 1, which would give
|S11 |+ |S12 |+ |I2|+ |I3| ≥ 2n− 2. However, from (5) and |I1|+ |I2|+ |I3| ≤ tc, with tc + |O| < n,
we get:

|S11 |+ |S12 |+ |I2|+ |I3| ≤ |O|+ |I1|+ n− 2 + |I2|+ |I3|
≤ tc + |O|+ n− 2 < 2n− 2

which contradicts the previous inequality. Therefore, at least one of the t-SNI conditions for
gadgets 2 and 3 must be satisfied. We now distinguish three cases depending on which of the
two conditions in (6) is satisfied:

• Case |S11 |+ |I2| < n− 1 and |S12 |+ |I3| ≥ n− 1. Since we have |S12 | ≤ |O|+ |I1| from (4)
and from the condition tc + |O| < n, we obtain:

n− 1 ≤ |S12 |+ |I3| ≤ |O|+ |I1|+ |I3| ≤ |O|+ tc < n

which gives |S12 |+ |I3| = |O|+ |I1|+ |I3| = |O|+ tc = n− 1, and therefore |I1|+ |I3| = tc.
This implies that there are no other probes in the circuit, that is, we must have |Ii| = 0 for
i = 2, 4, 5. In particular, since we have |I2| = 0, and the t-SNI condition for Gadget 2 is
satisfied, we can apply the recursive property P1(n− 1) and simulate all outputs of Gadget
2 with |S2| ≤ |I2| = 0, which means that we can take S2 = ∅.
However, since the t-SNI condition for Gadget 3 is not satisfied, we cannot apply P1(n−1), but
we can still use P2(n−1), because |S12 |+|I3| = n−1. This ensures that the n−1 corresponding
variables can either be simulated from z|S3 with |S3| ≤ n− 1, or from z1 ⊕ · · · ⊕ zn only. In
the following, we deal with both cases:

• if the n− 1 variables can be simulated from z|S3 with |S3| ≤ n− 1, we obtain |S4| ≤ n.
Thanks to the initial RefreshMasks (Gadget 5) which is not probed in that case, one can
apply Lemma 1 which ensures that the n (out of n + 1) variables to be simulated are
uniformly and independently distributed. Therefore they can be perfectly simulated by a
random value. Moreover since S2 = ∅, those n variables are the only ones that must be
simulated. Hence, we can take I = ∅.

16

• if the n− 1 variables can be simulated from the knowledge of z1 ⊕ · · · ⊕ zn only, since by
definition we have

z1 ⊕ · · · ⊕ zn = Ψ(y1, y2 ⊕ . . .⊕ yn+1) = y1 ⊕ · · · ⊕ yn+1 − y2 ⊕ . . .⊕ yn+1

and since we also have x = x1 ⊕ · · · ⊕ xn+1 = y1 ⊕ · · · ⊕ yn+1, we get:

z1 ⊕ · · · ⊕ zn = x− x⊕ y1

Moreover since S2 = ∅ and I4 = ∅, this is the only variable that must be simulated.
Thanks to the initial RefreshMasks (Gadget 5) which is not probed in that case, this has
the uniform distribution (because y1 has the uniform distribution from Lemma 1), and
this can therefore be perfectly simulated by a random value. Therefore we can take I = ∅.

• Case |S11 |+ |I2| ≥ n− 1 and |S12 |+ |I3| < n− 1. The reasoning is similar to the previous case.
As previously we have |I1|+ |I2| = tc and there are no other probes in the circuit, that is,
we have |Ii| = 0 for i = 3, 4, 5. Since the t-SNI condition of Gadget 3 is satisfied and Gadget
3 is not probed, we can simulate all outputs of Gadget 3 with S3 = ∅, and therefore we can
take S4 = ∅. Since the t-SNI condition for Gadget 2 is not satisfied but |S11 |+ |I2| = n− 1,
we can apply P2(n− 1) to Gadget 2. This ensures that the n− 1 corresponding variables can
either be simulated from y|S2 with |S2| ≤ n− 1, or from y2 ⊕ · · · ⊕ yn+1 only. We deal with
both cases similarly as before:
• if the n− 1 variables can be simulated from y|S2 with |S2| ≤ n− 1, thanks to the initial

RefreshMasks (Gadget 5) which is not probed, Lemma 1 ensures that the n− 1 variables
are uniformly and independently distributed. Therefore they can be perfectly simulated
by a random value, and we can take I = ∅ for the simulation of the entire circuit.

• if the n− 1 variables can be simulated from the knowledge of y2 ⊕ · · · ⊕ yn+1 = x⊕ y1
only, thanks to the initial RefreshMasks (Gadget 5) which is not probed, this has the
uniform distribution (because y1 has the uniform distribution from Lemma 1), and this
can therefore be perfectly simulated by a random value. Therefore we can take I = ∅ for
the simulation of the entire circuit.

• Case |S11 |+ |I2| < n− 1 and |S12 |+ |I3| < n− 1. In this case, the t-SNI condition is satisfied
for both gadgets 2 and 3. Therefore, we obtain from the recursive hypothesis P1(n− 1) that
the intermediate variables of gadgets 2 and 3 and the output variables A|S11 and B|S12 can be
perfectly simulated from y|S2 and z|S3 , where:

|S2| ≤ |I2| and |S3| ≤ |I3| (7)

In the sequel, we can assume that (7) is satisfied, since in the two other cases (when only one of the
two t-SNI conditions is satisfied), as explained previously the simulation of all probed variables and
D|O can be performed with I = ∅.

Gadget 4. By definition of the Ψ function, we have z1 ← (n ∧ 1)·y1⊕Ψ(y1, y2) and zi ← Ψ(y1, yi+1)
for all 2 ≤ i ≤ n. Therefore, the probed variables and the output variables z|S3 can be simulated
with the knowledge of y|S4 , where |S4| is such that:

|S4| ≤ |I4|+ |S3|+ 1 (8)

Note that since the variable y1 is involved during the computation of all the zi’s we must have
1 ∈ S4.

17

Gadget 5. Let t′ = |S4|+ |S2|+ |I5| be the total number of variables within the initial RefreshMasks
that must be simulated (see Fig. 6). By using (7) and (8), we get

t′ = |S4|+ |S2|+ |I5| ≤ |I4|+ |S3|+ 1 + |I2|+ |I5|
≤ |I2|+ |I3|+ |I4|+ |I5|+ 1 ≤ tc + 1 < n+ 1

Therefore we have t′ < n+ 1 and since 1 ∈ S4, we can apply Lemma 4 where y1 is among the t′

probes variables (note that the initial RefreshMasks has n+ 1 inputs and outputs, so we must
apply Lemma 4 with n+ 1 instead of n). We obtain that all variables can be perfectly simulated
from x|I , where:

|I| ≤ t′ − 1 ≤ tc + 1− 1 ≤ tc

In summary all tc probed variables in the circuit and all output variables D|O can be perfectly
simulated from x|I with |I| ≤ tc. Hence the (n− 1)-SNI property is satisfied for Cn, which concludes
the recursive proof of the first property P1(n). Note that for the recursive proof of P1(n) we needed
both properties P1(n − 1) and P2(n − 1), that is we cannot prove the two properties P1 and P2
separately.

Property P2(n). We now consider the second property P2(n), assuming that there are tc+ |O| = n
variables to be simulated in the circuit. We must show that either there exists a subset I of input
indices such that those n variables can be simulated from x|I with |I| ≤ n (remember that the Cn
algorithm takes n+ 1 shares as input), or the n variables can be simulated from x1⊕ · · ·⊕xn+1 only.

We first distinguish two cases depending on whether the RefreshMasks (Gadget 5) is probed or
not. If RefreshMasks is not probed, then from Lemma 2 we can simulate all the variables yi from the
knowledge of x1⊕· · ·⊕xn+1 only. Then the rest of the circuit can be simulated as in the real circuit,
and property P2(n) is satisfied. We now assume that RefreshMasks is probed, that is |I5| ≥ 1.

Gadget 1. As in the P1(n) property, we obtain:

S11 =
(
O ∪ P1

)
∩ [1, n− 1] (9)

S12 =
(
O ∪ P1

)
∩
(
[1, n− 2] ∪ {n}

)
(10)

Gadgets 2 and 3. As for P1(n), we start by showing that at least one of the two gadgets must
satisfy the t-SNI condition, that is, we cannot have |S11 |+ |I2| ≥ n− 1 and |S12 |+ |I3| ≥ n− 1.
Namely from |I5| ≥ 1 and |I1|+ |I2|+ |I3|+ |I5| ≤ tc, we obtain:

|I1|+ |I2|+ |I3| ≤ tc − 1

From (5) and using the condition tc + |O| = n, we get:

|S11 |+ |S12 |+ |I2|+ |I3| ≤ |O|+ |I1|+ n− 2 + |I2|+ |I3| ≤ tc − 1 + |O|+ n− 2

≤ tc + |O|+ n− 3 ≤ 2n− 3

and therefore as previously we cannot have both |S11 | + |I2| ≥ n − 1 and |S12 | + |I3| ≥ n − 1.
Therefore, at least one of the t-SNI conditions for gadgets 2 and 3 must be satisfied. As before,
we deal with the three possible cases, depending on whether one or both conditions are satisfied:

18

• Case |S11 |+ |I2| < n− 1 and |S12 |+ |I3| ≥ n− 1. From (10), we know that |S12 | ≤ |O|+ |I1|
and since we have |I1|+ |I3| ≤ tc − 1 and tc + |O| = n, we get:

n− 1 ≤ |S12 |+ |I3| ≤ |O|+ |I1|+ |I3| ≤ |O|+ tc − 1 ≤ n− 1

which gives |O|+ |I1|+ |I3| = |O|+ tc − 1, and therefore |I1|+ |I3| = tc − 1. Since |I5| ≥ 1
and

∑5
i=1 |Ii| = tc, we deduce that |I5| = 1, and that there are no other probes in the circuit,

i.e. |I2| = |I4| = 0. As a consequence, since the t-SNI condition for Gadget 2 is satisfied,
we can apply the recursive property P1(n− 1) and simulate all outputs of Gadget 2 with
|S2| ≤ |I2| = 0, hence we can take S2 = ∅.
However, since the t-SNI condition for Gadget 3 is not satisfied, we cannot apply P1(n−1), but
we can still use P2(n−1), because |S12 |+|I3| = n−1. This ensures that the n−1 corresponding
variables can either be simulated from z|S3 with |S3| ≤ n− 1, or from z1 ⊕ · · · ⊕ zn only. In
the following, we deal with both cases:

• if the n− 1 variables can be simulated from z|S3 with |S3| ≤ n− 1, then one can apply
the same reasoning as for Gadget 4 when considering the property P1(n) and we obtain:

|S4| ≤ |I4|+ |S3|+ 1 ≤ 0 + (n− 1) + 1 ≤ n

with 1 ∈ S4. Therefore, by using that |I5| = 1 and |S2| = 0, the total number of variables
t′ within the initial RefreshMasks that must be simulated is such that

t′ = |S4|+ |S2|+ |I5| ≤ n+ 1

As a consequence, one can apply Lemma 5 on the initial RefreshMasks with n+ 1 inputs
and n+ 1 probed variables, one of whom being y1. Then either all probed variables can
be perfectly simulated from x1 ⊕ · · · ⊕ xn+1, or there exists a subset I with |I| ≤ n such
that they can be perfectly simulated from x|I ; this is exactly the property P2(n).

• if the n− 1 variables can be simulated from the knowledge of z1 ⊕ · · · ⊕ zn = x− x⊕ y1
only, we proceed as follows. Recall that there is a single probed variable in RefreshMasks.
For simplicity we assume that this probed variable is not y1, because we can consider
that the probing of y1 is rather done in I4. We can therefore apply Lemma 6, which
shows that z can be simulated from x|I with |I| ≤ 1, and given z, the distribution of y1
is uniform; thus the distribution of x− x⊕ y1 is also uniform (since x is fixed). Therefore
one can perfectly simulate z1⊕· · ·⊕zn = x−x⊕y1 by a random value, and the remaining
variable z can be perfectly simulated from x|I with |I| ≤ 1 ≤ n.

• Case |S11 |+ |I2| ≥ n− 1 and |S12 |+ |I3| < n− 1. The reasoning is similar to the previous case,
with |I1|+ |I2| = t− 1, |I5| = 1 and |I3| = |I4| = 0. Since the t-SNI condition of Gadget 3
is satisfied and Gadget 3 is not probed, we can simulate all outputs of Gadget 3 with S3 = ∅,
and therefore we can take S4 = ∅. Since the t-SNI condition for Gadget 2 is not satisfied
but |S11 |+ |I2| = n− 1, we can apply P2(n− 1). This ensures that the n− 1 corresponding
variables can either be simulated from y|S2 with |S2| ≤ n− 1, or from y2 ⊕ · · · ⊕ yn+1 only.
We deal with both cases similarly as before:

• if the n− 1 variables can be simulated from y|S2 with |S2| ≤ n− 1, then one can apply
the basic t-NI property of RefreshMasks from Lemma 3, which gives |I| ≤ |S2|+ |I5| ≤
n− 1 + 1 ≤ n as required in P2(n).

19

• if the n− 1 variables can be simulated from the knowledge of y2 ⊕ · · · ⊕ yn+1 = x⊕ y1
only, then we can apply Lemma 6 as in the previous case. We obtain that all probed
variables can be perfectly simulated from x|I with |I| ≤ 1 ≤ n, hence P2(n) is satisfied.

• Case |S11 |+ |I2| < n− 1 and |S12 |+ |I3| < n− 1. In this case, the t-SNI condition is satisfied
for both gadgets 2 and 3. Therefore, we obtain from the recursive hypothesis P1(n− 1) that:

|S2| ≤ |I2| and |S3| ≤ |I3| (11)

In the sequel, we can assume that (11) is satisfied, since in the two other cases (when only one
of both t-SNI conditions is satisfied), the simulation of all probed variables and D|O is already
performed.

Gadget 4. As in the proof of P1(n), by definition of the Ψ function, we have that the probed
variables and the output variables z|S3 can be simulated with the knowledge of y|S4 , where
1 ∈ S4 and:

|S4| ≤ |I4|+ |S3|+ 1 ≤ |I4|+ |I3|+ 1 (12)

Gadget 5. Let t′ = |S4|+ |S2|+ |I5| be the total number of variables within the initial RefreshMasks
that must be simulated. By using (11) and (12), we get

t′ = |S4|+ |S2|+ |I5| ≤ |I4|+ |I3|+ 1 + |I2|+ |I5| ≤ tc + 1 ≤ n+ 1

Since 1 ∈ S4, we can apply Lemma 5 with n+ 1 inputs and n+ 1 probed variables, one of whom
being y1. This allows to deduce that all tc probed variables in the circuit and all output variables
D|O can be perfectly simulated either from x1 ⊕ · · · ⊕ xn+1, or from x|I with |I| ≤ n, and the
property P2(n) is satisfied.

This concludes the recursive proof of the second property P2(n). Thus we have shown that both
properties P1(n) and P2(n) in Lemma 7 are satisfied, which terminates the proof of Lemma 7.

ut

5.3 Proof of Theorem 2

The proof of Theorem 2 is straightforward from Lemma 7. Namely Algorithm 1 consists in applying
the Cn algorithm with xn+1 = 0. By applying the property P1(n) of Lemma 7, we obtain that for
any set of tc intermediate variables and any subset O ⊂ [1, n] with tc + |O| < n, there exists a subset
I ′ of input indices such that the tc intermediate variables as well as D|O can be perfectly simulated
from x|I′ , with |I ′| ≤ t. Since xn+1 = 0 it suffices to take I = I ′ ∩ [1, n] for the input of Algorithm 1,
and we still have |I| ≤ tc as required for the (n − 1)-SNI property. This terminates the proof of
Theorem 2.

6 Formal verification of Algorithm 1

We have performed a formal verification of our new countermeasure, using the CheckMasks tool
described in [Cor17b]; the source code is publicly available [Cor17a]. More precisely, we first describe
a partial formal verification of the countermeasure, focusing on the Boolean part of the algorithm.
We then describe a full formal verification in which we consider both Boolean and arithmetic
operations.

20

6.1 Partial formal verification

In this section, we perform a partial formal verification of our new countermeasure, focusing on the
properties of RefreshMasks. More precisely, the correctness of lemmas 4 and 5 for the RefreshMasks
algorithm has already been formally verified in [Cor17b], and we have performed a formal verification
of our Lemma 6, following the same approach as in [Cor17b]. In other words, all the non-trivial
security properties of RefreshMasks considered in Section 5.1 and used in the proof of Theorem 2
are formally verified, at least for small values of n.

The generic verification of the masking countermeasure was initiated by Barthe et al. in [BBD+15]
based on the EasyCrypt framework. The approach consists in considering all possible t-tuples of
intermediate variables, and proving that for each particular t-tuple the adversary learns nothing from
the secret key. The authors obtained a formal verification of various masked implementations, up to
second order masked implementation of AES, and up to 5-th order for the masked Rivain-Prouff
multiplication [RP10].

In this paper we have used the CheckMasks tool described in [Cor17b]; the source code of the
CheckMasks library is publicly available at [Cor17a], under the GPL v2.0 license. The circuit to be
verified is represented as nested lists, which leads to a simple and concise implementation in Common
Lisp, a programming language well suited to formal manipulations. In [Cor17b] a formal verification
of the security of the Rivain-Prouff multiplication is described, with running times similar to those
in [BBD+15]; additionally a formal verification of lemmas 4 and 5 for the RefreshMasks algorithm is
described.

For the formal verification of Lemma 6, the approach consists in considering all possible
intermediate variables z in the RefreshMasks circuit (including the output variables but not y1), and
checking that z can be simulated from at most one variable xi, and moreover the variable y1 is
uniformly distributed given z. In principle, when applying a generic verification, the running time is
exponential in n, because all possible t-tuples of intermediate variables must be considered, with
t = n − 1; this implies that in general such generic verification can only be performed for small
values of n. However in the particular case of Lemma 6, there is only a single intermediate variable
z to consider (instead of a t-tuple), and the formal verification is therefore polynomial in n, and
quite efficient in practice, so it can be performed for any n. For example, for n = 3 we obtain:

> (check−refreshmasks−oneprobe 3)
In : (X1 X2 X3)
Out : ((+ R2 (+ R1 X1)) (+ R2 X2) (+ R1 X3))
Number o f in t e rmed ia t e v a r i a b l e s : 8
T

which means that for all intermediate variables z of RefreshMasks (except y1), the formal tool has
verified that z can be simulated from some xi, and moreover y1 is uniformly distributed given z. We
have run the verification algorithm up to n = 10. The source code is publicly available at [Cor17a].

Using the same tool, we can also quickly verify that Lemma 6 does not hold if the randoms in
RefreshMasks are accumulated on xn instead of x1. More precisely, with the modified RefreshMasks
for n = 3, we obtain:

> (check−refreshmasks−oneprobe 3 : rev ’ t)
In : (X1 X2 X3)
Out : ((+ R1 X1) (+ R2 X2) (+ R2 (+ R1 X3)))
Number o f in t e rmed ia t e v a r i a b l e s : 8
Fa i l u r e : (R1 (+ R1 X1))

21

NIL

Namely, when the randoms are accumulated on x3, we have y1 = x1 ⊕ r1, y2 = x2 ⊕ r2 and
y3 = x3 ⊕ r1 ⊕ r2, and the formal tool has correctly identified that by probing z = r1, the variable
y1 = x1 ⊕ r1 is not uniformly distributed.

6.2 Full formal verification

In the previous section we have described a formal verification of the security properties of Refresh-
Masks that are required for the security proof of the Boolean to arithmetic conversion algorithm.
However this provides only a partial verification of the algorithm, since in that case the adversary is
restricted to only probing the Boolean operations performed within the RefreshMasks. To obtain
a full verification, we must consider an adversary who can probe any variable in the Boolean to
arithmetic algorithm. In that case the formal verification becomes more complex as we must handle
both Boolean and arithmetic operations.

In [Cor17b], it was shown how to extend [BBD+15] to handle a combination of arithmetic and
Boolean operations, with an application to the full formal verification of the Boolean to arithmetic
conversion algorithm from CHES 2017 [Cor17c]. In this section we first recall this approach, and
we show that exactly the same verification tool can be used to formally verify our new Boolean to
arithmetic conversion algorithm, moreover with better timings because our new conversion algorithm
is simpler.

In order to verify the (n − 1)-SNI property of the Boolean to arithmetic algorithm, we must
check that for all possible (n− 1)-tuples of intermediate variables (including the outputs Di), the
number of input variables xi’s that remain after the application of a sequence of simplification rules
is always ≤ tc, where tc is the number of non-output variables in the (n− 1)-tuple.

For the verification of Boolean circuits in the previous section, we used only a single simplification
rule, namely replacing x⊕ r by r when the random r appears only once in the intermediate variables.
For the verification of circuits combining Boolean and arithmetic operations, we use the same
sequence of simplification rules as in [Cor17b]:

• Rule 1: when ω = x1 + x2 mod 2k must be simulated, simulate both x1 and x2.

• Rule 2: from the affine property of the function Ψ , replace Ψ(x, y)⊕ Ψ(x, z) by x⊕ Ψ(x, y ⊕ z).

• Rule 3: from the definition of Ψ , replace Ψ(x, y) by (x⊕ y)− y mod 2k.

• Rule 4: when a random r is used only once, replace x⊕ r by r, and similarly for x+ r mod 2k

and x− r mod 2k.

• Rule 5: when a random r is not used in two intermediate variables e1 and e2, replace the
simulation of (e1⊕ r, e2⊕ r) by the simulation of (r, (e1⊕ r)⊕ e2); this corresponds to the change
of variable r′ = e1 ⊕ r.
• Rule 6: when Ψ(x1, x2) must be simulated, simulate both x1 and x2.

R1 R2 R4 R3+R4 R5 R6
no

yes yes
no no

yes yes

no

Fig. 7. The rule application strategy for the formal verification of Boolean to arithmetic conversion.

22

As explained in [Cor17b], the ordering of the application of the rules matters; we used the
same ordering strategy as in [Cor17b], as illustrated in Fig. 7. We summarize in tables 4 and 5 the
timings of formal verification for the algorithms in [Cor17c] and this paper. Note that the Boolean
to arithmetic conversion algorithm has complexity O(2n), and therefore the number of possible
(n − 1)-tuples of intermediate variables is O(2n

2
); that is why we could only perform the formal

verification up to n = 5.

n #var. #tuples Security Time

2 11 11 X ε

3 48 1,128 X 0.08 s

4 133 383,306 X 85 s

5 312 387,278,970 X 88 h

Table 4. Formal verification of the t-SNI property of the Boolean to arithmetic conversion algorithm from [Cor17c],
for t = n− 1.

n #var. #tuples Security Time

2 14 14 X ε

3 39 741 X 0.06 s

4 94 134,044 X 30 s

5 207 74,303,685 X 12 h

Table 5. Formal verification of the t-SNI property of the Boolean to arithmetic conversion algorithm from Section
4.1, for t = n− 1.

7 Implementation Results

In Section 4.2, we showed that the number of operations Tn of our Boolean to arithmetic conversion
algorithm Cn is Tn = 10 · 2n− 6 ·n− 13, compared to Tn = 14 · 2n− 12 ·n− 21 in [Cor17c]. Therefore,
the complexity of our algorithm is still exponential in n, but with an expected speed-up factor of
28.6% for large n, compared to [Cor17c]. Furthermore, the complexity is independent of the register
size k, while the conversion algorithm from [CGV14] has complexity O(k · n2).

We have implemented our new algorithm, in C on an iMac running a 3.2 GHz Intel processor,
using the Clang compiler; see

https://pastebin.com/WKnNyEU8

for the source code. We summarize the execution times in Table 6, using the same timings as
in [Cor17c] for the CGV algorithm and the algorithm from [Cor17c]. The results from Table 6 are
consistent with the operation count from Table 2; for small values of n our algorithm is at least one
order of magnitude faster than [CGV14]. We also see that the higher the order t, the greater the
speed-up factor compared to [Cor17c]. For t = 2 the running times are similar, while for t = 4 we
get a 24% speed-up, and for t = 6 we get a 26% speed-up.

23

B → A conversion
Security order t

2 3 4 5 6 8 10 12

CGV, 32 bits [CGV14] 1 593 2 697 4 297 5 523 7 301 10 919 15 819 21 406

Coron [Cor17c] 45 119 281 611 1 270 5 673 22 192 87 322

Our algorithm (Section 4.1) 42 96 214 448 921 3 774 13 899 54 572

Table 6. Running time in µs for Boolean to arithmetic conversion algorithms, up to security order t = 12, with
n = t+ 1 shares. The implementation was done in C on a iMac running a 3.2 GHz Intel processor.

References

[BBD+15] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Pierre-
Yves Strub. Verified proofs of higher-order masking. In Advances in Cryptology - EUROCRYPT 2015 -
34th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 457–485, 2015. Publicly available at
https://eprint.iacr.org/2015/060.

[BBD+16] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves
Strub, and Rébecca Zucchini. Strong non-interference and type-directed higher-order masking. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 116–129, 2016. Publicly available at https://eprint.iacr.org/2015/506.pdf.
See also a preliminary version, under the title “Compositional Verification of Higher-Order Masking: Ap-
plication to a Verifying Masking Compiler”, publicly available at https://eprint.iacr.org/2015/506/

20150527:192221.
[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis Wingers.

The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology ePrint Archive, 2013:404,
2013.

[CGTV15] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen Kumar Vadnala. Conversion
from arithmetic to boolean masking with logarithmic complexity. In Fast Software Encryption - 22nd
International Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected Papers, pages
130–149, 2015.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala. Secure conversion between
boolean and arithmetic masking of any order. In Cryptographic Hardware and Embedded Systems - CHES
2014 - 16th International Workshop, Busan, South Korea, September 23-26, 2014. Proceedings, pages
188–205, 2014.

[Cor17a] Jean-Sébastien Coron. CheckMasks: formal verification of side-channel countermeasures, 2017. Publicly
available at https://github.com/coron/checkmasks.

[Cor17b] Jean-Sebastien Coron. Formal verification of side-channel countermeasures via elementary circuit trans-
formations. Cryptology ePrint Archive, Report 2017/879, 2017. http://eprint.iacr.org/2017/879.

[Cor17c] Jean-Sébastien Coron. High-order conversion from boolean to arithmetic masking. In Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings, pages 93–114, 2017. Full version available at http://eprint.iacr.org/2017/

252.
[CRRY99] Scott Contini, Ronald L. Rivest, Matthew J. B. Robshaw, and Yiqun Lisa Yin. Improved analysis of some

simplified variants of RC6. In FSE, 1999.
[Gou01] Louis Goubin. A sound method for switching between Boolean and arithmetic masking. In CHES, pages

3–15, 2001.
[HT16] Michael Hutter and Michael Tunstall. Constant-time higher-order boolean-to-arithmetic masking. Cryp-

tology ePrint Archive, Report 2016/1023, 2016. http://eprint.iacr.org/2016/1023. Version posted on
22-Dec-2016.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing attacks.
In CRYPTO, pages 463–481, 2003.

[LM90] Xuejia Lai and James L. Massey. A proposal for a new block encryption standard. In EUROCRYPT,
pages 389–404, 1990.

24

[NIS95] NIST. Secure hash standard. In Federal Information Processing Standard, FIPA-180-1, 1995.
[NW97] Roger M. Needham and David J. Wheeler. Tea extentions. In Technical report, Computer Laboratory,

University of Cambridge, 1997.
[OMHT06] Elisabeth Oswald, Stefan Mangard, Christoph Herbst, and Stefan Tillich. Practical second-order DPA

attacks for masked smart card implementations of block ciphers. In CT-RSA, pages 192–207, 2006.
[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In CHES, pages

413–427, 2010.

25

