
Time-Based Direct Revocable
Ciphertext-Policy Attribute-Based Encryption

with Short Revocation List?

Joseph K. Liu1, Tsz Hon Yuen2, Peng Zhang3, Kaitai Liang4

1Faculty of Information Technology, Monash University, Australia
Email: joseph.liu@monash.edu

2 Huawei, Singapore
3 Shenzhen University, China
4 University of Surrey, UK

Abstract. In this paper, we propose an efficient revocable Ciphertext-
Policy Attribute-Based Encryption (CP-ABE) scheme. We base on the
direct revocation approach, by embedding the revocation list into cipher-
text. However, since the revocation list will grow longer as time goes
by, we further leverage this by proposing a secret key time validation
technique so that users will have their keys expired on a date and the
revocation list only needs to include those user keys revoked before their
intended expired date (e.g. those user keys which have been stolen before
expiry). These keys can be removed from the revocation list after their
expiry date in order to keep the revocation list short, as these keys can no
longer be used to decrypt ciphertext generated after their expiry time.
This technique is derived from Hierarchical Identity-based Encryption
(HIBE) mechanism and thus time periods are in hierarchical structure:
year, month, day. Users with validity of the whole year can decrypt any
ciphertext associated with time period of any month or any day within
the year. By using this technique, the size of public parameters and user
secret key can be greatly reduced. A bonus advantage of this technique
is the support of discontinuity of user validity (e.g. taking no-paid leave).

1 Introduction

Attribute-Based Encryption (ABE) is a generalization of Identity-Based Encryp-
tion (IBE) [13,7,6,15,14,49]. It provides flexibility of data sharing for system users
in the sense that a data encryptor is allowed to specify some descriptive values
x for an encryption and thus, the encryption can be decrypted successfully by
a secret key associated with some descriptive values y matching x. ABE has
many network applications, such as cloud computing [25,36], cloud storage sys-
tems [22,23,35,51] and medical e-healthcare systems [39,24,19,8] etc. ABE can
be classified into two different types: one is Key-Policy ABE (KP-ABE), and the
other is Ciphertext-Policy ABE (CP-ABE). In a KP-ABE system, ciphertexts

? The short version of this paper was published in ACNS 2018.

are associated with attribute sets and secret keys are associated with access poli-
cies. On the opposite side, in a CP-ABE scheme ciphertexts are related to access
policies, and attribute sets are tagged with secret keys.

Before deploying ABE into any practical scenarios, one has to solve for the
user revocation problem. No organization will be happy to see that any of its
revoked users can still be able to decrypt the document designated for its users.

When we talk about revocability in ABE, there are different levels of revo-
cation:

1. Attribute Revocation. In this case, the user has changed his/her at-
tributes. For example, the original attributes for Alice are {Physics, Student,
University A}. Now she has changed to {Chemistry, Student, University A}.
Therefore, the original Physics attribute should be revoked (but not Student
or University A).

2. User Revocation. In this case, the user has left the organization. That
is, all attributes have to be revoked. In the previous example of Attribute
Revocation, Alice has left University A and therefore the user Alice should
be revoked.

3. Key Revocation. In this case, the secret key of the user is revoked. This is
the most generalized level of revocation. This can be happened in different
scenarios. For example, the user has left the organization (case (2)). Or if
the user has lost his secret key (and got a replacement key), the old one has
to be revoked. It can also cover case (1): If Alice changes her attribute from
Physics to Chemistry, her old key is revoked while she has been issued with
a new key associated with her new attribute.

Usually in this case the key is also associated with an identity or a
serial number, which is used in the revocation process by the authority. The
encryptor does not need to know this identity or number. In the rest of this
paper, we refer to revocation as this case (key revocation).

1.1 Different Approaches for Revocable ABE

There are several approaches to tackle the problem of revocability in ABE:

1. Key Update for Non-Revoked Users. This is also called the Indirect
Approach. In this approach, every user has a secret key with a state. The
authority will execute a key update algorithm for every non-revoked users.
The keys for revoked users will not be updated. Upon the update, a new
state will be issued to the secret key. Ciphertext is generated according to
the current state. Therefore those revoked users who only have the secret
keys of previous state(s) cannot decrypt the ciphertext which is associated
with the new state.

If the ciphertext is stored on cloud, those revoked users however are still
able to decrypt the old ciphertext (generated with previous states). In order
to hinder this vulnerability, a ciphertext update algorithm can be executed
so that all old ciphertexts will be modified to associate with the current

2

state. In this way, revoked users (whose secret keys are associated with an
old state) can no longer decrypt any old ciphertext from the cloud as it has
been updated to the current state which is only decryptable by a secret key
with the new state.

Nevertheless we only regard the ciphertext update as an optional fea-
ture, as we have no way to prevent a revoked user from downloading the
ciphertext (and thus decrypting the ciphertext) before he has been revoked.

The main issue of the key update approach is the inability of instant user
revocation. Suppose Alice is revoked now and the next key update algorithm
is scheduled at the 1st of coming month. Alice is still able to decrypt any
newly generated ciphertext from now to the end of this month. (Even if the
cloud is equipped with ciphertext update, Alice cannot decrypt only those
old ciphertext but still can decrypt those newly generated one.) One may try
to argue that the authority may execute the key update algorithm once there
is any revoked user. In the point of view of security, this action can block
the loophole of inability instant user revocation. Nevertheless, it is definitely
not practical especially if there are a large number of non-revoked users. In
a large organization, there may be a new revoked user in every hour or even
every minute. It is impossible to ask every non-revoked user to update their
key every minute! If we schedule a longer key update period, the instant user
revocation problem will be worse then.

2. Embedding Revocation List into Ciphertext. This is also called the Di-
rect Approach. In this approach, there is a public revocation list. The encryp-
tor embeds the latest revocation list into the ciphertext so that only those
users not in the revocation list and satisfying the predicate (attributes-policy
matching) can decrypt the ciphertext. This approach can provide instant user
revocation (and thus solve the problem from the indirect approach). No key
update is required in this approach.

However, there is another practical problem with this approach. The
revocation list will grow longer as time goes by. If the organization is large,
the revocation list will become an efficiency bottleneck for the encryption and
decryption as it will continue to grow all the time. There is no way to reduce
or delete the revocation list, unless the revoked user re-joins the organization
in the future. This is not likely to happen in most of the scenarios though.

3. Cloud-Assisted. Another approach is to make use of the cloud assistance.
In this approach, the decryption ability is split into two halves. The first
half is owned by the user while another half is owned by the cloud. The
cloud needs to partially decrypt the ciphertext into an intermediate data
first, which is then sent to the user for the second level decryption. If the
user is revoked, the cloud refuses to execute the first level decryption. Then
the revoked user cannot decrypt the ciphertext without the assistance from
the cloud.

This is the simplest way to achieve user revocation for ABE. In spite
of that, the cloud will be very busy if the number of users is large, as the
decryption of every user requires the assistance from the cloud.

More examples on each approach will be given in Section 2.

3

1.2 A Näıve Approach

One may immediately think of a näıve approach by combining the indirect and
direct approaches together in order to possess the merits from both sides. Intu-
itively the simple combination is to use a key update ABE (the indirect revocable
ABE) to encrypt the plaintext first into the first-level ciphertext. Then the re-
sulting ciphertext is further encrypted using another ABE with revocation list
embedded into the ciphertext (the direct revocable ABE) as the second-level. If
a user is revoked before the next key update period, since his identity has been
put into the revocation list embedded into the second-level ciphertext (generated
by the direct revocable ABE), he cannot decrypt it. On the other side, if the
revoked user’s key has been expired (that is, not being updated as it has been
revoked), his identity is not needed to be put into the revocation list by the di-
rect revocable ABE as the revoked key cannot be used to decrypt the first-level
ciphertext (generated by the indirect revocable ABE) even though it can still
decrypt the second level ciphertext. In this way, the revocation list can be kept
short while instant revocation can be achieved and thus no frequent key update
is required.

This näıve approach seems working fine, if we do not consider collusion at-
tack. Simply speaking, collusion attack in ABE refers to two different users who
both cannot decrypt the ciphertext individually but they can succeed to do so
if they are colluding with each other. Suppose Alice is revoked just right now
(before the next key update period) and therefore her identity Alice is in the re-
vocation list embedded into the second-level ciphertext. Bob is another revoked
user who was revoked in the previous time period. Thus his key has not been
updated in the current time period and his identity Bob is not in the revocation
list embedded into the second-level ciphertext. It is obviously that both Alice
and Bob cannot decrypt the combined ciphertext individually. However, if they
are working together, they can successfully decrypt it: Bob can use his secret
key to decrypt the second-level ciphertext (as his identity is not in the revoca-
tion list) and he can pass the resulting intermediate data (which has become
the first-level ciphertext) to Alice. Alice can use her secret key to decrypt this
first-level ciphertext as her key is the most updated one. As a result, Alice and
Bob can get the final plaintext if they are working together.

We definitely have to avoid this kind of collusion attack in any circumstance.

1.3 Our Contribution

In this paper, we propose an efficient and practical revocable CP-ABE scheme.
Our scheme is motivated from the (non-revocable) CP-ABE given in [37] and
incorporates the merit from all existing approaches for revocation, yet we do not
have the emerged trade-off and we are immune to the collusion attack mentioned
above in the naive approach. Namely,

• We have a revocation list, which is used by the encryptor to be embedded
into the ciphertext. On the other side, we also have a key update process

4

for non-revoked users at a reasonable interval (e.g. once every two years).
The revocation list only contains those revoked users whose keys are not
expired yet. If their keys are expired (they are not allowed to update their
keys as they are revoked), they should not be able to decrypt any ciphertext
generated after their expiry date even though they are not included in the
revocation list. In other words, they can be removed from the revocation list
after the expiry date of their keys and thus the revocation list can be kept
short.

• Although we still require a key update process for all non-revoked users, we
do not need to execute it frequently in order to provide instant key revo-
cation. We argue that most organizations will require their users to renew
their contracts at a reasonable time interval (e.g. once every two years). It
is practical to renew their secret keys at the time they are renewing their
contracts. This time does not need to be synchronized. Every user may have
his own time for expiry and renewal.

• We do not need the cloud in our basic system (a cloud-free system). Exten-
sion can be made to provide ciphertext update in the cloud (e.g. using the
ciphertext update technique in [48,32]) so that revoked users are no longer
able to decrypt any ciphertext generated in the past.

• We are immune to the collusion attack mentioned in the näıve approach.
Suppose there is a set of users. Anyone in this set cannot decrypt the ci-
phertext individually. They cannot succeed to do so even if they are working
together, or by someone who has the secret keys for all users in this set.

• We use Hierarchical Identity-based Encryption (HIBE) technique to further
shorten the size of user secret key. Our time period is hierarchical. That is,
we have year, month and day. A user with secret key valid for the whole
year can derive the key with validity for the underlying months of that year.
A user with secret key valid for the whole month can derive the key with
validity for the underlying days of that month. With this technique, we can
further support discontinuity of user validity, which is believed as a common
scenario in the practical world (e.g. no-paid leave).

We provide a concrete construction for our proposed scheme. The size of the
ciphertext only depends on the embedded policy (access structure) but NOT
the revocation list, though the size of the secret key is linear with the maximum
length of the revocation list and the number of attributes of the user. In the
decryption, the number of pairing operations only depends on the access struc-
ture but NOT the number of users in the revocation list or the total number
of users in the system. The performance of our construction enjoys a significant
improvement over other similar schemes.

Table 1 gives a functional comparison between other approaches and our
proposed approach.

5

Table 1: Features Comparison

Approach Examples
Features

Instant No Freq. Cloud Ciphertext Short
Revoke Key Update Free Update Revo. lt.

Key Update
[11], [2], [48], [32], × × X Optional X

[40], [41], [27], [30], [28]

Embedding [3], [2], [5], [34], [29]
X X X Optional ×

Revocation List [9], [50], [17], [26], [18]

Cloud-Assisted
[31], [21], [44],

X X × X ×
[33], [45], [16], [46]

Our Approach X X X Optional X

2 Related Works

There are several schemes in the literature addressing the problem of revocation
in ABE. We briefly describe them using the classification in Section 1.1

1. Key Update for Non-Revoked Users (Indirect) approach. The first
revocable ABE was proposed by Boldyreva et al. [11]. It is a KP-ABE. Re-
vocation list is stored in the authority which executes key update algorithm
with each non-revoked users (those users not in the revocation list) during
a regular time interval. Revoked users (without having their keys updated)
cannot decrypt any newly generated ciphertext. Yu et al. [48] proposed an-
other revocable ABE in the context of CP-ABE using key update approach.
In addition, they provide a mechanism to update ciphertext so that revoked
users cannot decrypt the updated ciphertext in the cloud. Nevertheless, they
support policies with logical AND only. A more promising construction was
given by Sahai et al. [32]. They provided constructions for both KP-ABE
and CP-ABE. There are key update and ciphertext update algorithms. Ci-
phertext is decryptable only if the encryption time t < t′ where t′ is the key
expiry time. If the user is revoked, ciphertext will be updated so that the
newly revoked users cannot decrypt those old ciphertext (those ciphertext
generated before the user is revoked). All other users will then run the key
update algorithm except the revoked user.

Later on, Xie et al. [40] (the full version of [41]), proposed a revocable
CP-ABE. In their construction, each user has two keys. There is an individual
key and also a group key. A group is defined as a set of users with the same
attributes. Decryption requires to have the group key and the individual user
secret key. Revocation is done by updating the keys of non-revoked users.

1 We exclude the discussion for [47] as it is not an ABE scheme. They require every
user to have a private key and public key. Public key is generated by the authority
and private key is generated by the encryptor! The encryptor needs to use the private
key to encrypt the message. This is not a formal ABE that we are considering and
thus it is excluded in our discussion. We also exclude [42] and [43] as they are pointed
out as insecure in [20].

6

Ciphertext update is also allowed as in [48]. Naruse et al. [27] proposed
another CP-ABE with attribute update by the cloud server. The cloud re-
encrypts the ciphertext and re-generates new secret key for users, who have
updated their attributes. Similar approach has also been suggested in [30,28].

2. Embedding Revocation List into Ciphertext (Direct) approach. An-
other approach is called direct approach, which requires the encryptor to in-
corporate the revocation list in the ciphertext. In this way, users in the revo-
cation list cannot decrypt the ciphertext even though their attributes/policy
satisfy the policy/attributes associated with the ciphertext. No key update
is required using this approach. Attrapadung and Imai [3] proposed a re-
vocable ABE by incorporating the revocation information into the cipher-
text. Their approach is to use broadcast encryption. That is, the encryptor
needs to know the identities of those unrevoked users. They provide a KP-
ABE constructions. Later, Attrapadung et al. [5] proposed another revocable
KP-ABE. Different from the previous one, this construction only requires
the encryptor to know the identities of revoked users (instead of unrevoked
users). Wang et al. [34] proposed another revocable KP-ABE using broad-
cast encryption which requires the encryptor to know the list of unrevoked
users. Nieto et al. [29] generalize the revocability technique to Predicate En-
cryption. They require the encryptor to embed the revocation list into the
ciphertext. They use dual pairing vector space as the primitive and thus the
number of pairing operations in the decryption is very large (linear with the
number of users in the system). Balu et al. [9] proposed a revocable CP-ABE
by incorporating the revocation list. Encryptor only needs to know the iden-
tities of revoked users. However, their model is very weak. They only allow
the adversary to query secret key that does not satisfy the challenge access
structure AND not in the revocation list. In other words, it does not allow
adversary to query a secret key that satisfies the access structure but in the
revocation list. (This models the case for revoked users.) Zhang [50] proposed
another revocable CP-ABE scheme using similar approach. In addition, the
scheme also supports leakage resilient. But the construction only supports
attribute-level revocation (the basic level of revocation). Datta et al. [17]
proposed a KP-ABE construction using similar approach using multilinear
maps. Liu and Wong [26] proposed a CP-ABE construction. Again they de-
ploy similar approach but using matrix representation for users. Thus the
size of ciphertext is of size O(

√
N), where N is the total number of users in

the system. Recently, Datta et al. [18] proposed another KP-ABE that sup-
ports revocability with this approach. This time they use subset difference
technique to achieve the purpose.

There is also a construction using either direct and indirect approach.
Attrapadung and Imai [2] proposed a KP-ABE which allows the encryptor
to use whether direct or indirect mode (but not both).

3. Cloud-Assisted approach. With the assistance of cloud, revocation be-
comes easier without letting the encryptor to get the revocation list, or
executing any key update for non-revoked users. Earlier stage cloud-assisted
scheme [31] only provides ciphertext-update so that revoked users cannot

7

decryp the ciphertext in the cloud. Later on, other cloud-assisted schemes
require all decryption must go through the cloud as a partial process. The
cloud has the control to refuse the assistance of decryption for revoked users.
Without the help from the cloud, no one can decrypt the ciphertext. Hur and
Noh [21] proposed a revocable CP-ABE scheme. The data owner first out-
sourced the data into the cloud. The cloud then re-encrypts (using a double-
encryption technique) according the set of authenticated (valid) membership.
The revocation is easy. The cloud just deletes the revoked user from the mem-
bership (which is a binary tree). Decryption requires the cloud to process
first. It then sends the partially decrypt data to the user. Yang et al. [44]
and Shi et al. [33] proposed another cloud-assisted scheme independently. In
their schemes, the decryption is split into two halves. The cloud stores the
first half and the user stores another half. A complete decryption requires
both parts. Yang et al. [45] use similar approach. They further reduce the
trust on cloud by increasing the risk of collusion with users. Recently, Cui
et al. [16] reduced the trust to the cloud server by letting the cloud server
to use a kind of proxy re-encryption key only.

3 Definition

3.1 Time Period

A time period can be a day, a month or a year.2 For example, we use “2016-
Jun-15” to represent a day; “2016-Dec” to represent a month etc. Our scheme
can also support some special case for non-continuity. For example, if the user is
going to take no-paid leave from 01 August 2016 to 29 November 2016, then we
can just assign the valid period from 15 June 2016 to 31 July 2016 and from 30
November 2016 to 31 December 2016. (Assume today is 15 June 2016 and the
user expiries at the end of 2016.)

A decryptable time period is a time period set by the encryptor such that only
users with validity completely covered the period can decrypt. (A specific setting
is to let the encrypting time to be the decryptable time period.) For example,
suppose the decryptable time period is December 2016 and the validity of user
secret key is only limited to 31 December 2016. This is not a complete cover and
thus this secret key is not able to decrypt. On the opposite, if the decryptable
time period is 01 December 2016 and the validity of user secret key is December
2016, then it is able to decrypt as it has a complete cover for the decryptable
time period (provided that other conditions are also satisfied).

3.2 Definition of Revocable Ciphertext-Policy Attribute-Based
Encryption

A revocable ciphertext-policy attribute based encryption scheme consists of four
algorithms: Setup, KeyGen, Encrypt, Decrypt.

2 Our scheme can further support more levels of time period, e.g. hours, minutes etc.
Yet for simplicity, we limit the description to the day level only.

8

• Setup(1κ, U,R, T). Take as input the security parameter κ, the number of
attributes in the system U , the maximum number of revoked users in the
revocation list R and the depth of the time tree T. It outputs the public
parameters PK and a master key MK. We omit the description of κ in the
rest of this paper.

• KeyGen(MK, ID, S,T). Take as input the master key MK, a user’s identity
ID3, a set of attributes S and a range of validity time periods T. It outputs
a private key SK(ID,S,T).

• Encrypt(PK,m,Tc,R,A). Take as input the public parameters PK, a mes-
sagem, a decryptable time period Tc, a revoked setR and an access structure
A over the universe of attributes. It outputs a ciphertext CT .
• Decrypt(PK,CT,R,A,Tc, SK(ID,S,T)). Take as input the public parameters
PK, a ciphertext CT , along with a description of a revoked set R, an access
policy A and a decryptable time period Tc, and a private key SK(ID,S,T),
which is a private key for the user’s identity ID, attributes set S and the
range of validity time periods T. If the user’s identity ID is not in the revoked
set R, the set S of attributes satisfies the access structure A and the range
of validity time periods T completely covers the decryptable time period
Tc, then the algorithm will decrypt the ciphertext and return a message m.
Otherwise it outputs ⊥.

Note that we do not explicitlly define the key update algorithm as its function
can be implicitly covered by the KeyGen algorithm with the new validity time
period.

3.3 Security Model

We now describe a selective security model for the revocable ciphertext-policy
ABE scheme. The security model is described by the following game between
a challenger C and an adversary A. In the game, A needs to submit an access
structure A∗, a revocation list R∗ and a decryptable time period T∗c to C before
seeing the public parameter PK. At any time A can query for any private keys
that cannot be used to decrypt the challenge ciphertext.

• Init. A needs to submit the challenge access structure A∗, the challenge revo-
cation listR∗ and the challenge decryptable time period T∗c to the Challenger
C.
• Setup. C runs the Setup algorithm and gives the public parameters PK to

the adversary.
• Phase 1. Adversary A makes repeated private key queries corresponding to

the identity ID, the attribute set S and the range of validity time periods T
such that for any single returned secret key SK(ID,S,T), at least one of the
following conditions must be fulfilled:

3 In practice, this can also be the serial number of a user key in order to achieve
key-level revocation.

9

• S does not satisfy the access structure A∗.
• ID ∈ R∗.
• T∗c is not completely covered in T.

• Challenge. Adversary A submits two equal length messages m0 and m1.
Challenger C flips a random coin β ∈ {0, 1} and encrypts mβ under the
access structure A∗, the revoked set R∗ and the time T∗c . The ciphertext
CT ∗ is given to adversary A.
• Phase 2. It is the same as in Phase 1.
• Guess. The adversary outputs a guess β′ for β.

The advantage of adversary A in the above game is defined as AdvA = Pr[β′ =
β]− 1/2.

Definition 3.1. A revocable ciphertext-policy attribute-based encryption scheme
is secure if all polynomial time adversaries have at most a negligible advantage
in the above game.

Other mathematical background is provided in the appendix.

4 Our Scheme

4.1 Overview

Our scheme is motivated by the (non-revocable) CP-ABE scheme in [37]. We
first add a revocation list in the ciphertext so that users in the revocation list
cannot decrypt. We then add time validity to user secret key and a decryptable
time period in the ciphertext. Users without having a complete cover of validity
for the decryptable time period cannot decrypt. (Readers may refer to Section
3.1 for more details.)

Observe that the valid time always have the “AND” relation with the user
attributes. Therefore, we have to attach the time validity tightly to the secret
key in order to avoid the collusion attack. A näıve approach is to treat each time
period as an attribute. In the policy, we just need to add the “AND” relation
with all valid time periods (that is, time-attributes) together with the original
policy. It works fine, if the number of valid time periods in the system is small.
Otherwise, the size of public parameters and user secret key will be very large as
they grow linear with the number of attributes (that is, number of time periods
in this näıve approach). For example, if the system supports up to 10 years
and the smallest unit of time period is day, then there will be more than 3000
time-attributes in the system!

If the user is revoked before the normal expiry time, the user ID will be put
into the revocation list until his expiry time has passed. Anyone whose ID is in
the revocation list will not be able to decrypt any ciphertext, regardless of his
attributes. The idea of the revocation approach is motived from [4,5].

Also note that we have the same restriction as the scheme in [37] using the
decisional BDHE assumption (the first scheme). That is, an attribute can only

10

be used in at most one row in the ciphertext access matrix M (the function ρ(·)
is injective). This can be thought of as an attribute appearing in at most one
node in a formula. However, this limitation can be easily mitigated by assigning
a different string for each time an attribute is associated with a row in an access
structure.

4.2 Technical Construction

We borrow the idea from the Boneh-Boyen-Goh Hierarchical Identity-based En-
cryption (HIBE) scheme [12] to apply in our time validity control. We take
advantage of the fact that the validity period of a user’s key or ciphertext is usu-
ally represented as some time interval (e.g. from January to December), instead
of some discrete time segments (e.g. January and March and July and Decem-
ber). Therefore, we use a tree-based approach to further improve the efficiency
for continuous time interval. The advantage is two-fold. Firstly, the size of the
user secret key is reduced. Secondly, if the encryptor wants to encrypt the mes-
sage for some time interval, then only the user with keys valid in the complete
time interval can decrypt. At the same time, the size of the ciphertext is still
independent of the length of the time interval.

We use the set-cover approach to select the minimum number of nodes that
can represent all the valid time periods. A node (except the root node) in the tree
represents a time period. By using HIBE, the user obtains the keys corresponding
to these nodes only. Consider the following example:

Root

2015

Jan

1 ... 31

... Dec

2016

Jan ... Dec

1 ... 31

The first level represents the year. The second level represents the month. The
third level represents the day.

Suppose an employee joins the company on 29 November 2015 and his con-
tract ends on 31 December 2016. He should obtain keys for the nodes of “2015-
Nov-29”, “2015-Nov-30”, “2015-Dec” and “2016”. For the encryptor, he can
choose to encrypt a message for a specific day, for a whole month or whole year.
The employee who is authorized for the whole month can decrypt the ciphertext
for the whole month. On the other hand, if the ciphertext is specified for a single
day only, the employee can derive the decryption key from the corresponding
month or year key using the HIBE approach.

In order to simplify the description, suppose the time tree has depth T and
each node have z children. A time period (e.g. a day, a month, a year) can be
represented by a z-ary element (τ1, τ2, . . . , τk) for some k < T. Our construction
is as follows.

11

1. Setup(U,R, T): U is the number of attributes in the system. Time is repre-
sented as a z-ary string {1, z}T−1. The maximum number of revoked users is
R− 1. Choose a bilinear group G of prime order p with a random generator
g and U random elements h1, . . . , hU ,∈ G. Randomly choose α, α0 ∈ Zp and
α = (α1, . . . , αR)> ∈R ZRp , V0, V1, . . . , VT ∈R G, set

F = gα = (gα1 , · · · , gαR)> = (f1, . . . , fR)>.

Output PK =
{
g, gα0 , e(g, g)α, h1, . . . , hU , V0, V1, . . . , VT,F

}
and MK = α.

2. KeyGen(MK, ID, S,T): S is the set of attributes of a user with identity ID. T
is the range of validity time periods for the user ID. Denote T as the set-cover
representing T which consists of some time elements τ = (τ1, τ2, . . . , τkτ) ∈
{1, z}kτ where kτ < T for any τ ∈ T. 4. Randomly choose u, t, vτ ∈R Zp for
all τ ∈ T and compute

D0 = gt, D′0 = gu,
{
D
′′

0,τ = gvτ
}
τ∈T

,

{
D1,τ = gαgα0tgα1u(V0

kτ∏
j=1

V
τj
j)vτ

}
τ∈T

, {Lj,τ = V vτj }j=kτ+1,...,T,τ∈T,

{Kx = htx}x∈S ,
{
Fi = (f−ID

i−1

1 · fi)u
}
i=2,··· ,R

.

Output

SK(ID,S,T) =
{
D0, D

′
0, {D

′′

0,τ , D1,τ , Lkτ+1,τ , . . . , LT,τ}τ∈T, {Kx}x∈S , {Fi}i=2,··· ,R

}
as the user secret key for the user with identity ID, attribute set S and time
validity period T.

3. Encrypt(PK,m,Tc,R,A = (M,ρ)): R = (ID1, . . . , IDr) is the revocation
list with r revoked users and r < R. m ∈ GT is the plaintext message and
Tc is the decryptable time period of this ciphertext. Let τc = (τ1, . . . , τk) ∈
{1, z}k be the z-ary representation of Tc, where k < T. 5 Take as input
an LSSS access structure A = (M,ρ). The function ρ associates rows of
M to attributes. Let M be an ` × n matrix. The algorithm first chooses a
random vector v = (s, y2, . . . , yn) ∈ Znp . These values will be used to share
the encryption exponent s. For i = 1 to `, it calculates λi = 〈v,Mi〉, where
Mi is the vector corresponding to the ith row of M . Also let

FR(Z) = (Z− ID1) · · · (Z− IDr) = y1 + y2Z+ · · ·+ yrZ
r−1 + yr+1Z

r. (1)

4 For example, if the user is valid from 2015-Nov-29 to 2016-Dec-31, T =
{(2015, Nov, 29), (2015, Nov, 30), (2015, Dec), (2016)}.

5 Note that if k < T, it means that only the users valid throughout a period of time
(τ1, . . . , τk, 1, 1, . . . , 1) and (τ1, . . . , τk, z, z, . . . , z) can decrypt. For example, if the
decryptable time period of this ciphertext is “2015-Dec” (and thus τ = (2015, Dec)),
only user with secret key valid for the whole December can decrypt this ciphertext.

12

If r + 1 < R, the coefficients yr+2, · · · , yR are set to 0. Compute

C0 = m · e(g, g)αs, C
′

0 = gs, C
′′

0 = (fy11 · · · f
yR
R)s, C

′′′

0 = (V0

k∏
j=1

V
τj
j)s,

C1 = gα0λ1h−sρ(1), . . . , C` = gα0λ`h−sρ(`).

Output a ciphertext CT = {C0, C
′

0, C
′′

0 , C
′′′

0 , C1, . . ., C`} along with a
description of Tc, (M,ρ) and the revoked set R.

4. Decrypt(CT,R, SK(ID,S,T)): First define X = (1, ID, · · · , IDR−1) from the
identity ID and Y = (y1, · · · , yR) from the revoked set R (where yi, i =
1, . . . , R are defined as in equation (1)). Note that

〈X,Y〉 = y1 + y2ID + . . .+ yrID
r−1 + yr+1ID

r = FR(ID),

and if r+1 < R, the coefficients yr+2, · · · , yR are 0. If any one of the following
conditions occurs, output ⊥:
• S does not satisfy the access structure (M,ρ).
• ID ∈ R. That is, 〈X,Y〉 = FR(ID) = 0.
• Tc is not completely covered in T. That is, τc and all its prefixes are not

in T, where τc is the z-ary representation for Tc and T is the set-cover
for T.

Otherwise, now we have ID /∈ R (that is, 〈X,Y〉 6= 0). First compute

F =

R∏
i=2

F yii =
(
f
−〈X,Y〉
1 ·

R∏
i=1

fyii

)u
and ς1 =

(e(F,C ′0)

e(D′0, C
′′
0)

) −1
〈X,Y〉

= e(g, g)α1su.

Further let I ⊂ {1, 2, . . . , `} be defined as I = {i : ρ(i) ∈ S}. Then, let
{ωi ∈ Zp}i∈I be a set of constants such that if {λi} are valid shares of any
secret s according to M , then

∑
i∈I ωiλi = s. Compute

ς2 =
∏
i∈I

(e(Ci, D0) · e(C
′

0,Kρ(i)))
ωi = e(g, g)α0st.

If τc = (τ1, . . . , τk) ∈ T, D1,τc should be one of the components in the
secret key. Otherwise, let its prefix τ ′c = (τ1, . . . , τk′), where k′ < k, such
that τ ′c ∈ T. Then derive the key from the secret key with respect to τ ′c
as follows: D1,τc = D1,τ ′c

∏k
j=k′+1 L

τj
j,τ ′c

, and set τc = τ ′c. Finally, compute

m =
C0·ς1·ς2·e(D

′′
0,τc

,C
′′′
0)

e(D1,τc ,C
′
0)

.

We provide the correctness and security analysis in the appendix.

4.3 Future Enhancements

There are some future enhancements that we can further improve upon the
current construction:

13

• To lift the restriction for repeated attributes while keeping simple or standard
assumption. We note that [38] provided a construction for non-revocable
CP-ABE that has removed this restriction. Yet they use a non-standard
assumption (decisional parallel BDHE assumption). Theoretically speaking,
we can build up a system based on this scheme. However, the resulting
system will also rely on the decisional parallel BDHE assumption.

• To add ciphertext update for revoked users (so that they cannot decrypt
those ciphertext generated in the past). We can use the technique of proxy
re-encryption to achieve this. But we believe this is not the most essential
feature of a revocable ABE since revoked users can anyway decrypt the past
ciphertext before they are revoked. If they have done so, it has no use to
re-encrypt the ciphertext unless the system is fully cloud-based (e.g. cloud-
assisted approach).

5 Performance Analysis

We first compare the efficiency of our scheme with other revocable ABE schemes.
We present our comparison in Table 2. We use the following symbols in our
comparison table:

Table 2: Efficiency Comparison
Scheme PK size SK size Ciphertext size Decryption Time KP/CP Selective /

(# of pairing) -ABE Adaptive

[2] (logR + U)G + GT ((` + 1) logN)G (1 + S + log r)G + GT 2` KP-ABE Selective

[5] (R + U + 1)G + GT ((R + 1) · `)G 3G + GT 2I KP-ABE Selective

[34] (3 + 2U + R)G 4`G (2 + 2S)G + GT 2I KP-ABE Selective

[17] (logN + L + 3)G (1 + L + Q)G (2 + S)G + GT 2L + 3Q + 3 KP-ABE Selective
(multilinear)

[18] 111G + GT (5 + 16` + 16(log2 N + logN)G (16S + 64R − 27)G + GT 16S + 37 KP-ABE Adaptive

[29] 32NG 8NG 4NG + GT (2 + r)N CP-ABE Adaptive

[26] (5 + 8
√
N)G +

√
NGT (2 + 2S +

√
N)G (16

√
N + 3`)G + GT 9 + 3I CP-ABE Selective

Our (U + R + T (S + Z + R + 1)G (3 + `)G + GT 4 + 2I CP-ABE Selective
+3)G + GT best case: Z = 2

worst case: Z =
T(T+3)

2

• R: max number of revoked users; U : max number of attributes in the system
• T: number of time period level (depth of time tree)
• N : max number of users in the system; S: number of attributes of the user
• r: number of revoked users in the revocation list
• `: number of rows of the access structure matrix
• I: number of attributes used in the decryption
• L: max number of length of input wires (exclusive for [17] only)
• Q: max number of gates (exclusive for [17] only)
• GT : number GT elements; G: number G elements

Note that we exclude the following for the comparison as they are of different
features or security level with our scheme:

14

• Using indirect approach and cloud-assisted approach (such as those listed
in Section 2), as they cannot support instant revocation or require a cloud
server to assist decryption.

• Using broadcast encryption technique (such as [3,34]) as they require the
encryptor to know the identity of all possible decryptors, which is not exactly
an ABE but more or less similar to a broadcast encryption in nature.

• Weak security model [9]. Their model is very week. They only allow the ad-
versary to query secret key that does not satisfy the challenge access struc-
ture AND not in the revocation list. Under this model, the collusion attack
we mentioned in Section 1.2 is NOT considered as a valid attack. That means
their model cannot capture such a low-level attack.

• Attribute-level revocation only [50]. They only support attribute-level revo-
cation, instead of the more generalized user-level or key-level revocation.

From the comparison, we can see that our scheme is the most efficient CP-
ABE using direct approach for revocation. In practice, T can be very small.
For example, if we only consider year, month and day, T = 3. Our space and
computation complexity do not depend on N , the total number of users in the
system, which is supposed to be a very large number.

6 Conclusion

In this paper, we proposed a revocable CP-ABE scheme based on the direct
revoke approach. That is, the revocation list is embedded into the ciphertext
so that instant revocation can be achieved. In order to shorten the revocation
list, we further propose a time validity technique so that expired users cannot
decrypt ciphertext associated with a decryptable time period not completely
covered under their validity period. We deploy a tree-based structure and HIBE
technique to construct the time validity part. The efficiency analysis also shows
that our scheme is practical enough to be deployed.

Acknowledgement

This work was supported by Australian Research Council (ARC) Grant DP180102199,
the National Natural Science Foundation of China (61702342), the Science and
Technology Innovation Projects of Shenzhen (JCYJ20160307150216309,
JCYJ20170302151321095) and Tencent ”Rhinoceros Birds” -Scientific Research
Foundation for Young Teachers of Shenzhen University.

References

1. N. Attrapadung, J. Herranz, F. Laguillaumie, B. Libert, E. de Panafieu, and
C. Ràfols. Attribute-based encryption schemes with constant-size ciphertexts.
Theor. Comput. Sci., 422:15–38, 2012.

15

2. N. Attrapadung and H. Imai. Attribute-based encryption supporting di-
rect/indirect revocation modes. In IMA, volume 5921 of LNCS, pages 278–300.
Springer, 2009.

3. N. Attrapadung and H. Imai. Conjunctive broadcast and attribute-based encryp-
tion. In Pairing, volume 5671 of LNCS, pages 248–265. Springer, 2009.

4. N. Attrapadung and B. Libert. Functional encryption for inner product: Achieving
constant-size ciphertexts with adaptive security or support for negation. In PKC,
volume 6056 of LNCS, pages 384–402. Springer, 2010.

5. N. Attrapadung, B. Libert, and E. de Panafieu. Expressive key-policy attribute-
based encryption with constant-size ciphertexts. In PKC, volume 6571 of LNCS,
pages 90–108. Springer, 2011.

6. M. H. Au, Q. Huang, J. K. Liu, W. Susilo, D. S. Wong, and G. Yang. Traceable
and retrievable identity-based encryption. In ACNS, volume 5037 of LNCS, pages
94–110. Springer, 2008.

7. M. H. Au, J. K. Liu, T. H. Yuen, and D. S. Wong. Practical hierarchical identity
based encryption and signature schemes without random oracles. IACR Cryptology
ePrint Archive, 2006:368, 2006.

8. M. H. Au, T. H. Yuen, J. K. Liu, W. Susilo, X. Huang, Y. Xiang, and Z. L. Jiang.
A general framework for secure sharing of personal health records in cloud system.
J. Comput. Syst. Sci., 90:46–62, 2017.

9. A. Balu and K. Kuppusamy. Ciphertext-policy attribute-based encryption with
user revocation support. In QShine, volume 115 of Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering,
pages 696–705. Springer, 2013.

10. A. Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis,
Israel Institute of Technology, Technion, Haifa, Israel, 1996.

11. A. Boldyreva, V. Goyal, and V. Kumar. Identity-based encryption with efficient
revocation. In CCS, pages 417–426. ACM, 2008.

12. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In EUROCRYPT, volume 3494 of LNCS, pages 440–456.
Springer, 2005.

13. D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In
CRYPTO, volume 2139 of LNCS, pages 213–229. Springer, 2001.

14. S. S. M. Chow, J. K. Liu, and J. Zhou. Identity-based online/offline key encapsu-
lation and encryption. In ASIACCS, pages 52–60. ACM, 2011.

15. C. Chu, J. K. Liu, J. Zhou, F. Bao, and R. H. Deng. Practical id-based encryption
for wireless sensor network. In ASIACCS, pages 337–340. ACM, 2010.

16. H. Cui, R. H. Deng, Y. Li, and B. Qin. Server-aided revocable attribute-based
encryption. In ESORICS Part II, volume 9879 of LNCS, pages 570–587. Springer,
2016.

17. P. Datta, R. Dutta, and S. Mukhopadhyay. General circuit realizing compact
revocable attribute-based encryption from multilinear maps. In ISC, volume 9290
of LNCS, pages 336–354. Springer, 2015.

18. P. Datta, R. Dutta, and S. Mukhopadhyay. Adaptively secure unrestricted
attribute-based encryption with subset difference revocation in bilinear groups of
prime order. In AFRICACRYPT, volume 9646 of LNCS, pages 325–345. Springer,
2016.

19. K. He, J. Weng, J. K. Liu, W. Zhou, and J. Liu. Efficient fine-grained access
control for secure personal health records in cloud computing. In NSS, volume
9955 of LNCS, pages 65–79. Springer, 2016.

16

20. J. Hong, K. Xue, and W. Li. Comments on ”DAC-MACS: Effective Data Ac-
cess Control for Multiauthority Cloud Storage Systems” / Security Analysis of
Attribute Revocation in Multiauthority Data Access Control for Cloud Storage
Systems. IEEE Trans. Information Forensics and Security, 10(6):1315–1317, 2015.

21. J. Hur and D. K. Noh. Attribute-based access control with efficient revocation in
data outsourcing systems. IEEE Trans. Parallel Distrib. Syst., 22(7):1214–1221,
2011.

22. K. Liang, M. H. Au, J. K. Liu, W. Susilo, D. S. Wong, G. Yang, T. V. X. Phuong,
and Q. Xie. A dfa-based functional proxy re-encryption scheme for secure public
cloud data sharing. IEEE Trans. Information Forensics and Security, 9(10):1667–
1680, 2014.

23. K. Liang, M. H. Au, J. K. Liu, W. Susilo, D. S. Wong, G. Yang, Y. Yu, and A. Yang.
A secure and efficient ciphertext-policy attribute-based proxy re-encryption for
cloud data sharing. Future Generation Comp. Syst., 52:95–108, 2015.

24. J. Liu, X. Huang, and J. K. Liu. Secure sharing of personal health records in
cloud computing: Ciphertext-policy attribute-based signcryption. Future Genera-
tion Comp. Syst., 52:67–76, 2015.

25. J. K. Liu, M. H. Au, X. Huang, R. Lu, and J. Li. Fine-grained two-factor ac-
cess control for web-based cloud computing services. IEEE Trans. Information
Forensics and Security, 11(3):484–497, 2016.

26. Z. Liu and D. S. Wong. Practical ciphertext-policy attribute-based encryption:
Traitor tracing, revocation, and large universe. In ACNS, volume 9092 of LNCS,
pages 127–146. Springer, 2015.

27. T. Naruse, M. Mohri, , and Y. Shiraishi. Attribute-based encryption with at-
tribute revocation and grant function using proxy re-encryption and attribute key
for updating. In Future Information Technology, volume 276 of Lecture Notes in
Electrical Engineering, pages 119–125. Springer, 2014.

28. T. Naruse, M. Mohri, and Y. Shiraishi. Provably secure attribute-based encryp-
tion with attribute revocation and grant function using proxy re-encryption and
attribute key for updating. Human-centric Computing and Information Sciences,
5(1):1–13, 2015.

29. J. M. G. Nieto, M. Manulis, and D. Sun. Fully private revocable predicate encryp-
tion. In ACISP, volume 7372 of LNCS, pages 350–363. Springer, 2012.

30. H. Qian, J. Li, Y. Zhang, and J. Han. Privacy-preserving personal health record
using multi-authority attribute-based encryption with revocation. Int. J. Inf. Sec.,
14(6):487–497, 2015.

31. S. Ruj, A. Nayak, and I. Stojmenovic. DACC: distributed access control in clouds.
In TrustCom 2011, pages 91–98. IEEE Computer Society, 2011.

32. A. Sahai, H. Seyalioglu, and B. Waters. Dynamic credentials and ciphertext dele-
gation for attribute-based encryption. In CRYPTO, volume 7417 of LNCS, pages
199–217. Springer, 2012.

33. J. Shi, C. Huang, J. Wang, K. He, and J. Wang. An access control scheme with di-
rect cloud-aided attribute revocation using version key. In ICA3PP Part I, volume
8630 of LNCS, pages 429–442. Springer, 2014.

34. P. Wang, D. Feng, and L. Zhang. Towards attribute revocation in key-policy
attribute based encryption. In CANS, volume 7092 of LNCS, pages 272–291.
Springer, 2011.

35. S. Wang, K. Liang, J. K. Liu, J. Chen, J. Yu, and W. Xie. Attribute-based data
sharing scheme revisited in cloud computing. IEEE Trans. Information Forensics
and Security, 11(8):1661–1673, 2016.

17

36. S. Wang, J. Zhou, J. K. Liu, J. Yu, J. Chen, and W. Xie. An efficient file hierarchy
attribute-based encryption scheme in cloud computing. IEEE Trans. Information
Forensics and Security, 11(6):1265–1277, 2016.

37. B. Waters. Ciphertext-Policy Attribute-Based Encryption: An Expressive, Ef-
ficient, and Provably Secure Realization. Cryptology ePrint Archive, Report
2008/290, 2008. http://eprint.iacr.org/.

38. B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In PKC, volume 6571 of LNCS, pages 53–70.
Springer, 2011.

39. F. Xhafa, J. Wang, X. Chen, J. K. Liu, J. Li, and P. Krause. An efficient PHR
service system supporting fuzzy keyword search and fine-grained access control.
Soft Comput., 18(9):1795–1802, 2014.

40. X. Xie, H. Ma, J. Li, and X. Chen. An efficient ciphertext-policy attribute-based
access control towards revocation in cloud computing. J. UCS, 19(16):2349–2367,
2013.

41. X. Xie, H. Ma, J. Li, and X. Chen. New ciphertext-policy attribute-based access
control with efficient revocation. In ICT-EurAsia, volume 7804 of LNCS, pages
373–382. Springer, 2013.

42. K. Yang, X. Jia, K. Ren, and B. Zhang. DAC-MACS: effective data access control
for multi-authority cloud storage systems. In INFOCOM, pages 2895–2903. IEEE,
2013.

43. K. Yang, X. Jia, K. Ren, B. Zhang, and R. Xie. DAC-MACS: effective data
access control for multiauthority cloud storage systems. IEEE Trans. Information
Forensics and Security, 8(11):1790–1801, 2013.

44. Y. Yang, X. Ding, H. Lu, Z. Wan, and J. Zhou. Achieving revocable fine-grained
cryptographic access control over cloud data. In ISC, volume 7807 of LNCS, pages
293–308. Springer, 2015.

45. Y. Yang, J. K. Liu, K. Liang, K. R. Choo, and J. Zhou. Extended proxy-assisted
approach: Achieving revocable fine-grained encryption of cloud data. In ESORICS
Part II, volume 9327 of LNCS, pages 146–166. Springer, 2015.

46. Y. Yang, J. K. Liu, Z. Wei, and X. Huang. Towards revocable fine-grained encryp-
tion of cloud data: Reducing trust upon cloud. In ACISP Part I, volume 10342 of
LNCS, pages 127–144. Springer, 2017.

47. J. Ye, W. Zhang, S. Wu, Y. Gao, and J. Qiu. Attribute-based fine-grained access
control with user revocation. In ICT-EurAsia, volume 8407 of LNCS, pages 586–
595. Springer, 2014.

48. S. Yu, C. Wang, K. Ren, and W. Lou. Attribute based data sharing with attribute
revocation. In ASIACCS, pages 261–270. ACM, 2010.

49. T. H. Yuen, Y. Zhang, S. Yiu, and J. K. Liu. Identity-based encryption with post-
challenge auxiliary inputs for secure cloud applications and sensor networks. In
ESORICS Part I, volume 8712 of LNCS, pages 130–147. Springer, 2014.

50. M. Zhang. New model and construction of ABE: achieving key resilient-leakage
and attribute direct-revocation. In ACISP, volume 8544 of LNCS, pages 192–208.
Springer, 2014.

51. C. Zuo, J. Shao, J. K. Liu, G. Wei, and Y. Ling. Fine-grained two-factor protection
mechanism for data sharing in cloud storage. IEEE Trans. Information Forensics
and Security, 13(1):186–196, 2018.

18

http://eprint.iacr.org/

A Mathematical Background

A.1 Vector

We use α = (α1, · · · , αn)> ∈ Znp and gα = (ga1 , · · · , gan)> ∈ Gn to denote

column vectors. For a, z ∈ Znp , 〈a, z〉 = a>z =
∑n
i=1 aizi and (ga)z = g〈a,z〉.

A.2 Bilinear Groups

G is an algorithm, which takes as input a security parameter κ and outputs a
tuple (p,G,GT , e), where G and GT are multiplicative cyclic groups with prime
order p, and e : G×G→ GT is a map, which has the following properties:

• Bilinearity: e(ga, hb) = e(g, h)ab for ∀g, h ∈ G and ∀a, b ∈ Zp.
• Non-degeneracy: There exists g, h ∈ G such that e(g, h) 6= 1G.
• Computability: There exists an efficient algorithm to compute e(g, h) for
∀g, h ∈ G.

A.3 Access Structure

Let {P1, P2, · · · , Pn} be a set of parties. A collection A ⊆ 2{P1,P2,··· ,Pn} is mono-
tone if ∀B,C: if B ∈ A and B ⊆ C then C ∈ A. An access structure is a collection
A of non-empty subsets of {P1, P2, · · · , Pn}, i.e., A ⊆ 2{P1,P2,··· ,Pn}\{Ø}. The
sets in A are called the authorized sets, and the sets not in A are called the
unauthorized sets.

A.4 Linear Secret Sharing Schemes

We adapt our definition from those given in [10]. A secret-sharing scheme Π
over a set of parties P is called linear (over Zp) if

• The shares of the parties form a vector over Zp.
• There exists a matrix M with ` rows and n columns called the share-

generating matrix for Π. There exists a function ρ which maps each row
of the matrix to an associated party. That is for i = 1, · · · , ` the value ρ(i)
is the party associated with row i. When we consider the column vector
v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared, and r2, · · · , rn ∈
Zp are randomly chosen, then Mv is the vector of ` shares of the secret s
according to Π. The share (Mv)i belongs to party ρ(i).
Every linear secret sharing scheme according to the above definition also
enjoys the linear reconstruction property which defined as follows: Suppose
that Π is an LSSS for the access structure A. Let S ∈ A be any authorized
set, and let I ⊂ {1, 2, · · · , `} be defined as I = {i : ρ(i) ∈ S}. Then, there
exist constants {ωi ∈ Zp}i∈I such that, if {λi} are valid shares of any secret
s according to Π, then

∑
i∈I ωiλi = s. These constants ωi can be found in

time polynomial in the size of the share-generating matrix M . Like any secret
sharing scheme, it has the property that for any unauthorized set S /∈ A, the
secret s should be information theoretically hidden from the parties in S.

19

A.5 Decisional q-Bilinear Diffie-Hellman Exponent (BDHE)
Problem

The Decisional q-BDHE problem is defined as given

(g, gs, ga, · · · , g(a
q), g(a

(q+2)), · · · , g(a
2q), T)

where s, a ∈ Zp, g ∈ G and T ∈ GT , to decide if T = e(e, g)sa
q+1

or if T is a
random element of GT .

B Security Analysis

The correctness of the scheme in Section 4.2 can be seen from the following
equations.

F =

R∏
i=2

F yii

=

R∏
i=2

(f−ID
i−1

1 fi)
yiu

= (f
−(IDy2+ID2y3+···+IDR−1yR)
1 g

∑R
i=2 αiyi)u

=
(
f
−〈X,Y 〉+y1
1

R∏
i=2

fyii

)u
=
(
f
−〈X,Y 〉
1 ·

R∏
i=1

fyii

)u
. (2)

ς1 =
(e(F,C ′0)

e(D′0, C
′′
0)

) −1
〈X,Y 〉

=

(
e
(
(f
−〈X,Y 〉
1 ·

∏R
i=1 f

yi
i)u, gs

)
e
(
gu, (fy11 · · · f

yR
R)s

)) −1
〈X,Y 〉

= e(g, g)α1su. (3)

ς2 =
∏
i∈I

(
e(Ci, D0) · e(C ′0,Kρ(i))

)ωi
=
∏
i∈I

(
e(gα0λih−sρ(i), g

t) · e(gs, htρ(i))
)ωi

=
∏
i∈I

e(g, g)tα0λiωi

= e(g, g)stα0 . (4)

20

m =
C0 · ς1 · ς2 · e(D

′′

0 , C
′′′

0)

e(D1,τc , C
′
0)

=
m · e(g, g)αs · e(g, g)α1su · e(g, g)stα0 · e(gvτc , (V0

∏k
j=1 V

τj
j)s)

e(gαgα0tgα1u(V0
∏k
j=1 V

τj
j)vτc , gs)

. (5)

We prove the following theorem.

Theorem B.1. Suppose the decisional q-BDHE assumption holds. Then no
probabilistic polynomial time adversary can selectively break our system in with
a challenge matrix of size `∗ × n∗, where `∗, n∗ ≤ q, a challenge revocation
list R∗ where |R∗| ≤ q − 2 and a challenge time T∗c with z-ary representation
τ∗ = (τ∗1 , . . . , τ

∗
k∗) for some k∗ < T such that T ≤ q.

Proof. Suppose there exists an adversaryA with non-negligible advantage against
our construction. Then challenger C can resolve the decisional q-BDHE problem
with non-negligible probability.

• Init. Challenger C receives

y = (g, gs, ga, · · · , ga
q

, ga
q+2

, · · · , ga
2q

) ∈ G2q+1, T ∈ GT ,

and decides if T = e(g, g)sa
q+1

using the adversary A. A first gives the
challenge access structure (M∗, ρ∗) where M∗ has n∗ ≤ q columns. A also
gives C the challenge time T∗c with z-ary representation τ∗ = (τ∗1 , . . . , τ

∗
k∗)

for some k∗ ≤ T and the challenge revocation list R∗, where |R∗| ≤ q − 2.
That is, the maximum number of revoked users allowed in the system R− 1
is set to q − 2. In other words, we have R = q − 1.
• Setup. Challenger C chooses random α′, δ0, ξ0, ξ1, . . . , ξT ∈ Zp and implicitly

sets α = α′ + δ0a
q+1 by letting

e(g, g)α = e(ga, ga
q

)δ0e(g, g)α
′
.

Let gα0 = ga. For each x for 1 ≤ x ≤ U begin by choosing a random value
zx. Let I denote the set of indices i, such that ρ∗(i) = x. C programs hx as:

hx = gzxgaM
∗
i,1 · ga

2M∗i,2 · · · ga
n∗M∗i,n∗ . (6)

Note that if I = Ø then we have hx = gzx . Also note that the parameters
are distributed randomly due to the gzx value.
Let |R∗| = r. Note that r ≤ q−2. Let X1, · · · ,Xr be the corresponding vec-
tors for the revoked setR = {ID1, · · · , IDr} . That is, Xk = (1, IDk, · · · , IDq−2

k)
for k ∈ [1, r].

• For each k ∈ [1, r], let

MXk
=

(
−IDk − ID2

k · · · − ID
q−2
k

Iq−2

)

21

where Iq−2 is a (q − 2) × (q − 2) identity matrix. C selects bk ∈R Zq−1p

such that

bk ·MXk
= 0. (7)

The simplest candidate consists of the vector bk = (1, IDk, · · · , IDq−2
k).

• For k ∈ [r + 1, q − 1], bk = 0.

Define a (q − 1)× (q − 1) matrix

B = (b1| · · · |br|0| · · · |0)

where the kth column consists of bk for k ∈ [1, r] and the remaining q−1−r
columns are 0.

Challenger C defines Vj = gξja
q−j+1

for j ∈ [1, T] and V0 =
∏k∗

j=1 V
−τ∗j
j gξ0 .

Challenger C defines ν = (ν1, · · · , νq−1)> such that νi = aq+1−i and sets

gν = (gν1 , . . . , gνq−1)> = (ga
q

, . . . , ga
2

)>. It then implicitly sets

α = B · ν + δ (8)

by randomly choosing δ ∈ Zq−1p . Challenger C defines the last public param-
eter

F = gB·ν · gδ = gα = (gα1 , · · · , gαR)> = (f1, . . . , fR)>.

• Phase 1. Adversary A makes repeated private keys queries corresponding
to the tuple of identity, attributes and time and identity (ID, S,T), such
that at least one of the following conditions must be satisfied:

1. the attribute set S does not satisfy the access structure A∗;
2. ID ∈ R∗;
3. τ∗ and all its prefixes are not in T, the set-cover of T.

We separate into three cases.

Case 1: S does not satisfy A∗. Challenger C first chooses a random ϕ ∈ Zp.
Then it finds a vector w = (w1, · · · , wn∗) ∈ Zn∗p such that w1 = −1 and for
all i where ρ∗(i) ∈ S we have that w ·M∗i = 0. By our definition of an LSSS,
such a vector must exist since S does not satisfy M∗. C implicitly defines

t = ϕ+ δ0(w1a
q + w2a

q−1 + . . .+ wn∗a
q−n∗+1).

It performs this by setting

D0 = gϕ
n∗∏
i=1

(
ga

q+1−i)wiδ0
= gt.

22

C then randomly chooses u ∈ Zp and sets D′0 = gu. Then for all τ =

(τ1, . . . , τkτ) ∈ T, C randomly chooses vτ ∈ Zp and sets D
′′

0,τ = gvτ and:

D1,τ = gα
′
gaϕ

n∗∏
i=2

(
ga

q+2−i)wiδ0
gα1u(V0

kτ∏
j=1

V
τj
j)vτ

= gα
′
gδ0a

q+1

gaϕg−δ0a
q+1

n∗∏
i=2

(
ga

q+2−i)wiδ0
gα1u(V0

kτ∏
j=1

V
τj
j)vτ

= gαgaϕgw1δ0a
q+1

n∗∏
i=2

(
ga

q+2−i)wiδ0
gα1u(V0

kτ∏
j=1

V
τj
j)vτ (∵ w1 = −1)

= gαgaϕ
n∗∏
i=1

(
ga

q+2−i)wiδ0
gα1u(V0

kτ∏
j=1

V
τj
j)vτ

= gα

(
gϕ

n∗∏
i=1

(
ga

q+1−i)wiδ0)a
gα1u(V0

kτ∏
j=1

V
τj
j)vτ

= gαgatgα1u(V0

kτ∏
j=1

V
τj
j)vτ

= gαgα0tgα1u(V0

kτ∏
j=1

V
τj
j)vτ .

Now we set Kx ∀x ∈ S. First, we consider x ∈ S for which there is no i
such that ρ∗(i) = x. For those we can simply let Kx = Dzx

0 . Then we create
keys for attributes x where x is used in the access structure. We follow the
heuristic from [37].

For these keys we have to make sure no terms are of the form ga
q+1

which cannot be simulated. In calculating htx all terms of this form
come from M∗i,ja

jwja
q+1−j for some j, where ρ∗(i) = x. However,

we have that M∗i w = 0. Therefore everything with an exponent aq+1

cancels when combined.

S creates Kx in this case as follows. Suppose ρ∗(i) = x, it sets

Kx = Dzx
0 ·

n∗∏
j=1

(
ga

jϕ
n∗∏

µ=1,µ6=j

(
ga

q+1+j−µ)wµδ0)M∗i,j
.

Finally C computes Fi = (f−ID
i−1

1 · fi)u for i = 2, . . . , R and {Lj,τ =
V vτj }j=kτ+1,...,T,τ∈T.

Case 2: ID ∈ R∗. We follow the heuristic in [1]. In this case, let IDk ∈ R∗
be the identity of the secret key that A queries, where k ∈ [1, r]. Challenger
C defines ũk = uk − δ0ak for a random uk ∈R Zp. Recall α is defined in

23

equation (8), the first coordinate of α equals

α1 = δ1 +

r∑
j=1

νj = δ1 +

r∑
j=1

aq+1−j . (9)

Now challenger C computes D′0 = guk(ga
k

)−δ0 = gũk . Next, C randomly
selects t ∈ Zp and computes D0 = gt. For all τ = (τ1, . . . , τkτ) ∈ T, C
randomly selects vτ ∈ Zp and computes D

′′

0,τ = gvτ and

D1,τ = gα
′
fuk1

(
ga

kδ1

r∏
j=1,j 6=k

ga
q+1−j+k

)−δ0
(ga)t(V0

kτ∏
j=1

V
τj
j)vτ

= gα
′
gα1ukga

q+1δ0

(
gδ1

r∏
j=1

ga
q+1−j

)−δ0ak
(gα0)t(V0

kτ∏
j=1

V
τj
j)vτ

= gαgα1uk(gα1)−δ0a
k

gα0t(V0

kτ∏
j=1

V
τj
j)vτ (from equation (9))

= gαgα1uk−α1δ0a
k

gα0t(V0

kτ∏
j=1

V
τj
j)vτ

= gαgα1ũkgα0t(V0

kτ∏
j=1

V
τj
j)vτ .

We define Fk = (F2, . . . , FR)> which is the secret key component for IDk.
First recall ν = (ν1, · · · , νq−1)> where νi = aq+1−i and gν = (gν1 , . . . , gνq−1)> =

(ga
q

, . . . , ga
2

)>. C computes Fk as follow:

Fk = gukM
>
Xk
α · g−δ0a

kM>Xk
Bν · g−δ0a

kM>Xk
δ

(C is able to compute ga
kM>Xk

Bν because

the kth column of M>Xk
B is 0, from equation (7))

= gukM
>
Xk
α · g−δ0a

kM>Xk
α (from equation (8))

= g(uk−δ0a
k)M>Xk

α

= gũkM
>
Xk
α.

That is, for i = 2, . . . , R (recall that R = q − 1), we have

Fi = gũkM
>
Xk,i−1α

(where M>Xk,i−1 denotes the (i− 1)th row of M>Xk
)

= gũk(−ID
i−1
k α1+αi)

= (f
−IDi−1

k
1 · fi)ũk .

24

Finally C computes {Kx = htx}x∈S and {Lj,τ = V vτj }j=k+1,...,T,τ∈T.

Case 3: τ∗ and all its prefixes are not in T. For all τ = (τ1, . . . , τkτ) ∈ T,
first define τkτ+1 = . . . = τq = 0 and τ∗k∗+1 = . . . = τ∗q = 0. There exists a
smallest index k′ ≤ k∗ such that τk′ 6= τ∗k′ .

Challenger C randomly selects vτ ∈ Zp and implicitly defines ṽτ = δ0a
k′

ξk′ (τ
∗
k′−τk′)

+

vτ . It performs this by setting:

D
′′

0,τ = g
δ0a

k′

ξ
k′ (τ

∗
k′
−τ
k′)

+vτ
.

C then randomly chooses t, u ∈ Zp and sets D0 = gt, D′0 = gu. For all τ ,
compute:

D1,τ = gα
′+α0t+α1u+vτξ0(ga

q−k′+1

)vτξk′ (τk′−τ
∗
k′)(ga

k′

)
ξ0δ0

ξ
k′ (τ

∗
k′
−τ
k′)

·
kτ−k′+1∏
j=1

(ga
q−j+1

)

ξ
j+k′τ

∗
j+k′ δ0

ξ
k′ (τ

∗
k′
−τ
k′)

kτ+1∏
j=k′+1

(ga
q−j+1

)ξjτ
∗
j vτ

= gα
′
gα0tgα1ugvτ (ξ0+ξk′a

q−k′+1(τk′−τ
∗
k′))g

ξ0δ0a
k′

ξ
k′ (τ

∗
k′
−τ
k′)

·
kτ+1∏
j=k′+1

g

ξja
q−j+1+k′τ∗j δ0
ξ
k′ (τ

∗
k′
−τ
k′)

kτ+1∏
j=k′+1

gξja
q−j+1τ∗j vτ

= gα
′+δ0a

q+1

gα0tgα1ug
(ξ0+ξk′a

q−k′+1(τk′−τ
∗
k′))(

δ0a
k′

ξ
k′ (τ

∗
k′
−τ
k′)

+vτ)

·
kτ+1∏
j=k′+1

g
ξja

q−j+1τ∗j (
δ0a

k′

ξ
k′ (τ

∗
k′
−τ
k′)

+vτ)

= gαgα0tgα1ug(ξ0+ξk′a
q−k′+1(τk′−τ

∗
k′))ṽτ

kτ+1∏
j=k′+1

gξja
q−j+1τ∗j ṽτ

= gαgα0tgα1u(V0

k′∏
j=1

V
τj
j)ṽτ

kτ+1∏
j=k′+1

V
τj ṽτ
j (∵ τj = τ∗j if j < k′)

= gαgα0tgα1u(V0

kτ+1∏
j=1

V
τj
j)ṽτ

= gαgα0tgα1u(V0

kτ∏
j=1

V
τj
j)ṽτ (∵ τkτ+1 = 0)

25

C also computes {Kx = htx}x∈S , {Fi = (f−ID
i−1

1 · fi)u}i=2,··· ,R. For j =
kτ + 1, . . . , T, τ ∈ T, compute

Lj,τ = g
δ0ξja

q+1+k′−j

ξ
k′ (τ

∗
k′
−τ
k′)

+vτξja
q−j+1

= (gξja
q−j+1

)
δ0a

k′

ξ
k′ (τ

∗
k′
−τ
k′)

+vτ

= V ṽτj .

• Challenge. Adversary A submits two equal length messages m0 and m1.
Challenger C flips a random coin β and encrypts mβ under the access struc-
ture A∗, revocation list R∗ and time T∗c with z-ary representation τ∗. It first
creates

C0 = mβ · T δ0 · e(gs, gα
′
),

C ′0 = gs.

For C
′′

0 , we follow the technique from [1]. Let R∗ = (ID1, . . . , IDr) and
FR∗(Z) = (Z − ID1) · · · (Z − IDr) = y1 + y2Z + · · ·+ yrZ

r−1 + yr+1Z
r. If

r + 1 < R, the coefficients yr+2, · · · , yR are set to 0. Let Y = (y1, · · · , yR)>

satisfy 〈Xk,Y〉 = 0 for k ∈ [1, r]. We claim that Y> · B · ν = 0. Therefore,
it comes that 〈Y,α〉 = 〈Y, δ〉. C sets

C
′′

0 = (gs)〈Y,δ〉.

For C
′′′

0 , observe that since the challenge time is (τ∗1 , . . . , τ
∗
k∗), the ga

i

terms
in Vi are cancelled out. C sets

C
′′′

0 = (gs)ξ0 .

For Ci, we follow the technique from [38]. Since the term hsρ∗(i) contains

terms of the form ga
js that cannot be simulated, we need to use the secret

splitting technique such that these terms can be cancelled out. C chooses
y′2, . . . , y

′
n∗ ∈ Zp and then share the secret using the vector

v∗ = (s, sa+ y′2, sa
2 + y′3, . . . , sa

n∗−1 + y′n∗) ∈ Zn
∗

p .

This allows the terms h−sρ∗(i) cancel out with the terms gaλi . For i = 1, . . . , n∗,
C generates

Ci =

(n∗∏
j=2

(ga)M
∗
i,jy
′
j

)
(gs)−zρ∗(i) .

To see the simulation correctness of Ci, we first define

λ∗i = 〈v∗,M∗i 〉
= sM∗i,1 + (sa+ y′2)M∗i,2 + (sa2 + y′3)M∗i,3 + . . .+ (san

∗−1 + y′n∗)M
∗
i,n∗ .

26

The correct distribution of Ci should be

Ci = gaλ
∗
i h−sρ∗(i)

=
(
gsaM

∗
i,1g(sa+y

′
2)aM

∗
i,2g(sa

2+y′3)aM
∗
i,3 · · · g(sa

n∗−1+y′n∗)aM
∗
i,n∗
)

·g−szρ∗(i)
(
g−saM

∗
i,1 · g−sa

2M∗i,2 · · · g−sa
n∗M∗i,n∗

)
(from equation (6))

= gaM
∗
i,2y
′
2gaM

∗
i,3y
′
3 . . . gaM

∗
i,n∗y

′
n∗ (gs)−zρ∗(i)

=

(n∗∏
j=2

(ga)M
∗
i,jy
′
j

)
(gs)−zρ∗(i) .

• Phase 2. It is the same as in Phase 1.
• Guess. Adversary A will eventually output a guess β′ of β. Challenger C

then outputs 0 to guess that T = e(g, g)a
q+1s if β = β′; otherwise, it outputs

1 to indicate that it believes T is a random group element Ψ ∈ GT .

When T is a tuple, the challenger C gives a perfect simulation so we have that
the advantage of the challenger C is the same as the advantage of the adversary
A. When T is a random group element Ψ ∈ GT , the message mβ is completely
hidden from the adversary and we have Pr[C(y, T = Ψ) = 0] = 1/2. Therefore,
the challenger C can win the decisional q-BDHE game with non-negligible ad-
vantage. ut

27

	Time-Based Direct Revocable Ciphertext-Policy Attribute-Based Encryption with Short Revocation List
	Joseph K. Liu1, Tsz Hon Yuen2, Peng Zhang3, Kaitai Liang4

