
Fast modular squaring with AVX512IFMA

Nir Drucker and Shay Gueron

1 University of Haifa, Israel
2 Amazon Web Services Inc.?, Seattle, WA, USA
drucker.nir@gmail.com, shay@math.haifa.ac.il

Abstract. Modular exponentiation represents a significant workload for
public key cryptosystems. Examples include not only the classical RSA,
DSA, and DH algorithms, but also the partially homomorphic Paillier
encryption. As a result, efficient software implementations of modular ex-
ponentiation are an important target for optimization. This paper studies
methods for using Intel’s forthcoming AVX512 Integer Fused Multiply
Accumulate (AVX512IFMA) instructions in order to speed up modular
(Montgomery) squaring, which dominates the cost of the exponentia-
tion. We further show how a minor tweak in the architectural definition
of AVX512IFMA has the potential to further speed up modular squaring.

1 Introduction

The Multiply and Accumulate (MAC) operation consumes three inputs a, b, c,
and computes a = a + b · c. It is a fundamental step in many floating-point and
integer computations. Examples are dot product calculations, matrix multiplica-
tions, and modular arithmetic. Modern processors offer instructions for perform-
ing MAC over floating-point inputs, e. g., AMD Bulldozer’s Fused Multiply-Add
(FMA), and Intel’s Single Instruction Multiple Data (SIMD)-FMA (starting with
the microarchitecture Codename Haswell). Here, we focus on Intel’s AVX512-
IFMA instructions [2] that compute MAC on unsigned integers.

The AVX512IFMA instructions are defined, but are not yet available on
real processors. However, a demonstration of their capabilities is already given
in [12], showing a 2x potential speedup for 1024-bit integer multiplication (and
more for larger operands). Another example is [7], where we showed a 6x speedup
over OpenSSL’s Montgomery Multiplication (MM). Additional code examples [6,
11] contributed to OpenSSL, include optimized 1024/1536/2048-bit MM. These
demonstrations did not optimize modular squaring specifically; rather, they used
a multiplication routine for squaring as well. Here, we show how to use the
AVX512IFMA instructions for optimizing modular squaring. Our developments
build on top of the Almost Montgomery Square (AMS) optimization of [8] (other
squaring methods can be found in [5, 10,13]).

The paper is organized as follows. Section 2 discusses some preliminaries.
Section 3 deals with implementing the AMS algorithm with the AVX512IFMA

? This work was done prior to joining Amazon.



2

instructions. In Section 4, we propose a potential improvement to the definition
of AVX512IFMA. Finally, we show our experimental results in Section 5, and
provide our conclusions in Section 6.

2 Preliminaries and notation

Hereafter, we use lower case letters to represent scalars (64-bit integers), and
upper case letters to represent 512-bit wide register.

2.1 The AVX512IFMA instructions

Intel’s Software Developer Manual [2] introduces two instructions called AVX512-
IFMA: VPMADD52LUQ and VPMADD52HUQ. Their functionality is illustrated in
Alg. 1. These instructions multiply eight 52-bit unsigned integers residing in wide
512-bit registers, produce the low (VPMADD52LUQ) and high (VPMADD52HUQ)
halves of the 104-bit products, and add the results to 64-bit accumulators (i. e.,
SIMD elements), placing them in the destination register. They are designed for
supporting big number multiplications, when the inputs are stored in a ”redun-
dant representation” using radix 252 (as explained in [9]).

Algorithm 1 DST = VPMADD52(A,B,C)

Inputs: A,B,C (512-bit wide registers)
Outputs: DST (a 512-bit wide register)

1: procedure VPMADD52LUQ(A, B, C)
2: for j := 0 to 7 do
3: i := j × 64
4: TMP[127 : 0] := ZeroExtend64(B[i+51:i]) × ZeroExtend64(C[i+51:i])
5: DST[i+63:i] := A[i+63:i] + ZeroExtend64(TMP[51:0])

6: procedure VPMADD52HUQ(A, B, C)
7: for j := 0 to 7 do
8: i := j × 64
9: TMP[127 : 0] := ZeroExtend64(B[i+51:i]) × ZeroExtend64(C[i+51:i])

10: DST[i+63:i] := A[i+63:i] + ZeroExtend64(TMP[103:52])

The AVX512IFMA instructions build on the existence of other instructions
called SIMD-FMA, which are designed to support IEEE standard Floating-Point
Arithmetic [4]. The SIMD-FMA instructions handle double-precision floating-
point numbers (x[63 : 0]), where the bits are viewed as: a) fraction x[51 : 0] (53
bits where only 52 bits are explicitly stored); b) exponent x[62 : 52]; c) sign bit
x[63].

2.2 Almost Montgomery Multiplication

MM is an efficient technique for computing modular multiplications [14]. Let t
be a positive integer, k an odd modulus and 0 ≤ a, b < k integers. We denote the



3

MM by MM(a, b) = a·b·2−t (mod k), where 2t is the Montgomery parameter. A
variant of MM, called Almost Montgomery Multiplication (AMM) [8], is defined
as follows. Let k and t be defined as above, and 0 ≤ a, b < B integers, then
AMM(a, b) is an integer U that satisfies: (1) U (mod m) = a · b · 2−t (mod k);
(2) U ≤ B.

The advantage of AMM over MM is that the former does not require a
(conditional) ”final reduction” step. This allows using the output of one invoca-
tion as the input to a subsequent invocation. The relation between AMM and
MM is the following. If 0 ≤ a, b < B, RR = 22t (mod k) ,a′ = AMM(a,RR),
b′ = AMM(b, RR) , u′ = AMM(a′, b′) and u = AMM(u′, 1), then u = a · b
(mod k).

3 Implementing AMS with AVX512IFMA

One of the common squaring algorithms [5] is the following. Let A =
∑n

i=0 B
iai

be an n digits integer in base B, ai ≥ 0. Then,

A2 =

n∑
i=0

n∑
j=0

Bi+jaiaj =

n∑
i=0

B2ia2i + 2

n∑
i=0

n∑
j=i+1

Bi+jaiaj (1)

where the last multiplication by 2 can be carried out by a series of left shift
operations [10]. This reduces about half of the single-precision multiplications
(compared to regular multiplication). Additional improvement is achieved by
using vectorization. For example, [9] shows squaring implementations that use
Intel’s Advanced Vector Extensions (AVX) and AVX2 instructions. In these
implementations, integers are stored in a ”redundant representation” with radix
B = 228 (each of the n digits is placed in a 32-bit container, padded from above
with 4 zero bits). Each of the AVX2 256-bit wide registers (ymm) can hold up
to eight 32-bit containers. This allows for (left) shifting of 8 digits in parallel,
without losing their carry bit.

Alg. 2 describes an implementation of AMS=AMM(a,a) that uses the AVX512-
IFMA instructions. Let the input (a), the modulus (m) and the result (x) be
n-digit integers in radix B = 252, where each digit is placed in a 64-bit container
(padded with 12 zero bits from above). Let z =

⌈
n/8

⌉
be the total number of

wide registers needed for holding an n-digit number, and denote k0 = −m−1

(mod 252). The final step of Alg. 2 returns the result to the radix B = 252 for-
mat, by rearranging the carry bits. An illustration of a simple AMS flow is given
in Fig. 1 that shows how ∼ 20% of the VPMADD52 calls (left as blank spaces in
the figure) are saved, compared to an AMM. The algorithm applies the left shift
optimization of [10] to the AVX512IFMA AMM implementation of [12]. This
can be done through either Eq. 1 (perform all MAC calculations and then shift
the result by one), or according to:

A2 =

n∑
i=0

B2ia2i +

n∑
i=0

n∑
j=i+1

Bi+jaia
′
j (2)



4

Algorithm 2 x = AMS52(a, m, k0)

Inputs: a,m (n-digit unsigned integers), k0 (52-bit unsigned integer)
Outputs: x (n-digit unsigned integers)

1: procedure MulA[L/H]Part(i)
2: Xi := VPMADD52[L/H]UQ(Xi, Acurr, Ai)
3: for j := i + 1 to z do
4: T := VPMADD52[L/H]UQ(ZERO, Acurr, Aj)
5: Xj := Xj + (T << 1)

1: procedure AMS52(a, m, k0)
2: load a into A0 . . . Az and m into M0 . . .Mz

3: zero(X0 . . . Xz, ZERO)
4: for i := 0 to z do
5: for j := 0 to min{8, n− (8 · i)} do
6: Acurr = broadcast(a[8 · i + j])
7: MulALPart(i)
8: y[127 : 0] := k0 ·X0[63 : 0]
9: Y := broadcast(y[52 : 0])

10: for l := 0 to z do
11: Xl := VPMADD52LUQ(Xl, Ml, Y )

12: x0 := X0[63 : 0]� 52
13: X := X � 64
14: X0[63 : 0] = X0[63 : 0] + x0

15: MulAHPart(i)
16: for l := 0 to z do
17: Xl := VPMADD52HUQ(Xl, Ml, Y )

18: FixRedundantRepresentation(X)
19: return X

where a′ = a << 1. An efficient implementation of the first approach requires
to accommodate a,m, and x in wide registers (not in memory), while an imple-
mentation of the second approach requires accommodating a′ in wide registers
as well. Consequently, the AVX512, which has only 32 wide registers, can hold
n-digit integers up to n ≤ 85 with the first approach, or up to n ≤ 64 with the
second approach. For example, 4096-bit modular squaring (part of a 4096-bit
exponentiation, e. g., for Paillier encryption) has n = 80-digits operands (writ-
ten in radix B = 252). It requires 40 wide registers with the second approach
(but there are not enough). With the first approach, only 30 wide registers are
needed (there are 32). This situation seems better, but in practice, it is not good
enough.

Performing left shifting of an n-digit number requires some extra wide regis-
ters. These are not necessarily available for use with the above two approaches.



5

Fig. 1. Flow illustration of x=SQR(a, m, k0), where a,m and x are 16-digit operands,
each one is accommodated in two zmm registers.

Thus, we propose Alg. 2, that is based on the following identity:

A2 =

n∑
i=0

B2ia2i +

n∑
i=0

n∑
j=i+1

2(Bi+jaiaj) (3)

Here, the left shifts are performed on-the-fly, and free some wide registers for
supporting other operations.

Identifying an additional bottleneck. On-the-fly left shifting can be implemented
in three ways, but unfortunately, all three do not go along well with the AVX512-
IFMA architecture. The first alternative is to multiply, accumulate and shift the



6

result. This may double shift some of previously accumulated data. The second
alternative is to shift one of the VPMADD52’s input operands. This may lead
to a set carry bit in position 53, which would be (erroneously) ignored during
the multiplication (see Alg. 1). The third alternative splits the MAC operation,
to inject the shift between. This is not feasible with the atomic operation of
VPMADD52, but can be resolved by performing the Multiply-Shift-Accumulate
operation in two steps, with an extra temporary (zeroed) wide register. Indeed,
Alg. 2, MulA[L/H]Part (steps 4, 5) executes this flow.

Algorithm 3 x = AMS51(a, m, k0)

Inputs: a,m (n-digit unsigned integers), k0 (52-bit unsigned integer)
Outputs: x (n-digit unsigned integers)

1: procedure MulHighPart(SRC1, SRC2, DEST)
2: TMP := VPMADD52HUQ(ZERO, SRC1, SRC2)
3: DEST := DEST + (TMP << 1)

1: procedure AMS51(a, m, k0)
2: load a into A0 . . . Az and m into M0 . . .Mz

3: zero(X0 . . . Xz, ZERO)
4: for i := 0 to z do
5: for j := 0 to min{8, n− (8 · i)} do
6: Acurr = broadcast(a[8 · i + j]), Ashifted = Acurr << 1
7: Xi := VPMADD52LUQ(Xi, Acurr, Ai)
8: for j := i + 1 to z do
9: Xi := VPMADD52LUQ(Xi, Ashifted, Ai)

10: y[127 : 0] := k0 ·X0[63 : 0]
11: Y := broadcast(y[51 : 0])
12: for l := 0 to z do
13: Xl := VPMADD52LUQ(Xl, Ml, Y )

14: x0 := X0[63 : 0]� 51
15: X := X � 64
16: X0[63 : 0] = X0[63 : 0] + x0

17: MulAHighPart(Xi, Acurr, Ai)
18: for l := i + 1 to z do
19: MulAHighPart(Xl, Ashifted, Al)

20: for l := 0 to z do
21: MulAHighPart(Xl, Ml, Y )

22: FixRedundantRepresentation(X)
23: return X

4 Is using radix 251 better?

In this section, we discuss the selection of the radix. The AVX512IFMA instruc-
tions leverage hardware that is needed anyhow, for the FMA unit (floating-point



7

operations need 53-bit multiplication for a 106-bit mantissa). Obviously, given
AVX512IFMA, it is natural to work with radix B = 252. Using a larger radix
(e. g., B = 258) could be better in theory, but will incur too many costly con-
versions to allow for using VPMADD52. We also note that no native SIMD in-
structions for a larger radix are available. A smaller radix (e. g., 251) is, however,
possible to choose. This allows to cut about half of the serialized instructions
in steps 3-5 of MulA[L/H]Part, by left shifting one of the operands before the
multiplication.

Alg. 3 is a modification of Alg. 2, operating in radix 251. While it avoids the
shift operations before the VPMADD52LUQ, it still needs to perform the shifting
before the VPMADD52HUQ instruction. For example, Let a, b, c1, c2 be 51-bit in-
tegers. After performing c1 = VPMADD52LUQ(0, a, b) = (a × b)[51 : 0] and c2 =
VPMADD52HUQ(0, a, b) = (a × b)[102 : 52], c1 and c2 are no longer in (pure)
radix 251. Propagating the carry bit in c1 can be delayed to step 22 of Alg. 3.
In contrary, c2 must be shifted prior to the accumulation step. As we show in
Section 5, Alg. 3 does not lead to faster squaring, with the current architecture.
This suggests a possible improvement to the architectural definition.

4.1 A possible improvement for AVX512IFMA

Alg. 3 offers better parallelization compared to Alg. 2, but still includes serial-
ized steps (e. g., the function MulHighPart). A completely parallelized algorithm
requires hardware support. To this end, we suggest a new instruction that we
call Fused Multiply-Shift-Add (FMSA), and describe in Alg. 4. It shifts the mul-
tiplication result by an immediate value (imm8) before accumulating it. This
instruction can be based on the same hardware that supports FMA (just as
AVX512IFMA). Note that when imm8 = 0 then this instruction is exactly
VPMADD52HUQ.

Algorithm 4 DST=FMSA(A,B,C,imm8)

1: for j := 0 to 7 do
2: i := j*64
3: TMP[127 : 0] := ZeroExtend64(B[i+51:i]) × ZeroExtend64(C[i+51:i])
4: DST[i+63:i] := A[i+63:i] + ZeroExtend64(TMP[103 : 52] << imm8)

5 Results

5.1 Results for the current architecture

This section provides our performance results. For this study, we wrote new
optimized code for all the algorithms discussed above, and measured them with
the following methodology.



8

Currently, there is no real processor with VPMADD52 instructions. There-
fore, to predict the potential improvement on future Intel architectures we used
the Intel Software Developer Emulator (SDE) [1]. This tool allows us to count
the number of instructions executed during each of the tested functions. We
marked the start/end boundaries of each function with ”SSC marks” 1 and
2, respectively. This is done by executing ”movl ssc mark, %ebx; .byte
0x64, 0x67, 0x90” and invoking the SDE with the flags ”-start ssc mark 1
-stop ssc mark 2 -mix -cnl”. The rationale is that a reduced number of instruc-
tions typically indicates improved performance that will be observed on a real
processor (although the exact relation between the instructions count and the
eventual cycles count is not known in advanced).

Our measurements show that the overall number of instructions in our AMM
and AMS implementations (in radix 252) is almost identical. However, the num-
ber of occurrences per instruction varies between the two algorithms. The most
noticeable change was for the VPADDQ, VPMADD52, VPSLLQ, and VPXORQ in-
structions. Let uAMS/uAMM be the number of occurrences of the instruction u
in AMS/AMM code, and let tAMM be the total number of instructions in the
AMM code. We write ru = (uAMS − uAMM )/tAMM . Table 1 compares the ru
values for different u and operands sizes. It shows that reducing the number
of VPMADD52 instructions is achieved through increasing the number of other
instruction (e.g., VPADDQ, VPSLLQ, and VPXORQ).

Table 1. Values of ru for different u instructions and different operands sizes.

Size VPADDQ VPMADD52 VPSLLQ VPXORQ

1024 0.06 -0.05 0.06 0.06

1536 0.13 -0.07 0.07 0.07

2048 0.05 -0.09 0.08 0.08

3072 0.05 -0.13 0.15 0.15

4096 0.12 -0.12 0.12 0.12

To assess the impact of the above trade-off, we note that the latency of
VPADDQ, VPSLLQ, and VPXORQ is 1 cycle, the throughput of VPADDQ and
VPXORQ is 0.33 cycles, and the throughput of VPSLLQ is 1 cycle [3]. By compar-
ison, we can expect that the latency/throughput of a future VPMADD52 would
be similar to VPMADDWD (i. e., 5/1), or to VFMA* (i. e., 4/0.5). It appears that
trading one VPMADD52 for 4 other instructions (which is worse than the trade-
off we have to our AMS implementation) could still be faster than the AMM
implementation.

To study the effects at the higher scale of the modular exponentiation code,
we define the following notation. Let uModExpAMS/uModExp be the number of
occurrences of the instruction u in the modular exponentiation code, with and



9

without AMS, respectively, and let tModExp be the overall number of instructions
in this code (w/o AMS). We write su = (uModExpAMS − uModExp)/tModExp.
Table 2 shows the values su..

Table 2. Values of su for different instructions (u) and different operands sizes.

Size VPADDQ VPMADD52 VPSLLQ VPXORQ

1024 0.01 -0.01 0.02 0.01

1536 0.02 -0.01 0.02 0.02

2048 0.02 -0.03 0.02 0.02

3072 0.04 -0.04 0.04 0.04

We use the following notation for evaluating the radix 251 technique. Let
uAMS51/uAMM51/uModExpAMS51 be the number of occurrences of the instruc-
tion u in radix 251 code. We write

wAMM
u = (uAMM − uAMM51)/tAMM

wAMS
u = (uAMS − uAMS51)/tAMS

wModExp
u = (uModExpAMS − uModExpAMS51)/tModExp

Table 3 shows the values wAMM
u , wAMS

u , and wModExp
u . Here, we see that the

number of VPMADD52 instructions is almost unchanged, but the number of
VPADDQ, VPXORQ, and VPSLLQ was increased. Therefore, we predict that im-
plementations with operands in radix 251 will be slower than those in radix
252.

Table 3. Values of wAMM
u , wAMS

u , and wModExp
u for different instructions (u) and

different operands sizes.

Function name VPADDQ VPMADD52 VPSLLQ VPXORQ

AMM3072 0.32 0.01 0.32 0.32

AMM4080 0.28 0.01 0.28 0.28

AMM4096 0.28 0.01 0.28 0.27

AMS3072 0.07 0.00 0.09 0.07

AMS4080 0.07 0.00 0.10 0.07

AMS4096 0.08 0.01 0.10 0.06

ModExp3072 0.05 0.00 0.06 0.05



10

5.2 A ”what if” question: the potential of FMSA

Table 4 is similar to Table 3, where we replace the instructions in the Mul-
HighPart with only one VPMADD52HUQ instruction, emulating our new FMSA
instruction. Here, the added number of VPADDQ, VPSLLQ, and VPXORQ instruc-
tions is no longer needed, and the full power of our AMS can be seen.

Table 4. Values of wAMM
u , wAMS

u , and wModExp
u , when using the FMSA instruction,

for different instructions (u) and different operands sizes.

Function name VPADDQ VPMADD52 VPSLLQ VPXORQ

AMM3072 0.00 0.01 0.00 0.00

AMM4080 0.00 0.01 0.00 0.00

AMM4096 0.00 0.01 0.00 -0.01

AMS3072 -0.03 0.00 -0.09 -0.10

AMS4080 -0.10 0.00 -0.08 -0.10

AMS4096 -0.10 0.01 -0.08 -0.11

ModExp3072 -0.04 0.00 -0.03 -0.04

6 Conclusion

This paper showed a method to use Intel‘s new AVX512IFMA instructions,
for optimizing software that computes AMS on modern processor architectures.
Section 5 motivates our prediction that the proposed implementation would
further improve the implementations of modular exponentiation described in [8].

We analyzed the hypothetical benefit of using a different radix: 251 instead
of 252. This can significantly improve the AMS algorithm (only) if a new in-
struction, which we call FMSA, is also added to the architecture. We note that
FMSA requires only a small tweak over the current AVX512IFMA, and no new
hardware.

Acknowledgements

This research was supported by: The Israel Science Foundation (grant No. 1018/
16); The Ministry of Science and Technology, Israel, and the Department of
Science and Technology, Government of India; The BIU Center for Research
in Applied Cryptography and Cyber Security, in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Office; The Center for Cyber
Law and Policy at the University of Haifa.



11

References

1. : IntelR©software development emulator. https://software.intel.com/en-us/
articles/intel-software-development-emulator

2. −: Intel R©64 and IA-32 architectures software developers manual (September 2015)
3. −: Intel R©64 and IA-32 architectures optimization reference manual (June 2016)
4. Ieee standard for binary floating-point arithmetic. ANSI/IEEE Std 754-1985 (1985)
5. Brent, R.P., Zimmermann, P.: Modern computer arithmetic, vol. 18. Cambridge

University Press (2010)
6. Drucker, N., Gueron, S.: [openssl patch] fast 1536-bit modular exponentiation

with the new VPMADD52 instructions. http://openssl.6102.n7.nabble.com/
openssl-org-4032-PATCH-Fast-1536-bit-modular-exponentiation-with-

the-new-VPMADD52-instructions-td60082.html (September 2015)
7. Drucker, N., Gueron, S.: Paillier-encrypted databases with fast aggregated queries.

In: 2017 14th IEEE Annual Consumer Communications Networking Conference
(CCNC). pp. 848–853 (Jan 2017)

8. Gueron, S.: Efficient software implementations of modular exponentiation. Journal
of Cryptographic Engineering 2(1), 31–43 (2012)

9. Gueron, S., Krasnov, V.: Software implementation of modular exponentiation, us-
ing advanced vector instructions architectures. WAIFI 12, 119–135 (2012)

10. Gueron, S., Krasnov, V.: Speeding up big-numbers squaring. In: Information Tech-
nology: New Generations (ITNG), 2012 Ninth International Conference on. pp.
821–823. IEEE (2012)

11. Gueron, S., Krasnov, V.: [openssl patch] fast modular exponentiation with the new
VPMADD52 instructions. https://rt.openssl.org/Ticket/Display.html?id=
3590 (November 2014)

12. Gueron, S., Krasnov, V.: Accelerating big integer arithmetic using intel ifma ex-
tensions. In: Computer Arithmetic (ARITH), 2016 IEEE 23nd Symposium on. pp.
32–38. IEEE (2016)

13. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC press (1996)

14. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
computation 44(170), 519–521 (1985)

https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
http://openssl.6102.n7.nabble.com/openssl-org-4032-PATCH-Fast-1536-bit-modular-exponentiation-with-the-new-VPMADD52-instructions-td60082.html
http://openssl.6102.n7.nabble.com/openssl-org-4032-PATCH-Fast-1536-bit-modular-exponentiation-with-the-new-VPMADD52-instructions-td60082.html
http://openssl.6102.n7.nabble.com/openssl-org-4032-PATCH-Fast-1536-bit-modular-exponentiation-with-the-new-VPMADD52-instructions-td60082.html
https://rt.openssl.org/Ticket/Display.html?id=3590
https://rt.openssl.org/Ticket/Display.html?id=3590

	Fast modular squaring with AVX512IFMA

