
A preliminary version of this paper appears in the proceedings of the 16th International Conference on Applied
Cryptography and Network Security (ACNS 2018), Leuven, Belgium, July 2-4, 2018, Proceedings. c© Springer-
Verlag 2018. This is the full version.

Invisible Sanitizable Signatures
and Public-Key Encryption are Equivalent

Marc Fischlin Patrick Harasser(�)

Cryptoplexity, Technische Universität Darmstadt, Germany
www.cryptoplexity.de

{marc.fischlin, patrick.harasser}@cryptoplexity.de

April 11, 2018

Abstract. Sanitizable signature schemes are signature schemes which support the delegation of
modification rights. The signer can allow a sanitizer to perform a set of admissible operations on
the original message and then to update the signature, in such a way that basic security properties
like unforgeability or accountability are preserved. Recently, Camenisch et al. (PKC 2017) devised
new schemes with the previously unattained invisibility property. This property says that the set of
admissible operations for the sanitizer remains hidden from outsiders. Subsequently, Beck et al. (ACISP
2017) gave an even stronger version of this notion and constructions achieving it. Here we characterize
the invisibility property in both forms by showing that invisible sanitizable signatures are equivalent
to IND−CPA-secure encryption schemes, and strongly invisible signatures are equivalent to IND−CCA2-
secure encryption schemes. The equivalence is established by proving that invisible (resp. strongly
invisible) sanitizable signature schemes yield IND−CPA-secure (resp. IND−CCA2-secure) public-key
encryption schemes and that, vice versa, we can build (strongly) invisible sanitizable signatures given a
corresponding public-key encryption scheme.

Keywords. Sanitizable signatures · Invisibility · Public-key encryption · One-way functions · Digital
signatures

1

Contents
1 Introduction 3

1.1 Invisible Sanitizable Signatures . 3
1.2 Our Contributions . 3
1.3 Related Work . 5
1.4 Organization . 6

2 Notational Preliminaries 6

3 Definition of Sanitizable Signatures 6
3.1 Notation . 6
3.2 Definition of Sanitizable Signature Schemes . 7
3.3 Correctness and Security Properties of Sanitizable Signature Schemes 8
3.4 (Strong) Invisibility . 10

4 Invisible Sanitizable Signatures Imply Public-Key Encryption Schemes 12
4.1 Construction . 12
4.2 IND−CPA-Security . 13
4.3 IND−CCA2-Security . 15

5 Public-Key Encryption Implies Invisible Sanitizable Signatures 16
5.1 Construction . 16
5.2 Security . 18
5.3 Achieving Strong Invisibility . 24

6 Conclusions 25

A Standard Cryptographic Building Blocks 30
A.1 Public-Key Encryption Schemes . 30
A.2 Digital Signature Schemes . 32

B Correctness of Sanitizable Signature Schemes 35

C Security Definitions for Sanitizable Signature Schemes 37

2

1 Introduction
Sanitizable signature schemes enable the signer of a document to declare certain sections of the message as
admissible for modification, so that another designated party (the sanitizer) can modify them and update
the signature without affecting the authenticity and integrity of the immutable parts. The main motivation
is to balance out the verifier’s wish to check authenticity of parts of the original document and the signer’s
desire for privacy of the sanitized data. The idea of sanitizable signature schemes dates back to a work by
Ateniese et al. [ACdT05].

In [ACdT05], the authors introduced several security properties for sanitizable signature schemes. Be-
sides unforgeability against outsiders, a desirable property is immutability, which demands that even a
malicious sanitizer can only alter admissible parts. Privacy asks that one cannot reconstruct the orig-
inal document given only the sanitized version and signature, and its strengthening called unlinkability
[BFLS10] says that one cannot determine the origin to a sanitized document among several known possibil-
ities. Signer and sanitizer accountability ensure that in case of a dispute the parties can give a convincing
proof of who created a signature, the signer or the sanitizer. A less common property is transparency, which
should hide who created a signature, in case neither of the parties helps to determine the originator—this
stands in contrast to public accountability, where no additional help is required to determine who signed
the document.

1.1 Invisible Sanitizable Signatures

Recently, Camenisch et al. [CDK+17] formalized the notion of invisibility of sanitizable signatures. This
property, formerly called strong transparency in [ACdT05], should hide which modifications a sanitizer
is allowed to perform. In previous constructions the description of admissible operations, denoted ADM,
had usually been attached in clear to the signature. Gong et al. [GQZ11] were the first to argue that this
information can be of value, and later Camenisch et al. showed that hiding it may be a desirable goal.
They also revised the theoretical framework of sanitizable signatures in order to capture the invisibility
property, and gave constructions achieving it based on a new type of chameleon hash functions with
ephemeral trapdoors. Soon after, Beck et al. [BCD+17] further strengthened the notion of invisibility.

In its basic form, invisibility protects against leakage of ADM if the sanitizer public key is only used
in connection with a single signer. In applications this means that the sanitizer must create a fresh key
pair for each user. Strong invisibility, on the other hand, allows to use the same sanitizer key pair with
multiple signers. Beck et al. use unique signatures, IND−CCA2-secure encryption, and collision-resistant
chameleon hash functions to achieve strong invisibility.

Technically, the difference between the two invisibility notions lies in the capabilities of an adversary
trying to establish which of two potential operation sets, ADM0 or ADM1, has been encoded as admissible
into the signature. Given a challenge signature, the adversary may query a sanitizing oracle on it as long
as the requested modification does not allow to distinguish the two cases trivially (this happens e.g. if the
modification is admissible for one of the two sets but not for the other). For the basic invisibility notion
the adversary can ask for sanitizations only in connection with the public key pkSig of the genuine signer.
In the stronger notion, the adversary can also request sanitizations of messages signed with other, possibly
maliciously chosen signer keys pk′Sig.

1.2 Our Contributions

In this work we show that invisibile sanitizable signature schemes and public-key encryption schemes are
equivalent. Our equivalence proof consists of four parts.

3

Invisibility implies IND−CPA-secure encryption. Our first result is to show that an invisible sani-
tizable signature scheme yields an IND−CPA-secure bit-encryption scheme. An invisible scheme hides the
actual admissible operations for a signature; we can use this property to securely embed a message bit
b by using one of two fixed and distinct admissible operation descriptions (ADM0 or ADM1) to build a
signature σ under a fresh signer key pair. The ciphertext consists of the signature σ and the signer public
key pkSig. Invisibility now guarantees that no outsider is able to distinguish the two cases.

The trapdoor information for decryption is the sanitizer secret key; his public key acts as the public
key of the encryption scheme. With his secret key, the sanitizer can run the sanitization process and
check via a distinguishing modification which operation ADMb has been embedded: Only the admissible
one (ADMb) will result in a valid new signature. For the other operation (ADM1−b), the modification
should fail by the immutability property of the sanitizable scheme. Note that we obviously need some
other security property besides invisibility, because it is easy to devise invisible signature schemes without
any other security property, e.g. with constant signatures.

Strong invisibility implies IND−CCA2-secure encryption. While the construction of an IND−CPA-
secure scheme via the embedding of the hidden ADM may be expected, we argue next that the same
construction yields an IND−CCA2-secure encryption scheme if the underlying sanitizable signature scheme
is strongly invisible. This result is less conventional, since it links the sanitization for different signer keys
with the ability to securely decrypt different ciphertexts.

The proof idea is to note that ciphertexts in our encryption system are of the form (σ, pkSig). Given a
challenge ciphertext (σ, pkSig), recall that for IND−CCA2-security we must allow for oracle decryptions of
ciphertexts (σ′, pk′Sig) 6= (σ, pkSig). Since decryption is performed via sanitization, and strong invisibility
allows us to call the sanitizer for different keys pk′Sig, we can easily decrypt ciphertexts of the form (σ′, pk′Sig)
with pk′Sig 6= pkSig. To handle ciphertexts (σ′, pkSig) under the original signer key we rely on the strong
unforgeability property of the signture scheme: it says that one cannot create fresh signatures σ′ under
pkSig, and therefore an IND−CCA2-adversary cannot submit valid oracle queries of this form.

In a sense, this result warrants the deployment of an IND−CCA2-secure encryption scheme in the
strongly invisible construction of [BCD+17]: any strongly invisible sanitizable signature scheme already
implies IND−CCA2-secure encryption systems. Note that we construct an IND−CCA2-secure bit encryption
scheme, but this in turn implies IND−CCA2-secure string encryption [CMTV15, HLW12, MH15, Ms09].

IND−CPA-secure encryption implies invisibility. Next we establish the converse implication, i.e.
from IND−CPA-secure public-key encryption schemes to invisible sanitizable signatures. Note that the
existence of the former primitive also implies the existence of one-way functions (the argument is identical
to the one in [Rom90, Lemma 1]), and thus of secure digital signature schemes [NY89, Rom90], so that we
can use this building block in our construction as well. Besides invisibility, the derived sanitizable signature
scheme has all the common properties, like unforgeablility, immutability, privacy, and accountability.

The construction idea is to have the signer sign every message block of the message with a different,
ephemeral key, and then to protect this tuple of signatures with an additional signature under his secret
key. This “message” part of the signature ensures unforgeability, privacy, and accountability. To enable
the sanitizer to modify the admissible blocks, the signer appends another “administrative” signature over
the description ADM and the tuple of secret keys used to sign the admissible blocks, both encrypted under
the sanitizer public encryption key to allow for invisibility. If some admissible block has to be modified, the
sanitizer can retrieve the corresponding ephemeral key via decryption, change the message block and then
update the relevant signatures in the “message” part. Immutability then follows from the unforgeability
of the underlying digital signature scheme: It is ensured by the fact that the sanitizer only receives the
signing keys for the blocks he is allowed to modify.

4

We stress here that our construction does not achieve some less common properties, in particular
transparency and unlinkability, and that our security reduction is non-tight. On the other hand, we
regard our work as being above all a feasibility result, so that tightness—even though desirable—should
not be viewed as essential, and we believe that invisible, non-transparent sanitizable signatures can have
interesting applications: One can envision scenarios where it should be impossible to learn which (if any)
message blocks have the potential to be altered, but on the other hand it should be clear who signed the
document (e.g., for legal and accountability reasons).

IND−CCA2-secure encryption implies strong invisibility. The noteworthy property of the above
construction is that IND−CPA-security suffices to achieve (ordinary) invisibility. With a slight technical
twist, we interestingly achieve strong invisibility if we now have an IND−CCA2-secure encryption scheme:
Namely, we include the signer public key in the encryption of ADM and the trapdoor information for
the sanitzer. Hence, together with our converse construction of IND−CCA2-secure encryption from strong
invisibility, we also characterize this form of invisibility through public-key encryption.

In light of the strongly invisible construction of Beck et al. [BCD+17], which besides an IND−CCA2-
secure encryption scheme also relies on signature schemes and collision-resistant chameleon hash functions,
our solution shows that the former (together with a regular signature scheme) suffices. Of course, the
solution by Beck et al. is significantly more efficient.

1.3 Related Work

As mentioned above, sanitizable signature schemes were introduced by Ateniese et al. in their foundational
work [ACdT05]. The first, and to this date widely adopted security model describing this primitive is
due to Brzuska et al. [BFF+09], where the authors formalized the unforgeability, immutability, privacy,
transparency, and accountability properties of a sanitizable signature scheme with game-based security
definitions. Later on, Brzuska et al. added the important unlinkability property [BFLS10, BPS13], as well
as non-interactive public accountability [BPS12, BPS13], to the picture of security notions—see Appendix
C for all the definitions.

Subsequently, the formal framework introduced by Brzuska et al. in [BFF+09] came under scrutiny
by Gong et al. [GQZ11], who pointed out that sanitizable signatures formalized as above were vulnera-
ble to so-called rights-forge attacks. Their solution was to introduce stronger versions of unforgeability,
immutability and accountability, which also consider the admissible blocks in the security experiments.
Even stronger variants of unforgeability, privacy, transparency, and accountability were later provided by
Krenn et al. [KSS16], who decided to also track the signatures in the definitions (in much the same way
as for regular signature schemes, when upgrading from “ordinary” to strong unforgeability). Finally, the
invisibility property was formalized by Camenisch et al. [CDK+17], following ideas already discussed in
[ACdT05], and recently further strengthened by Beck et al. [BCD+17].

The above literature deals with sanitizable signature schemes as they are intended here. On the
other hand, we point out that there are many other primitives and extensions that are closely related
to, but slightly different from sanitizable signature schemes as treated in this work. Among these there
are redactable signatures [BBD+10, dMPPS14, DPSS16, JMSW02], sanitizable signatures where sanitizer
modifications are limited to certain values [CJ10, DS15, KL06, PSP11] or where the signer is allowed
to add sanitizers after having signed the message [CLM08, YSL10], sanitizable signatures supporting a
multi-signer, multi-sanitizer paradigm [BFLS09, BPS13, CJL12], or allowing for sanitization of signed,
encrypted data [DHO16, FF15]. More generally, we note that this whole body of literature falls under
the broad category of computing on authenticated data [BBD+10, GGOT15, GOT15]. We refer to the
extensive overviews of Ahn et al. [ABC+12] and Demirel et al. [DDH+15] for further information.

5

We conclude the related work overview by mentioning that our work also continues a line of research
started in [BFLS09], where the authors showed that it is possible to construct a sanitizable signature
scheme achieving unforgeability, immutability, privacy, and accountability only assuming that arbitrary
secure signature schemes exist, i.e. only assuming that one-way functions exist. In this regard, and in light
of known separation results of public-key cryptography and one-wayness [IR89], our work proves that the
same does most likely not hold for (strongly) invisible sanitizable signature schemes.

1.4 Organization

We introduce standard preliminary notation in Section 2. Section 3 is dedicated to the definition of
sanitizable signature schemes (and the corresponding specific notation), an overview of the correctness
and security notions, and a thorough discussion of the invisibility property. In Section 4 we show how to
construct a public-key bit-encryption scheme from an invisible sanitizable signature scheme, and we prove
the corresponding security results, whereas Section 5 is devoted to the converse implication. Finally, we
draw some conclusions in Section 6.

2 Notational Preliminaries
In this work, N = Z>0 denotes the set of strictly positive integers, and λ ∈ N will always denote the
security parameter of a given cryptographic scheme (in unary notation, it is denoted by 1λ).
A generic polynomial function p : N→ R will be denoted by poly. A function µ : N→ R is called negligible
if, for every positive polynomial function poly, there exists an integer Npoly ∈ N such that µ(λ) < 1/poly(λ)
for every λ > Npoly. A generic negligible function µ : N → R will be denoted by negl, and the notation
µ(λ) = negl(λ) will be used to specify that µ is a negligible function.

We adopt throughout the standard model of computation, where algorithms (and all cryptographic
parties involved) are modeled as Turing machines. An algorithm is called efficient if it corresponds to a
probabilistic Turing machine running in time polynomial in the length of its input. For this definition to
be meaningful, all algorithms will have to take 1λ as an additional input.

If A is a probabilistic algorithm accepting x as an input, we write a←$A(x) if a is assigned the output
of algorithm A on input x and randomly chosen randomness r. If A is a deterministic algorithm accepting
x as an input, we will use the notation a ← A(x) (instead of a←$A(x)) to point out that there is no
randomness involved in the computation. Finally, the arrow← will also be used for assignment statements.

For every algorithm A, we assume that there is a dedicated error symbol ⊥ which is not part of the
input or the output space of A. Furthermore, we implicitly assume that A returns ⊥ if one of its inputs
already is equal to ⊥.

3 Definition of Sanitizable Signatures

3.1 Notation

The starting point of our theoretical discussion on sanitizable signatures is the security model introduced
by Brzuska et al. in [BFF+09]. However, since invisibility will play a crucial role in our work, their
framework has to be slightly adapted. Their approach often relies on the fact that the description ADM of
admissible parts is recoverable from signatures, in direct contrast to the invisibility property which aims
to hide this information. Thus, before we can actually start with the definition of sanitizable signatures,
we need to introduce some preliminary notation. In doing so we mainly follow the work of Camenisch et
al. [CDK+17].

6

Messages m ∈M are assumed to consist of a finite number of blocks, each block being an element from
a set B (usually B ⊆ {0, 1}∗). The message spaceM is thus a subset of B∗. We use the notation m[i] to
refer to the i-th block and write m = (m[1], . . . ,m[`]) to stress that the message m consists of ` blocks.

Admissible blocks in a message m = (m[1], . . . ,m[`]) ∈ M are identified by means of the parameter
ADM = (A, l) ∈ P(N)×N (also called sanitizing rights), where l ∈ N denotes the total number of blocks a
message must have, while A := {a1, . . . , aj} is the set containing the indices of the blocks the sanitizer is
allowed to modify. Of course, here we need 1 ≤ a1, . . . , aj ≤ l, a condition that we will always assume to
be satisfied. We then say that ADM matches m if ` = l, in which case we write ADM(m) = > (otherwise
ADM(m) = ⊥). If ADM0 = (A0, l) and ADM1 = (A1, l) are two sanitizing rights matching m, we define
ADM0 ∩ADM1 := (A0 ∩A1, l). Similarly, to identify admissible block indices, we write a ∈ ADM = (A, l)
if 1 ≤ a ≤ l and a ∈ A.

If m = (m[1], . . . ,m[`]) ∈M, the actual modifications to certain blocks made by the sanitizer (i.e., the
sanitizing instructions) are identified by means of the parameter MOD = (M, l) ∈ P(N× B) × N, where
l ∈ N denotes the total number of blocks in a message and M := {(i1, m̄1), . . . , (ik, m̄k)} denotes the set of
changes made by the sanitizer. Here (i, m̄) ∈ M is intended to mean that the sanitizer will replace block
m[i] with m̄. Again, here we need 1 ≤ i1, . . . , ik ≤ l, which we will assume throughout. We then say that
MOD matches m if ` = l, in which case we write MOD(m) for the message m′ obtained by modifying m
according to MOD, i.e. m′ = MOD(m) if and only if m′ = (m′[1], . . .m′[`]) ∈M and, for every 1 ≤ i ≤ `,

m′[i] =
{
m̄i if i ∈ {i1, . . . , ik}
m[i] otherwise.

We write MOD(m) = ⊥ if MOD does not match m.
Finally, recall that the sanitizer is supposed to modify only message blocks declared as admissible by the

signer. In this regard, the following notation will be useful: If ADM = (A, lADM) and MOD = (M, lMOD)
are as above, we say that MOD matches (or is valid w.r.t.) ADM if lADM = lMOD and M̃ ⊆ A, where
M̃ := {i1, . . . , ik} is the set of indices of the blocks which the sanitizer intends to modify (as specified by
M). In this case we write MOD(ADM) = >, otherwise MOD(ADM) = ⊥.

3.2 Definition of Sanitizable Signature Schemes

With the notation introduced above we are now ready to define sanitizable signature schemes. The
definition is based on the one given by Brzuska et al. in [BFF+09] but takes into account that the
sanitizing rights are no longer publicly recoverable from a valid message-signature pair. We remark here
that, nonetheless, the sanitizer is always able to learn which message blocks he can modify by trying to
sanitize them singularly and checking if the resulting signature is valid, an operation linear in the number
of blocks of the message. This is the reason why we do not include ADM as an additional input to the
Sanit algorithm: Either it is implicitly in the signatures or it must be communicated out-of-band.

Definition 3.1 A sanitizable signature scheme SSS is a tuple of eight probabilistic polynomial-time algo-
rithms SSS := (PGen,KGenSig,KGenSan,Sign,Sanit,Verify,Proof, Judge) defined as follows:

pp←$ PGen(1λ): On input a security parameter λ ∈ N, the algorithm PGen generates a tuple of public
parameters of SSS. The tuple pp includes the security parameter 1λ, the definition of the block
set B, the message space M ⊆ B∗, the space of signatures SSig, the space of sanitized signatures
SSan, the signer key space KSig, and the sanitizer key space KSan (together with two special symbols
>,⊥ 6∈ M∪SSig ∪SSan ∪KSig ∪KSan ∪{0, 1}∗ ∪{Sig,San}), along with any other information needed
to sign or sanitize messages, or to verify signatures, except for identities and user key pairs. For
brevity, we define S := SSig ∪ SSan and K := KSig ∪ KSan.

7

(pkSig, skSig)←$ KGenSig(pp): On input a tuple of public parameters pp, the algorithm KGenSig returns a
signer key pair or an error message, that is (pkSig, skSig) ∈ KSig ∪ {⊥}. Here, pkSig and skSig are the
signer public and secret keys, respectively. We write KSig,pk and KSig,sk for the sets of all possible
signer public and secret keys.

(pkSan, skSan)←$ KGenSan(pp): On input a tuple of public parameters pp, the algorithm KGenSan returns a
sanitizer key pair or an error message, that is (pkSan, skSan) ∈ KSan ∪ {⊥}. Here, pkSan and skSan
are the sanitizer public and secret keys, respectively. We write KSan,pk and KSan,sk for the sets of all
possible sanitizer public and secret keys.

σ←$ Sign(pp,m, skSig, pkSig, pkSan,ADM): On input a tuple of public parameters pp, a message m ∈ M,
signer secret and public keys skSig ∈ KSig,sk, pkSig ∈ KSig,pk, a sanitizer public key pkSan ∈ KSan,pk,
and sanitizing rights ADM ∈ P(N)×N, the algorithm Sign returns a signature or an error message,
that is σ ∈ SSig ∪ {⊥}. We do not assume ADM to be publicly recoverable from the message m and
a valid signature σ 6= ⊥.

σ′←$ Sanit(pp,m, σ, skSan, pkSig, pkSan,MOD): On input a tuple of public parameters pp, a messagem ∈M,
a signature σ ∈ S, sanitizer secret and public keys skSan ∈ KSan,sk, pkSan ∈ KSan,pk, a signer public
key pkSig ∈ KSig,pk, and modification instructions MOD ∈ P(N× B)×N, the algorithm Sanit returns
a sanitized signature or an error message, that is σ′ ∈ SSan ∪ {⊥}.

d← Verify(pp,m, σ, pkSig, pkSan): On input a tuple of public parameters pp, a message m ∈M, a signature
σ ∈ S, a signer public key pkSig ∈ KSig,pk, and a sanitizer public key pkSan ∈ KSan,pk, the deterministic
algorithm Verify returns a bit d ∈ {>,⊥}.

π←$ Proof(pp,m, σ, {(mi, σi)}ki=1, skSig, pkSig, pkSan): On input a tuple of public parameters pp, a message
m ∈ M, a signature σ ∈ S, a set of additional message-signature pairs {(mi, σi)}ki=1 ∈ (M×S)∗
with a polynomial (in the security parameter λ) number of elements, signer secret and public keys
skSig ∈ KSig,sk, pkSig ∈ KSig,pk, and a sanitizer public key pkSan ∈ KSan,pk, the algorithm Proof returns
a bit string or an error message, that is π ∈ {0, 1}∗ ∪ {⊥}.

d← Judge(pp,m, σ, pkSig, pkSan, π): On input a tuple of public parameters pp, a message m ∈ M, a sig-
nature σ ∈ S, a signer public key pkSig ∈ KSig,pk, a sanitizer public key pkSan ∈ KSan,pk, and a
bit string π ∈ {0, 1}∗, the deterministic algorithm Judge returns a bit or an error message, that is
d ∈ {Sig, San} ∪ {⊥}.

Remark. Observe that Definition 3.1 is purely syntactic in nature. We will always assume that the
obvious checks needed to ensure a semantically correct execution of a sanitizable signature scheme SSS
will be carried out directly by the algorithms defining SSS. For example, given all the appropriate inputs,
we assume that the algorithm Sign itself checks if the tuple pp of public parameters is well-formed, if
m ∈ M, if the keys skSig, pkSig, and pkSan are compatible with pp, and if ADM(m) = > before producing
the signature, and that it proceeds accordingly (e.g., outputting ⊥) should this condition not be satisfied.
Likewise, we expect Sanit to also carry out all these basic tests, and furthermore to check if the message-
signature pair it is given is valid and if MOD(m) 6= ⊥. Similar remarks hold for the other algorithms.

3.3 Correctness and Security Properties of Sanitizable Signature Schemes

We now turn to the definition of correctness and the statement of security properties of a sanitizable
signature scheme SSS. As for correctness, we follow Brzuska et al. [BFF+09] and subsequent work and
require that the following three properties hold. We give only an informal description here and refer to
Appendix B for complete definitions, as adapted to our framework.
• Signing Correctness: Every time an honest signer signs a message m ∈ M with sanitizing rights
matching m, he produces a valid signature σ 6= ⊥ such that (m,σ) verifies under the corresponding
public keys;

8

• Sanitizing Correctness: Every time the intended sanitizer honestly sanitizes a valid message-signature
pair (m,σ) ∈ M× S with sanitizing instructions MOD matching the sanitizing rights given to him
by the signer, he produces a valid signature σ′ 6= ⊥ such that (MOD(m), σ′) verifies under the
corresponding public keys;
• Proof Correctness: Every time an honest signer generates a proof regarding a valid message-signature
pair, Judge identifies the correct accountable party.

Next we discuss the relevant security properties of a sanitizable signature scheme SSS. Most of these
properties were introduced in their basic form by Brzuska et al. in [BFF+09] and later in [BFLS10, BPS12].
These definitions are included for completeness, but we will be mainly concerned with their “strong”
counterparts as formalized by Krenn et al. in [KSS16] and later adopted by Camenisch et al. [CDK+17] and
Beck et al. [BCD+17]. The definitions we adopt take into account that the sanitizing rights ADM (which
are no longer assumed to be publicly recoverable from a valid message-signature pair) are an information
which needs protection, as work by Gong et al. [GQZ11] has shown. In particular, by requiring a sanitizable
signature scheme to satisfy the “strong” versions of the unforgeability, signer- and sanitizer-accountability
properties, we mostly avoid so-called rights forge attacks as discussed in [GQZ11] (for immutability the
matter is more delicate—see Appendix C for further discussions).
We again give only a brief and intuitive description of the security properties here and refer the interested
reader to Appendix C for complete definitions and the corresponding security experiments. Only the
notion of invisibility, central to our work, will be discussed here in detail.
• Unforgeability: No adversary should be able to produce a valid message-signature pair never seen
before;
• Immutability: It should not be possible for a malicious sanitizer to violate the sanitizing rights given
by the signer, i.e. the sanitizer should be able to modify only message blocks previously declared as
admissible by the signer;
• Privacy: This is the equivalent of semantic security in the context of sanitizable signatures. Given
a valid, sanitized message-signature pair, no adversary should be able to recover any information
about the original content of the sanitized blocks;
• Transparency: Given a valid message-signature pair, no adversary should be able to determine
whether it was the signer or the sanitizer who produced the signature;
• Signer-Accountability: A malicious signer should not be able to produce a valid message-signature

pair (m,σ) ∈ M × S and a proof which induces Judge into erroneously blaming the sanitizer for
(m,σ);
• Sanitizer-Accountability: A malicious sanitizer should not be able to produce a valid message-

signature pair (m′, σ′) ∈ M × S such that legitimate proofs generated by the signer induce Judge
into blaming the signer for (m′, σ′);
• Unlinkability: Given a valid message-signature pair (m′, σ′) ∈ M × S that has been sanitized, no

adversary should be able to decide from which known pair (m,σ) ∈M× S it originated from;
• Non-Interactive Public Accountability: The party accountable for a valid message-signature pair
can be determined publicly, without the need of any further information. In particular, the Proof
algorithm is trivial.

We remark here that there also exists a “blockwise” variant of non-interactive public accountability
(see Brzuska et al. [BPS12]), where the party accountable for any specific message block can be publicly
determined from a valid message-signature pair. We do not give a formal account of this notion here, as
it requires the introduction of a new algorithm Detect and thus a different model of sanitizable signatures
(again, see [BPS12]).

9

3.4 (Strong) Invisibility

Loosely speaking, a sanitizable signature scheme is invisible if, given a valid message-signature pair
(m,σ) ∈M× S, no adversary is able to decide if any specific message block is admissible (i.e., can be
modified by the sanitizer) or immutable. This property was first introduced by Ateniese et al. in their
foundational work [ACdT05] under the name “strong transparency” (an expression later fallen into disuse,
not to be confused with the notion of transparency defined in the literature). However, they did not pro-
vide any formal definition or construction achieving it. It was later abandoned by Brzuska et al. [BFF+09]
on the grounds that it appeared to be too strong. Indeed, since they worked under the assumption that
ADM is always publicly recoverable from a valid signature σ 6= ⊥ (in obvious conflict with the invisibility
notion), it was in fact unachievable. Later on, the invisibility property was considered by Camenisch et
al. [CDK+17], who defined it formally and gave the first provably secure construction of an invisible sani-
tizable signature scheme. A stronger version of invisibility was later defined by Beck et al. in [BCD+17],
where the sanitizer may use his public key with multiple signers.

In the invisibility security experiment, a signer and a sanitizer key pair are generated and a bit
b←${0, 1} is chosen uniformly at random and kept secret. An adversary A is given access to an ora-
cle OLoR which, on input a message and two sanitizing rights ADM0, ADM1, produces a signature σ
(under the signer secret key and the sanitizer public key) making ADMb admissible. In addition, A has
adaptive access to restricted signing, sanitizing, and proof oracles.

We remark that, in the above experiment, a restricted signing oracle (with fixed sanitizer public key
pkSan) can be simulated by querying OLoR with ADM0 = ADM1. Furthermore, for sanitization requests
of any message-signature pair (m,σ) ∈ M× S with σ←$OLoR(m,ADM0,ADM1), A must be limited to
modifications matching ADM0∩ADM1 in order to avoid trivial attacks exposing b. This is why all queries
to and answers from OLoR, together with the allowed sanitizing rights ADM0 ∩ ADM1, are recorded in
a “whitelist” W : Whenever A queries OSanit, the oracle goes through the list W of previously signed
messages, to see which blocks the adversary is indeed allowed to modify. If the query is accepted, the
whitelist has to be updated to also include the new (sanitized) message-signature pair, with the same
sanitizing rights as the original pair (this has to be done because a sanitized message could be sanitized
again). In the basic invisibility property the answers are only computed for the given key pkSig.

The adversary’s goal is to guess b, i.e., to decide which set of blocks the oracle OLoR has made admis-
sible. The scheme SSS is invisible if no efficient adversary as above succeeds in doing so with probability
significantly greater than 1/2.

We observe that the definition of invisibility already has the flavor of the “strong” variant of the
definitions given in Appendix C, in that we always keep track of the signatures in the whitelist W . On
the other hand, the main drawback of this definition is that it is not possible to query the sanitization
oracle for keys different from the challenge ones. As remarked by Beck et al. [BCD+17], this may have
undesirable consequences: A could pose as another signer and, as soon as he gets access to a sanitization
oracle, could potentially learn the bit b. This assumption is quite plausible in many real-world use cases.
It holds for example if the sanitizing party, here modeled by the oracle OSanit, uses the same key pair for
both an honest and a corrupt signer.

To address these concerns (and to give a definition of invisibility that also protects against dishonest
signers), one can allow queries to the sanitization oracle with public keys chosen by the adversary A. This
approach leads to the definition of strong invisibility. The main difference between the invisibility and
the strong invisibility experiments is that the adversary is allowed oracle queries to ÕLoR and ÕSanit with
adversarially chosen public keys. A sanitizable signature scheme secure in this stronger sense does not
suffer from the flaw mentioned above. As a side effect, the signing oracle derived from ÕLoR is no longer
restricted. The formal definition of (strong) invisibility is given below.

10

Definition 3.2 ((Strong) Invisibility) Let SSS := (PGen,KGenSig,KGenSan,Sign,Sanit,Verify,Proof, Judge)
be a sanitizable signature scheme and λ ∈ N be a security parameter. Consider an efficient adversary A
which:

a) Takes as input a tuple of public parameters pp corresponding to the security parameter λ, a signer
public key pkSig, and a sanitizer public key pkSan;

b) Has access to a restricted left-or-right signing oracle OLoR (resp. ÕLoR), a restricted sanitizing oracle
OSanit (resp. ÕSanit), and a proof oracle OProof ;

c) Returns a bit b∗ ∈ {0, 1}.
For every such adversary A, let ExpTA,SSS(λ) with T = Inv (resp. T = SInv) be the experiment defined

ExpInv
A,SSS(λ):

1 pp←$ PGen(1λ)
2 (pkSig, skSig)←$ KGenSig(pp)
3 (pkSan, skSan)←$ KGenSan(pp)
4 b←${0, 1}
5 W ← ∅
6 b∗←$AO

LoR,OSanit,OProof (pp, pkSig, pkSan)
7 if b = b∗ then
8 return 1
9 return 0

ExpSInv
A,SSS(λ):

1 pp←$ PGen(1λ)
2 (pkSig, skSig)←$ KGenSig(pp)
3 (pkSan, skSan)←$ KGenSan(pp)
4 b←${0, 1}
5 W ← ∅
6 b∗←$AÕ

LoR,ÕSanit,OProof (pp, pkSig, pkSan)
7 if b = b∗ then
8 return 1
9 return 0

OLoR(m,ADM0,ADM1):
1 if ADM0(m) = ⊥ ∨ ADM1(m) = ⊥ then
2 return ⊥
3 σ←$ Sign(pp,m, skSig, pkSig, pkSan,ADMb)
4 ADM← ADM0 ∩ADM1
5 W ←W ∪ {(m,σ,ADM)}
6 return σ

OSanit(m,σ,MOD):
1 if (∃ADM)

(
(m,σ,ADM) ∈W ∧

MOD(ADM) = >
)
then

2 m′ ← MOD(m)
3 σ′←$ Sanit(pp,m, σ, skSan, pkSig,

pkSan,MOD)
4 W ←W ∪ {(m′, σ′,ADM)}
5 return σ′
6 return ⊥

OProof
(
m,σ, {(mi, σi)}ki=1, pk′San

)
:

1 π←$ Proof(pp,m, σ, {(mi, σi)}ki=1, skSig,
pkSig, pk′San)

2 return π

ÕLoR(m, pk′San,ADM0,ADM1
)
:

1 if ADM0(m) = ⊥ ∨ ADM1(m) = ⊥ then
2 return ⊥
3 σ←$ Sign(pp,m, skSig, pkSig, pk′San,ADMb)
4 if pk′San = pkSan then
5 ADM← ADM0 ∩ADM1
6 W ←W ∪ {(m,σ,ADM)}
7 else if ADM0 6= ADM1 then
8 return ⊥
9 return σ

ÕSanit
(
m,σ, pk′Sig,MOD

)
:

1 m′ ← MOD(m)
2 σ′←$ Sanit(pp,m, σ, skSan, pk′Sig, pkSan,MOD)
3 if pk′Sig = pkSig then
4 if (∃ADM)

(
(m,σ,ADM) ∈W ∧

MOD(ADM) = >
)
then

5 W ←W ∪ {(m′, σ′,ADM)}
6 return σ′
7 return ⊥
8 return σ′

Figure 1: Invisibility (left) and strong invisibility (right)

11

on the left-hand side (resp. right-hand side) of Figure 1. We say that SSS is invisible (resp. strongly
invisible) if, for every efficient adversary A as above, AdvTA,SSS(λ) = P

[
ExpTA,SSS(λ) = 1

]
= negl(λ),

where the probability is taken over the random coins used by A, as well as the random coins used in the
experiment.

4 Invisible Sanitizable Signatures Imply Public-Key Encryption Schemes
In this section we show how to construct a public-key bit-encryption scheme from an invisible sanitizable
signature scheme. We first give an informal overview of our construction and discuss how it is intended to
be used. Afterwards, we define it more precisely and prove the correctness and security properties.

4.1 Construction

Suppose that Alice wants to send a secret bit b ∈ {0, 1} to Bob, without an adversary A being able to
learn it. To do so, they can use the protocol sketched in Figure 2 below. We present the main idea by
viewing the scheme as a two-move key agreement protocol.

Bob publicly chooses a sanitizable signature scheme SSS and a security parameter λ ∈ N, and generates
a tuple of public parameters pp←$ PGen(1λ). Observe that the block set B defined by pp clearly must
contain at least two elements—we will assume that {0, 1} ⊆ B, but for other block sets the adjustment
is straightforward. Moreover, we assume that the two-block-messages (0, 0), (1, 0), (0, 1) belong to the
message spaceM, but again our construction can be easily modified should this not be the case.

(pkSig, skSig)←$ KGenSig(pp)
ADM0 ← ({1}, 2)
ADM1 ← ({2}, 2)
σ←$ Sign(pp,m, skSig, pkSig,

pkSan,ADMb)

pp←$ PGen(1λ)
(pkSan, skSan)←$ KGenSan(pp)

m← (0, 0)

d ← Verify(pp,m, σ, pkSig, pkSan)
if d = ⊥ then return ⊥

MOD0 ← ({(1, 1)}, 2), MOD1 ← ({(2, 1)}, 2)
m′0 ← MOD0(m), m′1 ← MOD1(m)

σ′0←$ Sanit(pp,m, σ, skSan, pkSig, pkSan,MOD0)
σ′1←$ Sanit(pp,m, σ, skSan, pkSig, pkSan,MOD1)

d0 ← Verify(pp,m′0, σ′0, pkSig, pkSan)
d1 ← Verify(pp,m′1, σ′1, pkSig, pkSan)

if d0 = > ∧ d1 = ⊥ then return 0
if d0 = ⊥ ∧ d1 = > then return 1

return ⊥

(pp,m, pkSan)

(σ, pkSig)

BobAlice A

Figure 2: Intuitive construction of a public-key bit-encryption scheme from an invisible sanitizable signature scheme

12

Bob then generates a sanitizer key pair (pkSan, skSan)←$ KGenSan(pp), and chooses a message m ∈ M
consisting of two blocks, e.g. m = (0, 0). He sends (pp,m, pkSan) to Alice over an unprotected channel,
while skSan is kept secret.

Upon receiving (pp,m, pkSan), Alice runs (pkSig, skSig)←$ KGenSig(pp) to generate a signer key pair.
Now, depending on whether she wants to encrypt b = 0 or b = 1, she signs the message m declaring as
admissible the first or the second block, respectively. She then sends the signature σ and her public key
pkSig to Bob, while skSig is kept secret.

Upon receiving (σ, pkSig), Bob tries to separately modify the first and the second message block by
replacing it with ‘1’. He thus sets MOD0 ← ({(1, 1)}, 2) and MOD1 ← ({(2, 1)}, 2) and then computes
σ′0←$ Sanit(pp,m, σ, skSan, pkSig, pkSan,MOD0) and σ′1←$ Sanit(pp,m, σ, skSan, pkSig, pkSan,MOD1).

Now, assuming that SSS is sanitizing correct and immutable, exactly one of the two signatures com-
puted by Bob will be valid. If Alice has encrypted b = 0, then σ′0 will be valid with overwhelming
probability (because of the sanitizing correctness property), while σ′1 will be either invalid or equal to ⊥
with very high probability (because SSS is immutable). On the other hand, if Alice has chosen b = 1, then
σ′1 will be valid and σ′0 not by the same argument. In the unlikely event that both signatures are valid or
both are invalid, Bob cannot decrypt the message sent by Alice.

We thus conclude that Bob is able to correctly decrypt the bit encrypted by Alice with very high prob-
ability by sanitizing m twice and checking the signatures (or error messages). Moreover, if we also assume
SSS to be invisible, then any adversary A will be able to learn b only with negligible probability. In fact,
from an outsider’s perspective learning b is equivalent to establishing which message block is admissible,
which is highly unlikely by the invisibility assumption.

We now turn to a more rigorous definition of our public-key bit-encryption scheme, as well as to the
statement of the correctness and security properties.

Construction 4.1 Let SSS := (PGen,KGenSig,KGenSan,Sign, Sanit,Verify,Proof, Judge) be a sanitizable
signature scheme. We define a public-key bit-encryption scheme Π as in Figure 3.

4.2 IND−CPA-Security
We now turn the informal argument that the construction yields an IND−CPA-secure encryption scheme
into a proof.

Theorem 4.2 Let SSS := (PGen,KGenSig,KGenSan,Sign,Sanit,Verify,Proof, Judge) be a sanitizable sig-
nature scheme, and let Π := (PGen,KGen,Enc,Dec) be the public-key bit-encryption scheme defined in
Construction 4.1. If SSS is sanitizing correct, immutable and invisible, then Π is correct and IND−CPA-
secure.

The proof gives a tight reduction in terms of the advantages: For any adversary A playing the
IND−CPA-game we construct an adversary B against the invisibility game with roughly the same run-
ning time as A, such that

AdvIND−CPA
A,Π (λ) = AdvInv

B,SSS(λ).

Note that we need the immutability property only to bound the correctness error by 2 ·AdvImm
C,SSS(λ) for

some efficient adversary C against the immutability game.

Proof. As for correctness, note that decryption of a genuinely encrypted bit b can only fail if sanitization
with the correct modification MODb yields an invalid signature, or if the sanitization with the wrong

13

Π.PGen(1λ):
1 ppSSS←$ SSS.PGen(1λ)
2 MΠ ← {0, 1},
3 CΠ ← SSig ×KSig,pk,
4 KΠ ← KSan
5 m← (0, 0)
6 ppΠ ← (ppSSS,MΠ, CΠ,KΠ,m)
7 return ppΠ

Π.KGen(ppΠ):
1 parse ppΠ = (ppSSS,MΠ, CΠ,KΠ,m)
2 (pkSan, skSan)←$ SSS.KGenSan(ppSSS)
3 pkΠ ← pkSan, skΠ ← skSan
4 return (pkΠ, skΠ)

Π.Enc(ppΠ, b, pkΠ):
1 parse ppΠ = (ppSSS,MΠ, CΠ,KΠ,m),

pkΠ = pkSan
2 (pkSig, skSig)←$ SSS.KGenSig(ppSSS)
3 ADM0 ← ({1}, 2)
4 ADM1 ← ({2}, 2)
5 σ←$ SSS.Sign(ppSSS,m, skSig, pkSig,

pkSan,ADMb)
6 return (σ, pkSig)

Π.Dec(ppΠ, c, pkΠ, skΠ):
1 parse ppΠ = (ppSSS,MΠ, CΠ,KΠ,m), c = (σ, pkSig),

pkΠ = pkSan, skΠ = skSan
2 d← SSS.Verify(ppSSS,m, σ, pkSig, pkSan)
3 if d = ⊥ then
4 return ⊥
5 MOD0 ← ({(1, 1)}, 2)
6 MOD1 ← ({(2, 1)}, 2)
7 m′0 ← MOD0(m),
8 m′1 ← MOD1(m)
9 σ′0←$ SSS.Sanit(ppSSS,m, σ, skSan, pkSig, pkSan,MOD0)

10 σ′1←$ SSS.Sanit(ppSSS,m, σ, skSan, pkSig, pkSan,MOD1)
11 d0 ← SSS.Verify(ppSSS,m

′
0, σ
′
0, pkSig, pkSan)

12 d1 ← SSS.Verify(ppSSS,m
′
1, σ
′
1, pkSig, pkSan)

13 if d0 = > ∧ d1 = ⊥ then
14 return 0
15 if d0 = ⊥ ∧ d1 = > then
16 return 1
17 return ⊥

Figure 3: Public-key bit-encryption scheme from an invisible sanitizable signature scheme

modification MOD1−b yields a correct signature. The former can only happen with negligible probability
by sanitizing correctness of SSS.

For the latter case we derive a contradiction to immutability of SSS. To see this, we consider both
cases for b ∈ {0, 1}, and for each choice construct an adversary Cb against immutability. Algorithm Cb
receives as input ppSSS and a signer public key pkSig, and runs KGenSan(1λ) to create a sanitizer key pair
(pkSan, skSan). It picks the message m = (0, 0) and ADMb as in Figure 3, and queries the signing oracle for
a signature σ of (m, pkSan,ADMb). Next it runs σ′←$ SSS.Sanit(ppSSS,m, σ, skSan, pkSig, pkSan,MOD1−b),
and outputs the triple (m,σ′, pkSan). Since the creation of the signature σ′ coincides with decryption in Π,
by assumption for at least one choice of b the adversary Cb will output a valid signature with non-negligible
probability, and thus refute immutability.

As for security, assume SSS to be invisible; we show that then Π is IND−CPA-secure. We argue security
of the encryption scheme for a single challenge ciphertext only; the setting with multiple challenges follows
from the simple case. Indeed, let A = (A1,A2) be any efficient two-stage adversary playing the IND−CPA-
game for Π, where A1 determines the message pair m0,m1 given the public encryption key, and A2 outputs
a guess for b after having obtained the challenge ciphertext for mb. We use A to construct an efficient
adversary B playing the invisibility game for SSS, such that the probability of A winning the IND−CPA-
game and the probability of B winning the invisibility game coincide. By assumption, the latter probability
is negligible and the theorem follows.

14

We let B play the invisibility game until right after the whitelist W has been set to ∅ (Line 5 of the
invisibility experiment in Figure 1, where B receives (ppSSS, pkSig, pkSan)). Adversary B then runs A and
givesA1 the parameters ppΠ = (ppSSS,MΠ, CΠ,KΠ,m) and pkΠ = pkSan. OnceA1 outputs (m0,m1, st), the
two bit messagesm0,m1 ∈ {0, 1} are passed on to B, who then queries σ∗←$OLoR((0, 0),ADMm0 ,ADMm1)
and returns the encryption (σ∗, pkSig) of mb to A2 (together with the usual parameters and the state
information st). Now, if b∗ is the guess output by A, let B also return b∗.

Observe that this procedure amounts to a genuine simulation of the indistinguishability game to A,
since B’s answer is an authentic encryption of one of the two plaintexts. Also notice that A correctly
guesses which plaintext has been encrypted (i.e., A wins the IND−CPA-game) if and only if B correctly
estimates which of the two message blocks has been declared as admissible (i.e., B wins the invisibility
game). Hence, the probability of the two adversaries winning their respective games is the same, and this
concludes the proof. �

4.3 IND−CCA2-Security
We next argue that the scheme above achieves IND−CCA2-security if SSS is assumed to be strongly invis-
ibile. Recall that the difference to regular invisibility is that now the adversary against strong invisibility
can also make left-or-right signature requests for (m, pk′San,ADM0,ADM1) with different sanitizer pub-
lic keys pk′San 6= pkSan, and sanitization requests for (m,σ, pk′Sig,MOD) with different signer public keys
pk′Sig 6= pkSig. Interestingly, for our construction and proof we only rely on the latter property.

For the security proof we also need strong unforgeability of the sanitizable signature scheme. The
reason is that ciphertexts are of the form (σ, pkSig), and the IND−CCA2-adversary may ask for decryptions
of the form (σ′, pkSig) where it alters the signature component for the same message. This would allow to
break the security of the encryption scheme easily.

Theorem 4.3 Let SSS := (PGen,KGenSig,KGenSan,Sign,Sanit,Verify,Proof, Judge) be a sanitizable sig-
nature scheme, and let Π := (PGen,KGen,Enc,Dec) be the public-key bit-encryption scheme defined in
Construction 4.1. If SSS is sanitizing correct, strongly unforgeable, immutable and strongly invisible, then
Π is correct and IND−CCA2-secure.

The proof also gives a tight reduction in terms of the advantages: For any adversary A playing the
IND−CCA2-game we construct adversaries B and C with roughly the same running time as A, such that

AdvIND−CCA2
A,Π (λ) ≤ AdvSInv

B,SSS(λ) + 2 ·AdvSUnf
C,SSS(λ).

In fact, for IND−CCA1-security regular unforgeability is sufficient. Once more, we need immutability only
to bound the correctness error.

Proof. Correctness of Π is proved as in Theorem 4.2. We now show that Π is IND−CCA2-secure. We
use the same strategy as above. Again, let A = (A1,A2) be any efficient two-stage adversary playing the
IND−CCA2-game for Π. We construct an efficient adversary B playing the strong invisibility game for
SSS such that the probabilities of the two adversaries winning their respective games are negligibly close.
Then, since by assumption B wins the strong invisibility game only with negligible probability, the same
must hold for A playing the IND−CCA2-game. Thus the theorem will follow from the strong invisibility
assumption of SSS.

We construct B as we did in the proof of Theorem 4.2, with the only difference that now B also needs
to be able to handle decryption queries requested by A. This can be achieved using the oracle ÕSanit that
B has access to. Whenever A wishes to decrypt a ciphertext (σ′, pk′Sig), algorithm B proceeds as follows:

15

• If pk′Sig 6= pkSig—note that B receives the public key pkSig at the beginning of the invisibility game—
then B runs Π.Dec as defined in Construction 4.1, with the two calls to SSS.Sanit substituted with
corresponding calls to ÕSanit, and returns the answer to A.
• If pk′Sig = pkSig then B immediately returns ⊥.

Observe that this procedure amounts to a genuine simulation of the IND−CCA2-game for A, except poten-
tially for the case where A queries ciphertexts (σ′, pk′Sig) with pk′Sig = pkSig, the signer public key that B
has been given at the beginning of the invisibility game it is playing. In such a case a genuine decryption
oracle might indeed return a valid decryption for the ciphertext (σ′, pkSig), whereas B would return ⊥.
There are two cases when such a valid decryption query (σ′, pkSig) can happen: Either the query is made
in the first phase, before A receives the challenge ciphertext, or it is made in the second phase—in which
case, necessarily, σ′ 6= σ∗, since A cannot query the decryption oracle on the challenge ciphertext. We
argue below that the former case refutes unforgeability and the latter contradicts strong unforgeability of
SSS.

Suppose that the probability of A making a valid query of the form (σ′, pkSig) to its genuine decryption
oracle before receiving the challenge ciphertext (σ∗, pkSig) were non-negligible. Then we can build an
adversary C against the unforgeability of SSS as follows. Algorithm C initially receives ppSSS and keys
pkSig, pkSan as input and then runs A’s attack, handing pkSan to A but keeping pkSig secret. Observe that
C can simulate A’s decryption oracle using it’s own sanitization oracle as discussed above.

If at some point A makes a query of the form (σ′, pkSig) to the decryption oracle which would not yield
⊥, then the signature σ′ must verify under the keys pkSig, pkSan for the message m = (0, 0). Adversary C
can verify the validity of the signature by himself and, if valid, abort A’s simulation and output (m,σ′)
as his forgery. Since he has made neither any signature queries, nor any sanitization queries under pkSig
to his oracles yet, (m,σ′) is indeed a successful forgery for a fresh message, thus leading to C winning the
unforgeability experiment.

The second case, where A’s query is made after receiving (σ∗, pkSig), is analogous. This time, however, a
reduction C to the strong unforgeability needs to query its signing oracle to create the challenge ciphertext.
But since A’s request now involves a new signature σ′ 6= σ∗, adversary C can still output (m,σ′) for a
successful break of the strong unforgeability property.

So we conclude that B’s simulation is genuine, except for some negligible probability. It follows as
before that a successful adversary A against the IND−CCA2-secure encryption scheme yields a successful
attacker B against strong invisibility. �

5 Public-Key Encryption Implies Invisible Sanitizable Signatures
In this section we present our construction of an invisible sanitizable signature scheme, starting from a
secure public-key encryption scheme.

5.1 Construction

Our construction based on public-key encryption follows the established encode-and-sign paradigm and
exploits the idea of using chameleon hash functions and signing the hash values with a regular signature
scheme Σ (see, e.g., [ACdT05, BFF+09]). The sanitizer can then find collisions for the hashes with the
help of his trapdoor key, allowing him to modify the message. Here, instead of chameleon hashes we use
the signature scheme Σ itself.

In our scheme, signatures consist of two parts: the “message” part ensures the basic unforgeability and
accountability properties, and can be created by either of the two parties. In contrast, the “administrative”
part contains the information needed by the sanitizer to perform modifications, and can be created only

16

by the signer. Parts of the administrative information are encrypted under an encryption scheme Π under
the sanitizer’s public key, to ensure invisibility.

To begin with, the signer generates a key pair (pkΣ, skΣ) for Σ, while the sanitizer creates keys (pk′Σ, sk′Σ)
and (pkΠ, skΠ) for Σ and Π, respectively. To sign a message m = (m[1], . . . ,m[`]), the signer generates
a new key pair (pkiΣ, skiΣ) (1 ≤ i ≤ `) for each block of m, signs every block with the corresponding key,
and creates a tuple of signatures S := (σ1, . . . , σ`). He then generates a signature σMSG of the message
(0,m, S, pkSig, pkSan) under skΣ. Here, m and S are signed so that they are protected from modification
by outsiders, whereas pkSig, pkSan and the initial bit ‘0’ are included for technical reasons (namely, domain
separation). The “message” part of the final signature σ then consists of (S, σMSG).

The first part of the signature must now be complemented with the information required to sanitize
the admissible parts of the message, and to verify the signature. To this end, the signer generates the
tuple KADM = (ski1Σ , sk

i2
Σ , . . .) containing the secret keys of the admissible blocks ij ∈ ADM (properly

padded to ensure a length-invariant encoding), and encloses it for the sanitizing party via encryption
under pkΠ. In addition, we also hide the parameter ADM (to ensure invisibility) and the signer public
key (in foresight of the strongly invisible version of our result) in this encryption. In summary, the
signer creates an encryption C of (pkSan,KADM,ADM) under pkΠ and then, in order to prevent changes
in these administrative data, creates a (regular) signature σADM of the message (1, pkSan, V, C). Here,
V := (pk1

Σ, . . . , pklΣ) contains the verification keys for the single blocks, and again the initial bit ‘1’ is
included for domain separation reasons. The “administrative” part of the signature is then (V,C, σADM),
and the final signature is σ := (S, σMSG, V, C, σADM).

If the sanitizer receives a signature σ for a message m, he first checks the validity of the signa-
tures S, σMSG and σADM, and recovers ADM and the corresponding signing keys KADM by decrypt-
ing C. Then, given valid sanitizing instructions m′ = MOD(m), he can update the “message” part
of σ, leaving the “administrative” part unchanged. He obtains S′ by substituting the relevant entries
in S with new signatures of the modified blocks under the corresponding keys KADM, and updates
σ′MSG by re-signing (0,m′, S′, pkSig, pkSan) under sk′Σ. Finally, the sanitized signature for m′ is given
by σ′ = (S′, σ′MSG, V, C, σADM).

Immutability of the scheme is achieved by the fact that the sanitizer does not know the secret keys for
the blocks he is not supposed to modify, and therefore cannot obtain suitable replacements for signatures
in S. Observe that the signature σMSG immediately ensures public accountability, since it serves as a proof
of who put the overall signature. This also implies that our scheme does not achieve transparency. For
technical reasons it neither supports unlinkability.

Remark. The above discussion presumes that some mild assumptions on Σ and Π are satisfied, which
we will henceforth assume to be in place. In particular, all signature keys must be of fixed length L
(this can be achieved via padding of the keys), and the message blocks, as well as the tuples of the form
(0,m, S, pkSig, pkSan) and (1, pkSan, V, C), must lie in the message space of Σ (this is no restriction, because
the signatures constructed in [NY89, Rom90] support messages of arbitrary polynomial length). Also,
ADM must be encoded in a length-invariant manner, and tuples of the form (pkSan,KADM,ADM) must
lie in the message space of Π (which can be achieved through hybrid encryption).

We now turn to a more rigorous definition of our sanitizable signature scheme, as well as to the
statement of the correctness and security results.

Construction 5.1 Let Σ := (PGen,KGen,Sign,Verify) be a signature scheme and Π := (PGen,KGen,Enc,
Dec) a public-key encryption scheme. We define a sanitizable signature scheme SSS as in Figures 4 and 5
below.

17

SSS.PGen(1λ):
1 ppΠ←$ Π.PGen(1λ)
2 ppΣ←$ Σ.PGen(1λ)
3 M←Ml

Σ
4 ppSSS ← (ppΠ, ppΣ,M)
5 return ppSSS

SSS.KGenSig(ppSSS):
1 parse ppSSS = (ppΠ, ppΣ,M)
2 (pkΣ, skΣ)←$ Σ.KGen(ppΣ)
3 pkSig ← pkΣ, skSig ← skΣ
4 return (pkSig, skSig)

SSS.KGenSan(ppSSS):
1 parse ppSSS = (ppΠ, ppΣ,M)
2 (pkΠ, skΠ)←$ Π.KGen(ppΠ)
3 (pk′Σ, sk′Σ)←$ Σ.KGen(ppΣ)
4 pkSan ← (pkΠ, pk′Σ)
5 skSan ← (skΠ, sk′Σ)
6 return (pkSan, skSan)

SSS.Sign(ppSSS,m, skSig, pkSig, pkSan,ADM):
1 if ADM(m) = ⊥ then
2 return ⊥
3 parse ppSSS = (ppΠ, ppΣ,M), m = (m[1], . . . ,m[l]),

skSig = skΣ, pkSig = pkΣ, pkSan = (pkΠ, pk′Σ),
ADM = (A, l)

4 V ← ∅, S ← ∅, KADM ← ∅
5 for 1 ≤ i ≤ l do
6 (pkiΣ, skiΣ)←$ Σ.KGen(ppΣ)
7 V ← V ∪ {(i, pkiΣ)}
8 σi←$ Σ.Sign(ppΣ,m[i], skiΣ, pkiΣ)
9 S ← S ∪ {(i, σi)}

10 KADM ← KADM ∪
{
{(i, skiΣ)} if i ∈ A
{(i, 0L)} else

11 parse V = (pk1
Σ, . . . , pklΣ), S = (σ1, . . . , σl),

KADM = (K1
ADM, . . . ,K

l
ADM)

12 t← (0,m, S, pkSig, pkSan)
13 σMSG←$ Σ.Sign(ppΣ, t, skΣ, pkΣ)
14 C←$ Π.Enc(ppΠ, (pkSig,KADM,ADM), pkΠ)
15 u← (1, pkSan, V, C)
16 σADM←$ Σ.Sign(ppΣ, u, skΣ, pkΣ)
17 σ ← (S, σMSG, V, C, σADM)
18 return σ

Figure 4: Invisible sanitizable signature scheme from a public-key encryption scheme: parameter generation, signer and
sanitizer key generation, and signing algorithms.

5.2 Security

The formal security statement for our construction is given in Theorem 5.2.

Theorem 5.2 If the signature scheme Σ is correct and unforgeable, and the encryption scheme Π is
correct, then the sanitizable signature scheme SSS in Construction 5.1 is correct. If Σ is unforgeable and
Π is IND−CPA-secure, then SSS is unforgeable, immutable, private, publicly accountable, and invisible.

We show the theorem by a sequence of lemmas, one for each property. Given that our Proof algorithm
is trivial (in fact, we achieve public accountability, which means that Judge can decide based on direct
inspection of the signature, without any additional help), we omit the Proof oracle in all proofs below.

Lemma 5.3 If the signature scheme Σ is correct and unforgeable, and the encryption scheme Π is correct,
then the sanitizable signature scheme SSS in Construction 5.1 is correct.

Proof. Consider the definition of the verification algorithm in Figure 5. It shows that the only possibilities
for Verify to return ⊥ are either d1 = d2 = ⊥, or d3 = ⊥, or that some signature σi (1 ≤ i ≤ l) does
not verify under pkiΣ. But for a genuinely generated signature σ, all these only happen with negligible
probability by the correctness of Σ. This establishes signing correctness of SSS.

18

SSS.Verify(ppSSS,m, σ, pkSig, pkSan):
1 parse ppSSS = (ppΠ, ppΣ,M),

m = (m[1], . . . ,m[l]),
σ = (S, σMSG, V, C, σADM),
S = (σ1, . . . , σl),
V = (pk1

Σ, . . . , pklΣ),
pkSig = pkΣ, pkSan = (pkΠ, pk′Σ)

2 t← (0,m, S, pkSig, pkSan)
3 d1 ← Σ.Verify(ppΣ, t, σMSG, pkΣ)
4 d2 ← Σ.Verify(ppΣ, t, σMSG, pk′Σ)
5 u← (1, pkSan, V, C)
6 d3 ← Σ.Verify(ppΣ, u, σADM, pkΣ)
7 if (d1 = ⊥ ∧ d2 = ⊥) ∨ d3 = ⊥ ∨

Σ.Verify(ppΣ,m[i], σi, pkiΣ) = ⊥
for some 1 ≤ i ≤ l then

8 return ⊥
9 return >

SSS.Judge(ppSSS,m, σ, pkSig, pkSan, π):
1 parse ppSSS = (ppΠ, ppΣ,M),

σ = (S, σMSG, V, C, σADM),
pkSig = pkΣ, pkSan = (pkΠ, pk′Σ)

2 t← (0,m, S, pkSig, pkSan)
3 d1 ← Σ.Verify(ppΣ, t, σMSG, pkΣ)
4 d2 ← Σ.Verify(ppΣ, t, σMSG, pk′Σ)
5 if d1 = > ∧ d2 = ⊥ then
6 return Sig
7 if d1 = ⊥ ∧ d2 = > then
8 return San
9 return ⊥

SSS.Sanit(ppSSS,m, σ, skSan, pkSig, pkSan,MOD):
1 if MOD(m) = ⊥ then
2 return ⊥
3 parse ppSSS = (ppΠ, ppΣ,M), m = (m[1], . . . ,m[l]),

σ = (S, σMSG, V, C, σADM), V = (pk1
Σ, . . . , pklΣ),

skSan = (skΠ, sk′Σ), pkSig = pkΣ,
pkSan = (pkΠ, pk′Σ), MOD = (M, l),
M = {(i1,m1), . . . , (ik,mk)}

4 t← Π.Dec(ppΠ, C, pkΠ, skΠ)
5 parse t = (pk′Sig,KADM,ADM),

KADM = (K1
ADM, . . . ,K

l
ADM),

with Ki
ADM = skiΣ for i ∈ ADM

6 d1 ← SSS.Verify(ppSSS,m, σ, pkSig, pkSan)
7 if d1 = ⊥ ∨ MOD(ADM) = ⊥ ∨ pk′Sig 6= pkSig then
8 return ⊥
9 m′ ← MOD(m)

10 for 1 ≤ j ≤ k do
11 σij ←$ Σ.Sign(ppΣ,mj , sk

ij
Σ , pkijΣ)

12 S′ ← (σ1, . . . , σl)
13 u← (0,m′, S′, pkSig, pkSan)
14 σ′MSG←$ Σ.Sign(ppΣ, u, sk′Σ, pk′Σ)
15 σ′ ← (S′, σ′MSG, V, C, σADM)
16 d2 ← SSS.Verify(ppSSS,m

′, σ′, pkSig, pkSan)
17 if d2 = ⊥ then
18 return ⊥
19 return σ′

SSS.Proof(ppSSS,m, σ, {(mi, σi)}ki=1, skSig, pkSig, pkSan):
1 return ⊥

Figure 5: Invisible sanitizable signature scheme from a public-key encryption scheme: verification, sanitization, judge and
proof algorithms.

For sanitizing correctness, observe that the sanitizer fails to recover the plaintext (pkSig,KADM,ADM)
from C only with negligible probability by the correctness of Π. Given that the modification he is perform-
ing is admissible, he has all the necessary information to update the signature, and therefore the validity
of the final signature σ′ again follows from the correctness of Σ.

Finally, proof correctness directly follows from the correctness and the unforgeability assumptions on
Σ: by these two properties, with all but negligible probability exactly one of d1 and d2 equals >, and this
allows Judge to correctly identify the party who put the signature. �

Lemma 5.4 If the signature scheme Σ is unforgeable, then the sanitizable signature scheme SSS in Con-
struction 5.1 is unforgeable.

The idea of the proof is to note that a successful forgery against given public keys pkSig and pkSan
requires in particular to produce a forgery against the σMSG part of the signature. In terms of concrete

19

security we show that for any adversary A against unforgeability of the sanitizable scheme we can construct
an adversary B with roughly the same running time, making at most twice as many signature requests as
the number of signature and sanitization queries made by A, and

AdvUnf
A,SSS(λ) ≤ 2 ·AdvUnf

B,Σ(λ).

Proof. Unforgeability of the sanitizable signature scheme follows from the unforgeability of the underlying
signature scheme Σ. Let A be an adversary playing the unforgeability game for SSS. Recall that A can
make any signature and sanitization queries, but at the end must output a forged signature σ∗ of a message
m∗ such that it has not called the signing oracle about (pkSan,m

∗), nor the sanitizing oracle on (pkSig,m
∗).

Since a full signature contains the signature σMSG over the public keys and the message m (in addition to
the tuple of signatures S), it is straightforward to turn A into an adversary B against the unforgeability
of Σ.

Adversary B receives a tuple of public parameters ppΣ and a verification key pk as input, and can query
a signing oracle for the corresponding secret key sk. In order to simulate the unforgeability experiment
on SSS to A, adversary B generates another signature key pair (pkΣ, skΣ)←$ Σ.KGen(ppΣ), and then runs
ppΠ←$ Π.PGen(1λ) to get a key pair (pkΠ, skΠ)←$ Π.KGen(ppΠ) for the encryption scheme Π. He then
assembles ppSSS = (ppΠ, ppΣ,Ml

Σ), and sets either pkSig ← pk, pkSan ← (pkΠ, pkΣ) or pkSig ← pkΣ,
pkSan ← (pkΠ, pk), the choice made at random. Finally, he hands (ppSSS, pkSig, pkSan) to A.

Whenever A asks for a signature or a sanitization, B computes the signature as described in Figures 4
and 5, using either the secret keys skΣ and skΠ he knows or calling his external oracle for a signature
under sk. When A eventually outputs a forgery σ∗ = (S∗, σ∗MSG, V

∗, C∗, σ∗ADM) for a fresh message m∗,
algorithm B extracts S∗ and σ∗MSG from σ∗ and outputs (0,m∗, S∗, pkSig, pkSan) as his message, with σ∗MSG
being the forged signature.

For the analysis note that A cannot have queried the signing oracle about (pkSan,m
∗) nor the sani-

tizing oracle about (pkSig,m
∗), which means that B has not called its external oracle about the output

message (0,m∗, S∗, pkSig, pkSan) either. Here we use that the messages signed for the “message” and for
the “administrative” parts use different prefix bits: in case we have pkSig ← pk, which means that B must
call his external oracle twice for each signature query by A (once each for the “message” and for the
“administrative” part), the prefix bits guarantee that these external calls cannot interfere with the output
message.

We thus conclude that whenever A forges successfully, and if the forgery happens under the correct
secret key (i.e., under sk and not skΣ, which happens with probability 1/2), then B succeeds too. �

Lemma 5.5 If the signature scheme Σ is unforgeable, then the sanitizable signature scheme SSS in Con-
struction 5.1 is immutable.

In contrast to the previous case, the adversary may now impersonate the sanitizer. Hence, it may be
able to produce arbitrary (sanitized) signatures for the “message” part. Still, since the signature scheme Σ
is unforgeable, the adversary cannot forge the “administrative” part and can thus only rely on previously
obtained signatures σADM over given verification keys V and admissible data KADM and ADM encrypted
under C. A successful attack presumes that the adversary must be able to change some inadmissible
part of the message, for which KADM does not contain the appropriate key material. This requires the
adversary to forge a signature for some public key in V .

In terms of concrete security we get that for any adversary A against immutability of the sanitizable
scheme, making at most q signature queries of messages consisting of l blocks each, we have an adversary
B with roughly the same running time, making at most twice as many signature requests as A, and an
adversary C such that

AdvImm
A,SSS(λ) ≤ AdvUnf

B,Σ(λ) + lq ·AdvUnf
C,Σ(λ).

20

Proof. Recall that, in the immutability experiment, an adversary A is given a tuple ppSSS of public
parameters for a sanitizable signature scheme and a signer public key pkSig. It is allowed to submit queries
of the form (m, pkSan,ADM) to a signing oracle, and its goal is to create a signature σ∗ for a message m∗
and sanitizer key pk∗San such that (pk∗San,m

∗) is not among all admissible modifications (pkSan,MOD(m))
with MOD(ADM) = > of the queries to the signing oracle.

In this proof we assume that A makes at most q signature queries in total, with each message having
l blocks. We first claim that, if A successfully produces a signature σ∗ = (S∗, σ∗MSG, V

∗, C∗, σ∗ADM) as
above, then σ∗ADM must be the signature component of an “administrative” part of a signature previously
obtained from the signing oracle. In other words, σ∗ADM cannot have been generated by A itself, but must
be the signature of a message of the form (1, pkSan, V

∗, C∗) previously signed under skSig by the signing
oracle.

Indeed, if this were not the case, we would get a reduction B to the unforgeability of Σ: adversary
B receives a tuple of public parameters ppΣ and a verification key pk as input, and can query a signing
oracle for the corresponding secret key sk. In order to simulate the immutability experiment on SSS to A,
adversary B runs ppΠ←$ Π.PGen(1λ), assembles ppSSS = (ppΠ, ppΣ,Ml

Σ), and sets pkSig ← pk. Finally, he
hands (ppSSS, pkSig) to A.

Whenever A asks for a signature, B internally performs all the steps described in Figure 4, except for
the creation fo σMSG and σADM, where he calls his external signing oracle for the secret key sk.

When A eventually outputs a signature σ∗ = (S∗, σ∗MSG, V
∗, C∗, σ∗ADM) for a message m∗ and sanitizer

public key pk∗San as above, algorithm B extracts V ∗, C∗ and σ∗ADM from σ∗ and outputs (1, pk∗San, V
∗, C∗)

as his message, with σ∗ADM being the forged signature.
For the analysis of B’s success probability, first note that the simulation is perfect from A’s point of

view. Furthermore, the tuple (1, pk∗San, V
∗, C∗) has not been previously signed by the simulated signer

for any signature σADM, because of our initial assumption. Since we use a distinct prefix bit ‘0’ for the
signatures σMSG, algorithm B cannot have called its external oracle about the tuple when generating a
signature part σMSG either. It follows that a valid forgery for such a fresh “administrative” part gives rise
to a successful attack on the underlying signature scheme Σ.

In conclusion, A must reuse the data (pk∗San, V
∗, C∗) = (pkSan, V, C) from some previous signature

query for a message m and admissible operations ADM. Now, if ADM allowed to alter the entire message
m, that is, ADM = ({1, 2, . . . , l}, l), then it would be impossible for A to find an inadmissible modification
to break immutability. Hence, there must be some index 1 ≤ j ≤ l with j /∈ ADM, but such that A still
is able to modify m[j].

We now show a reduction C to the unforgeability of Σ. Again, adversary C receives a tuple of public
parameters ppΣ and a verification key pk as input, and can query a signing oracle for the corresponding
secret key sk. At the outset of the simulation of the immutability experiment to A, adversary C guesses
the query h (among the q signature queries) adversary A will later reuse to extract the “administrative”
part of the signature, and also the position j (among the l possible blocks) that will be inadmissible, but
that A still manages to modify. C then prepares the simulation of the immutability experiment: He runs
ppΠ←$ Π.PGen(1λ), assembles ppSSS = (ppΠ, ppΣ,Ml

Σ), and sets pkSig ← pkΣ for a self-generated key pair
(pkΣ, skΣ)←$ Σ.KGen(ppΣ). Finally, he hands (ppSSS, pkSig) to A.

Whenever A queries his signature oracle, C generates all the values by himself as per Figure 4—except
for query number h, where the verification key he uses for the j-th block is pk (all the other keys still
being generated by C). Algorithm C aborts the simulation if, on query h, adversary A submits a parameter
ADM with j ∈ ADM, because in that case C is unable to generate the tuple KADM (since he doesn’t know
the secret key corresponding to pk). On the other hand, if j 6∈ ADM, the secret key sk corresponding to
pk is not included in KADM, and therefore the simulation can be carried out correctly. If A eventually
outputs a signature σ∗ = (S∗, σ∗MSG, V

∗, C∗, σ∗ADM) for a message m∗, then C parses S∗ = (σ1, . . . , σl) and
then outputs m∗[j] as his message, with σj being the forged signature.

21

For the analysis note that, as discussed above, adversary A must reuse the value V created in some
previous signature query, and the parameter ADM in that query must have at least one index j 6∈ ADM.
Then observe that, since C has made no oracle queries at all, C wins the unforgeability experiment exactly
if the data reused by A are those from the h-th query, and if block number j was not admissible in that
query, but still m∗[j] is different from the originally queried message block. Indeed, for a signature to
be valid, all signatures in S must verify under the corresponding public keys, and therefore C has indeed
successfully forged a signature. We thus conclude that C’s advantage equals A’s advantage, times the
probability of C correctly guessing the values of h and j, which is 1/lq. �

Lemma 5.6 The sanitizable signature scheme SSS in Construction 5.1 is perfectly private.

Privacy says that one cannot distinguish the process of signing and then sanitizing any of two messages
if they result in the same final message. For our scheme this follows as this process creates a distribution
which only depends on the final message.

Proof. Recall that privacy means that the adversary can send a query of the form (m0,MOD0,m1,MOD1,
ADM) to a left-or-right oracle, provided that both modifications are admissible and that the modified
messages coincide, i.e. MOD0(m0) = MOD1(m1). Based on a secret bit b ∈ {0, 1}, the oracle then first
signs the message mb and then sanitizes the message and signature to obtain a sanitized signature for
MOD(mb). The adversary’s task is to predict b, even when given access to signing and a sanitizing oracles.

To see that our scheme is perfectly private, recall that signatures in SSS consist of two parts. The
“administrative” part (V,C, σADM) only depends on the ephemeral keys V and KADM, as well as pkSig,
skSig, pkSan, ADM, and l, and is thus independent of the message except for its length. The “message”
part (S, σMSG) only depends on the ephemeral keys used in the signing process, skSig or skSan, pkSig, pkSan,
and the message itself, but not on the potential history of the message or the sanitization process. Hence,
for any left-or-right query yielding the same message, the sanitized signature has the same distribution for
both values of b ∈ {0, 1}. Furthermore, each signature uses fresh random coins, such that the additional
oracles for signing and sanitization cannot help to distinguish the two cases either. �

Lemma 5.7 If the signature scheme Σ is unforgeable then the sanitizable signature scheme SSS in Con-
struction 5.1 is publicly accountable.

Non-interactive public ccountability is straightforward, as it requires an adversary A to impersonate
the legitimate signer or sanitizer, and to forge a signature under the other party’s public key. Every such
adversaryA can be turned into an adversary B against the unforgeability property of Σ, with approximately
the same running time and making at most twice as many signature queries, and such that

AdvNIPA
A,SSS(λ) ≤ 2 ·AdvUnf

B,Σ(λ).

Proof. Recall that the Judge algorithm checks if the signature part σMSG verifies under the signer or
sanitizer public key, and points towards the corresponding party. The adversary, trying to impersonate
either the signer or the sanitizer, tries to make the judge point to the other party for somem∗ and σ∗, while
trivial wins are of course excluded. Since the signature σ∗MSG is over both public keys and the message
m∗, the adversary can only succeed if it forges a signature under the corresponding public key of the other
party.

More precisely, let A be an adversary playing the non-interactive public accountability game for SSS.
We construct an adversary B against the unforgeability of Σ as follows: B receives as input a tuple of
public parameters ppΣ and a verification key pk, and can query a signing oracle for the corresponding
secret key sk. He then generates another signature key pair (pkΣ, skΣ), and creates public parameters ppΠ

22

for Π to get a key pair (pkΠ, skΠ) for the encryption scheme. Finally, he assembles ppSSS as usual, sets
either pkSig ← pk, pkSan ← (pkΠ, pkΣ) or pkSig ← pkΣ, pkSan ← (pkΠ, pk) (the choice made at random),
and hands (ppSSS, pkSig, pkSan) to A.

Whenever A asks for a signature or a sanitization, B computes the signature as described in Figures 4
and 5, using either the secret keys skΣ and skΠ he knows or calling his external oracle for a signature under
sk. When A eventually outputs a triple (m∗, σ∗, pk∗), algorithm B extracts S∗ and σ∗MSG from σ∗ and
outputs (0,m∗, S∗, pk∗, pkSan) or (0,m∗, S∗, pkSig, pk∗) (depending on whether A impersonated the signer
or the sanitizer), with σ∗MSG being the forged signature.

For the analysis, first note that B can easily verify if A wins the public accountability experiment,
given that the Verify and Judge algorithms can both be run publicly, and that he knows which queries he
has answered. Furthermore, the condition that A’s final output cannot be the result of an oracle query
guarantees that B has not queried his output message to his oracle before. Therefore, B indeed outputs a
forgery, provided that this is indeed a signature under sk (and not skΣ), i.e. that he has correctly guessed
at the beginning of the experiment which of the two parties A has impersonated. We thus conclude that,
whenever A successfully breaks public accountability, and if he impersonates the correct party (which
happens with probability 1/2), then B succeeds too. �

Lemma 5.8 If the encryption scheme Π is IND−CPA-secure, then the sanitizable signature scheme SSS
in Construction 5.1 is invisible.

Invisibility follows from the security of the encryption scheme, since distinguishing the signatures for
ADM0 and ADM1 corresponds to distinguish the corresponding encryptions. In terms of concrete security,
any adversary A against invisibility, making at most q left-or-right queries, can be transformed into an
IND−CPA-adversary B with almost the same running time as A and

AdvInv
A,SSS(λ) ≤ q ·AdvIND−CPA

B,Π (λ).

Here, the factor q loss stems from our definition of IND−CPA-security for a single challenge ciphertext,
whereas in the proof below we use security against multiple challenge queries. This is known to follow
from the single-ciphertext case via a hybrid argument, losing a factor q in the advantage.

Proof. Invisibility states that an adversary A can query a left-or-right oracle which, based on a secret bit
b ∈ {0, 1}, signs a message m making one of two sets of sanitizing rights, ADM0 or ADM1, admissible
in the final signature σ. The resulting signature gets whitelisted together with the message m and the
intersection ADM0 ∩ ADM1. The adversary can also query a sanitizing oracle for any whitelisted data
(m,σ,ADM) and matching modification to get a sanitized signature σ′ for m′, and (m′, σ′,ADM) gets
whitelisted as well. A wins the experiment if he correctly guesses b.

We argue that a successful distinguisher A against invisibility yields a successful attacker B against
IND−CPA-security of Π. This is done by a reduction. Algorithm B receives as input a tuple of public
parameters ppΠ and a public key pk of the encryption scheme Π, and starts simulating the invisibility
experiment to A: he generates public parameters ppΣ←$ Σ.PGen(1λ) and two pairs of signature keys
(pkΣ, skΣ), (pk′Σ, sk′Σ)←$ Σ.KGen(ppΣ), assembles ppSSS = (ppΠ, ppΣ,Ml

Σ), then sets pkSig ← pkΣ and
pkSan ← (pk, pk′Σ), and finally hands (ppSSS, pkSig, pkSan) to A.

Every time adversary A submits a query (m,ADM0,ADM1) to his left-or-right oracle, algorithm
B emulates the genuine left-or-right oracle and runs the same steps as the Sign algorithm, but hands
(pkSig,KADM0 ,ADM0) and (pkSig,KADM1 ,ADM1) to his external left-or-right encryption oracle and uses
the returned ciphertext C to assemble the signature.

For every sanitization request (m,σ,MOD), algorithm B can check if the whitelist contains an entry
(m,σ,ADM), and in case run the sanitization algorithm using the secret keys skiΣ corresponding to the

23

verification keys contained in V (B knows these secret keys because he has generated them when simulating
the left-or-right oracle). When A finally outputs a guess for b, adversary B simply returns the same bit.

For the analysis note that B’s calls to its left-or-right oracle always contain equal-length messages
(pkSig,KADMi ,ADMi), since we assume that all keys of the scheme Σ are of fixed length L and that the
sanitizing rights are encoded in a length-invariant manner. It follows that the respective advantages of the
two adversaries coincide. �

5.3 Achieving Strong Invisibility

In the previous sections we have shown that invisibility is equivalent to IND−CPA-secure encryption, and
that strong invisibility implies IND−CCA2-secure encryption. Here we show that the latter implication
also holds in the other direction: If we use an IND−CCA2-secure encryption scheme in our construction,
then we get a strongly invisible sanitizable signature scheme.

Theorem 5.9 If the signature scheme Σ is correct and unforgeable, and the encryption scheme Π is
correct, then the sanitizable signature scheme SSS in Construction 5.1 is correct. If Σ is unforgeable and
Π is IND−CCA2-secure, then SSS is unforgeable, immutable, private, publicly accountable, and strongly
invisible.

Except for invisibility, all other security properties hold as before. Hence, it is sufficient to prove strong
invisibility. The concrete bounds are identical to the ones in the IND−CPA case: The advantage of an
adversary against strong invisibility is bounded by (q times) the advantage against IND−CCA2-security of
the underlying encryption scheme.

Proof. The difference between ordinary and strong invisibility is that the adversary A can now also ask
the left-or-right oracle about sanitizer keys pk′San 6= pkSan (in which case he must set ADM0 = ADM1), and
the sanitization oracle about signer keys pk′Sig 6= pkSig, where pkSig and pkSan are the given keys. When
doing the former, the output of such queries is not whitelisted, and in the latter case the adversary always
receives a sanitized signature. We argue that we can lift the reduction B from the IND−CPA case to the
IND−CCA2 case and cover the extended capabilities available to A through strong invisibility.

We start by observing that if A queries the left-or-right oracle with pk′San 6= pkSan, then the condition
ADM0 = ADM1 means that B doesn’t actually need to know the bit b to answer the query: he just runs
the Sign algorithm as defined in Figure 4 (with ADM = ADM0 = ADM1) and returns the signature to A.
This already covers the new signing queries.

For the new sanitization queries (i.e., with pk′Sig 6= pkSig), some care must be taken. In fact, given
that A now knows the secret key sk′Sig, he could first ask his left-or-right oracle for a genuine signature
σ = (S, σMSG, V, C, σADM) (with pk′San = pkSan), then extract the ciphertext C and embed it into a newly
forged signature (under sk′Sig). Afterwards, when submitting this signature to the sanitization oracle, he
could learn the bit b simply observing which blocks have been modified. To overcome this problem, we
have included the signer key pkSig in the encryption C.
B again mimics the genuine sanitization oracle and executes the Sanit algorithm as detailed in Figure 5.

We distinguish two cases. If such a query carries a ciphertext C created by the genuine signer (or, for that
matter, contains a public key different from pk′Sig) then, because the original signer public key is encrypted
in C and is verified against the given pk′Sig (see the definition of Sanit in Figure 5), the genuine sanitization
oracle would return ⊥. Since B can easily verify this (either by calling his decryption oracle, or because he
remembers the cipertexts he has issued), it can answer accordingly. If on the other hand C contains the
public key pk′Sig 6= pkSig, the switch to an IND−CCA2-game allows B to execute Sanit as defined in Figure 5
(with the call to Π.Dec substituted with his decryption oracle), and compute the answer accordingly.

Overall, B again runs a perfect simulation and A’s advantage in breaking strong invisibility is bounded
from above by B’s advantage against the IND−CCA2-security of the encryption scheme. �

24

6 Conclusions
Our results show that building invisible sanitizable signature schemes from one-way functions alone is
presumably hard, since deriving public-key encryption from one-wayness in a black-box way is infeasible
[IR89]. This is in contrast to sanitizable schemes without the extra property of invisibility. Namely,
Brzuska et al. [BFLS09] gave a simple construction of a “non-invisible” scheme based on regular signature
schemes only.

An interesting open question concerns the minimal assumptions required to achieve transparency for
sanitizable signatures, independently of the question regarding invisibility. Recall that transparency can
be somewhat thought of as the opposite of accountability, trying to hide whether the signer or the
sanitizer has created the signatures. Achieving accountability and the other common security proper-
ties, except for transparency (and except for invisibility, of course), is possible using one-way functions
alone [BFLS09, BPS13]. Current constructions achieving transparency are based on assumptions seem-
ingly stronger than one-way functions, such a group signature schemes [BFLS10], zero-knowledge proofs
[FKM+16], or (chameleon) hash functions [BCD+17, CDK+17]. Finally, for a sanitizable signature scheme
to be both transparent and invisble, public-key encryption is at least necessary as discussed here.

Acknowledgments
We thank the anonymous reviewers for their valuable comments and suggestions. This work has been
co-funded by the DFG as part of project P2 within the CRC 1119 CROSSING.

References
[ABC+12] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi shelat, and Brent

Waters. Computing on authenticated data. In Ronald Cramer, editor, TCC 2012: 9th Theory
of Cryptography Conference, volume 7194 of Lecture Notes in Computer Science, pages 1–20,
Taormina, Sicily, Italy, March 19–21, 2012. Springer, Heidelberg, Germany. (Cited on page 5.)

[ACdT05] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. Sanitizable signa-
tures. In Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter Gollmann, editors,
ESORICS 2005: 10th European Symposium on Research in Computer Security, volume 3679
of Lecture Notes in Computer Science, pages 159–177, Milan, Italy, September 12–14, 2005.
Springer, Heidelberg, Germany. (Cited on pages 3, 5, 10, 16, 35, 37, and 38.)

[ADR02] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and encryption.
In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of
Lecture Notes in Computer Science, pages 83–107, Amsterdam, The Netherlands, April 28 –
May 2, 2002. Springer, Heidelberg, Germany. (Cited on page 33.)

[BBD+10] Christina Brzuska, Heike Busch, Özgür Dagdelen, Marc Fischlin, Martin Franz, Stefan
Katzenbeisser, Mark Manulis, Cristina Onete, Andreas Peter, Bertram Poettering, and Do-
minique Schröder. Redactable signatures for tree-structured data: Definitions and construc-
tions. In Jianying Zhou and Moti Yung, editors, ACNS 10: 8th International Conference on
Applied Cryptography and Network Security, volume 6123 of Lecture Notes in Computer Sci-
ence, pages 87–104, Beijing, China, June 22–25, 2010. Springer, Heidelberg, Germany. (Cited
on page 5.)

25

[BCD+17] Michael Till Beck, Jan Camenisch, David Derler, Stephan Krenn, Henrich C. Pöhls, Kai
Samelin, and Daniel Slamanig. Practical strongly invisible and strongly accountable sanitizable
signatures. In Josef Pieprzyk and Suriadi Suriadi, editors, ACISP 2017, pages 437–452, 2017.
(Cited on pages 3, 4, 5, 9, 10, 25, 37, and 38.)

[BFF+09] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus Page, Jakob
Schelbert, Dominique Schröder, and Florian Volk. Security of sanitizable signatures revisited.
In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009: 12th International Conference on
Theory and Practice of Public Key Cryptography, volume 5443 of Lecture Notes in Computer
Science, pages 317–336, Irvine, CA, USA, March 18–20, 2009. Springer, Heidelberg, Germany.
(Cited on pages 5, 6, 7, 8, 9, 10, 16, 35, 37, 38, and 44.)

[BFLS09] Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder. Santizable sig-
natures: How to partially delegate control for authenticated data. In BIOSIG 2009, volume
155 of LNI, pages 117–128. GI, 2009. (Cited on pages 5, 6, and 25.)

[BFLS10] Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder. Unlinkability of
sanitizable signatures. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010: 13th
International Conference on Theory and Practice of Public Key Cryptography, volume 6056 of
Lecture Notes in Computer Science, pages 444–461, Paris, France, May 26–28, 2010. Springer,
Heidelberg, Germany. (Cited on pages 3, 5, 9, 25, and 38.)

[BPS12] Christina Brzuska, Henrich C. Pöhls, and Kai Samelin. Non-interactive public accountability
for sanitizable signatures. In EuroPKI 2012, volume 7868 of Lecture Notes in Computer
Science (LNCS), pages 178–193. Springer-Verlag, 2012. (Cited on pages 5, 9, 38, and 44.)

[BPS13] Christina Brzuska, Henrich Christopher Pöhls, and Kai Samelin. Efficient and perfectly un-
linkable sanitizable signatures without group signatures. In EuroPKI 2013, volume 8341 of
Lecture Notes in Computer Science, pages 12–30. Springer, 2013. (Cited on pages 5, 25, and 44.)

[CDK+17] Jan Camenisch, David Derler, Stephan Krenn, Henrich C. Pöhls, Kai Samelin, and Daniel
Slamanig. Chameleon-hashes with ephemeral trapdoors - and applications to invisible saniti-
zable signatures. In Serge Fehr, editor, PKC 2017: 20th International Conference on Theory
and Practice of Public Key Cryptography, Part II, volume 10175 of Lecture Notes in Com-
puter Science, pages 152–182, Amsterdam, The Netherlands, March 28–31, 2017. Springer,
Heidelberg, Germany. (Cited on pages 3, 5, 6, 9, 10, 25, 37, and 38.)

[CJ10] Sébastien Canard and Amandine Jambert. On extended sanitizable signature schemes. In
Josef Pieprzyk, editor, Topics in Cryptology – CT-RSA 2010, volume 5985 of Lecture Notes
in Computer Science, pages 179–194, San Francisco, CA, USA, March 1–5, 2010. Springer,
Heidelberg, Germany. (Cited on page 5.)

[CJL12] Sébastien Canard, Amandine Jambert, and Roch Lescuyer. Sanitizable signatures with several
signers and sanitizers. In Aikaterini Mitrokotsa and Serge Vaudenay, editors, AFRICACRYPT
12: 5th International Conference on Cryptology in Africa, volume 7374 of Lecture Notes in
Computer Science, pages 35–52, Ifrance, Morocco, July 10–12, 2012. Springer, Heidelberg,
Germany. (Cited on page 5.)

[CLM08] Sébastien Canard, Fabien Laguillaumie, and Michel Milhau. Trapdoor sanitizable signatures
and their application to content protection. In Steven M. Bellovin, Rosario Gennaro, Ange-
los D. Keromytis, and Moti Yung, editors, ACNS 08: 6th International Conference on Applied

26

Cryptography and Network Security, volume 5037 of Lecture Notes in Computer Science, pages
258–276, New York, NY, USA, June 3–6, 2008. Springer, Heidelberg, Germany. (Cited on page 5.)

[CMTV15] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-bit to multi-
bit public-key encryption via non-malleable codes. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015: 12th Theory of Cryptography Conference, Part I, volume 9014 of Lecture
Notes in Computer Science, pages 532–560, Warsaw, Poland, March 23–25, 2015. Springer,
Heidelberg, Germany. (Cited on page 4.)

[DDH+15] Denise Demirel, David Derler, Christian Hanser, Henrich C. Pöhls, Daniel Slamanig, and Giu-
lia Traverso. Overview of functional and malleable signature schemes (prismacloud deliverable
d4.4). Technical report, 2015. (Cited on page 5.)

[DHO16] Ivan Damgård, Helene Haagh, and Claudio Orlandi. Access control encryption: Enforcing
information flow with cryptography. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B:
14th Theory of Cryptography Conference, Part II, volume 9986 of Lecture Notes in Computer
Science, pages 547–576, Beijing, China, October 31 – November 3, 2016. Springer, Heidelberg,
Germany. (Cited on page 5.)

[dMPPS14] Hermann de Meer, Henrich C. Pöhls, Joachim Posegga, and Kai Samelin. On the relation
between redactable and sanitizable signature schemes. In Jan Jürjens, Frank Piessens, and
Nataliia Bielova, editors, ESSoS 2014, pages 113–130, 2014. (Cited on pages 5, 37, and 38.)

[DPSS16] David Derler, Henrich C. Pöhls, Kai Samelin, and Daniel Slamanig. A general framework
for redactable signatures and new constructions. In Soonhak Kwon and Aaram Yun, editors,
ICISC 15: 18th International Conference on Information Security and Cryptology, volume
9558 of Lecture Notes in Computer Science, pages 3–19, Seoul, Korea, November 25–27, 2016.
Springer, Heidelberg, Germany. (Cited on page 5.)

[DS15] David Derler and Daniel Slamanig. Rethinking privacy for extended sanitizable signatures
and a black-box construction of strongly private schemes. In Man Ho Au and Atsuko Miyaji,
editors, ProvSec 2015: 9th International Conference on Provable Security, volume 9451 of
Lecture Notes in Computer Science, pages 455–474, Kanazawa, Japan, November 24–26, 2015.
Springer, Heidelberg, Germany. (Cited on page 5.)

[FF15] Victoria Fehr and Marc Fischlin. Sanitizable signcryption: Sanitization over encrypted data
(full version). Cryptology ePrint Archive, Report 2015/765, 2015. http://eprint.iacr.
org/2015/765. (Cited on page 5.)

[FKM+16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique Schröder,
and Mark Simkin. Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin
Yang, editors, PKC 2016: 19th International Conference on Theory and Practice of Public
Key Cryptography, Part I, volume 9614 of Lecture Notes in Computer Science, pages 301–330,
Taipei, Taiwan, March 6–9, 2016. Springer, Heidelberg, Germany. (Cited on page 25.)

[GGOT15] Esha Ghosh, Michael T. Goodrich, Olga Ohrimenko, and Roberto Tamassia. Fully-dynamic
verifiable zero-knowledge order queries for network data. Cryptology ePrint Archive, Report
2015/283, 2015. http://eprint.iacr.org/2015/283. (Cited on page 5.)

27

http://eprint.iacr.org/2015/765
http://eprint.iacr.org/2015/765
http://eprint.iacr.org/2015/283

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In 14th Annual ACM Symposium on Theory of Com-
puting, pages 365–377, San Francisco, CA, USA, May 5–7, 1982. ACM Press. (Cited on page 31.)

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984. (Cited on page 31.)

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April
1988. (Cited on pages 33 and 37.)

[GOT15] Esha Ghosh, Olga Ohrimenko, and Roberto Tamassia. Zero-knowledge authenticated order
queries and order statistics on a list. In Tal Malkin, Vladimir Kolesnikov, Allison Bishop
Lewko, and Michalis Polychronakis, editors, ACNS 15: 13th International Conference on Ap-
plied Cryptography and Network Security, volume 9092 of Lecture Notes in Computer Science,
pages 149–171, New York, NY, USA, June 2–5, 2015. Springer, Heidelberg, Germany. (Cited
on page 5.)

[GQZ11] Junqing Gong, Haifeng Qian, and Yuan Zhou. Fully-secure and practical sanitizable signa-
tures. In Xuejia Lai, Moti Yung, and Dongdai Lin, editors, INSCRYPT 2010, pages 300–317,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. (Cited on pages 3, 5, 9, 37, and 39.)

[HLW12] Susan Hohenberger, Allison B. Lewko, and Brent Waters. Detecting dangerous queries: A new
approach for chosen ciphertext security. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer
Science, pages 663–681, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.
(Cited on page 4.)

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In 21st Annual ACM Symposium on Theory of Computing, pages 44–61, Seattle,
WA, USA, May 15–17, 1989. ACM Press. (Cited on pages 6 and 25.)

[JMSW02] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomorphic
signature schemes. In Bart Preneel, editor, Topics in Cryptology – CT-RSA 2002, volume
2271 of Lecture Notes in Computer Science, pages 244–262, San Jose, CA, USA, February 18–
22, 2002. Springer, Heidelberg, Germany. (Cited on page 5.)

[KL06] Marek Klonowski and Anna Lauks. Extended sanitizable signatures. In Min Surp Rhee and
Byoungcheon Lee, editors, ICISC 06: 9th International Conference on Information Security
and Cryptology, volume 4296 of Lecture Notes in Computer Science, pages 343–355, Busan,
Korea, November 30 – December 1, 2006. Springer, Heidelberg, Germany. (Cited on page 5.)

[KSS16] Stephan Krenn, Kai Samelin, and Dieter Sommer. Stronger security for sanitizable signatures.
In Joaquin Garcia-Alfaro, Guillermo Navarro-Arribas, Alessandro Aldini, Fabio Martinelli,
and Neeraj Suri, editors, QASA 2015, pages 100–117, Cham, 2016. Springer International
Publishing. (Cited on pages 5, 9, 37, and 38.)

[MH15] Takahiro Matsuda and Goichiro Hanaoka. An asymptotically optimal method for converting
bit encryption to multi-bit encryption. In Tetsu Iwata and Jung Hee Cheon, editors, Advances
in Cryptology – ASIACRYPT 2015, Part I, volume 9452 of Lecture Notes in Computer Sci-
ence, pages 415–442, Auckland, New Zealand, November 30 – December 3, 2015. Springer,
Heidelberg, Germany. (Cited on page 4.)

28

[Ms09] Steven Myers and abhi shelat. Bit encryption is complete. In 50th Annual Symposium on
Foundations of Computer Science, pages 607–616, Atlanta, GA, USA, October 25–27, 2009.
IEEE Computer Society Press. (Cited on page 4.)

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic appli-
cations. In 21st Annual ACM Symposium on Theory of Computing, pages 33–43, Seattle, WA,
USA, May 15–17, 1989. ACM Press. (Cited on pages 4 and 17.)

[PSP11] Henrich Christopher Pöhls, Kai Samelin, and Joachim Posegga. Sanitizable signatures in XML
signature - performance, mixing properties, and revisiting the property of transparency. In
Javier Lopez and Gene Tsudik, editors, ACNS 11: 9th International Conference on Applied
Cryptography and Network Security, volume 6715 of Lecture Notes in Computer Science, pages
166–182, Nerja, Spain, June 7–10, 2011. Springer, Heidelberg, Germany. (Cited on page 5.)

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd
Annual ACM Symposium on Theory of Computing, pages 387–394, Baltimore, MD, USA,
May 14–16, 1990. ACM Press. (Cited on pages 4 and 17.)

[YSL10] Dae Hyun Yum, Jae Woo Seo, and Pil Joong Lee. Trapdoor sanitizable signatures made easy.
In Jianying Zhou and Moti Yung, editors, ACNS 10: 8th International Conference on Applied
Cryptography and Network Security, volume 6123 of Lecture Notes in Computer Science, pages
53–68, Beijing, China, June 22–25, 2010. Springer, Heidelberg, Germany. (Cited on page 5.)

29

A Standard Cryptographic Building Blocks
For completeness and for better clarity, we briefly review in this Appendix the standard cryptographic
building blocks we have used in the main body of our work: public-key encryptions schemes, digital
signature schemes, and one-way functions.

A.1 Public-Key Encryption Schemes

Definition A.1 (Public-Key Encryption Scheme) A public-key encryption scheme Π is a tuple of
four probabilistic polynomial-time algorithms Π := (PGen,KGen,Enc,Dec) defined as follows:

pp←$ PGen(1λ): On input a security parameter λ ∈ N, the algorithm PGen generates a tuple of public
parameters of Π. The tuple pp includes the security parameter 1λ, the definition of the message space
M, the ciphertext space C, and the key space K (together with a special symbol ⊥ 6∈ M ∪ C ∪ K),
along with any other information needed to encrypt or decrypt messages, except for identities and
user key pairs.

(pk, sk)←$ KGen(pp): On input a tuple of public parameters pp, the algorithm KGen returns a key pair or
an error message, that is (pk, sk) ∈ K∪{⊥}. Here, pk and sk are the public encryption and the secret
decryption keys, respectively. We write Kpk and Ksk for the sets of all possible public encryption and
secret decryption keys.

c←$ Enc(pp,m, pk): On input a tuple of public parameters pp, a message m ∈M, and a public encryption
key pk ∈ Kpk, the algorithm Enc returns a ciphertext or an error message, that is c ∈ C ∪ {⊥}.

m← Dec(pp, c, pk, sk): On input a tuple of public parameters pp, a ciphertext c ∈ C, a public encryption
key pk ∈ Kpk, and a secret decryption key sk ∈ Ksk, the deterministic algorithm Dec returns a
plaintext or an error message, that is m ∈M∪ {⊥}.

Remark. Observe that Definition A.1 is purely syntactic in nature. We will always work under the
assumption that the obvious checks needed to ensure a semantically correct execution of a public-key
encryption scheme Π will be carried out directly by the algorithms defining Π. For example, given all the
appropriate inputs, we assume that the algorithm Enc (resp. Dec) itself checks if the tuple pp of public
parameters is well-formed, if m ∈M (resp. c ∈ C), and if the key pk (resp. pk and sk) is compatible with
pp before actually performing the encryption (resp. decryption), and that it proceeds accordingly (e.g.,
outputting ⊥) should this condition not be satisfied. Similar remarks hold for the other algorithms.

(Perfect) Correctness. Intuitively, the correctness property of a public-key encryption scheme captures
the idea that the algorithms work and interact properly if used as intended. Concretely this means that,
whenever Bob fixes a security parameter λ ∈ N and generates a tuple of public parameters pp and a key
pair (pk, sk) ∈ K, then Alice encrypts a message m ∈ M using pk, and afterwards Bob decrypts with sk
the ciphertext sent by Alice, both parties will obtain valid outputs and Bob will recover the same message
m Alice had started with. This notion comes in two flavors: In the case of perfect correctness, the above
is guaranteed to be true for every m ∈M and every choice of the random coins used during the execution
of the algorithms. On the other hand, (regular) correctness allows for a negligible error probability at each
step. The formal definition is given below.

Definition A.2 ((Perfect) Correctness) Let Π := (PGen,KGen,Enc,Dec) be a public-key encryption
scheme. We say that Π is correct (resp. perfectly correct) if:
• for every security parameter λ ∈ N and all public parameters pp←$ PGen(1λ),
• for all key pairs (pk, sk)←$ KGen(pp),
• for every message m ∈M,

30

• and for all ciphertexts c←$ Enc(pp,m, pk),
if m′ ← Dec(pp, c, pk, sk), then P [m′ 6= m] = negl(λ) (resp. P [m′ 6= m] = 0), the probability being taken
over the random coins used by all the above algorithms.

IND−CPA- and IND−CCA2-Security. Security of a public-key encryption scheme is captured by the
notion of indistinguishability. It requires that any efficient adversary A with access to an encryption of a
message m ∈ M and the length of m be able to determine any information on m with probability only
negligibly higher than any other efficient adversary that only has access to the length of m. In other
words, the knowledge of an encryption of m (in addition to the length of m) should not reveal any further
information that can be extracted by an efficient adversary. This notion was first put forward in this
form (sometimes called semantic security) by Goldwasser et al. (see [GM82]), and afterwards shown to be
equivalent to the one we describe here by Goldwasser et al. in [GM84].

Indistinguishability is defined by the following security experiment. First, a key pair is generated and
the public key is given to an efficient adversary A, who may use it to create any polynomial number of
ciphertexts. A then generates two messages m0,m1 ∈ M of the same length and forwards them to a
challenge oracle, which picks one at random, encrypts it under the public key, and hands the result back
to the adversary. The goal of A is to determine which of the two messages was chosen by the oracle. The
scheme Π has indistinguishable encryptions under chosen-plaintext attack (or is IND−CPA-secure) if no
such adversary succeeds in doing so with probability significantly greater than 1/2.

It is also possible to define variants of this notion where, in addition to the public key, A is given
access to a decryption oracle which decrypts arbitrary ciphertexts at A’s request. In the definition of
indistinguishability under chosen ciphertext attack (IND−CCA1-security), A is allowed to query such a
decryption oracle only up until it generates the two messages m0,m1. On the other hand, in the definition
of indistinguishability under adaptive chosen ciphertext attack (IND−CCA2-security), A may query the
decryption oracle even after it has forwarded the two messages, albeit without asking for a decryption of
the challenge ciphertext (without this restriction the notion would be trivially unachievable). The formal
definition of all these security notions is given below.

Definition A.3 (IND−T -Security) Let Π := (PGen,KGen,Enc,Dec) be a public-key encryption scheme,
T ∈ {CPA,CCA1,CCA2}, and λ ∈ N be a security parameter. Consider an efficient two-stage adversary
A = (A1,A2), where:
A1: a) Takes as input a tuple of public parameters pp corresponding to the security parameter λ and a

public encryption key pk;
b) Has access to a decryption oracle ODec, except if T = CPA, in which case it is allowed no oracle

queries (modeled here by the trival oracle ODec mapping every input to ⊥);
c) Returns two messages m0,m1 ∈M of the same length and some state information st;

A2: a) Takes as input a tuple of public parameters pp corresponding to the security parameter λ, a
public encryption key pk, a ciphertext c∗ ∈ C, and some state information st;

b) Is allowed no oracle queries (modeled here by the trivial oracle ÕDec mapping every input to ⊥),
except if T = CCA2, in which case it has access to a restricted decryption oracle ÕDec;

c) Returns a bit b∗ ∈ {0, 1}.
For every such adversary A, let ExpIND−T

A,Π (λ) be the experiment defined in Figure 6. We say that Π is
IND−T -secure if, for every adversary A as above, AdvIND−T

A,Π (λ) = P
[

ExpIND−T
A,Π (λ) = 1

]
− 1/2 = negl(λ),

where the probability is taken over the random coins used by A, as well as the random coins used in the
experiment.

31

ExpIND−T
A,Π (λ):

1 pp←$ PGen(1λ)
2 (pk, sk)←$ KGen(pp)
3 b←${0, 1}
4 (m0,m1, st)←$AO

Dec
1 (pp, pk)

5 if m0 6∈ M ∨ m1 6∈ M ∨ |m0| 6= |m1| then
6 return 0
7 c∗←$ Enc(pp,mb, pk)
8 b∗←$AÕ

Dec
2 (pp, pk, c∗, st)

9 if b = b∗ then
10 return 1
11 return 0

ODec(c):
1 if T = CPA then
2 return ⊥
3 m← Dec(pp, c, pk, sk)
4 return m

ÕDec(c):
1 if T ∈ {CPA,CCA1} ∨ c = c∗ then
2 return ⊥
3 m← Dec(pp, c, pk, sk)
4 return m

Figure 6: IND−T -security, T ∈ {CPA, CCA1, CCA2}

A.2 Digital Signature Schemes

Definition A.4 (Digital Signature Schemes) A digital signature scheme Σ is a tuple of four proba-
bilistic polynomial-time algorithms Σ := (PGen,KGen, Sign,Verify) defined as follows:

pp←$ PGen(1λ): On input a security parameter λ ∈ N, the algorithm PGen generates a tuple of pub-
lic parameters of Σ. The tuple pp includes the security parameter 1λ, the definition of the mes-
sage space M, the space of signatures S, and the key space K (together with two special symbols
>,⊥ 6∈ M∪ S ∪ K), along with any other information needed to sign messages or verify signatures,
except for identities and user key pairs.

(vk, sk)←$ KGen(pp): On input a tuple of public parameters pp, the algorithm KGen returns a key pair or
an error message, that is (vk, sk) ∈ K ∪ {⊥}. Here, vk and sk are the public verification and the
signer secret keys, respectively. We write Kvk and Ksk for the sets of all possible public verification
and signer secret keys.

σ←$ Sign(pp,m, sk, vk): On input a tuple of public parameters pp, a message m ∈ M, a signer secret key
sk ∈ Ksk, and a public verification key vk ∈ Kvk, the algorithm Sign returns a signature or an error
message, that is σ ∈ S ∪ {⊥}.

d← Verify(pp,m, σ, vk): On input a tuple of public parameters pp, a message m ∈ M, a signature σ ∈ S,
and a public verification key vk ∈ Kvk, the deterministic algorithm Verify returns a bit d ∈ {>,⊥}.

Remark. Observe that Definition A.4 is purely syntactic in nature. We will always assume that the
obvious checks needed to ensure a semantically correct execution of a digital signature scheme Σ will be
carried out directly by the algorithms defining Σ. For example, given all the appropriate inputs, we assume
that the algorithm Sign itself checks if the tuple pp of public parameters is well-formed, if m ∈ M, and if
the keys pk and sk are compatible with pp before producing the signature, and that it proceeds accordingly
(e.g., outputting ⊥) should this condition not be satisfied. Similar remarks hold for the other algorithms.

(Perfect) Correctness. Again, the intuition behind the correctness property of a digital signature
scheme is that the algorithms work and interact properly if used as intended. Concretely this means that,
whenever Alice fixes a security parameter λ ∈ N, generates a tuple of public parameters pp and a key pair
(vk, sk) ∈ K, signs a message m ∈M using sk, and then Bob verifies Alice’s signature with vk, both parties

32

will obtain valid outputs and Bob will conclude that the signature is valid. As before, the correctness
property can be defined by requiring the above to hold for every m ∈ M and every choice of the random
coins used during the execution of the algorithms (perfect correctness), or by allowing for a negligible error
probability at each step ((regular) correctness). The formal definition is given below.

Definition A.5 ((Perfect) Correctness) Let Σ := (PGen,KGen,Sign,Verify) be a digital signature scheme.
We say that Σ is correct (resp. perfectly correct) if:
• for every security parameter λ ∈ N and all public parameters pp←$ PGen(1λ),
• for all key pairs (vk, sk)←$ KGen(pp),
• for every message m ∈M,
• and for all signatures σ←$ Sign(pp,m, sk, vk),

if d← Verify(pp,m, σ, vk), then P [d = ⊥] = negl(λ) (resp. P [d = ⊥] = 0), the probability being taken over
the random coins used by all the above algorithms.

(Strong) Unforgeability. The most important security property of a digital signature scheme Σ is
unforgeability: No efficient adversary A should be able to generate a valid signature of a message not
previously endorsed by the legitimate signer. It was first introduced by Goldwasser et al. in [GMR88].

Unforgeability can be defined by means of a security experiment. First, a key pair is generated and
the verification key is given to an efficient adversary A, who has full adaptive access to a signing oracle.
A’s goal is to generate a valid signature of any message not already queried to the oracle. Σ is unforgeable
if any such adversary succeeds in doing so only with negligible probability.

While this definition appears to be sound, it has some slight shortcomings. For example, it does
not prevent A from deriving fresh signatures of already queried messages, as the winning condition in
the unforgeability experiment only requires the adversary output a signature of a message never queried
before. But once A has learned one signature generated from a specific message, he could potentially forge
many other signatures of the same message—a problem which may have unwanted consequences in many
practical applications.

Hence, it is reasonable to alter the definition so that A cannot generate any fresh signature on his own.
This is the approach taken by An et al. in [ADR02]: The idea is to keep track not only of the messages
queried to the oracle, but also of the answers, and to demand that A come up with a completely new
valid message-signature pair. This approach leads to the definition of strong unforgeability: In the strong
unforgeability experiment A wins if he can generate any valid message-signature pair not already seen
before. The formal definition of (strong) unforgeability is given below.

Definition A.6 ((Strong) Unforgeability) Let Σ := (PGen,KGen,Sign,Verify) be a digital signature
scheme and λ ∈ N be a security parameter. Consider an efficient adversary A which:

a) Takes as input a tuple of public parameters pp corresponding to the security parameter λ and a public
verification key vk;

b) Has access to a signing oracle OSign (resp. ÕSign);
c) Returns a pair (m∗, σ∗) ∈M× S.

For every such adversary A, let ExpTA,Σ(λ) with T = Unf (resp. T = SUnf) be the experiment defined
in the left-hand side (resp. right-hand side) of Figure 7. We say that Σ is unforgeable under adaptive
chosen-message attack (resp. strongly unforgeable under adaptive chosen-message attack) if, for every
adversary A as above, AdvTA,Σ(λ) = P

[
ExpTA,Σ(λ) = 1

]
= negl(λ), where the probability is taken over the

random coins used by A, as well as the random coins used in the experiment.

33

ExpUnf
A,Σ(λ):

1 pp←$ PGen(1λ)
2 (vk, sk)←$ KGen(pp)
3 B ← ∅
4 (m∗, σ∗)←$AO

Sign(pp, vk)
5 d← Verify(pp,m∗, σ∗, vk)
6 if d = > ∧ m∗ 6∈ B then
7 return 1
8 return 0

OSign(m):
1 σ←$ Sign(pp,m, sk, vk)
2 B ← B ∪ {m}
3 return σ

ExpSUnf
A,Σ (λ):

1 pp←$ PGen(1λ)
2 (vk, sk)←$ KGen(pp)
3 B ← ∅
4 (m∗, σ∗)←$AÕ

Sign(pp, vk)
5 d← Verify(pp,m∗, σ∗, vk)
6 if d = > ∧ (m∗, σ∗) 6∈ B then
7 return 1
8 return 0

ÕSign(m):
1 σ←$ Sign(pp,m, sk, vk)
2 B ← B ∪ {(m,σ)}
3 return σ

Figure 7: Unforgeability (left) and strong unforgeability (right)

34

B Correctness of Sanitizable Signature Schemes
In this Appendix we expand on the correctness definitions of sanitizable signature schemes that we have
briefly touched upon in Section 3.3. In doing so, we take inspiration from the equivalent notion for
(ordinary) digital signature schemes presented in Appendix A.2. Again, the intuitive idea behind the
definitions is that all the algorithms work and interact properly if used as intended. Compared to the case
of digital signature schemes, however, the main difference here is that there are many more algorithms
in a sanitizable signature scheme—in particular, there are two additional parties, the sanitizer and the
judge, who do not have a counterpart in the “ordinary” setting. As a consequence, there are also more
correctness notions.

As usual, every one of these concepts may be of two types: In the perfect version, the requirements
must hold for every choice made by the parties involved and every choice of the random coins used during
the execution of the algorithms. The “regular” version on the other hand allows for a negligible error
probability at each step.

Of the three properties discussed here, only the first was already introduce by Ateniese et al. in
[ACdT05]; the other two properties later appeared in [BFF+09].

(Perfect) Signing Correctness. The first notion deals with correctness from the signer’s point of view.
It states that, whenever a singer and a sanitizer key pair are generated and the signer signs a message
delegating certain sanitizing rights to the sanitizer, both parties will obtain valid outputs and the signature
will also be valid under the corresponding public keys. The formal definition is given below.

Definition B.1 ((Perfect) Signing Correctness) Let SSS := (PGen,KGenSig,KGenSan,Sign,Sanit,Verify,
Proof, Judge) be a sanitizable signature scheme. We say that SSS is signing correct (resp. perfectly signing
correct) if:
• for every security parameter λ ∈ N and all public parameters pp←$ PGen(1λ),
• for all key pairs (pkSig, skSig)←$ KGenSig(pp), (pkSan, skSan)←$ KGenSan(pp),
• for every message m ∈M,
• for all sanitizing rights ADM with ADM(m) = >,
• and for every σ←$ Sign(pp,m, skSig, pkSig, pkSan,ADM),

if d ← Verify(pp,m, σ, pkSig, pkSan), then P [d = ⊥] = negl(λ) (resp. P [d = ⊥] = 0), the probability being
taken over the random coins used by all the above algorithms.

(Perfect) Sanitizing Correctness. The second notion deals with correctness from the sanitizer’s point
of view. It states that, whenever a singer and a sanitizer key pair are generated, the signer signs a message
m ∈M delegating certain sanitizing rights to the sanitizer, and the sanitizer modifies m within the limits
set by the signer and generates a sanitized signature for the modified message, both parties will obtain valid
outputs and the signature will also be valid under the corresponding public keys. The formal definition is
given below.

Definition B.2 ((Perfect) Sanitizing Correctness) Let SSS := (PGen,KGenSig,KGenSan,Sign,Sanit,
Verify,Proof, Judge) be a sanitizable signature scheme. We say that SSS is sanitizing correct (resp. perfectly
sanitizing correct) if:
• for every security parameter λ ∈ N and all public parameters pp←$ PGen(1λ),
• for all key pairs (pkSig, skSig)←$ KGenSig(pp), (pkSan, skSan)←$ KGenSan(pp),
• for every message m ∈M,
• for all sanitizing rights ADM with ADM(m) = >,
• for every σ←$ Sign(pp,m, skSig, pkSig, pkSan,ADM),

35

• for all sanitizing instructions MOD with MOD(m) 6= ⊥ and MOD(ADM) = >,
• and for every σ′←$ Sanit(pp,m, σ, skSan, pkSig, pkSan,MOD),

if d ← Verify(pp,m′, σ′, pkSig, pkSan), then P [d = ⊥] = negl(λ) (resp. P [d = ⊥] = 0), the probability being
taken over the random coins used by all the above algorithms.

(Perfect) Proof Correctness. The final notion deals with correctness from the perspective of the
judge. It states that if a signature is correctly generated in one of the two ways discussed above, and if
the signer uses his secret key to generate a proof aimed at resolving an authorship dispute about that
particular signature, both parties will obtain valid outputs and the judge will ascribe the signature to the
correct party. The formal definition is given below.

Definition B.3 ((Perfect) Proof Correctness) Let SSS := (PGen,KGenSig,KGenSan, Sign,Sanit,Verify,
Proof, Judge) be a sanitizable signature scheme. We say that SSS is proof correct (resp. perfectly proof
correct) if:
• for every security parameter λ ∈ N and all public parameters pp←$ PGen(1λ),
• for all key pairs (pkSig, skSig)←$ KGenSig(pp), (pkSan, skSan)←$ KGenSan(pp),
• for every message m ∈M,
• for all sanitizing rights ADM with ADM(m) = >
• for every σ←$ Sign(pp,m, skSig, pkSig, pkSan,ADM),
• for all sanitizing instructions MOD with MOD(m) 6= ⊥ and MOD(ADM) = >,
• for every σ′←$ Sanit(pp,m, σ, skSan, pkSig, pkSan,MOD),
• for all messages m = m1,m2, . . . ,mk ∈M,
• for every sanitizing rights ADM = ADM1,ADM2, . . . ,ADMk with ADMi(mi) = >, 2 ≤ i ≤ k,
• for all signatures σi←$ Sign(pp,mi, skSig, pkSig, pkSan,ADMi), 2 ≤ i ≤ k,
• and for all proofs

π←$ Proof(pp,m, σ, {(mi, σi)}ki=1, skSig, pkSan), π′←$ Proof(pp,m′, σ′, {(mi, σi)}ki=1, skSig, pkSan),

if d ← Judge(pp,m, σ, pkSig, pkSan, π) and d′ ← Judge(pp,m′, σ′, pkSig, pkSan, π), then P [d 6= Sig] = negl(λ)
and P [d′ 6= San] = negl(λ) (resp. P [d 6= Sig] = 0 and P [d′ 6= San] = 0), the probability being taken over
the random coins used by all the above algorithms.

36

C Security Definitions for Sanitizable Signature Schemes
In this Appendix we elaborate on the security definitions of sanitizable signature schemes that we have
outlined in Section 3.3. For each of these notions we give some background information and then define it
rigorously by means of a security experiment.

(Strong) Unforgeability. Given that a sanitizable signature scheme SSS allows legitimate users to
sign or sanitize messages, the most basic property SSS should satisfy is unforgeability: Similarly to digital
signature schemes, it requires that no efficient adversaryA be able to generate a valid signature of a message
not previously endorsed by the signer or the sanitizer. This property is the analogous of unforgeability for
digital signature schemes (see Appendix A.2).

Unforgeability was already introduced and formalized in a game-based fashion by Ateniese et al. in
[ACdT05] and later included by Brzuska et al. [BFF+09] in their security model. This initial definition
was shown to be slightly inappropriate by Gong et al. [GQZ11] (it does not protect against rights forge
attacks), who proposed an adjustment to solve this problem (also see de Meer et al. [dMPPS14]). The
notion has since been further stengthened by Krenn et al. [KSS16] to account also for signatures (and not
only for messages and sanitizing rights, thus in particular adressing the concerns raised in [GQZ11]) and
was later adopted in this stronger form by Camenisch et al. [CDK+17] and Beck et al. [BCD+17].

Unforgeability can be defined by means of a security experiment. First, a signer and a sanitizer key
pair are generated and given to an efficient adversary A, who has full adaptive oracle access. A’s goal is
to generate a valid signature of a message not already signed or sanitized by any legitimate party (i.e.,
not already queried to OSign or OSanit). SSS is unforgeable if any such adversary succeeds in doing so only
with negligible probability.

This definition mimics the classical definition of (standard) unforgeability for digital signature schemes
given in [GMR88] and thus also suffers from the same shortcomings. In particular, it does not prevent A
from deriving fresh signatures of already queried messages, with potentially different sanitizing rights than
those originally assigned by the honest signer.

Hence, it is reasonable to again alter the definition so that A cannot generate any fresh signature on
his own. This can be done by following the same approach as in Appendix A.2, which results in A already
winning if he can generate any valid message-signature pair not seen before. This is the idea behind the
notion of strong unforgeability of a sanitizable signature scheme.
We conclude by observing that this security property takes into account only adversaries acting from
“outside” the system; security properties dealing with malicious signers or sanitizers will be introduced in
the following paragraphs. The formal definition of (strong) unforgeability is given below.

Definition C.1 ((Strong) Unforgeability) Let SSS := (PGen,KGenSig,KGenSan,Sign,Sanit,Verify,Proof,
Judge) be a sanitizable signature scheme and λ ∈ N be a security parameter. Consider an efficient adversary
A which:

a) Takes as input a tuple of public parameters pp corresponding to the security parameter λ, a signer
public key pkSig, and a sanitizer public key pkSan;

b) Has access to a signing oracle OSign (resp. ÕSign), a sanitizing oracle OSanit (resp. ÕSanit), and a
proof oracle OProof ;

c) Returns a pair (m∗, σ∗) ∈M× S.
For every such adversary A, let ExpTA,SSS(λ) with T = Unf (resp. T = SUnf) be the experiment defined
in the upper-left corner (resp. on the left) of Figure 8. We say that SSS is unforgeable (resp. strongly
unforgeable) if, for every efficient adversary A as above, AdvTA,SSS(λ) = P

[
ExpTA,SSS(λ) = 1

]
= negl(λ),

where the probability is taken over the random coins used by A, as well as the random coins used in the
experiment.

37

ExpUnf
A,SSS(λ):

1 pp←$ PGen(1λ)
2 (pkSig, skSig)←$ KGenSig(pp)
3 (pkSan, skSan)←$ KGenSan(pp)
4 BSign ← ∅, BSanit ← ∅
5 (m∗, σ∗)←$AO

Sign,OSanit,OProof (pp, pkSig, pkSan)
6 d← Verify(pp,m∗, σ∗, pkSig, pkSan)
7 if d = > ∧ (pkSan,m

∗) 6∈ BSign ∧
(pkSig,m

∗) 6∈ BSanit then
8 return 1
9 return 0

OSign(m, pk′San,ADM
)
:

1 σ←$ Sign(pp,m, skSig, pkSig, pk′San,ADM)
2 BSign ← BSign ∪ {(pk′San,m)}
3 return σ

OSanit
(
m,σ, pk′Sig,MOD

)
:

1 m′ ← MOD(m)
2 σ′←$ Sanit(pp,m, σ, skSan, pk′Sig, pkSan,MOD)
3 BSanit ← BSanit ∪ {(pk′Sig,m

′)}
4 return σ′

ExpSUnf
A,SSS(λ):

1 pp←$ PGen(1λ)
2 (pkSig, skSig)←$ KGenSig(pp)
3 (pkSan, skSan)←$ KGenSan(pp)
4 BSign ← ∅, BSanit ← ∅
5 (m∗, σ∗)←$AÕ

Sign,ÕSanit,OProof (pp, pkSig, pkSan)
6 d← Verify(pp,m∗, σ∗, pkSig, pkSan)
7 if d = > ∧ (pkSan,m

∗, σ∗) 6∈ BSign ∧
(pkSig,m

∗, σ∗) 6∈ BSanit then
8 return 1
9 return 0

ÕSign(m, pk′San,ADM
)
:

1 σ←$ Sign(pp,m, skSig, pkSig, pk′San,ADM)
2 BSign ← BSign ∪ {(pk′San,m, σ)}
3 return σ

ÕSanit
(
m,σ, pk′Sig,MOD

)
:

1 m′ ← MOD(m)
2 σ′←$ Sanit(pp,m, σ, skSan, pk′Sig, pkSan,MOD)
3 BSanit ← BSanit ∪ {(pk′Sig,m

′, σ′)}
4 return σ′

OProof
(
m,σ, {(mi, σi)}ki=1, pk′San

)
:

1 π←$ Proof(pp,m, σ, {(mi, σi)}ki=1, skSig, pk′San)
2 return π

Figure 8: Unforgeability (left) and strong unforgeability (right)

Immutability. Sanitizable signature schemes allow the signer to declare certain message blocks as ad-
missible for modification, so that a pre-determined sanitizer is later able to edit those blocks and to produce
a valid signature that verifies under the signer and sanitizer public keys. On the other hand, non-admissible
message blocks should be immutable for everyone: Neither an external entity, nor the intended sanitizer
should be able to modify those blocks and to produce a valid signature. The former case has already been
addressed in the previous paragrah. The immutability property is concerned with the latter: A malicious
sanitizer should not be able to change non-admissible message blocks and to produce a valid signature
(even holding his own private key).

Immutability, too, has already been introduced by Ateniese et al. in [ACdT05], but was formalized
for the first time later by Brzuska et al. [BFF+09]. The definition of immutability has then been largely
adopted by subsequent authors in this orignal form (see e.g. [BCD+17, BFLS10, BPS12, CDK+17, KSS16]),
with only some minor exceptions (see de Meer et al. [dMPPS14], who define a weaker notion of immutabil-
ity, where the adversary knows, but does not generate, the sanitizer key pair).

Immutability can be defined by means of a security experiment. First, a signer key pair is generated
and the public key is given to an efficient adversary A, who has full adaptive oracle access. A’s goal is

38

to impersonate a sanitizer (i.e., to output a sanitizer public key pk∗San) and to generate a valid message-
signature pair that is not an admissible modification of a message previously signed by the signing oracle.
SSS is immutable if any such adversary succeeds in doing so only with negligible probability.

Observe that, at first sight, it seems that this notion does not protect against rights forge attacks
mounted by a malicious sanitizer (which are not covered by unforgeability, since a malicious sanitizer
has the additional knowledge of the sanitizer secret key). Indeed, in this setting the adversary is not
barred from producing a valid signature, equipped with different sanitizing rights, of a previously queried
message or a legally modified message. In other words, he is allowed to “sanitize” a message by keeping
it unmodified or applying matching modifications, and then encoding a different set of admissible blocks
into the signature.

In [GQZ11] the problem of rights forge attacks is addressed by keeping track of all the sanitizing
rights queried to the oracle, and then resorting the same trick we have used in the definition of strong
unforgeability: One of the winning conditions is already satisfied if the triple (pk∗San,m

∗, σ∗) returned by
A is such that (pk∗San,m

∗,ADM∗) has not been queried before to the signing oracle (ADM∗ being the
sanitizing rights encoded into σ∗). This solution turns out to be satisfactory, because they work under
the critical assumption that the sanitizing rights encoded into a signature are always publicly recoverable,
which we do not have in our setting. Regrettably, we therefore cannot use the same strategy here.

On the other hand, we observe that a rights forge attack can essentially be of two types: Let m ∈ M
be the message signed by the signer, let A be the set of block indexes declared as admissible by the signer,
and let A′ be the set of index blocks encoded as admissible in the signature produced by the malicious
sanitizer. In order for there to be a rights forge attack we must have A 6= A′, which means that either
A′ 6⊆ A or A′ (A. But observe that a malicious sanitizer that can mount a rights forge attack of the first
kind can easily be turned into an adversary violating immutability (this adversary simply has to modify
the newly won admissible block), whereas a rights forge attack of the second type seems unlikely to be in
the interest of any malicious sanitizer, becuase it effectively downgrades his modification rights. In this
respect, rights-forge attacks mounted by a malicious sanitizer are already covered to a certain extent by
notion of immutability. However, we acknowledge that the possibility of restricting modification rights
could potentially be at odds with accountability requirements, which is something that deserves further
investigation. The formal definition of immutability is given below.

Definition C.2 (Immutability) Let SSS := (PGen,KGenSig,KGenSan,Sign,Sanit,Verify,Proof, Judge) be
a sanitizable signature scheme and λ ∈ N be a security parameter. Consider an efficient adversary A
which:

a) Takes as input a tuple of public parameters pp corresponding to the security parameter λ and a signer
public key pkSig;

b) Has access to a signing oracle OSign and a proof oracle OProof ;
c) Returns a tuple (m∗, σ∗, pk∗San) ∈M× S ×KSan,pk.

For every such adversary A, let ExpImm
A,SSS(λ) be the experiment defined in Figure 9. We say that SSS is

immutable if, for every efficient adversary A as above, AdvImm
A,SSS(λ) = P

[
ExpImm

A,SSS(λ) = 1
]

= negl(λ),
where the probability is taken over the random coins used by A, as well as the random coins used in the
experiment.

(Strong) Privacy. A fundamental property of any sanitizable signature scheme is privacy: Once a
message has been sanitized, an outsider should not be able to derive any information about the original
content.
This property can be modelled by the following security experiment: First, a signer and a sanitizer key pair,
as well as a secret bit b ∈ {0, 1}, are generated and the public keys are given to an adversary A, who has

39

ExpImm
A,SSS(λ):

1 pp←$ PGen(1λ)
2 (pkSig, skSig)←$ KGenSig(pp)
3 B ← ∅
4 (m∗, σ∗, pk∗San)←$AO

Sign,OProof (pp, pkSig)
5 d← Verify(pp,m∗, σ∗, pkSig, pk∗San)
6 if d = > ∧ (pk∗San,m

∗) 6∈ BMOD then
7 return 1
8 return 0

OSign(m, pkSan,ADM):
1 σ←$ Sign(pp,m, skSig, pkSig, pkSan,ADM)
2 B ← B ∪ {(pkSan,m,ADM)}
3 return σ

OProof
(
m,σ, {(mi, σi)}ki=1, pkSan

)
:

1 π←$ Proof(pp,m, σ, {(mi, σi)}ki=1, skSig, pkSan)
2 return π

Here BMOD := {(pkSan,MOD(m)) ∈ KSan,pk ×M : (pkSan,m,ADM) ∈ B,MOD ∈ P(N×M) × N,
MOD(ADM) = >}.

Figure 9: Immutability

full adaptive oracle access. He is also allowed to query a left-or-right oracle OLoR, where he can input two
messages m0,m1 ∈ M (with the same description ADM) and two modifications MOD0,MOD1, with the
only restriction that m0 and m1 get sanitized to the exact same message by the respective modifications.
OLoR then signsmb (making ADM admissible), and afterwards sanitizes the result according to MODb. A’s
goal is to determine which of the two initial messages the final (sanitized) signature comes from, that is to
determine the bit b. SSS is private if no efficient adversary as above succeeds in doing so with probability
significantly greater than 1/2.
This notion can be further strengthened by granting A access to the honestly generated sanitizer secret
key. The formal definition of (strong) privacy is given below.

Definition C.3 ((Strong) Privacy) Let SSS := (PGen,KGenSig,KGenSan, Sign, Sanit,Verify,Proof, Judge)
be a sanitizable signature scheme and λ ∈ N be a security parameter. Consider an efficient adversary A
which:

a) Takes as input a tuple of public parameters pp corresponding to the security parameter λ, a signer
public key pkSig, and a sanitizer public key pkSan (as well as a sanitizer secret key skSan, in case of
strong transparency);

b) Has access to a signing oracle OSign, a sanitizing oracle OSanit, a proof oracle OProof , and a left-or-
right oracle OLoR (in case of strong privacy, the oracle OSign can be omitted);

c) Returns a bit b∗ ∈ {0, 1}.
For every such adversary A, let ExpTA,SSS(λ) with T = Priv (resp. T = SPriv) be the experiment defined in
the upper-left corner (resp. on the left) of Figure 10. We say that SSS is private (resp. strongly private) if,
for every efficient adversary A as above, AdvTA,SSS(λ) = P

[
ExpTA,SSS(λ) = 1

]
− 1/2 = negl(λ), where the

probability is taken over the random coins used by A, as well as the random coins used in the experiment.

Transparency. A somewhat less common security property of sanitizable signature schemes is trans-
parency, which is a strong privacy notion. In a nutshell, a sanitizable signature scheme is transparent if
an outsider not holding any private keys is unable to decide whether a given signature has been generated
by the signer or the sanitizer (as long as no proof to determine the accountable party for that message-
signature pair has been published). In other words, the party accountable for any given signature remains
hidden.

40

ExpPriv
A,SSS(λ):

1 pp←$ PGen(1λ)
2 (pkSig, skSig)←$ KGenSig(pp)
3 (pkSan, skSan)←$ KGenSan(pp)
4 b←${0, 1}
5 b∗←$AO

Sign,OSanit,OProof ,OLoR(pp, pkSig, pkSan)
6 if b = b∗ then
7 return 1
8 return 0

OSign(m, pk′San,ADM
)
:

1 σ←$ Sign(pp,m, skSig, pkSig, pk′San,ADM)
2 return σ

OSanit
(
m,σ, pk′Sig,MOD

)
:

1 σ′←$ Sanit(pp,m, σ, skSan, pk′Sig, pkSan,MOD)
2 return σ′

ExpSPriv
A,SSS(λ):

1 pp←$ PGen(1λ)
2 (pkSig, skSig)←$ KGenSig(pp)
3 (pkSan, skSan)←$ KGenSan(pp)
4 b←${0, 1}
5 b∗←$AO

Sign,OProof ,OLoR(pp, pkSig, pkSan, skSan)
6 if b = b∗ then
7 return 1
8 return 0

OLoR(m0,MOD0,m1,MOD1,ADM):
1 if ADM(m0) = ⊥ ∨ ADM(m1) = ⊥ ∨

MOD0(m0) 6= MOD1(m1) then
2 return ⊥
3 σ←$ Sign(pp,mb, skSig, pkSig, pkSan,ADM)
4 σ′←$ Sanit(pp,mb, σ, skSan, pkSig, pkSan,MODb)
5 return σ′

OProof
(
m,σ, {(mi, σi)}ki=1, pk′San

)
:

1 π←$ Proof(pp,m, σ, {(mi, σi)}ki=1, skSig, pk′San)
2 return π

Figure 10: Privacy (upper-left) and strong privacy (left)

Also this property can be formalized via a security experiment: First, a signer and a sanitizer key pair, as
well as a secret bit b ∈ {Sig,San}, are generated and the public keys are given to an adversary A, who has
full (but proof-restricted) adaptive oracle access. He is also allowed to query a left-or-right oracle OLoR,
where he can input a message m ∈ M and matching sanitizing rights ADM and modifications MOD.
Depending on b, OLoR then either signs m (making ADM admissible) and sanitizes the result according to
MOD, or first modifies m as specified by MOD and then signs the result. A’s goal is to decide whether he
sees a freshly computed signature or a sanitized one, that is to determine the bit b. From here we imme-
diately see why the adversary must be barred from querying the proof oracle on message-signature pairs
obtained from OLoR: This would constitute a trivial attack. SSS is transparent if no efficient adversary
as above succeeds in winning the experiment with probability significantly greater than 1/2. The formal
definition of transparency is given below.

Definition C.4 (Transparency) Let SSS := (PGen,KGenSig,KGenSan,Sign,Sanit,Verify,Proof, Judge) be
a sanitizable signature scheme and λ ∈ N be a security parameter. Consider an efficient adversary A which:

a) Takes as input a tuple of public parameters pp corresponding to the security parameter λ, a signer
public key pkSig, and a sanitizer public key pkSan;

b) Has access to a signing oracle OSign, a sanitizing oracle OSanit, a restricted proof oracle OProof , and
a left-or-right oracle OLoR;

c) Returns a bit b∗ ∈ {Sig,San}.

41

For every such adversary A, let ExpTransp
A,SSS (λ) be the experiment defined in Figure 11. We say that SSS

is transparent if, for every efficient adversary A as above, AdvTransp
A,SSS (λ) = P

[
ExpTransp

A,SSS (λ) = 1
]
− 1/2 =

negl(λ), where the probability is taken over the random coins used by A, as well as the random coins used
in the experiment.

ExpTransp
A,SSS (λ):

1 pp←$ PGen(1λ)
2 (pkSig, skSig)←$ KGenSig(pp)
3 (pkSan, skSan)←$ KGenSan(pp)
4 b←${Sig,San}
5 B ← ∅
6 b∗←$AO

Sign,OSanit,OProof ,OLoR(pp, pkSig, pkSan)
7 if b = b∗ then
8 return 1
9 return 0

OSign(m, pk′San,ADM
)
:

1 σ←$ Sign(pp,m, skSig, pkSig, pk′San,ADM)
2 return σ

OSanit
(
m,σ, pk′Sig,MOD

)
:

1 σ′←$ Sanit(pp,m, σ, skSan, pk′Sig, pkSan,MOD)
2 return σ′

OProof
(
m,σ, {(mi, σi)}ki=1, pk′San

)
:

1 if pk′San = pkSan ∧ (m,σ) ∈ B then
2 return ⊥
3 π←$ Proof(pp,m, σ, {(mi, σi)}ki=1, skSig, pk′San)
4 return π

OLoR(m,ADM,MOD):
1 if ADM(m) = ⊥ ∨ MOD(ADM) = ⊥ then
2 return ⊥
3 m′ ← MOD(m)
4 σ←$ Sign(pp,m, skSig, pkSig, pkSan,ADM)
5 σ′←$ Sanit(pp,m, σ, skSan, pkSig, pkSan,MOD)
6 if b = Sig then
7 σ′←$ Sign(pp,m′, skSig, pkSig, pkSan,ADM)
8 B ← B ∪ {(m′, σ′)}
9 return σ′

Figure 11: Transparency

(Strong) Signer-Accountability. The main motivation behind sanitizable signature schemes is to
allow a semi-trusted party, the sanitizer, to alter signed data and then to update the signature. Under
these circumstances, it is very important to always be able to determine who is reponsible for a given
message-signature pair—the signer or the sanitizer. Signer-accountability requires that a malicious signer
cannot deny that a given message-signature pair originated from himself, if it was indeed him who put the
signature.
In the security experiment defining signer-accountability, a sanitizer key pair is first generated and the
public key is given to the adversary A, who has full adaptive access to the sanitizing oracle. A’s goal is
to impersonate a legitimate signer (here identified by the public key pk∗Sig), and to come up with a valid
message-signature pair (m∗, σ∗) and a proof π∗ which tricks Judge into blaming the sanitizer for (m∗, σ∗),
even though the signer is actually responsible for it. SSS is signer-accountable if any adversary as above
succeeds in doing so only with negligible probability.
Signer-accountability can be further strengthened to also account for the signatures, in very much the
same way as strong unforgeability arises from (regular) unforgeability. The formal definition of (strong)
signer-accountability is given below.

42

Definition C.5 ((Strong) Signer-Accountability) Let SSS := (PGen,KGenSig,KGenSan, Sign, Sanit,Verify,
Proof, Judge) be a sanitizable signature scheme and λ ∈ N be a security parameter. Consider an efficient
adversary A which:

a) Takes as input a tuple of public parameters pp corresponding to the security parameter λ and a
sanitizer public key pkSan;

b) Has access to a sanitizing oracle OSanit (resp. ÕSanit);
c) Returns a tuple

(
m∗, σ∗, π∗, pk∗Sig

)
∈M× S × {0, 1}∗ ×KSig,pk.

For every such adversary A, let ExpTA,SSS(λ) with T = SigAcc (resp. T = SSigAcc) be the experiment
defined in the upper-left corner (resp. in the lower-left corner) of Figure 12. We say that SSS is signer-
accountable (resp. strongly signer-accountable) if, for every efficient adversary A as above, AdvTA,SSS(λ) =
P
[

ExpTA,SSS(λ) = 1
]

= negl(λ), where the probability is taken over the random coins used by A, as well as
the random coins used in the experiment.

ExpSigAcc
A,SSS(λ):

1 pp←$ PGen(1λ)
2 (pkSan, skSan)←$ KGenSan(pp)
3 B ← ∅
4

(
m∗, σ∗, π∗, pk∗Sig

)
←$AO

Sanit(pp, pkSan)
5 d← Verify(pp,m∗, σ∗, pk∗Sig, pkSan)
6 d′ ← Judge(pp,m∗, σ∗, pk∗Sig, pkSan, π

∗)
7 if d = > ∧ d′ = San ∧ (pk∗Sig,m

∗) 6∈ B then
8 return 1
9 return 0

OSanit
(
m,σ, pk′Sig,MOD

)
:

1 m′ ← MOD(m)
2 σ′←$ Sanit(pp,m, σ, skSan, pk′Sig, pkSan,MOD)
3 B ← B ∪ {(pk′Sig,m

′)}
4 return σ′

ExpSSigAcc
A,SSS (λ):

1 pp←$ PGen(1λ)
2 (pkSan, skSan)←$ KGenSan(pp)
3 B ← ∅
4

(
m∗, σ∗, π∗, pk∗Sig

)
←$AÕ

Sanit(pp, pkSan)
5 d← Verify(pp,m∗, σ∗, pk∗Sig, pkSan)
6 d′ ← Judge(pp,m∗, σ∗, pk∗Sig, pkSan, π

∗)
7 if d = > ∧ d′ = San ∧ (pk∗Sig,m

∗, σ∗) 6∈ B then
8 return 1
9 return 0

ÕSanit
(
m,σ, pk′Sig,MOD

)
:

1 m′ ← MOD(m)
2 σ′←$ Sanit(pp,m, σ, skSan, pk′Sig, pkSan,MOD)
3 B ← B ∪ {(pk′Sig,m

′, σ′)}
4 return σ′

Figure 12: Signer-accountability (left) and strong signer-accountability (right)

(Strong) Sanitizer-Accountability. The counterpart of signer-accountability, with all the roles re-
versed, is called sanitizer-accountability. In the corresponding security experiment, a signer key pair is
first generated and the public key is given to the adversary A, who has full adaptive oracle access. A’s
goal is to impersonate a legitimate sanitizer (here identified by the public key pk∗San), and to come up
with a valid message-signature pair (m∗, σ∗) such that, when the signer generates a proof π, Judge will
blame the signer for (m∗, σ∗), even though the sanitizer is actually responsible for the signature. Of course
one should exclude the trival attack where the adversary simply returns a message-signature pair he got
from the signing oracle. SSS is sanitizer-accountable if any adversary as above succeeds in winning the
experiment only with negligible probability.
Again, sanitizer-accountability can be further strengthened to also account for the signatures. The formal
definition of (strong) sanitizer-accountability is given below.

43

Definition C.6 ((Strong) Sanitizer-Accountability) Let SSS := (PGen,KGenSig,KGenSan,Sign,Sanit,
Verify,Proof, Judge) be a sanitizable signature scheme and λ ∈ N be a security parameter. Consider an
efficient adversary A which:

a) Takes as input a tuple of public parameters pp corresponding to the security parameter λ and a signer
public key pkSig;

b) Has access to a signing oracle OSign and a proof oracle OProof ;
c) Returns a tuple (m∗, σ∗, pk∗San) ∈M× S ×KSan,pk.

For every such adversary A, let ExpTA,SSS(λ) with T = SanAcc (resp. T = SSanAcc) be the experiment
defined on the left-hand side (resp. right-hand side) of Figure 13. We say that SSS is sanitizer-accountable
(resp. strongly sanitizer-accountable) if, for every efficient adversary A as above, AdvTA,SSS(λ) =
P
[

ExpTA,SSS(λ) = 1
]

= negl(λ), where the probability is taken over the random coins used by A, as well as
the random coins used in the experiment.

ExpSanAcc
A,SSS (λ):

1 pp←$ PGen(1λ)
2 (pkSig, skSig)←$ KGenSig(pp)
3 L← ∅, B ← ∅
4 (m∗, σ∗, pk∗San)←$AO

Sign,OProof (pp, pkSig)
5 π←$ Proof(pp,m∗, σ∗, L, skSig, pk∗San)
6 d← Verify(pp,m∗, σ∗, pkSig, pk∗San)
7 d′ ← Judge(pp,m∗, σ∗, pkSig, pk∗San, π)
8 if d = > ∧ d′ = Sig ∧ (pk∗San,m

∗) 6∈ B then
9 return 1

10 return 0

ExpSSanAcc
A,SSS (λ):

1 pp←$ PGen(1λ)
2 (pkSig, skSig)←$ KGenSig(pp)
3 L← ∅, B ← ∅
4 (m∗, σ∗, pk∗San)←$AÕ

Sign,OProof (pp, pkSig)
5 π←$ Proof(pp,m∗, σ∗, L, skSig, pk∗San)
6 d← Verify(pp,m∗, σ∗, pkSig, pk∗San)
7 d′ ← Judge(pp,m∗, σ∗, pkSig, pk∗San, π)
8 if d = > ∧ d′ = Sig ∧ (pk∗San,m

∗, σ∗) 6∈ B then
9 return 1

10 return 0

OSign(m, pk′San,ADM
)
:

1 σ←$ Sign(pp,m, skSig, pkSig, pk′San,ADM)
2 L← L ∪ {(m,σ)}
3 B ← B ∪ {(pk′San,m)}
4 return σ

ÕSign(m, pk′San,ADM
)
:

1 σ←$ Sign(pp,m, skSig, pkSig, pk′San,ADM)
2 L← L ∪ {(m,σ)}
3 B ← B ∪ {(pk′San,m, σ)}
4 return σ

OProof
(
m,σ, {(mi, σi)}ki=1, pk′San

)
:

1 π←$ Proof(pp,m, σ, {(mi, σi)}ki=1, skSig, pk′San)
2 return π

Figure 13: Sanitizer-accountability (left) and strong sanitizer-accountability (right)

Non-Interactive Public Accountability. In the original model of sanitizable signatures (see Brzuska
et al. [BFF+09]), the party responsible for a given message-signature pair can in general be identified only
with the aid of a proof π ∈ {0, 1}∗, which can be generated if the signer secret key skSig is known. In
many cases, this contradics legal and application requirements (see e.g. Brzuska et al. [BPS12, BPS13]
for further discussions). Non-interactive public accountability addresses these shortcomings: It requires
that the party responsible for a given message-signature pair can be determined without any additional
information from either the signer or the sanitizer.

44

In the security experiment defining non-interactive public accountability, first a signer and a sanitizer key
pair are generated and the public keys are given to the adversary A, who has full adaptive access to a
signing and a sanitizing oracle. A’s goal is to impersonate either a legitiate signer or a legitimate sanitizer
(here identified by the public key pk∗), and to come up with a valid message-signature pair (m∗, σ∗) such
that Judge, without any external help (here modelled by the trivial proof π = ⊥), attributes it to the
wrong party. SSS is non-interactive publicly accountable if any adversary as above succeeds in doing so
only with negligible probability. The formal definition of non-interactive public accountability is given
below.

Definition C.7 (Non-Interactive Public Accountability) Let SSS := (PGen,KGenSig,KGenSan, Sign,
Sanit,Verify,Proof, Judge) be a sanitizable signature scheme and λ ∈ N be a security parameter. Consider
an efficient adversary A which:

a) Takes as input a tuple of public parameters pp corresponding to the security parameter λ, a signer
public key pkSig, and a sanitizer public key pkSan;

b) Has access to a signing oracle OSign and a sanitizing oracle OSanit;
c) Returns a tuple (m∗, σ∗, pk∗) ∈M× S × (KSig,pk ∪ KSan,pk).

For every such adversary A, let ExpNIPA
A,SSS(λ) be the experiment defined in Figure 14. We say that

SSS is non-interactive publicly accountable if, for every efficient adversary A as above, AdvNIPA
A,SSS(λ) =

P
[

ExpNIPA
A,SSS(λ) = 1

]
= negl(λ), where the probability is taken over the random coins used by A, as well as

the random coins used in the experiment.

ExpNIPA
A,SSS(λ):

1 pp←$ PGen(1λ)
2 (pkSig, skSig)←$ KGenSig(pp)
3 (pkSan, skSan)←$ KGenSan(pp)
4 BSign ← ∅, BSanit ← ∅
5 (m∗, σ∗, pk∗)←$AO

Sign,OSanit(pp, pkSig, pkSan)
6 d← Verify(pp,m∗, σ∗, pkSig, pk∗)
7 d′ ← Judge(pp,m∗, σ∗, pkSig, pk∗,⊥)
8 if d = > ∧ d′ = Sig ∧ (m∗, σ∗, pk∗) 6∈ BSign then
9 return 1

10 d← Verify(pp,m∗, σ∗, pk∗, pkSan)
11 d′ ← Judge(pp,m∗, σ∗, pk∗, pkSan,⊥)
12 if d = > ∧ d′ = San ∧ (m∗, σ∗, pk∗) 6∈ BSanit then
13 return 1
14 return 0

OSign(m, pk′San,ADM
)
:

1 σ←$ Sign(pp,m, skSig, pkSig, pk′San,ADM)
2 BSign ← BSign ∪ {(m,σ, pk′San)}
3 return σ

OSanit
(
m,σ, pk′Sig,MOD

)
:

1 m′ ← MOD(m)
2 σ′←$ Sanit(pp,m, σ, skSan, pk′Sig, pkSan,MOD)
3 BSanit ← BSanit ∪ {(m′, σ′, pk′Sig)}
4 return σ′

Figure 14: Non-interactive public accountability

45

	Introduction
	Invisible Sanitizable Signatures
	Our Contributions
	Related Work
	Organization

	Notational Preliminaries
	Definition of Sanitizable Signatures
	Notation
	Definition of Sanitizable Signature Schemes
	Correctness and Security Properties of Sanitizable Signature Schemes
	(Strong) Invisibility

	Invisible Sanitizable Signatures Imply Public-Key Encryption Schemes
	Construction
	IND-CPA-Security
	IND-CCA2-Security

	Public-Key Encryption Implies Invisible Sanitizable Signatures
	Construction
	Security
	Achieving Strong Invisibility

	Conclusions
	Standard Cryptographic Building Blocks
	Public-Key Encryption Schemes
	Digital Signature Schemes

	Correctness of Sanitizable Signature Schemes
	Security Definitions for Sanitizable Signature Schemes

