
Delegatable Attribute-based Anonymous Credentials from

Dynamically Malleable Signatures

Johannes Blömer and Jan Bobolz
Paderborn University

{bloemer, jan.bobolz}@uni-paderborn.de

Abstract

In this paper, we introduce the notion of delegatable attribute-based anonymous cre-
dentials (DAAC). Such systems offer fine-grained anonymous access control and they give
the credential holder the ability to issue more restricted credentials to other users. In our
model, credentials are parameterized with attributes that (1) express what the credential
holder himself has been certified and (2) define which attributes he may issue to others.
Furthermore, we present a practical construction of DAAC. For this construction, we de-
viate from the usual approach of embedding a certificate chain in the credential. Instead,
we introduce a novel approach for which we identify a new primitive we call dynamically
malleable signatures (DMS) as the main ingredient. This primitive may be of independent
interest. We also give a first instantiation of DMS with efficient protocols.

Keywords: delegatable credentials, anonymous credentials, attribute-based credentials, au-
thentication, malleable signatures

1 Introduction

In this paper, we construct delegatable attribute-based anonymous credentials (DAAC) that
offer fine-grained anonymous access control for many typical scenarios. For example, consider
a company with the usual hierarchical organization structure. We want the company owner to
be able to grant appropriate access rights to department managers. For this, he issues each of
them a credential with certain attributes encoding what rights the department manager has.
The department managers, in turn, should be able to grant appropriate subsets of their rights
to their staff by delegating a (weaker) version of their credential to them. Then a staff member
may want to grant access rights to her interns, etc.

This scenario could be trivially realized using certificate chains (similar to the ones used in
TLS): the company owner signs the public key of a department manager alongside some string
that encodes which attributes the manager has and which ones he may delegate to his staff.
Then the department manager can extend the chain by signing a staff member’s public key, and
so on.

However, our goal is to enable anonymity for authentication: An authorized user requesting
access to a resource should be indistinguishable from all other users who have access to it. Still,

This work was partially supported by the German Research Foundation (DFG) within the Collaborative
Research Center “On-The-Fly Computing” (SFB 901).

1

the verifier, who is executing the authentication checks, should be assured that only authorized
users can pass them. Overall, we have the following requirements:

R1 The verifier must not learn the sequence of delegations a user’s credential went through.

R2 The verifier must only learn as much as necessary about the attributes of the authenticating
user or of any users involved in the delegation.

R3 A user must not be able to grant other users more rights/attributes than he is allowed to.

R4 A user should not be able to pass the authentication checks without being given an appro-
priate credential.

R5 Users shall remain anonymous while delegating and receiving a credential.

Most previous constructions of delegatable credentials [BCC+09,AN11,Fuc10] fulfill R1, R3,
R4, and R5. However, in those constructions the attributes of all users in the chain are presented
in plain to the verifier. This violates R2.

A more recent scheme [CDD17] supports R1, R3, R4, and R2. However, in their construction,
credential holders see all attributes of the users in the delegation chain. This violates R5.

In this paper, we introduce the first construction of practical delegatable attribute-based
anonymous credentials that supports all five requirements.

Our model of delegatable attribute-based anonymous credentials. In DAAC, users
have a single secret key and can derive an arbitrary number of unlinkable public keys (usually
called pseudonyms). Users can issue credentials to other users (also anonymously, if desired). A
credential is parameterized with a delegation flag d ∈ {0, 1}, which determines whether or not
the credential is delegatable, and an attribute vector (A1, . . . , An) ∈ (A ∪ {?})n for some set A
(e.g., A = Zp). Each Ai in the attribute vector either takes on a concrete value from A, or the
special value ?, which can be interpreted as a placeholder that can be replaced with an arbitrary
A-value.

We define the covers relation on attribute vectors that will determine what attributes the
user can delegate and show. A vector (A1, . . . , An) covers another vector (A′1, . . . , A

′
n) (we write

~A � ~A′) if and only if (Ai 6= ?) ⇒ (A′i = Ai) for all i. This means that the placeholder ? can
be replaced with any concrete A value (or ? again), whereas concrete values from A cannot be
changed.

Given a credential with delegation flag d = 1 and attribute-vector ~A, a user is able to issue
a credential with any delegation flag d∗ ∈ {0, 1} and any attributes ~A∗ as long as ~A � ~A∗. A
credential with delegation flag d = 0 cannot be delegated any further. When showing a credential
for an access policy φ (e.g., a Boolean formula over statements like “A2 = 13”), the user proves

that his attributes cover some concrete ~A′ ∈ An for which φ(~A′) = 1. Note that it is natural
that whatever users can delegate, they can also show.

In the simplest case, each attribute Ai may just encode a Boolean access right and users
can delegate subsets of their access rights. In the concrete instantiation based on Construc-
tion 5.1 in our paper, you can encode arbitrary elements of A = Zp (e.g., short strings)
into credentials, hence our scheme can realize more elaborate authentication scenarios. As a
small example for this, the state of California may issue San Francisco a delegatable creden-
tial like ~A = (?, ?, San Francisco). This allows the city to delegate credentials with attributes
~A∗ = (John, Doe, San Francisco) to its citizens, but prohibits issuing credentials encoding other
cities.

2

When authenticating with a credential, the only information revealed to the verifier is the root
of the delegation chain (e.g., the company owner or the state), a pseudonym of the authenticating
user, and the fact that the credential’s attributes fulfill some predicate.

Idea of our construction. We deviate from the usual way of constructing delegatable cre-
dentials and instead follow a novel approach. We identify a new primitive we call dynamically
malleable signatures (DMS) as the main ingredient. DMS are similar to usual malleable signa-
tures, but the set of allowed transformations is specific to each signature and can be incrementally
restricted over time (“dynamic” refers to the fact that the set of allowed transformations is not
static but can be changed “at runtime” for each signature). More specifically, the Sign algorithm
takes some vector of messages (m1, . . . ,mn) and an index set I ⊆ {1, . . . , n} as input and pro-
duces a signature σ and a malleability key mk . The index set I determines which of the positions
in the vector are malleable, i.e. given σ and mk , anyone can derive a signature σ′ on any message
(m′1, . . . ,m

′
n) as long as m′i = mi for all i /∈ I. This process also yields a malleability key mk ′ for

σ′, which can be restricted to allow further modification of σ′ only on some (smaller) index set
I ′ ⊆ I. In Section 5, we give an efficient construction of DMS with supporting protocols. Our
construction is based on the Pointcheval-Sanders signature scheme [PS16] and it can be proven
secure in the generic group model.

Using any secure DMS scheme with an efficient protocol to derive a signature on a committed
value, we generically implement a DAAC as follows: With some details omitted, a credential for
a user with secret usk and attributes ~A = (15, 7, ?, ?) is a dynamically malleable signature on

usk and ~A. For each ? in ~A, we instead sign 0. More formally, in this example we would sign
(m1, . . . ,m5) := (usk , 15, 7, 0, 0) and allow the receiver to use malleability on the first index
(to change usk when delegating) and the last two indices (to model the ?), i.e. I = {1, 4, 5}.
Unforgeability of the signature scheme then guarantees that this user cannot produce a credential
whose first two attributes are not 15 and 7 (cf. requirement R3). If he wants to delegate attributes
~A′ = (15, 7, 13, ?) to another user with secret key usk ′, the two parties engage in a protocol to
derive a signature on (usk ′, 15, 7, 13, 0) such that only the first and the last message can be
changed further, i.e. I ′ = {1, 5} ⊂ I. Note that the issuer’s usk or his exact attributes are not
part of the derived credential, immediately implying R1. Our delegation protocol will also ensure
R5. To mark the credential non-delegatable (d = 0), the delegator can remove the first index
from the index set, which precludes the receiver from changing the signature to any other secret
key usk ′′ 6= usk ′. Showing the credential to a verifier follows standard procedure [Lys02], i.e. the
user runs a zero-knowledge protocol to prove knowledge of a signature on his user secret and on
attributes fulfilling some policy (and that his user secret is consistent with his pseudonym). The
zero-knowledge property ensures requirement R2 while the proof of knowledge property and the
unforgeability of the signature scheme ensures R4.

Related work on delegatable credentials. Chase and Lysyanskaya introduced the first
anonymous delegatable credential system [CL06], which extended the idea of anonymous creden-
tials [Cha85] to enable delegation. Later, Belenkiy et al. published an elegant construction of
delegatable credentials [BCC+09] and introduced formal security requirements. In their paper,
delegatable credentials are defined through levels. Any user can publish a pseudonym pk root and
issue a level L = 1 credential to another user. Then, a level L credential can be used to derive
a level L+ 1 credential for another user. When showing a credential, the verifier learns the root
pseudonym pk root of the credential, the prover’s pseudonym pkL, and the credential’s level L.

The construction of [BCC+09] allows users to attach public attributes to a credential when
delegating, meaning that a level L credential is parameterized with L attribute descriptions

3

(A1, . . . , AL) ∈ ({0, 1}∗)L, where the issuer of the level ` ≤ L credential chooses A`. How-
ever, they do not describe a way to hide the attributes of any user in the delegation chain,
which weakens anonymity considerably (cf. our requirement R2). Furthermore, there are no
restrictions on the attribute strings a delegator can add when delegating a credential (cf. re-
quirement R3). Hence the burden of verifying plausibility of delegated attributes lies with the
verifier. For example, after seeing a credential with attributes (”manager of IT department”,
”programmer in IT department”), the verifier needs to do a “sanity check” whether or not a
manager may actually issue a credential to a programmer. In contrast, the verifier in our DAAC
does not need to do this check (in fact, he cannot do it as he does not get to see the attributes).
Instead, the controlled malleability property of the underlying signature scheme guarantees that
a credential’s attributes can be legitimately derived throughout the delegation steps. This shifts
the responsibility of defining what delegations are allowed from the verifier to the issuers.

If we instantiate our generic construction of DAAC with our concrete DMS scheme (Section 5),
a credential with n attributes consists of at most n+3 group elements. In particular, the credential
size is independent of the delegation chain length. Using standard variants of Schnorr’s protocol,
showing the credential can be done very efficiently compared to [BCC+09], whose credentials
are Groth-Sahai proofs with size linear in the chain length. As a trade-off, we reach this level of
efficiency mainly by (1) not encoding the delegation chain into credentials (which also precludes
the feature of tracing the sequence of credential owners using a trapdoor), and (2) leveraging a
new ad-hoc algebraic assumption for the construction of our concrete DMS scheme (there are
delegatable credentials that are secure under standard assumptions, e.g., DLIN [CKLM14]).

Most other constructions [AN11, CKLM14, Fuc10] also follow roughly the same techniques
as [BCC+09], i.e. using malleable proof systems (like Groth-Sahai) as a building block, improving
upon and generalizing the original idea. However, there do not seem to be any constructions
that improve upon their handling of (public) attributes.

More recently, Camenisch et al. published a delegatable credential system [CDD17]. Their
construction is very efficient and practical. They achieve this by allowing credential holders to see
all attributes on all levels in plain, i.e. not offering anonymity for delegators. In many contexts,
this is not a problem. However, consider the example of a distributed car sharing scenario where
the car owner is issued a credential for his car. In a car-sharing fashion, he can delegate his
access rights to any other person. In this scenario, the car owner has no reason to reveal his
identity. Our construction shows that one does not have to sacrifice support for such scenarios
to achieve practicality: Namely, our scheme’s efficiency is comparable to [CDD17] while offering
anonymity for delegators (R5).

Related work on malleable signatures. Malleable signature schemes allow anyone to trans-
form a signature on a message m to be valid for a different message m′ for a well-defined set T
of allowed transformations on m (e.g., [CKLM14]).

In contrast, our notion of DMS allows signers to choose transformation sets Tσ on a per-
signature basis, which can be further restricted to some subset Tσ′ when transforming σ to σ′.

The general idea for DMS is similar to homomorphic signatures like [BFKW09, ABC+15,
Fre12, AL11]. In these constructions (mostly designed for network coding), a signer effectively
signs a vector space by signing its base vectors with a homomorphic signature scheme. This allows
computing signatures on any vector in the vector space. Like DMS, homomorphic signature
schemes allow to derive signatures on related messages. However, the main feature of DMS is
that one can derive signatures that are more restricted than the original. Furthermore, one
cannot combine two restricted signatures to produce a signature on a message not covered by
either of them.

4

Structure of this paper. We introduce notation and basic definitions in Section 2. In Sec-
tion 3, we introduce the formal definition for delegatable attribute-based anonymous credentials
and explain how to utilize them in practice. Then, in Section 4, we define DMS and supporting
protocols. In Section 5 we give a concrete construction of DMS with an efficient protocol. We
instantiate delegatable attribute-based anonymous credentials in Section 6 by giving a generic
construction from DMS with efficient protocols. Finally, we conclude the paper in Section 7 with
some notes on future work.

2 Basics and notation

For a random variable X, [X] := {x | Pr[X = x] > 0} is the support of X. With X ← S, we de-
note that X is chosen uniformly at random from the set S. If X and Y are identically distributed
random variables, we write X ≈ Y . With X ← A(y) we denote that X is generated by running
the probabilistic algorithm A on input y. The notation Pr[X1 ← S,X2 ← A(y,X1);φ(X1, X2)]
denotes the probability that the predicate φ(X1, X2) holds in the probability space described by
X1, X2. For a prime number p, Zp is the field of order p and Z∗p = Zp \ {0}.

Definition 2.1. Let A,B be probabilistic interactive algorithms that halt on every input. We
write yA ← A(xA)↔ B(xB)→ yB to denote that A on input xA interacts with B on input xB ;
then A outputs yA and B outputs yB . Furthermore, we define outputA[A(xA) ↔ B(xB)] to be
the random variable taking on yA, i.e. the output of A after interacting with B. �

Definition 2.2 (Protocols and signatures of knowledge). The expression ZKAK [(w); (x,w) ∈
Ψ] denotes a zero-knowledge argument of knowledge for the relation Ψ. NIZK [(w); (x,w) ∈
Ψ](m) denotes a signature of knowledge on message m for the relation Ψ. �

Zero-knowledge arguments of knowledge can be implemented, for example, using Damg̊ard’s
technique [Dam00] on Schnorr-like Σ protocols. Signatures of knowledge can be implemented,
for example, using the Fiat-Shamir heuristic.

3 Delegatable attribute-based anonymous credentials

In this section, we define DAAC. Each credential is parameterized with a vector ~A = (A1, . . . , An)
∈ (A ∪ {?})n, a delegation flag d, and the root authority’s pseudonym pk root.

To define what a user may do with his credential, we need the relation “covers”. An attribute
vector ~A = (A1, . . . , An) ∈ (A ∪ {?})n covers another attribute vector ~A′ = (A′1, . . . , A

′
n) ∈

(A∪{?})n if (Ai 6= ?)⇒ (A′i = Ai) for all 1 ≤ i ≤ n. In this case we write ~A � ~A′. Furthermore,

we say that an attribute vector ~A ∈ (A ∪ {?})n covers a predicate φ : An → {0, 1} if it covers

some vector without ? fulfilling φ, i.e. ∃ ~A′ ∈ An : ~A � ~A′ ∧ φ(~A′) = 1. We write ~A � φ.

Let cred be a credential with attributes ~A, delegation flag d, and root authority’s pseudonym
pk root (we say that cred is rooted at pk root). With cred , the user can do the following: (1) Prove
possession of a pk root-rooted credential that covers some predicate φ, and (2) if d = 1, he can

issue a derived credential still rooted at pk root with attributes ~A′ ∈ (A ∪ {?})n iff ~A � ~A′.

3.1 Formal definition

Definition 3.1. A DAAC system consists of the following ppt algorithms:

Setup(1λ)→ (pp, osk) generates public parameters pp and an opening key osk . We assume an
attribute universe A be to be encoded in pp.

5

KeyGen(pp)→ (usk , id) generates a user secret usk and an identity id .

FormNym(pp, usk , 1n)→ (pk , sk) generates a pseudonym pk and a pseudonym secret sk such
that credentials rooted at pk support n attributes.

Open(pp, osk , pk) = id is a deterministic algorithm that extracts an identity id from the pseudo-
nym pk .

CreateCred(pp, pk , sk)→ cred creates a root credential, i.e. a delegatable credential with at-
tributes (?, . . . , ?) and delegation flag d = 1, rooted at pk .

DelegIssue(pp, pk root, usk , cred , ~A∗, d∗, pk∗)

↔ DelegRcv(pp, pk root, ~A
∗, d∗, pk∗, sk∗, usk∗)→ cred∗ is an interactive protocol with com-

mon input the root’s pseudonym pk root, the receiver’s pseudonym pk∗, the attributes to be

issued ~A∗, and the delegation flag d∗ ∈ {0, 1}. Additionally, the issuer gets his user secret
usk as private input, as well as his credential cred . Finally, the receiver gets his pseudonym
secret sk∗ and user secret usk∗ as private input. After the protocol, the receiver side
outputs a credential cred∗ or the failure symbol ⊥.

ShowProve(pp, pk root, pk , φ, sk , usk , cred)↔ ShowVrfy(pp, pk root, pk , φ)→ b is an interactive pro-
tocol with common input the root’s pseudonym pk root, the prover’s pseudonym pk , and a
statement over attributes φ : An → {0, 1}. The prover gets his pseudonym secret sk , his
user secret usk , and his credential cred as private input. The verifier outputs a bit b.

Furthermore, we require three helper predicates that enable simpler correctness and security defi-
nitions: CheckPseud(pp, pk , sk , usk), CheckShow(pp, pk root, pk , φ, sk , usk , cred), and CheckDeleg(

pp, pk root, usk , cred , ~A∗).
For correctness, we require that

• All pseudonyms (pk , sk) generated by FormNym(pp, usk , 1n) pass the CheckPseud check.
We call (pk , sk) that pass CheckPseud valid.

• For all (usk , id) ∈ [KeyGen(pp)] and valid (pk , sk): Open(pp, osk , pk) = id .

• ShowVrfy↔ ShowProve succeeds if its input passes CheckShow and CheckPseud.

• In DelegIssue ↔ DelegRcv, if the protocols’ inputs pass CheckDeleg for the issuer’s cre-
dential and CheckPseud for the receiver’s pseudonym, then DelegRcv does not output the
error symbol ⊥.

• Any output of DelegRcv(pp, pk root, ~A
∗, d∗, pk∗, sk∗, usk∗) is either ⊥ or a credential cred∗

that passes CheckShow(pp, pk root, pk ′, φ, sk ′, usk∗, cred∗) for all ~A∗ � φ. If d∗ = 1, it also

passes CheckDeleg(pp, pk root, usk∗, cred∗, ~A′) for all ~A∗ � ~A′.

• Root credentials cred ∈ [CreateCred(pp, pk root, sk root)] are universal, i.e. if (pk , sk) are
valid, then CheckShow(pp, pk root, pk , φ, sk , usk , cred) = 1 for all satisfiable φ. Furthermore,

CheckDeleg(pp, pk root, usk , cred , ~A∗) = 1 for all ~A∗ ∈ (A ∪ {?})n. �

A more formal version of correctness can be found in Appendix D.
The system is set up using Setup, and the special opener secret osk is given to a trusted

authority. Any user can join the system by simply calling KeyGen to generate their own user
secret usk and identity id . With the user secret, one can generate any number of pseudonyms
pk using FormNym. A user can declare himself a credential-issuing authority by publishing

6

one of his pseudonyms pk root and creating a root credential with CreateCred which allows him
to delegate arbitrary credentials rooted at pk root. To delegate a credential, the delegator runs
DelegIssue while the receiver runs DelegRcv. To show a credential, a user runs ShowProve while
the verifier runs ShowVrfy. In case of abuse, the opener secret osk can be used to extract the
identity of a user from one of his pseudonyms.

Note the omission of a registration mechanism that prevents users from repeatedly generating
ephemeral identities to circumvent persecution by the opener. A registration mechanism can be
generically constructed from the credential system itself. We explain this in Section 3.2.

For security, we expect anonymity (users cannot be traced when showing, delegating, or
receiving credentials) and soundness (users cannot impersonate other users or show credentials
they have not been issued).

Definition 3.2 (Anonymity). A DAAC system Π has anonymity if there is an ppt algo-
rithm (pp, osk , td) ← Spp(1λ) whose output is such that (pp, osk) is distributed exactly like
Setup(1λ). Furthermore, there are ppt simulators SShowProve,SDelegIssue,SDelegRcv such that no
(unrestricted) A can distinguish between interacting with

• ShowProve(pp, pk root, pk , φ, sk , usk , cred) and SShowProve(td , pk root, pk , φ)

• DelegIssue(pp, pk root, usk , cred , ~A∗, d∗, pk∗) and SDelegIssue(td , pk root, ~A
∗, d∗, pk∗, uskalt, credalt)

for any uskalt, credalt that pass the CheckDeleg(pp, pk root, uskalt, credalt, ~A
∗) check.

• DelegRcv(pp, pk root, ~A
∗, d∗, pk∗, sk∗, usk∗) and SDelegRcv(td , pk root, ~A

∗, d∗, pk∗)

Furthermore, for all ppt A there is a negligible function negl s.t. for all λ ∈ N,

Pr[(pp, osk , td)← Spp(1λ), (usk0, id0), (usk1, id1)← KeyGen(pp), b← {0, 1},
b′ ← AOFormNym(·),OOpen(·)(1λ, pp, td , usk0, id0, usk1, id1); b = b′] ≤ 1/2 + negl(λ)

where OFormNym(1n) returns pseudonyms of usk b, i.e. it runs (pk , sk)← FormNym(pp, usk b, 1
n)

and returns pk . OOpen(pk) returns ⊥ if pk was previously output by OFormNym(·), otherwise
returns Open(pp, osk , pk). �

A more formally rigorous definition can be found in Appendix D. Our simulators get as
input the simulation trapdoor td and the common public input of the simulated protocol. In
addition, SDelegIssue gets any uskalt, credalt (which can be completely uncorrelated to the actual
delegator’s usk , cred) as input to help with the simulation. The experiment in the last part of
the definition models a situation where the ppt algorithm A knows all secrets except the opener’s
osk . He interacts with one of two possible honest users (who generated their usk honestly) and
may request additional pseudonyms from that unknown user. Additionally, A may use usk0, usk1

to create any situation it wants for the two users. We allow A to query FormNym and Open
oracles (with the usual constraints) to try to learn information about the unknown user from his
pseudonyms. All other actions that A may want to make the unknown user do (issue credentials,
etc.), can be perfectly simulated by A without knowledge of b. For this, we supply A with the
simulation trapdoor td .

Definition 3.3 (Soundness). In the soundness experiment Expsoundness
Π,A (λ), the challenger plays

the role of an arbitrary number of honest users. The adversary may internally set up any number
of corrupted users.

The experiment begins with handing pp, osk to the adversary A. We allow A to make honest
users run FormNym and CreateCred, and to interact with honest users running DelegIssue,

7

DelegRcv, or ShowProve. Furthermore, A can make honest users delegate credentials among
themselves.

Eventually, A outputs a challenge (pk root, pk , φ). The experiment runs the protocol ShowVrfy(
pp, pk root, pk , φ) interacting with A. The experiment outputs 1 if ShowVrfy accepts and one of
the following is true:

• The user or root issuer’s identity cannot be traced : Open(pp, osk , pk) =⊥ or Open(pp, osk ,
pk root) =⊥.

• A was able to impersonate some honest user : Open(pp, osk , pk) = id ′ for some honest
user’s identity id ′.

• A was able to show a credential he did not receive: Open(pp, osk , pk root) = id ′ for some
honest user’s id ′ and A never queried to receive a credential cred∗ on a pseudonym pk∗

such that: (1) cred∗ is rooted at pk root, (2) cred∗ has attributes ~A∗ � φ, and (3) cred∗ is
marked delegatable or Open(pp, osk , pk) = Open(pp, osk , pk∗).

A DAAC system Π is sound if for all ppt adversaries A there exists a negligible function negl
with Pr[Expsoundness

Π,A (λ) = 1] ≤ negl(λ) for all λ ∈ N. �

The full experiment can be found in Appendix D.
The adversary’s win conditions imply that a credential with delegation flag d = 0 can only be

shown with a pseudonym that opens to the same identity as the pseudonym used when receiving
the credential. Note that even if d = 0, it is always possible for a credential holder A to reveal
his credential and his user secret uskA to another user B (who can then show the credential
somewhere and gain access). However, users are discouraged from doing this because after
revealing uskA to B, B can perform (malicious) activities, which the opener will then trace back
to A. Hence A bears the risk of being made responsible for B’s actions. For more details of how
we propose applications use the security guarantees of Definition 3.3 to enforce accountability,
we refer to Section 3.2.

3.2 How to deploy delegatable attribute-based anonymous credential
systems in practice

In the following, we describe an example how an application would utilize DAAC in practice.
The system should be set up by a trusted authority (TA). The TA runs (pp, osk)← Setup(1λ),
(uskTA, idTA) ← KeyGen(pp), (pkTA, skTA) ← FormNym(pp, uskTA, 1

0). He then publishes pp
and pkTA.

In order to join the system, a user generates (usk , id) ← KeyGen(pp). He then approaches
the TA to register in the system. For this, he sends one of his pseudonyms pk to the TA and
uses some mechanism to authenticate with his real identity (e.g., physically showing a passport).
The TA computes the user’s id using Open(pp, osk , pk) and stores id alongside the user’s real
identity information. Then the TA uses the user’s pk to issue a non-delegatable (d = 0) “master”
credential credmaster.

Whenever the user introduces a new pseudonym pk ′ to some verifier, he first shows the
master credential by running ShowProve(pp, pkTA, pk ′, φ, sk ′, usk , credmaster) with the verifier.
This ensures that the user indeed registered with the TA and hence the TA will be able to
trace his pseudonyms to his real identity. If at some point the user breaks some rule within
the application, the verifier can approach the TA with pk ′, which the TA can trace to the user’s
identity by computing Open(pp, osk , pk ′). This is because the soundness property (Definition 3.3)

8

ensures that the non-delegatable credential credmaster, which was issued to pk , can be successfully
shown only for pk ′ where Open(pp, osk , pk ′) = Open(pp, osk , pk).

Of course, you may also want to ensure that users cannot be falsely accused by verifiers for
(malicious) actions they never committed. The application can enforce this by logging relevant
actions and making a user certify each log entry by issuing a credential to the verifier whose
attributes encode the log entry. This credential (rooted at the user’s pseudonym pk ′) can be
used by the verifier to prove to the TA that pk ′ indeed executed the logged action. Honest users
cannot be falsely accused anymore because the soundness property (Definition 3.3) prohibits
forging/showing a credential rooted at a pseudonym that traces to an honest user. The user’s
privacy when issuing the credential to the verifier is still guaranteed because the anonymity
property (Definition 3.2) guarantees anonymity not only for the receiver of a credential, but also
for the issuer. Note that the TA may still lie about the identity that Open(pp, osk , pk ′) outputs.
This can be prevented with standard techniques, e.g., by making the TA prove non-interactively
that the claimed identity is indeed output by Open.

4 Dynamically malleable signatures with efficient proto-
cols

For our construction of DAAC, we introduce dynamically malleable signatures (DMS) as a build-
ing block. As explained in the introduction, a DMS is a malleable signature where the set of
allowed transformations on the signed message can be incrementally restricted. We first define
DMS, then define related protocols that are used in our DAAC construction.

4.1 Definition

A DMS is accompanied by a malleability key mk and parameterized with an index set I. We
describe malleability through a relation ≡I , which depends on I. Namely, using mk , a message
~m can be changed into a message ~m′ iff ~m ≡I ~m′. We remark that our definitions (syntax
and security) for DMS apply to arbitrary equivalence relations ≡I and arbitrary index sets I
satisfying I ′ ⊆ I ⇒≡I′⊆≡I , i.e. restricting I restricts the malleability relation. However, in this
paper, we are going to use the following concrete relation ≡I .

Definition 4.1. Let I ⊆ {1, . . . , n} be an index set. We define ≡I by

(m1, . . . ,mn) ≡I (m′1, . . . ,m
′
n) ⇔ ∀i /∈ I : mi = m′i . �

This means that malleability of DMS is restricted so that exactly the messages at indices
present in I can be modified. A DMS is called dynamically malleable because given any signature
σ and malleability key mk with index set I, one can efficiently compute σ′,mk ′ with index set
I ′ ⊆ I. We now formally define DMS.

Definition 4.2 (Dynamically malleable signatures). A DMS scheme consists of the following
(probabilistic) polynomial-time algorithms:

Setup(1λ)→ pp for security parameter λ outputs public parameters pp. We assume that the
message space M can be inferred from pp and that |pp| ≥ λ.

KeyGen(pp, 1n)→ (pk , sk) for n ∈ N outputs a key pair (pk , sk).

Sign(pp, sk , ~m, I)→ (σ,mk) for a message vector ~m ∈Mn and an index set I outputs a signature
σ and a malleability key mk .

9

Transform(pp, ~m, ~m′, σ,mk , I ′)→ (σ′,mk ′) on input a signature σ on ~m outputs a signature σ′

and a malleability key mk ′ for ~m′, I ′.

Vrfy(pp, pk , ~m, σ) = b is a deterministic algorithm that outputs a bit.

VrfyMk(pp, pk , ~m, σ,mk , I) = b is a deterministic algorithm that outputs a bit.

A DMS scheme is correct if for all λ, n ∈ N, all pp ∈ [Setup(1λ)], all (pk , sk) ∈ [KeyGen(pp, 1n)],
all ~m ∈Mn and index sets I ⊆ {1, . . . , n}:

• Pr[(σ,mk) ← Sign(pp, sk , ~m, I); Vrfy(pp, pk , ~m, σ) = VrfyMk(pp, pk , ~m, σ,mk , I) = 1] = 1
(signatures and malleability keys from Sign are accepted by the verification algorithms)

• Pr[(σ′,mk ′) ← Transform(~m, ~m′, σ,mk , I ′); Vrfy(pp, pk , ~m′, σ′) = VrfyMk(pp, pk , ~m′, σ′,
mk ′, I ′) = 1] = 1 for all ~m′ ≡I ~m, I ′ ⊆ I, and all (σ,mk) with VrfyMk(pp, pk , ~m, σ,mk , I) =
1. (signatures and malleability keys derived from Transform are accepted by the verification
algorithms). �

Note that our definition implies that any signature/malleability key created with Transform
can again be input to Transform to further change the message or weaken the malleability key.
Also note that we model both Vrfy and VrfyMk as the former may be more efficient.

We now define security for DMS. We expect (1) derivation privacy: signatures derived with mk
are indistinguishable from signatures freshly created with sk and (2) unforgeability: an adversary
cannot produce a signature that cannot be legally derived from oracle-queried signatures. For
derivation privacy, we demand perfect derivation privacy for simplicity.

Definition 4.3 (Perfect derivation privacy). A DMS scheme S is perfectly derivation private
if for all λ, n ∈ N, all pp ∈ [Setup(1λ)], all pk , σ,mk , all ~m, ~m′ ∈Mn, and all index sets I, I ′ with
~m′ ≡I ~m, I ′ ⊆ I, and VrfyMk(pp, pk , ~m, σ,mk , I) = 1, it holds that

• ∃sk with (pk , sk) ∈ [KeyGen(pp, 1n)]

• for all sk such that (pk , sk) ∈ [KeyGen(pp, 1n)], we have that Transform(~m, ~m′, σ,mk , I ′) ≈
Sign(pp, sk , ~m′, I ′) �

The first item (that for each pk accepted by VrfyMk, there exists a corresponding sk) is a
somewhat technical requirement. Without this requirement, it may happen that someone receives
valid σ,mk from an untrusted source for a public key pk for which there exists no corresponding
sk . In this case the premise (pk , sk) ∈ [KeyGen(pp, 1n)] of the second item does not apply and
hence any signatures σ′ derived from σ,mk would be allowed to be easily traced back to σ.

For the second property, unforgeability, we simply weaken the standard EUF-CMA definition
for digital signatures such that signatures that can be legally derived using Transform are not
considered forgeries anymore. Note that for simplicity, we only define unforgeability for perfectly
derivation private schemes.

Definition 4.4 (Unforgeability). Consider the experiment SigForgeΠ,A(λ, n) for a DMS scheme
Π and an adversary A:

• pp ← Setup(1λ), (pk , sk) ← KeyGen(pp, 1n). A is given pp, pk and oracle access to
Sign(pp, sk , ·, ·).

• Eventually A outputs ~m∗, σ∗. The experiment outputs 1 iff Vrfy(pp, pk , ~m∗, σ∗) = 1 and
A never made a query Sign(pp, sk , ~m′, I ′) where ~m∗ ≡I′ ~m′.

10

A perfectly derivation private DMS scheme Π is unforgeable if for all polynomials p and all ppt
A there is a negligible function negl such that for all λ ∈ N and n ≤ p(λ), Pr[SigForgeΠ,A(1λ, 1n) =
1] ≤ negl(λ). �

For perfectly derivation private schemes, the output of Transform is distributed the same
as the output of Sign. Hence there is no need to give A explicit access to a Transform oracle.
Furthermore, note that the definition can be fulfilled by schemes where a signature σ can be
modified even without a corresponding malleability key mk . Consequently, the distinction be-
tween σ and mk is somewhat arbitrary – one may just as well merge mk into σ. However, note
that mk is not required as input to Vrfy; hence we keep the distinction for the sake of intuition
and potential efficiency gains.

4.2 Deriving a signature on a committed message

For our construction of DAAC, we will require a protocol for deriving a signature on a hid-
den committed message. The setting for the protocol is the following: The issuer holds a
signature σ on a message ~m = (m1, . . . ,mn) and corresponding malleability key mk for in-
dex set I. For i ∈ I and I∗ ⊆ I and a message m∗, the receiver wants to obtain the output
of Transform(pp, ~m, (m1, . . . ,mi−1,m

∗,mi+1, . . . ,mn), σ,mk , I∗) without revealing his m∗. For
this, the receiver commits to m∗, then both parties engage in a protocol to jointly compute
Transform.

Definition 4.5 (Deriving a signature on a committed value). A scheme for deriving a signature
on a committed value consists of two ppt algorithms and two interacting algorithms:

BlindInit(σ,mk , ~m, i)→ (K, k) on input a signature σ on ~m, an index i, and a corresponding
malleability key mk , outputs a key K for the commitment scheme and some secret infor-
mation k.

Commit(K,m∗, r)→ C takes as input a key K, a message m∗ and some randomness r, and
outputs a commitment C.

BlindIssue(σ,mk , ~m, i, I∗, k, C) on input a signature σ on ~m, an index set I∗, a malleability key
mk , a commitment C, an index i, and the secret k, interacts with BlindRcv.

BlindRcv(m∗, i, I∗,K,C, r)→ (σ∗,mk∗) on input a message m∗, an index i, an index set I∗, a
commitment C for key K and its randomness r, interacts with BlindIssue and outputs a
signature σ∗ and a malleability key mk∗.

The public parameters pp and the public key under which the issuer’s signature is valid are
considered implicit input to all the algorithms above.

Such a protocol is correct if for all m∗ ∈M , all σ,mk valid on ~m with index set I, all i ∈ I, and
all I∗ ⊆ I, the result (σ∗,mk∗) of BlindRcv(m∗, i, I∗,K,C, r) ↔ BlindIssue(σ,mk , ~m, i, I∗, k),
where C = Commit(K,m∗, r), is a valid signature (and malleability key) on (m1, . . . ,mi−1,m

∗,
mi+1, . . . ,mn). �

In this scenario, the issuer would use BlindInit to create a commitment key K. He then sends
K to the receiver, who uses it to commit to his message m∗. Then both parties engage in the
BlindIssue↔ BlindRcv protocol, which yields the signature and malleability key for the receiver.

In our credential system construction, we are going to make the receiver prove something
about the message m∗ that he committed to. For this reason, the commitment process is made
explicit in this definition as opposed to hiding it in the implementation details of the BlindRcv↔
BlindIssue protocol.

11

For the security of such a protocol, we require security for the receiver and for the issuer.
Security for the receiver requires that (1) the commitment scheme is perfectly hiding, and (2) runs
of BlindRcv for two distinct committed messages are perfectly indistinguishable for the issuer.
Security for the issuer requires that (1) the distribution of the commitment key K is independent
of the issuer’s concrete σ,mk and ~m, and (2) the receiver only learns a single signature. We detail
these requirements formally in Appendix A.

5 Construction of dynamically malleable signatures based
on Pointcheval-Sanders signatures

Our construction is an extension of Pointcheval-Sanders signatures [PS16].
The Setup,KeyGen,Vrfy algorithms below are exactly the same as in the original Pointcheval-

Sanders signature scheme, as are the signatures produced by Sign. We extend the Sign algorithm
to output a malleability key and we add the VrfyMk and Transform algorithms. The main
observation for our construction is that a signature (h, hx+

∑
yimi) on (m1, . . . ,mn) can be made

malleable at position i by adding hyi to the malleability key.

Construction 5.1 (DMS scheme).

Setup(1λ) generates a bilinear group G = (G1,G2,GT, e, p) of prime order p ≥ 2λ. It outputs
pp = G. The message space is M = Zp.

KeyGen(pp, 1n) chooses random generator g̃ ← G2. It then chooses random x, y1, . . . , yn ← Zp.
The secret key is sk = (x, y1, . . . , yn) and the public key is pk = (g̃, g̃x, g̃y1 , . . . , g̃yn). It
outputs (pk , sk).

Sign(pp, sk ,m1, . . . ,mn, I) chooses h ← G1 \ {1} and computes σ = (h, hx+
∑

i yimi), mk =
(hyi)i∈I . It outputs (σ,mk).

Vrfy(pp, pk , ~m, σ) parses σ as (h, σ2), pk as (g̃, g̃x, g̃y1 , . . . , g̃yn), and returns 1 iff h 6= 1 and
e(h, g̃x ·

∏n
i=1(g̃yi)mi) = e(σ2, g̃).

VrfyMk(pp, pk , ~m, σ,mk , I) checks Vrfy(pp, pk , ~m, σ)
!
= 1 and outputs 0 if the check does not

pass. It parses σ as (h, σ2) and mk as (hi)i∈I . Then it returns 1 iff e(hi, g̃) = e(h, g̃yi) for
all i ∈ I.

Transform(~m, ~m′, σ,mk , I ′) parses σ as (h, hx+
∑

i yimi) and mk as (hyi)i∈I
1. It aborts if VrfyMk(

pp, pk , ~m, σ,mk , I) 6= 1 or I ′ 6⊆ I or ~m 6≡I ~m′. Otherwise it chooses r ← Z∗p and computes

σ′ = (hr, (hx+
∑

i yimi ·
∏
i∈I

(hyi)m
′
i−mi)r) and mk ′ = ((hyi)r)i∈I′ .

It outputs (σ′,mk ′). �

One can easily check that our scheme fulfills the correctness requirements (Definition 4.2).
Furthermore, Transform clearly produces signatures with the same distribution as Sign since hr

is uniformly distributed over G1 \ {1} and the second signature component as well as mk are
uniquely determined by that choice. Consequently, the scheme is perfectly derivation private
(Definition 4.3). The scheme can be proven unforgeable in the generic group model.

1VrfyMk guarantees that the signature and the malleability key have this specific form.

12

Theorem 5.1 (Unforgeability). Construction 5.1 is unforgeable in the generic group model for
type-3 bilinear groups.

The proof is straight-forward and very similar to other generic group model proofs (e.g.,
[PS16]). It can be found in Appendix C.

As noted above, for our construction of DAAC, we need an efficient protocol for deriving a
signature on a committed value (cf. Definition 4.5). A protocol for signing a committed value
for the original signature scheme was given in [PS16]. Our protocol is similar, with some changes
to account for transforming an existing signature instead of creating new one, and to account for
privacy of the issuer (which was not a requirement before). The commitment scheme we use is
essentially Pedersen’s commitment [Ped91], but we derive the commitment key from the issuer’s
signature.

Construction 5.2 (Deriving a signature on a committed value).

BlindInit(σ,mk , ~m, i) parses σ as (h, σ2) ∈ (G1 \ {1}) × G1 and mk = (hyj)j∈I . It chooses
k ← Z∗p. It sets K = ((hyi)k, hk) and outputs (K, k).

Commit(K,m, r) parses K as (hyik, hk) ∈ G1 × (G1 \ {1}) and interprets r as an element of Zp.
It outputs the commitment C = (hyik)m · (hk)r.

BlindRcv(m∗, i, I∗,K,C, r)↔ BlindIssue(σ,mk , ~m, i, I∗, k, C) works as follows: BlindIssue parses
σ as (h, σ2) and mk as (hyi)i∈I , chooses a random u ← Z∗p and computes (σ′1, σ

′
2) =

(hku, (σk2 · (hyi)−kmi · C)u). It sends (σ′1, σ
′
2) together with mk ′ = ((hyj)ku)j∈I∗ to the

receiver. BlindRcv then unblinds (σ′1, σ
′
2) as σ∗ = (σ∗1 , σ

∗
2) = (σ′1, σ

′
2 · (σ′1)−r). BlindRcv

outputs (σ∗,mk ′). �

The proof of security for this construction is straight-forward and can be found in Appendix B.

6 Constructing delegatable attribute-based anonymous cre-
dentials from dynamically malleable signatures with ef-
ficient protocols

We now construct DAAC from a DMS scheme with efficient protocols. The general construc-
tion idea is similar to the generic construction of (attribute-based) credential systems without
delegation [Lys02], but using DMS instead of standard signatures essentially allows adding the
delegation feature. We define the following notation:

Definition 6.1. Let H be a hash function. For ~A ∈ (A∪{?})n, d ∈ {0, 1}, usk , and pk root, we
define

• ~m(~A,usk ,pkroot) := (m1, . . . ,mn, usk ,H(pk root)), where mi = Ai if mi ∈ A, and mi = 0 if
Ai = ? (where 0 ∈M denotes some constant).

• I(d, ~A) := {i | Ai = ? ∨ (i = n+ 1 ∧ d = 1)} ⊆ {1, . . . , n+ 2} �

We will also use the special case ~m(~A,0,pkroot), which is the same as above but with the user
secret set to the constant 0 ∈ M . In our construction, the predicates CheckPseud, CheckShow,
and CheckDeleg from Definition 3.1 can be evaluated in polynomial time and we are going to
use them in the algorithm descriptions.

13

With some details omitted, our construction is going to work as follows: A credential for
user usk rooted at pk root with attribute vector ~A and delegation flag d will be a dynamically

malleable signature on ~m(~A,usk ,pkroot) with index set I(d, ~A). To delegate a credential, the issuer
needs to derive a signature on the receiver’s usk without being given usk itself. For this, we
use a protocol for deriving a signature on a committed value (cf. Definition 4.5). Showing the
credential consists of the user proving possession of usk and a signature with attributes fulfilling
some predicate φ, such that usk is both within his pseudonym and the signature. The identity of
a user with key usk will be id = f(usk) for some one-way function f . Then, following standard
techniques, a user’s pseudonym is an encryption c of id . For issuing credentials, each pseudonym
also contains a signature scheme key pkS and a signature of knowledge binding the encryption c
and pkS together.

Construction 6.1 (Generic construction of delegatable attribute-based anonymous creden-
tials). Let S = (SetupS ,KeyGenS ,SignS ,TransformS ,VrfyS) be a DMS scheme with (BlindInitS ,
BlindIssueS ,BlindRcvS ,CommitS) for deriving a signature on a committed value. Let E =
(SetupE ,KeyGenE ,EncryptE ,DecryptE) be a public-key encryption scheme. LetOW = (SetupOW ,
GenFnctOW) be a one-way function scheme. Let H be a (collision-resistant) hash function (usage
hidden within the ~m(...) notation, cf. Definition 6.1).

We require that SetupS = SetupE = SetupOW =: Setup. We denote the (finite) message
spaces of S and E as MS and ME , respectively (they may depend on the output of Setup) and
require that functions f ∈ [GenFnctOW(pp)] bijectively map between the message spaces for the
signature and encryption scheme, i.e. f : MS →ME . Furthermore, the hash function must hash
to MS , i.e. H : {0, 1}∗ →MS . The scheme consists of the following algorithms:

Setup(1λ) runs ppS,E,OW ← Setup(1λ), (pkE , skE)← KeyGenE(ppS,E,OW), and also it choosesf ←
GenFnctOW(ppS,E,OW). It outputs pp = (ppS,E,OW , pkE , f) and the opening key osk =
skE . The attribute universe A is MS .

KeyGen(pp) chooses usk ←MS and sets id = f(usk). It returns (usk , id).

FormNym(pp, usk , 1n) generates keys (pkS , skS)← KeyGenS(ppS,E,OW , 1
n+2). It encrypts usk

as c = EncryptE(pkE , f(usk); r′) using fresh randomness r′. It then creates a signa-
ture of knowledge on pkS and c proving that it can open c: γ = NIZK [(usk , r′); c =
EncryptE(pkE , f(usk); r′)](pkS , c). The pseudonym is pk = (pkS , c, γ) and the secret is
sk = (skS , r

′, usk). It outputs (pk , sk).

Open(pp, osk , pk) parses pk as (pkS , c, γ), checks γ (outputs ⊥ and aborts if the check fails),
then it runs and outputs DecryptE(skE , c).

CreateCred(pp, pk , sk) runs (σ,mk)← SignS(skS , ~m
((?,...,?),usk ,pk), I(1,(?,...,?))). It outputs cred =

(σ,mk , (?, . . . , ?), d = 1)

DelegIssue(pp, pk root, usk , cred , ~A∗, d∗, pk∗)↔ DelegRcv(pp, pk root, ~A
∗, d∗, pk∗,

sk∗, usk∗) works as follows:

1. The issuer checks CheckDeleg(pp, pk root, usk , cred , ~A∗)
!
= 1 and parses cred as (σ,mk , ~A, d).

2. The receiver checks CheckPseud(pp, pk∗, sk∗, usk∗)
!
= 1.

3. The issuer prepares an anonymized delegatable credential by running (σ′,mk ′) ←
Transform(pp, ~m(~A,usk ,pkroot), ~m(~A∗,0,pkroot), σ,mk , I(1, ~A∗)).

14

4. If d∗ = 1, the issuer simply hands (σ′,mk ′) to the receiver. Then the receiver changes

the signature to his user secret by running (σ∗,mk∗) ← Transform(pp, ~m(~A∗,0,pkroot),

~m(~A∗,usk∗,pkroot), σ′,mk ′, I(d∗, ~A∗))

5. If d∗ = 0, we write pk root = (pkS,root, croot, γroot). Then

(a) the issuer runs (K, k)← BlindInitS(σ′,mk ′, ~m(~A∗,0,pkroot), n+ 1), sends K to the
receiver.

(b) the receiver computes C ← CommitS(K, usk∗, r) for some random r, sends C to
the issuer, and then runs a zero knowledge argument of knowledge with the issuer,
proving he can open the commitment and his pseudonym pk∗ = (pk∗S , c

∗, γ∗) to
his user secret (using r′ and usk∗ from sk∗ = (sk∗S , r

′, usk∗)):

ZKAK [(usk∗, r, r′);C = CommitS(K, usk∗, r)

∧ c∗ = EncryptE(pkE , f(usk∗); r′)]

(c) if the ZKAK protocol accepts, then the issuer runs the protocol BlindIssueS(σ′,mk ′,

~m(~A∗,0,pkroot), n+1, I(d∗, ~A∗), k, C), while the receiver runs (σ∗,mk∗)← BlindRcvS(

usk∗, n+ 1, I(d∗, ~A∗),K,C, r)).

6. The receiver checks VrfyMkS(pkS,root, ~m
(~A∗,usk∗,pkroot), σ∗,mk∗, I(d∗, ~A∗))

!
= 1. If the

check fails, it outputs ⊥, otherwise it outputs cred∗ := (σ∗,mk∗, ~A∗, d∗).

ShowVrfy(pp, pk root, pk , φ)↔ ShowProve(pp, pk root, pk , φ, sk , usk , cred) is as follows: We write
pk root = (pkS,root, ·, ·), pk = (·, c, ·) and sk = (skS , r

′, usk).

1. The prover checks CheckShow(pp, pk root, pk , φ, sk , usk , cred)
!
= 1.

2. The prover parses cred = (σ,mk , ~A, d) and computes some ~A′ ∈ An with ~A′ � ~A and

φ(~A′) = 1. 2

3. The prover then runs (σ′,mk ′)← Transform(pp, ~m(~A,usk ,pkroot), ~m(~A′,usk ,pkroot), σ,mk , I)
with I = ∅.

4. The prover runs the following black-box zero-knowledge argument of knowledge pro-
tocol with the verifier:

ZKAK [(usk , r′, σ′, ~A′);VrfyS(pkS,root, ~m
(~A′,usk ,pkS,root), σ′) = 1

∧ φ(~A′) = 1 ∧ c = EncryptE(pkE , f(usk); r′)]

The checker predicates required by Definition 3.1 are as follows. We denote them as algorithms
because in our case the predicates are polynomial-time computable.

CheckPseud(pp, pk , sk , usk) outputs 1 if and only if pk = (pkS , c, γ) and sk = (skS , r
′, usk) such

that c = EncryptE(pkE , f(usk); r′) and γ is valid signature of knowledge for NIZK [(usk , r′); c =
EncryptE(pkE , f(usk); r′)](pkS , c).

CheckShow(pp, pk root, pk , φ, sk , usk , cred) outputs 1 iff CheckPseud(pp, pk , sk , usk) = 1, and

pk root = (pkS,root, croot, γroot), cred = (σ,mk , ~A, d) such that ~A � φ, VrfyMkS(pkS,root,

~m(~A,usk ,pkroot), σ,mk , I(d, ~A)) = 1, and γroot is a valid signature of knowledge NIZK [(usk root,
rroot); croot = EncryptE(pkE , f(usk root); rroot)](pkS,root, croot)

2we assume that the set of valid φ allows an efficient computation of such an ~A′, e.g,. φ is given in disjunctive
normal form, or n is upper-bounded by some constant nmax.

15

CheckDeleg(pp, pk root, usk , cred , ~A∗) outputs 1 if and only if pk root = (pkS,root, croot, γroot), and

cred = (σ,mk , ~A, d) such that γroot is a valid signature of knowledge with respect to
NIZK [(usk root, rroot); croot = EncryptE(pkE , f(usk root); rroot)](pkS,root, croot), and d = 1,

~A � ~A∗, and VrfyMkS(pkS,root, ~m
(~A,usk ,pkroot), σ,mk , I(d, ~A)) = 1 �

Note that parameters for the argument of knowledge, signature of knowledge, and the hash
function H also need to be part of the public parameters pp, but we abstract from the details
here.

One can instantiate this construction in a type-3 bilinear group setting, i.e. Setup generates
a bilinear group G = (G1,G2,GT, e, p) of prime order p. You can use the DMS scheme and its
protocol from Section 5 for S, and Cramer-Shoup encryption [CS98] in G1 for E . Then MS = Zp
and ME = G1, so the bijective one-way function OW can simply be x 7→ gx. In this setting,
the statements in the zero-knowledge arguments of knowledge fall into the prove knowledge of
exponents category. Hence they can be easily constructed from Schnorr-like Σ protocols together
with Damg̊ard’s technique [Dam00] (using Pedersen’s commitment) to make it concurrent black-
box zero-knowledge. To enable arbitrary Boolean formulas for policies φ, one can combine the
Σ protocol with proofs of partial knowledge [CDS94]. For the signatures of knowledge, you can
use Schnorr-like protocols with the Fiat-Shamir heuristic.

Theorem 6.1 (Security of the generic construction). If E is correct and CCA-secure, S is cor-
rect (Definition 4.2), unforgeable (Definition 4.4) and perfectly derivation private (Definition 4.3)
with secure protocol for deriving a signature on a committed value (Definitions 4.5,A.1,A.2), OW
is a secure one-way function scheme, and H is a collision-resistant hash function, then Construc-
tion 6.1 is correct (Definition 3.1), anonymous (Definition 3.2), and sound (Definition 3.3).

A sketch for the proof can be found in Appendix E.

7 Conclusion and future work

We introduced the notion of DAAC and gave a generic construction from DMS. Our generic
construction can be instantiated using the DMS scheme from Section 5, which results in a very
efficient and expressive DAAC. Besides the relatively short signatures, this is also due to the fact
that all required protocols fall into the zero knowledge proof of exponents category, for which
there are many efficient protocols.

While other existing delegatable credential schemes (e.g., [BCC+09]) allow extracting the
complete delegation history of a credential (i.e. a complete list of who delegated to whom), our
scheme only allows the opener to trace the first and the last user of a delegation chain. While
we assume that this is sufficient for many applications, some may prefer to be able to check the
complete delegation history of a credential. We leave it for future work to extend our approach.

In our construction, the covers relation prevents users from delegating certain attributes.
While this delegation policy seems to be sufficient for many typical applications, the following
question remains open: How can (efficient) attribute-based credentials with other/more general
delegation relations be constructed?

On the topic of DMS, our concrete construction showed that such signature schemes exist,
but our construction is proven secure only under an untested algebraic assumption. Hence we
identify the following research question for future work: Can DMS be constructed from standard
assumptions? A good starting point for answering this question may be a Naor-like transfor-
mation on spatial encryption (e.g., [CW14, AL11]), where keys represent linear subspaces of a
vector space.

16

References

[ABC+15] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat, and
Brent Waters. Computing on authenticated data. Journal of Cryptology, 28(2), 2015.

[AL11] Nuttapong Attrapadung and Benôıt Libert. Homomorphic network coding signatures
in the standard model. In PKC 2011, LNCS. Springer, 2011.

[AN11] Tolga Acar and Lan Nguyen. Revocation for delegatable anonymous credentials. In
PKC 2011, LNCS. Springer, 2011.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. Cryptology ePrint Archive, Report 2005/015, 2005.
http://eprint.iacr.org/2005/015.

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyan-
skaya, and Hovav Shacham. Randomizable proofs and delegatable anonymous cre-
dentials. In CRYPTO 2009, LNCS. Springer, 2009.

[BFKW09] Dan Boneh, David Mandell Freeman, Jonathan Katz, and Brent Waters. Signing
a linear subspace: Signature schemes for network coding. In PKC 2009, LNCS.
Springer, 2009.

[CDD17] Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. Practical uc-secure del-
egatable credentials with attributes and their application to blockchain. In CCS,
pages 683–699. ACM, 2017.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In CRYPTO 1994, LNCS.
Springer, 1994.

[Cha85] David Chaum. Security without identification: Transaction systems to make big
brother obsolete. Commun. ACM, 28(10), 1985.

[CKLM14] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Mal-
leable signatures: New definitions and delegatable anonymous credentials. In CSF
2014. IEEE, 2014.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In CRYPTO
2006, LNCS. Springer, 2006.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In CRYPTO 1998, LNCS. Springer,
1998.

[CW14] Jie Chen and Hoeteck Wee. Doubly spatial encryption from DBDH. Theoretical
Computer Science, 543, 2014.

[Dam00] Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In
EUROCRYPT 2000, LNCS. Springer, 2000.

[Fre12] David Mandell Freeman. Improved security for linearly homomorphic signatures: A
generic framework. In PKC 2012, LNCS. Springer, 2012.

17

http://eprint.iacr.org/2005/015

[Fuc10] Georg Fuchsbauer. Commuting signatures and verifiable encryption and an applica-
tion to non-interactively delegatable credentials. IACR Cryptology ePrint Archive,
2010.

[Lys02] Anna Lysyanskaya. Signature schemes and applications to cryptographic protocol
design. PhD thesis, Massachusetts Institute of Technology, 2002.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable se-
cret sharing. In CRYPTO 1991, LNCS. Springer, 1991.

[PS16] David Pointcheval and Olivier Sanders. Short randomizable signatures. In CT-RSA
2016, LNCS. Springer, 2016.

A Defining security for deriving a signature on a commit-
ted message

For the receiver, we require that the commitment hides the message m∗ and that the BlindRcv
protocol (or its success/failure to output a valid signature) does not reveal anything about m∗

either.

Definition A.1 (Security for the receiver). A scheme for deriving a signature on a committed
value is secure for the receiver if

• “the commitment scheme is perfectly hiding”: For all m∗0,m
∗
1 ∈ M , Commit(K,m∗0, r) is

distributed the same as Commit(K,m∗1, r
′) over the random choice of r, r′.

• “BlindRcv does not reveal the message”: for all ~m and any two messages m∗0,m
∗
1 ∈ M ,

i ∈ N, all K, and all (unrestricted) adversaries A:

(outputA[A(C0)↔ BlindRcv(m∗0, i, I
∗,K,C0, r)], χ0)

≈ (outputA[A(C1)↔ BlindRcv(m∗1, i, I
∗,K,C1, r)], χ1)

where r is chosen uniformly at random, Cj = Commit(K,m∗j , r) and χj is an indicator
variable with χj = 1 if and only if Vrfy(pp, pk , (m1, . . . ,mi−1,m

∗
j ,mi+1, . . . ,mn), σ∗) =

VrfyMk(pp, pk , (m1, . . . ,mi−1,m
∗
j ,mi+1, . . . ,mn), σ∗,mk∗, I∗) = 1 for the output (σ∗,mk∗)

of BlindRcv. �

For the security for the issuer we require that (1) the commitment key does not reveal
anything about the signature that the issuer holds, and (2) the receiver does not learn more than
a signature and its malleability key from the BlindIssue protocol.

Definition A.2 (Security for the issuer). A scheme for deriving a signature on a committed
value is secure for the issuer if the following hold:

• “The commitment key is independent of σ, mk, and ~m”: for all pk , σ,mk ,mk ′, ~m, ~m′, I, I ′, i
such that VrfyMk(pp, pk , ~m, σ,mk , I) = VrfyMk(pp, pk , ~m′, σ′,mk ′, I ′) = 1 and i ∈ I ∩ I ′,
it holds that for all K∗,

Pr[(K, k)← BlindInit(σ,mk , ~m, i);K = K∗]

= Pr[(K, k)← BlindInit(σ′,mk ′, ~m′, i);K = K∗]

18

• “The receiver does not learn too much”: There is a ppt simulator S such that for all
(unbounded) algorithms A, for all pk , σ,mk , σ∗,mk∗, ~m, ~m∗,m∗, i, I, I∗,K, k, C, r where
VrfyMk(pp, pk , ~m, σ,mk , I) = 1, i ∈ I, I∗ ⊆ I, and (K, k) ∈ [BlindInit(σ,mk , ~m, i)], C =
Commit(K,m∗, r), and ~m∗ = (m1, . . . ,mi−1,m

∗,mi+1, . . . ,mn), VrfyMk(pp, pk , ~m∗, σ∗,mk∗,
I∗) = 1, the following distributions are identical:

outputA[A ↔ BlindIssue(σ,mk , ~m, i, I∗, k, C)]

≈ outputA[A ↔ SBlindIssue(m∗, i, I∗,K,C, r, ~m∗, σ∗,mk∗)] �

In this definition, we give the simulator SBlindIssue the input of BlindRcv (namelym∗, i, I∗,K,C, r)
plus what the receiver is allowed to additionally learn from the protocol. That is the target
message ~m∗ = (m1, . . . ,mi−1,m

∗,mi+1, . . . ,mn), a signature σ∗ on ~m∗, and a corresponding
malleability key mk∗.

B Security proofs for the protocol for deriving a signature
on a committed value

Theorem B.1 (Correctness). Construction 5.2 is correct.

Proof. If both parties follow the protocol, then for the (σ′1, σ
′
2) computed by BlindIssue, it holds

that
(σ′1, σ

′
2) = (hku, (hku)x+

∑
j 6=i yjmj+yim

∗
· hkru) ,

i.e. it is a correct signature on (m1, . . . ,mi−1,m
∗,mi+1, . . . ,mn) except for the hkru term. Hence

BlindRcv unblinds the signature correctly by multiplying it with (hku)−r. It is easy to see that
mk ′ has the right form.

Theorem B.2. Construction 5.2 has security for the issuer and security for the receiver.

Proof. Security for the receiver:

• The commitment scheme is obviously perfectly hiding: Commit(K,m, r) outputs a uni-
formly element C ∈ G1 over the random choice of r.

• BlindRcv does not send any messages, hence obviously the output of any algorithm A
interacting with BlindRcv is independent of the input to BlindRcv. Also, for every (σ′1, σ

′
2)

that Amay send, there exists exactly one r such that unblinding results in a valid signature.
Consequently, since A’s view (consisting only of the commitment C) is independent of r
and m∗, failure and success of BlindRcv are also independent of m∗.

Security for the issuer: First, the commitment key K output by BlindInit is (gyi , g) for some
uniformly random g ← G \ {1}, hence independent of σ,mk , ~m.

For the other property, define SBlindIssue(m∗, i, I∗,K,C, r, ~m∗, σ∗,mk∗) interacting with A as
follows: SBlindIssue parsesK as (hyik, hk) ∈ G1×(G1\{1}), ~m∗ = (m1, . . . ,mi−1,m

∗,mi+1, . . . ,mn),

and parses σ∗ as (h∗, (h∗)
∑

j 6=i yjmj+yim
∗
), and as mk∗ = ((h∗)yj)j∈I∗ . It chooses u ← Z∗p and

then sets
σ′ = (σ′1, σ

′
2) = ((h∗)u, ((h∗)u)

∑
j 6=i yjmj+yim

∗
· (h∗)ur) ,

and mk ′ = ((h∗)yju)j∈I∗ . SBlindIssue then sends σ′,mk ′ to A.

19

Note that if C = hyikm
∗ · hkr, then BlindIssue on input (σ,mk , ~m, i, I∗, k, C) sends a blinded

signature in the form (h′, (h′)
∑

j 6=i yjmj+yim
∗
· (h′)r) and corresponding mk ′ = ((h′)yj)j∈I∗ where

h′ is uniformly random in G1 \ {1} (h′ corresponds to hku in Construction 5.2). The same
distribution is created by SBlindIssue (for which h′ corresponds to (h∗)u). Hence the one message
sent by BlindIssue and SBlindIssue follows the same distribution for both, which immediately
implies the second property of security for the receiver.

C Generic group model proof of the dynamically malleable
signature scheme

We prove that our DMS scheme (Construction 5.1) is secure in the generic group model, i.e. no
generic ppt algorithm has non-negligible chance to produce a forgery.

Theorem 5.1. Let A be a generic ppt adversary against the unforgeability game. A may query
oracles for group- and pairing operations and for signatures. Using the usual generic group model
proof outline, we respond to A’s group oracle queries using random encodings for polynomials
over Zp in the variables x, y1, . . . , yn, r1, . . . , rq, where x, y1, . . . , yn correspond to the exponents
of the secret key and r1, . . . , rq correspond to the randomization values used for signature queries.
Let q be an upper bound for the number of signature queries that A makes. Without loss of
generality, we assume that A queries the group oracles for the candidate forgery it outputs. We
prove that the probability that A outputs a forgery is negligible in the security parameter λ.

We now give A random encodings of x, y1, . . . , yn from the second group as input (this
corresponds to pk). The kth signature query for (~m(k), I(k)) is answered with encodings of

σk =

(
rk, rk ·

(
x+

n∑
i=1

yim
(k)
i

))
and mkk = (rkyj)j∈I(k)

in the first group.
EventuallyA outputs ~m∗ ∈ Znp and encodings corresponding to σ∗ = (r∗, z∗) ∈ Zp[x, y1, . . . , yn,

r1, . . . , rq]
2. Since the only values that A gets from the signing oracle in the first group are signa-

tures and their malleability keys, r∗ and z∗ as polynomials are linear combinations of the terms

rk, rk · (x+
∑
i yim

(k)
i), and rkyj for k ∈ {1, . . . , q}, j ∈ I(k). We write

r∗ =

q∑
k=1

(uk · rk + vk · rk(x+

n∑
i=1

yim
(k)
i)) +

q∑
k=1

∑
j∈I(k)

sk,jrkyj

and

z∗ =

q∑
k=1

(u′k · rk + v′k · rk(x+

n∑
i=1

yim
(k)
i)) +

q∑
k=1

∑
j∈I(k)

s′k,jrkyj

for suitable coefficients uk, u
′
k, vk, v

′
k, sk,j , s

′
k,j ∈ Zp (for k ∈ {1, . . . , q}, j ∈ {1, . . . , n}).

Corresponding to the (generic) Vrfy algorithm, σ∗ = (r∗, z∗) is a valid forgery on ~m∗ if and
only if

r∗ 6= 0, (1)

z∗ = r∗

(
x+

n∑
i=1

yim
∗
i

)
, (2)

20

and
∀k ∈ {1 . . . , q} ∃i ∈ {1, . . . , n} : i /∈ I(k) ∧m(k)

i 6= m∗i (3)

(if (3) does not hold, then A has queried a signature with a malleability key that enables him to
legally derive a signature on m∗).

For contradiction, assume that σ∗ is a valid forgery. Then

z∗ = r∗(x+
∑
i

yim
∗
i)

⇒
∑
k

(
u′k · rk + v′k · rk

(
x+

∑
i

yim
(k)
i

))
+
∑
k

∑
j∈I(k)

s′k,jrkyj

=

∑
k

(
uk · rk + vk · rk

(
x+

∑
i

yim
(k)
i

))
+
∑
k

∑
j∈I(k)

sk,jrkyj

 ·(x+
∑
i

yim
∗
i

)

Note that on the left hand side, there are no terms rkx
2, hence vk = 0, and no terms rkyjx,

hence sk,j = 0. There is no term rk on the right hand side, hence u′k = 0. Plugging in the zeros,
we get

∑
k

v′k · rk(x+
∑
i

yim
(k)
i) +

∑
j∈I(k)

s′k,jrkyj

︸ ︷︷ ︸

=z∗

=
∑
k

(
uk · rk

(
x+

∑
i

yim
∗
i

))
︸ ︷︷ ︸

=r∗(x+
∑

i yim
∗
i)

Note that v′k = uk for all k as otherwise the coefficients for rkx do not match. From (1) and
(2), we know that z∗ 6= 0 and hence for at least one k we have uk = v′k 6= 0. For that k, we

get from (3) that there is an i where m
(k)
i 6= m∗i and the term rkyi does not appear in the sum∑

j∈I(k) s′k,jrkyj on the left hand side. Hence for that k and i, the coefficients of the term rkyi

on the left hand side (namely v′k ·m
(k)
i) and the right hand side (namely uk ·m∗i) differ, which

contradicts our assumption that σ∗ is a valid signature.
Finally, a standard argument (e.g., [BBG05]) shows that with overwhelming probability, our

simulated oracles behave exactly like the proper G1,G2,GT group oracles (in which case A cannot
produce a valid signature). Applying the Schwartz-Zippel lemma, we get that the probability
for A to succeed in the forging experiment is at most (q∗)2/(p− 1), where q∗ is an upper bound
for the number of group element encodings that A sees.

D Formal security model for delegatable attribute-based
anonymous credentials

Definition D.1 (Correctness). A DAAC system is correct if for all λ, n, n′ ∈ N and all
(pp, osk) ∈ [Setup(1λ)]

• “Honestly generated pseudonyms are valid”: For all (usk , id) ∈ [KeyGen(pp)], (pk , sk) ∈
[FormNym(pp, usk , 1n)]:

CheckPseud(pp, pk , sk , usk) = 1

21

• “A user’s pseudonyms open to his identity”: For all (usk , id) ∈ [KeyGen(pp)] and all
(pk , sk) with CheckPseud(pp, pk , sk , usk) = 1:

Open(pp, osk , pk) = id

• “Root credentials are universal”: For all (usk , id) ∈ [KeyGen(pp)], (pk root, sk root) ∈
[FormNym(pp, usk , 1n)], (pk , sk) ∈ [FormNym(pp, usk , 1n

′
)], all ~A∗ ∈ (A ∪ {?})n and all

satisfiable φ : An → {0, 1}, it needs to hold that if cred ∈ [CreateCred(pp, pk root, sk root)],
then

CheckShow(pp, pk root, pk , φ, sk , usk , cred) = 1

and CheckDeleg(pp, pk root, usk , cred , ~A∗) = 1

• “The show protocol succeeds”: For all pk root, pk , φ, sk , usk , cred ,

CheckShow(pp, pk root, pk , φ, sk , usk , cred) = 1 ∧ CheckPseud(pp, pk , sk , usk) = 1

⇒Pr[outputShowVrfy[ShowVrfy(pp, pk root, pk , φ)

↔ ShowProve(pp, pk root, pk , φ, sk , usk , cred)] = 1] = 1

• “The delegate protocol succeeds”: For all pk root, usk , cred , ~A∗, d∗, pk∗, sk∗, usk∗:

CheckDeleg(pp, pk root, usk , cred , ~A∗) = 1

∧CheckPseud(pp, pk∗, sk∗, usk∗) = 1

⇒Pr[outputDelegRcv[DelegRcv(pp, pk root, ~A
∗, d∗, pk∗, sk∗, usk∗)

↔ DelegIssue(pp, pk root, usk , cred , ~A∗, d∗, pk∗)] 6=⊥] = 1

• “Any output by DelegRcv (except ⊥) is a valid credential with the expected delegation

and showing properties”: For all pk root, ~A
∗, ~A′, d∗, pk∗, sk∗, usk∗, pk ′, sk ′, φ, all algorithms

A and cred∗ ∈ [outputDelegRcv[DelegRcv(pp, pk root, ~A
∗, d∗, pk∗, sk∗, usk∗) ↔ A]], the fol-

lowing must hold:

1. cred∗ 6=⊥
∧CheckPseud(pp, pk ′, sk ′, usk∗) = 1

∧ ~A∗ � φ
⇒CheckShow(pp, pk root, pk ′, φ, sk ′, usk∗, cred∗) = 1

2. cred∗ 6=⊥

∧ ~A∗ � ~A′ ∧ d∗ = 1

⇒CheckDeleg(pp, pk root, usk∗, cred∗, ~A′) = 1

�

Definition D.2 (Anonymity). A DAAC system Π has anonymity if there is an ppt algorithm
(pp, osk , td)← Spp(1λ) whose output is such that (pp, osk) is distributed exactly like Setup(1λ).
Furthermore, there are ppt simulators SShowProve,SDelegIssue,SDelegRcv such that for all λ ∈ N
and (pp, osk , td) ∈ [Spp(1λ)] and all (unrestricted) A:

22

1. “Anonymity when showing a credential”: For all pk root, pk , φ, sk , usk , cred such that it
holds that CheckShow(pp, pk root, pk , φ, sk , usk , cred) = 1 we require

outputA[A ↔ ShowProve(pp, pk root, pk , φ, sk , usk , cred)]

≈ outputA[A ↔ SShowProve(td , pk root, pk , φ)]

2. “Anonymity when delegating a credential”: For all pk root, ~A
∗, d∗, pk∗, usk , uskalt, cred , credalt

with CheckDeleg(pp, pk root, usk , cred , ~A∗) = CheckDeleg(pp, pk root, uskalt, credalt, ~A
∗) =

1, we require:

outputA[A ↔ DelegIssue(pp, pk root, usk , cred , ~A∗, d∗, pk∗)]

≈ outputA[A ↔ SDelegIssue(td , pk root, ~A
∗, d∗, pk∗, uskalt, credalt)]

3. “Anonymity when receiving a credential”: For all pk root, ~A
∗, d∗, pk∗, sk∗, usk∗ such that

CheckPseud(pp, pk∗, sk∗, usk∗) = 1, we require:

outputA[A ↔ DelegRcv(pp, pk root, ~A
∗, d∗, pk∗, sk∗, usk∗)]

≈ outputA[A ↔ SDelegRcv(td , pk root, ~A
∗, d∗, pk∗)]

4. “Pseudonyms are unlinkable”: for all ppt A there is a negligible function negl such that
for all λ ∈ N,

Pr[(pp, osk , td)← Spp(1λ),

(usk0, id0), (usk1, id1)← KeyGen(pp),

b← {0, 1},
b′ ← AOFormNym(·),OOpen(·)(1λ, pp, td , usk0, id0, usk1, id1); b = b′] ≤ 1/2 + negl(λ)

where OFormNym(1n) returns pseudonyms of usk b, i.e. it first runs (pk , sk)← FormNym(pp,
usk b, 1

n) and then returns pk . OOpen(pk) returns ⊥ if pk was previously output by
OFormNym(·). Otherwise it returns Open(pp, osk , pk). �

Definition D.3 (Soundness). Consider the following experiment Expsoundness
Π,A (λ) for a DAAC

system Π, and an adversary A.

• The experiment runs (pp, osk)← Setup(1λ).

• The experiment maintains a list of user keys and identities ((usk1, id1), (usk2, id2), . . .),
which is lazily generated, i.e. whenever an oracle wants to access an index i for the first
time, the corresponding entry is created as (usk i, id i)← KeyGen(pp).

• For each user i ∈ N, the experiment maintains an initially empty key pair list pki (for the
user’s pseudonyms) and an initially empty credential list credi (for the user’s credentials).

• A gets pp, osk and may adaptively query the following oracles for any u, u∗ ∈ N and any
parameters of his choice:

FormNymu(1n) makes user u create a new pseudonym: It runs (pk , sk) ← FormNym(pp,
usku, 1

n), records the tuple on pku and returns pk .

23

CreateCredu(i) makes user u create a root credential for his ith pseudonym: It finds the ith
entry (pk , sk) on pku, runs cred ← CreateCred(pp, pk , sk) and appends (cred , pk root =
pk) to credu.

DelegateCredu(j, ~A∗, d∗, pk∗) makes user u delegate a credential to A: It finds the jth entry

(cred , pk root) on credu. It then runs the protocol DelegIssue(pp, pk root, usku, cred , ~A∗,
d∗, pk∗) interacting with A.

ReceiveCredu(i, pk root, ~A
∗, d∗) makes user u receive a credential from A: It finds the ith en-

try (pk∗, sk∗) on pku and runs the protocol cred∗ ← DelegRcv(pp, pk root, ~A
∗, d∗, pk∗,

sk∗, usku) interacting with A. If cred∗ 6=⊥, it appends (cred∗, pk root) to credu and
returns 1. Otherwise it does not modify the list and returns 0.

DelegateHonestu,u
∗
(i∗, j, ~A∗, d∗) makes user u delegate a credential to user u∗: It looks up

the i∗th entry (pk∗, sk∗) in pku∗ , and the jth entry (cred , pk root) in credu. It then
runs

DelegIssue(pp, pk root, usku, cred , ~A∗, d∗, pk∗)

↔ DelegRcv(pp, pk root, ~A
∗, d∗, pk∗, sk∗, usku∗)→ cred∗

If cred∗ 6=⊥, it appends (cred∗, pk root) to credu∗ and returns 1. Otherwise it does
not modify the list and returns 0.

Showu(i, j, φ) makes user u show a credential to A: It looks up the ith entry (pk , sk) from
pku and the jth entry (cred , pk root) from credu. It runs ShowProve(pp, pk root, pk , φ,
sk , usku, cred) interacting with A.

• Eventually, A outputs challenge values (pk root, pk , φ) and the experiment runs the protocol
ShowVrfy(pp, pk root, pk , φ) interacting with A.

• If ShowVrfy does not output 1, the experiment outputs 0 and aborts. Otherwise, the
experiment checks the following conditions. If any of them hold, the experiment outputs
1. Otherwise, it outputs 0.

– The user or root issuer’s identity cannot be traced : Open(pp, osk , pk) =⊥ or Open(pp,
osk , pk root) =⊥.

– A was able to impersonate some honest user : Open(pp, osk , pk) = id i for some honest
user’s identity id i.

– A was able to show a credential he did not receive: Open(pp, osk , pk root) = id i for

some honest user’s id i andA never queried DelegateCredu(j, ~A∗, d∗, pk∗) for any u ∈ N
where all of the following hold:

∗ the jth entry on credu is (·, pk root) (i.e. the delegated credential has the same
root as in the challenge)

∗ ~A∗ � φ (i.e. the delegated attributes cover the challenge predicate)

∗ Open(pp, osk , pk) = Open(pp, osk , pk∗) or d∗ = 1 (i.e. the identity behind re-
ceiver and challenge pseudonym is the same or the received credential is marked
delegatable)

Π is sound if for all ppt adversaries A there exists a negligible function negl with

Pr[Expsoundness
Π,A (λ) = 1] ≤ negl(λ)

for all λ ∈ N. �

24

In this experiment, the adversary wins if (1) in the show protocol he is able to use a pseudonym
that is traced to an honest user’s identity, or (2) he can show a credential that he never received
and that is rooted at a pseudonym pk root that is traced to an honest user. In particular, (2)
covers the case that pk root is one of the honest user’s pseudonyms (cf. correctness of Open). Note
that in the experiment, we supply the opener’s secret osk to A, making the security guarantees
apply to the opener in the system, too.

We note that for the sake of simplicity, our soundness definition does not necessarily guarantee
security in contexts where protocols may be executed concurrently (standard techniques can be
applied to gain security in such contexts).

E Security proofs for the delegatable attribute-based anony-
mous credential construction

We split the proof of Theorem 6.1 into three lemmas: Correctness, anonymity, and soundness.

Lemma E.1 (Correctness). If E, S and its protocol for deriving a signature on a committed
value are correct, then Construction 6.1 is correct (Definition D.1).

The proof is straight-forward.

Lemma E.2 (Anonymity). If S is perfectly derivation private (Definition 4.3), its protocol for
deriving a signature on a committed value is secure for the receiver (Definition A.1), and E is
CCA-secure, then Construction 6.1 has anonymity (Definition D.2).

Proof. We define Spp(1λ) to run the credential system’s pp ← Setup(1λ) honestly except that
it embeds public parameters for the zero-knowledge argument of knowledge into pp such that it
knows the simulation trapdoor tdZK (e.g., [Dam00]). It outputs pp from Setup and the simulation
trapdoor td = (pp, tdZK).
“Anonymity when showing a credential”: The simulator SShowProve(td , pk root, pk , φ) runs
the zero-knowledge simulator for the ZKAK listed in the construction. Since the only messages
sent by an honest prover are the ones from the zero-knowledge argument, SShowProve perfectly
simulates the view of any adversary A.

“Anonymity when delegating a credential”: The simulator SDelegIssue(td , pk root, ~A
∗,

d∗, pk∗, uskalt, credalt) first parses credalt as (σalt,mkalt, ~Aalt, dalt) and pk root as (pkS,root, croot,

γroot). Then the simulator computes the anonymized credential as (σ′,mk ′) ← Transform(pp,

~m(~Aalt,uskalt,pkroot), ~m(~A∗,0,pkroot), σ,mk , I(1, ~A∗)). Because of perfect derivation privacy, (σ′,mk ′)
is distributed exactly as in honest runs of the protocol. The simulator proceeds with (σ′,mk ′)
exactly as described in DelegIssue starting with Step 4.

“Anonymity when receiving a credential”: The simulator SDelegRcv(td , pk root, ~A
∗, d∗,

pk∗) works as follows: For d∗ = 1, the simulator just sets sk∗ =⊥, usk∗ = 0 and runs cred∗ ←
DelegRcv(pp, pk root, ~A

∗, d∗, pk∗, 0, 0) interacting with A. It then locally outputs cred∗.3 In this
case, no messages are sent to A, hence trivially the simulator behaves indistinguishably from the
real protocol.

For d∗ = 0, the simulator SDelegRcv receives K from A and computes C = CommitS(K, 0, r)

3The local output of the simulator is not relevant for anonymity, but will be useful for the soundness proof
later.

25

for some random r (i.e. it implicitly sets usk∗ = 0). It then sends C to A and uses the zero-
knowledge simulator to simulate the proof protocol Step 5b.

Finally, SDelegRcv runs (σ∗,mk∗)← BlindRcvS(0, n+1, I(d∗, ~A∗),K,C, r)). Because BlindRcv
has security for the receiver (Definition A.1), this produces the exact same view as in honest
executions of DelegRcv. Overall, the view of A is the same as with the real protocol.

The simulator checks VrfyMkS(pkS,root, ~m
(~A∗,usk∗,pkroot), σ∗,mk∗, I(d∗, ~A∗))

!
= 1 as in Step 6

but with usk∗ = 0 and, if it succeeds, locally outputs cred∗ = (σ∗,mk∗, ~A∗, d∗).
“Pseudonyms are unlinkable”: Note that the output of OFormNym(·) consists of a sig-

nature verification key pkS , which is independent of usk b, idb, a ciphertext c ← EncryptE(pkE ,
f(usk b)), and a signature of knowledge γ, which can be simulated independently of b. The
OOpen oracle corresponds directly to a decryption oracle for ciphertexts c that were not created
by OFormNym. Hence by CCA-security of E and a standard hybrid argument, one can easily see
that no ppt algorithm has non-negligible advantage distinguishing whether the OFormNym oracle
encrypts f(usk0) or f(usk1).

Lemma E.3 (Soundness). If Construction 6.1 has anonymity (Definition 3.2), S is unforgeable
(Definition 4.4), perfect derivation private (Definition 4.3), and its protocol for deriving a sig-
nature on a committed value is secure for the issuer and secure for the receiver (Definitions A.2
and A.1), OW is a secure one-way function, H is a collision-resistant hash function, and E is
correct (i.e. encryption is perfectly binding), then Construction 6.1 is sound (Definition D.3).

Let (pk root, pk , φ) be the challenge that A chooses. We write pk root = (pkS,root, croot, γroot).
There are two types of ppt adversaries A: Type 1 adversaries choose their challenge in one of
the following ways:

• Open(pp, osk , pk) =⊥ or Open(pp, osk , pk root) =⊥

• Open(pp, osk , pk) = id i for some honest user’s identity id i

• Open(pp, osk , pk root) = id i for some honest user’s identity id i and pkS,root is not part of
any pseudonym created through the FormNym oracle.

Type 2 adversaries choose their challenge such that pkS,root is part of some pseudonym created

by the FormNym oracle, and A never queried the oracle DelegateCredu(j, ~A∗, d∗, pk∗) where

the credential to be delegated is also rooted at pk root, ~A∗ � φ, and Open(pp, osk , pk∗) =
Open(pp, osk , pk) ∨ d∗ = 1.

Any adversary with non-negligible advantage against the soundness experiment gives rise to
a Type 1 or a Type 2 adversary with non-negligible advantage against the soundness experiment.
We will show that Type 1 adversaries invert the one-way function and Type 2 adversaries forge
signatures.

Type 1 adversaries. Let A be a Type 1 adversary and let q be an upper bound for the number of
honest users A creates in the soundness experiment. Without loss of generality, we assume that
A only queries user indices 1, . . . , q. We construct an adversary B against the one-way function.
B gets public parameters ppOW , a description of f : MS →ME , and some y ∈ME as input.

It completes the setup by running (pkE , skE)← KeyGenE(ppOW). It hands pp = (ppOW , pkE , f)
and the opening key osk = skE to A.
B chooses a random user u′ ← {1, . . . , q} and implicitly sets idu′ = y and usku′ := usk :=

f−1(y). In the following, all credentials for user u′ will be stored with respect to the user secret
0, while all pseudonyms will use usk .

26

B can answer all of A’s oracle queries honestly except for those that involve user u′. B
answers FormNymu′ queries by encrypting y and simulating the signature of knowledge γ.

For CreateCredu
′
, it simply uses 0 as a user secret in the signature. For Showu′ , B aborts

if the specified credential’s attributes do not fulfill the given formula φ. Otherwise, it runs

SShowProve(td , pk root, pk , φ) with A. For DelegateCredu
′
, B possesses the relevant credential cred

with embedded user secret 0. B sets credalt = cred and uskalt = 0. It runs SDelegIssue(td , pk root,
~A∗, d∗, pk∗, uskalt, credalt) with A, which produces the expected view.

For ReceiveCredu
′
(i, pk root, ~A

∗, d∗), B runs cred∗ ← SDelegRcv(td , pk root, ~A
∗, d∗, pk∗) (from

the proof of Lemma E.2) interacting with A. If cred∗ 6=⊥, it adds cred∗ (which, by construction
of SDelegRcv above, is a credential for usk∗ = 0) to u′’s list of credentials.

Overall, the view of A is exactly as in the actual experiment. Eventually, A outputs
(pk root, pk , φ) and runs the show protocol with B. If A does not succeed in it, B aborts. We
distinguish three cases (at least one of which must happen in order for A to be a successful
Type 1 adversary):
Case 1: Open(pp, osk , pk) =⊥ or Open(pp, osk , pk root) =⊥. This happens only with negligible
probability as the argument of knowledge in the show protocol and the signature of knowledge
in pk root guarantee that pk and pk root contain valid ciphertexts, respectively.
Case 2: Open(pp, osk , pk) = id i for some honest user’s identity id i. With probability at least
1/q, id i = y and so pk contains an encryption c of y. We use the extractor for the argument of
knowledge protocol inside the show protocol to extract (among others) usk with f(usk) = y. B
then outputs usk , inverting the one-way function.
Case 3: Open(pp, osk , pk root) = id i for some honest user’s id i but pk root = (pkS,root, croot, γroot)
such that pkS,root is not part of any honest user’s pseudonym. In this case, with probability at
least 1/q, id i = y and so pk root contains an encryption c of y and a valid signature of knowledge
γ (as guaranteed by the CheckShow check within the ShowVrfy protocol). Note that B never
had to simulate a signature of knowledge on (pkS,root, c). Consequently from the signature of
knowledge forgery, we can extract (among others) usk with f(usk) = y. B then outputs usk ,
inverting the one-way function.

We now turn to Type 2 adversaries.

Type 2 adversaries. Let A be a Type 2 adversary and let q be an upper bound for the number
of queries to the FormNym oracle. We construct B against the DMS scheme’s unforgeability.
B receives ppS , pkS from the unforgeability experiment. It completes the setup by running

(pkE , skE) ← KeyGenE(ppS), f ← GenFnctOW(ppS). It hands pp = (ppS , pkE , f) and the
opening key osk = skE to A.
B then chooses k ← {1, . . . , q}. It sets pk∗root := (pkS , c, γ) for EncryptE(pkE , f(usku); r′) = c

with random r′ and γ = NIZK [(usku, r
′); c = EncryptE(pkE , f(usku); r′)](pkS , c). When A calls

FormNymu(1n) for the kth time, B returns pk∗root.
For later, B chooses a random r ←MS and queries its signature oracle for (0, . . . , 0, r) ∈ Zn+2

p

with index set I = {n + 1} (i.e. the last 0, whose position corresponds to the user secret in
credential signatures, can be changed and r cannot). We call the resulting signature σdummy and
the malleability key mkdummy.
B can answer A’s oracle queries honestly, except for the ones involving pk∗root. For all cre-

dentials rooted at pk∗root, B does not run the S algorithms and simply stores them as (σ =

ε,mk = ε, ~A, d) (i.e. without signatures or malleability keys) on honest users’ lists credu. When
A queries the Show oracle, B uses the simulator SShowProve.

When A queries DelegateCredu(j, ~A∗, d∗, pk∗) where j refers to a credential rooted at pk∗root,
then there are two cases:

27

If d∗ = 1, then B simply queries its signature oracle for ~m(~A∗,0,pk∗root), I(d∗, ~A∗) to receive σ′,mk ′,
and sends those to A (because of perfect derivation privacy, σ′,mk ′ will have exactly the distri-
bution that A expects).
If d∗ = 0, then B runs (K, k) ← BlindInitS(σdummy,mkdummy, (0, . . . , 0, r), n + 1) and sends
K to A (note that the protocol’s security for the issuer guarantees that K has the expected
distribution). A responds with a commitment C, then engages in the argument of knowledge
protocol in Step 5b proving he can open the commitment. Using the extractor for the protocol,
B extracts usk∗ and r such that C = CommitS(K, usk∗, r) and pk∗ contains an encryption of

f(usk∗). B then queries its signature oracle for ~m(~A∗,usk∗,pk∗root) and index set I(d∗, ~A∗), receiving

(σ∗,mk∗). It runs the simulator SBlindIssue(usk∗, n+1, I(d∗, ~A∗),K,C, r, ~m(~A∗usk∗,pk∗root), σ∗,mk∗)
(Definition A.2) interacting with A.

Overall, the view of A is consistent with what it would see if B had implemented the ora-
cles correctly. Eventually, A outputs the challenge (pk root, pk , φ) such that pk root = (pkS,root,
croot, γroot) where pkS,root is part of some pseudonym created by the FormNym oracle, and A
never queried DelegateCredu(j, ~A∗, d∗, pk∗) where the credential to be delegated is also rooted

at pk root, ~A
∗ � φ, and Open(pp, osk , pk∗) = Open(pp, osk , pk) ∨ d∗ = 1.

With probability at least 1/q, pkS,root is part of pk∗root. Otherwise, B aborts. If B does
not abort, A engages B in the argument of knowledge inside the ShowVrfy protocol. We use
the extractor from the argument of knowledge to extract a witness (usk , r′, σ′, ~A) where σ′ is a

signature on ~m(~A,usk ,pkroot) under pkS , and φ(~A) = 1. B outputs ~m(~A,usk ,pkroot), σ′ as a forgery.

It remains to show that B never made a signature query for ~m′, I ′ where ~m′ ≡I′ ~m(~A,usk ,pkroot).
For contradiction, assume that there is some (~m′, I ′) which B queried at some point. We go
through the three cases where this could have happened.

(1) Assume that (~m′, I ′) was queried by B in the beginning of the experiment to receive
σdummy. That means that ~m′ = (0, . . . , 0, r) and I ′ = {n+1}. Since A’s view is independent of r

(cf. Definition A.2), with overwhelming probability r 6= H(pk root). Hence ~m′ 6≡I′ ~m(~A,usk ,pkroot),
contradicting the assumption.

(2) Assume that (~m′, I ′) was queried when A requested DelegateCredu(j, ~A∗, d∗, pk∗) with

d∗ = 1. That means that ~m′ = ~m(~A∗,0,pk∗root), I ′ = I(d∗, ~A∗). Then because ~m′ ≡I′ ~m(~A,usk ,pkroot),
it must follow that ~A∗ � ~A � φ andH(pk root) = H(pk∗root). Collision resistance ofH implies that
with overwhelming probability, pk root = pk∗root. Hence A queried DelegateCred for a credential

rooted at pk root with ~A∗ � φ and d∗ = 1, meaning A would have lost the experiment.

(3) Assume that (~m′, I ′) was queried when A requested DelegateCredu(j, ~A∗, d∗, pk∗) with

d∗ = 0. That means that ~m′ = ~m(~A∗,usk∗,pk∗root), I ′ = I(d∗, ~A∗). As in (2), it follows that

with overwhelming probability, ~A∗ � ~A � φ and pk root = pk∗root. Additionally, usk = usk∗

because ~m′ ≡I′ ~m(~A,usk ,pkroot) and n + 1 /∈ I ′. It follows that Open(pp, osk , pk∗) = f(usk∗) =
f(usk) = Open(pp, osk , pk) because B extracted usk and usk∗ from arguments of knowledge
guaranteeing that the encryptions in pk and pk∗ are of f(usk) and f(usk∗), respectively. Hence

A queried DelegateCred for a credential rooted at pk root with ~A∗ � φ and Open(pp, osk , pk∗) =
Open(pp, osk , pk), meaning A would have lost the experiment.

Overall, if A does not lose the experiment, then with overwhelming probability B outputs a
valid forgery for S.

28

	Introduction
	Basics and notation
	Delegatable attribute-based anonymous credentials
	Formal definition
	How to deploy delegatable attribute-based anonymous credential systems in practice

	Dynamically malleable signatures with efficient protocols
	Definition
	Deriving a signature on a committed message

	Construction of dynamically malleable signatures based on Pointcheval-Sanders signatures
	Constructing delegatable attribute-based anonymous credentials from dynamically malleable signatures with efficient protocols
	Conclusion and future work
	Defining security for deriving a signature on a committed message
	Security proofs for the protocol for deriving a signature on a committed value
	Generic group model proof of the dynamically malleable signature scheme
	Formal security model for delegatable attribute-based anonymous credentials
	Security proofs for the delegatable attribute-based anonymous credential construction

