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Abstract. Multi-Party Computation of Oblivious RAM (MPC ORAM)
implements secret-shared random access memory in a way that protects
access pattern privacy against a threshold of corruptions. MPC ORAM
enables secure computation of any RAM program on large data held by dif-
ferent entities, e.g. MPC processing of database queries on a secret-shared
database. MPC ORAM can be constructed by any (client-server) ORAM,
but there is an efficiency gap between known MPC ORAM’s and ORAM’s.
Current asymptotically best MPC ORAM is implied by an “MPC friendly”
variant of Path-ORAM [26] called Circuit-ORAM, due to Wang et al [27].
However, using garbled circuit for Circuit-ORAM’s client implies MPC
ORAM which matches Path-ORAM in rounds but increases bandwidth by
Ω(κ) factor, while using GMW or BGW protocols implies MPC ORAM
which matches Path-ORAM in bandwidth, but increases round complex-
ity by Ω(logn log logn) factor, where κ is a security parameter and n is
memory size.
In this paper we bridge the gap between MPC ORAM and client-server
ORAM by showing a specialized 3PC ORAM protocol, i.e. MPC ORAM
for 3 parties tolerating 1 fault, which uses only symmetric ciphers and
asymptotically matches client-server Path-ORAM in round complexity and
for large records also in bandwidth.
Our 3PC ORAM also allows for fast pipelined processing: With post-
poned clean-up it processes b=O(logn) accesses in O(b+ logn) rounds
with O(D+ poly(logn)) bandwidth per item, where D is record size.

1 Introduction

MPC ORAM. Multi-Party Computation Oblivious Random Access Memory
(MPC ORAM), or Secure-Computation ORAM (SC ORAM), is a protocol which
lets m parties implement access to a secret-shared memory in such a way that
both memory records and the accessed locations remain hidden, and this security
guarantee holds as long as no more than t out of m parties are corrupted. Applica-
tions of MPC ORAM stem from the fact that it can implement random memory
access subprocedure within secure computation of any RAM program. Classic ap-
proaches to secure computation [29, 17, 3, 8] express computation as a Boolean or
arithmetic circuit, thus their size, and consequently efficiency, is inherently lower-
bounded by the size of their inputs. In practice this eliminates the possibility of
secure computation involving large data, including such fundamental computing
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functionality as search and information retrieval. MPC ORAM makes such com-
putation feasible because it generalizes secure computation from circuits to RAM
programs: All RAM program instruction can be implemented using circuit-based
MPC, since they involves only local variables, while access to (large) memory can
be implemented with MPC ORAM.

As an application of MPC of RAM program, and hence of MPC ORAM, con-
sider an MPC Database, i.e. an MPC implementation of processing of database
queries over a secret-shared database. A typical database implementation would
hash a searched keyword to determine an address of a hash table page whose
content is then matched against the queried keyword. Standard MPC techniques
can implement the hashing step, but the retrieval of the hash page is a random
access to a large memory. Implementing this RAM access via garbled circuits re-
quires Ω(nDκ) bandwidth, where n is the number of records, D is the record
size, and κ is the cryptographic security parameter, which makes such computa-
tion unrealistic even for 1MB databases. By contrast, using MPC ORAM can cost
O(poly(log n)Dκ) and hence, in principle, can scale to large data.

Inefficiency Gap in MPC ORAM Constructions. The general applicability
of MPC ORAM to MPC of any RAM program motivates searching for efficient
MPC ORAM realizations. As pointed out in [23, 10], any ORAM with its client
implemented with an MPC protocol yields MPC ORAM. This motivates searching
for an ORAM with an MPC-friendly client, i.e. a client which can be efficiently
computed using MPC techniques [19, 16, 22, 28, 27]. Indeed, the recent Circuit-
ORAM proposal of Wang et al. [27] exhibits a variant of Path-ORAM of Stefanov
et al. [26] whose client has a Boolean circuit of an asymptotically optimal size, i.e.
a constant factor of the data which Path-ORAM client retrieves from the server,
and which forms an input to its computation.

Still, in spite of the circuit-size optimality of Circuit-ORAM,1 applying generic
honest-but-curious MPC protocols to it yields MPC ORAM solutions which are
two orders of magnitude more expensive than Path-ORAM:2 Using Yao’s garbled
circuit [29] on Circuit-ORAM yields a 2PC ORAM of [27] which has (asymptoti-
cally) the same round complexity as Path-ORAM, but its bandwidth, both online
and in offline precomputation, is larger by Ω(κ) factor. Alternatively, applying
GMW [17] or BGW [3] to the Boolean circuit for Circuit-ORAM yields 2PC or
MPC ORAM which asymptotic preserves Path-ORAM bandwidth, but its round
complexity is larger by Ω(log n log log n) factor (compare footnote 3).

Our Contribution: 3PC ORAM with Low Latency and Bandwidth. We
show that the gap between MPC ORAM and client-server ORAM can be bridged
by exhibiting a 3PC ORAM, i.e. MPC for m= 3 servers with t= 1 fault, which
uses customized, i.e. non-generic, 3PC protocols and asymptotically matches Path-
ORAM in rounds, and, for records size D = Ω(κlog2n), bandwidth. Specifically,

1 In this paper we call the client-server ORAM implicit in [27] “Circuit-ORAM”, and
its garbled-circuit 2PC implementation, also shown in [27], “2PC Circuit-ORAM”.

2 We use Path-ORAM as a client-server baseline for these comparisons because Path-
ORAM has the most “MPC-friendly” client, hence most MPC ORAM’s emulate se-
curely either Path-ORAM or its predecessor, Binary-Tree ORAM [25]. (The recent
2PC ORAM of [12] is an exception, discussed below.)
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our 3PC ORAM securely emulates the Circuit-ORAM client in 3PC setting, using
O(log n) rounds and O(κlog3n+Dlog n) bandwidth (see Fig. 1). We note that the
3PC setting of (t,m)=(1, 3) gives weaker security than 2PC setting of (t,m)=(1, 2),
but it was shown to enable lower-cost solutions to many secure computation prob-
lems compared to both 2PC or general (t,m)-MPC (e.g. [5, 1]) and for that reason
it’s often chosen in secure computation implementations (e.g. [6, 4]). Here we show
that 3PC benefits extend to MPC ORAM.

rounds bandwidth

Path-ORAM (client-server
baseline ) [26] O(log n) O(log3n+Dlog n)

2PC Circuit-ORAM [27]+[29] O(log n) O(κlog3n+κDlog n)

2PC SQRT-ORAM [30] O(log n) O(κD
√
nlog3n)

2PC FLORAM [12] O(log n) O(
√
κDnlog n)

generic 3PC Circ.-ORAM [27]+[1] O(log2n log log n) O(log3n+Dlog n)

3PC ORAM of [14] O(log n) O(κλlog3n+λDlog n)

Our 3PC Circuit-ORAM O(log n) O(κlog3n+Dlog n)

Fig. 1: Round and bandwidth comparisons, for n: array size, D: record size, κ: crypto-
graphic security parameter, λ: statistical security parameter.

We show the benefits of our 3PC ORAM contrasted with previous 2PC and
3PC ORAM approaches in Fig. 1. In the 3PC setting we include a generic 3PC
Circuit-ORAM, which results from implementing Circuit-ORAM with the generic
3PC protocol of Araki et al. [1], which is the most efficient 3PC instantiation
we know of either the BGW or the GMW framework.3 The second 3PC ORAM
we compare to is Faber et al. [14], which uses non-generic 3PC techniques, like
we do, but it emulates in 3PC with a less efficient Binary-Tree ORAM variant
than Circuit-ORAM, yielding 3PC ORAM with bandwidth worse than ours by
Ω(λ) factor. Regarding 2PC ORAM, several 2PC ORAM’s based on Binary-Tree
ORAM variants were given prior to Circuit-ORAM [19, 16, 22, 28], but we omit
them from Fig. 1 because Circuit-ORAM outperforms them [27]. We include two
recent alternative approaches, 2PC ORAM of [30] based on Square-Root ORAM
of [18], and 2PC FLORAM of [12] based on the Distributed Point Function (DPF)
of [20]. However, both of these 2PC ORAM’s use O(

√
n) bandwidth, and [12] also

uses O(n) local computation, which makes them not scale well for large n’s.4 Re-
stricting the comparison to poly(log n) MPC ORAM, our 3PC ORAM offers the
following trade-offs:
(1) Compared to the generic 3PC Circuit-ORAM [1] applied to Circuit-ORAM,
we increase bandwidth from O(log3n+Dlog n) to O(κlog3n+Dlog n) but reduce

3 Using the BGW-style MPC over an arithmetic circuit for Circuit-ORAM, as was
done by Keller and Scholl for another Path-ORAM variant [22], should also yield
a bandwidth-competitive 3PC ORAM, but with round complexity at least Ω(log2n).

4 2PC ORAM cost of [12] has stash linear scan O(Tκlogn) and amortized re-init
O(nD/T ). Picking T = O(

√
nD/κlogn) we get O(

√
κDnlogn). In [12] this is ren-

dered as O(
√
n) overhead, assuming D = Ω(logn) and omitting κ. [12] also show

O(1)-round 2PC ORAM, but at the price of increased bandwidth and computation.
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round complexity from O(log2n log log n) to O(log n);
(2) Compared to the generic garbled circuit 2PC [29] applied to Circuit-ORAM,
we weaken the security model, from (t,m)=(1, 2) to (t,m)=(1, 3), but reduce band-
width from O(κlog3n+κDlog n) to O(κlog3n+Dlog n).

Thus for medium-sized records, D = Ω(κlog2n), our 3PC ORAM asymptot-
ically matches client-server Path-ORAM in all aspects, and beats 2PC Circuit-
ORAM by Ω(κ) factor in bandwidth, without dramatic increase in round com-
plexity incurred using generic 3PC techniques. In concrete terms, our round com-
plexity is 50x lower than the generic 3PC Circuit-ORAM,5 and, for D> 1KB, our
bandwidth is also >50x lower than 2PC Circuit-ORAM. Our protocol is also com-
petitive for small record sizes, e.g. D = 4B: First, our bandwidth is only about 2x
larger than the generic 3PC Circuit-ORAM; Second, our bandwidth is lower than
the 2PC Circuit-ORAM by a factor between 10x and 20x for 20≤ log n≤ 30.

Fast System Response and Batch Retrieval. Another benefit of our 3PC
ORAM is a fast system response, i.e. the time we call a Retrieval Phase, from
an access request to the retrieval of the record. In fact, our protocol supports
fast retrieval of a batch of requests, because the expensive post-processing of each
access (i.e. the Circuit-ORAM eviction procedure) can be postponed for a batch
of requests, allowing all of them to be processed at a smaller cost. Low-bandwidth
batch retrieval with postponed eviction was recently shown for client-server Path-
ORAM variants [24, 11] (see also [15]), and our protocol allows MPC ORAM to
match this property in the 3PC setting.

Specifically, our protocol processes b=O(log n) requests in 3b+ 3h rounds, us-
ing 3D+O(log2n log log n) bandwidth per record, and to the best of our knowl-
edge no other MPC ORAM allows batch-processing with such costs. After re-
trieving b requests the protocol must perform all evictions, using 6b rounds and
O(b(κlog3n+Dlog n)) total bandwidth, but this can be postponed for any batch
size that benefits the higher-level MPC application. Concretely, for log n≤ 30, the
per-record bandwidth for b≤ 4log n is only ≤ 3D+ 10KB.

Brief Overview of our 3PC ORAM. We sketch the main ideas behind our
3PC protocol that emulates Circuit-ORAM ORAM. Observe that Circuit-ORAM
client, like a client in any Binary-Tree ORAM variant, performs the following
steps: (1) locate the searched record in the retrieved tree path, (2) post-process
that record (free-up its current location, update its labels, and add the modified
record to the path root), (3) determine the eviction map, i.e. the permutation on
positions in the retrieved path according to which the records will be moved in
eviction, and (4) move the records on the path according to the eviction map. The
main design principle in our 3PC emulation of Circuit-ORAM is to implement
steps (1), (2), and (4) using customized asymptotically bandwidth-optimal and
constant-round protocols (we explain some of the challenges involved in Section
2), and leave the eviction map computation step as in 2PC Circuit-ORAM, imple-
mented with generic constant-round secure computation, namely garbled circuits.

5 We estimate that the circuit depth of the Circuit-ORAM client, and hence the round
complexity of the generic 3PC Circuit-ORAM, is > 1000 even for n= 220, compared
to ≈15 rounds in our 3PC ORAM and ≈8 in the client-server Path-ORAM.
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Circuit-ORAM computes the eviction map via data-dependent scans, which we
do not know how to implement in constant rounds without the garbled circuit
overhead. However, computation of the eviction map involves only on metadata,
and is independent of record payloads. Hence even though using garbled circuits
in this step takes O(κ) bandwidth per input bit, this is upper-bounded by the
cost of bandwidth-optimal realization of the data movement step (4) already for
D≈ 140B.

Secondly, we utilize the 3PC setting in the retrieval phase, to keep its band-
width especially low, namely O(D+ log2n log log n). The key ingredient is a 3-
party Secret-Shared PIR (SS-PIR) gadget, which computes a secret-sharing of
record M[N] given a secret-sharing of array M and of address N. We construct
SS-PIR from any 2-server PIR [13] whose servers’ responses form an xor-sharing
of the retrieved record, which is the case for many 2-PIR schemes [9, 2, 20]. An-
other component is a one-round bandwidth-optimal compiler from 3PC SS-PIR
to 3PC Keyword SS-PIR, which retrieves shared value given a sharing of keyword
and of (keyword,value) list. With a careful design we use only three rounds for the
retrieval and post-processing steps, which allows pipelined processing of a batch
of accesses using only three rounds per tree.

Roadmap. We overview the technical challenges of our construction in Section 2.
We present our 3PC ORAM protocol in Section 3, argue its security in Section 4,
and discuss our prototype performance in Section 5. All specialized sub-protocols
our protocol requires are deferred to Appendix A. The full security argument, the
specification of garbled circuits we use, and further prototype performance data,
are all included in Appendices B-E.

2 Technical Overview

Overview of Path ORAM [26]. Our 3PC Circuit-ORAM is a 3PC secure
computation of Circuit-ORAM of [27] (see footnote 1), which is a variant of Path-
ORAM of Shi et al. [26]. We thus start by recalling Path-ORAM of [26], casting
it in terms which are convenient in our context. Let M be an array of n records
of size D each. Server S keeps a binary tree of depth log n, denoted tree, shown
in Fig. 2, where each node is a bucket of a small constant size w, except the
root bucket (a.k.a. a stash) which has size s=O(log n). Each tree bucket is a
list of tuples, which are records with four fields, fb, lb, adr, and data. For each
address N ∈ {0,1}logn, record M[N] is stored in a unique tuple T in tree s.t.
T.(fb, lb, adr, data) = (1,L,N,M[N]) where fb is a full/empty tuple status bit and
L is a label which defines a tree leaf assigned at random to address N.

Data-structure tree satisfies an invariant that a tuple with label L lies in a
bucket on the path from the root to leaf L, denoted tree.path(L). To access address
N, client C uses a (recursive) position map PM : N→L (see below) to find leaf L
corresponding to N, sends L to S to retrieve path = tree.path(L), searches path for
T= (1,L,N,M[N]) with fields (fb, adr) matching (1,N), assigns new random leaf
L′ to N, adds a modified tuple T′ = (1,L′,N,M[N]) to the root bucket in path (In
case of write access C also replaces M[N] in T′ with a new entry), and erase old T

5



Fig. 2: Path ORAM (final) tree

Fig. 3: Path ORAM recursive access

from path by flipping T.fb to 0. Finally, to avoid overflow, C evicts tuples in path
as far down as possible without breaking the invariant or overflowing any bucket.

Position map PM : N→L is stored using the same data-structure, with each
tuple storing labels corresponding to a batch of 2τ consecutive addresses, for some
constant τ . Since such position map has only 2logn/2τ = 2logn−τ entries, this
recursion results in h = (log n/τ) + 1 trees tree0, , .., treeh−1 which work as follows
(see Fig. 3): Divide N into τ -bit blocks N1, ...,Nh−1. The top-level tree, treeh−1

contains the records of M as described above, shown in Fig. 2, while for i < h−1,
treei is a binary tree of depth di = iτ which implements position map PMi that
matches address prefix N[1,...,i+1] = N1|...|Ni+1 to leaf Li+1 assigned to this prefix in
treei+1. Access algorithm ORAM.Access traverses this data-structure by sequentially
retrieving the labels assigned to each prefix of the searched-for address, using an
algorithm we denote ORAM.ML. For i from 0 to h−1, algorithm ORAM.ML retrieves
Li+1 = PMi(N1|...|Ni+1) from treei using the following steps: (1) it identifies path
path = treei.path(Li) in treei using label Li, (2) it identifies tuple T in path s.t.
T.adr = N1|...|Ni, and (3) it returns Li+1 = T.data[Ni+1].

Circuit-ORAM vs. Path-ORAM. Circuit-ORAM (see footnote 1) follows the
same algorithm as Path-ORAM except (1) the eviction procedure is restricted in
that it moves only selected tuples down the path in path, as we discuss further
below; and (2) it performs the eviction on two paths in each tree per access. Our
3PC emulation of Circuit-ORAM also runs twice per each tree per access, but
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since the second execution is limited to eviction, for simplicity of presentation we
omit it in all discussion below, except when we report performance data.

Top-Level Design of 3PC Circuit-ORAM. The client algorithm in all variants
of Binary-Tree ORAM, which includes Path-ORAM and Circuit-ORAM, consists
of the following phases:

1. Retrieval, which given path = tree.path(L) and address prefix N, locates tuple
T = (1,L,N, data) in path and retrieves next-level label (or record) in data;

2. Post-Process, which removes T from path, injects new labels into T, and re-
inserts it in the root (= stash);

3. Eviction, which can be divided into two sub-steps:
(a) Eviction Logic: An eviction map EM is computed, by function denoted

Route, on input label L and the metadata fields (fb, lb) of tuples in path,
(b) Data Movement: Permute tuples in path according to map EM.

Our 3PC ORAM is a secure emulation of the above procedure, with the Evic-
tion Logic function Route instantiated as in Circuit-ORAM, and it performs all
the above steps on the sharings of inputs tree and N, given label L as a public
input known to all parties. With the exception of the next-level label recovered
in Retrieval, all other variables remain secret-shared. Our implementation of the
above steps resembles the 3PC ORAM emulation of Binary-Tree ORAM by [14]
in that we use garbled circuit for Eviction Logic, and specialized 3PC protocols
for Retrieval, Post-Process, and Data Movement. However, our implementations
are different from [14]: First, to enable low-bandwidth batch processing of retrieval
we use different sharings and protocols in Retrieval and Post-Process. Second, to
securely “glue” Eviction Logic and Data Movement we need to mask mapping EM
computed by Eviction Logic and implement Data Movement given this masked
mapping. We explain both points in more detail below.

Low-Bandwidth 3PC Retrieval. The Retrieval phase realizes a Keyword Secret-
Shared PIR (Kw-SS-PIR) functionality: The parties hold a sharing of an array of
(keyword,value) pairs, and a sharing of a searched-for keyword, and the protocol
must output a sharing of the value in the (keyword,value) pair that contains the
matching keyword. In our case the address prefix N[1,i] is the searched-for keyword
and path is the array of the (keyword,value) pairs where keywords are address
fields adr and values are payload fields data.

The 3PC implementation of Retrieval in [14] has O(`D) bandwidth where
`=O(log n) is the number of tuples in path, and here we reduce it to 3D+O(` log `)
as follows: First, we re-use the Keyword Search protocol KSearch of [14] to create
a secret-sharing of index j of a location of the keyword-matching tuple in path.
This subprotocol reduces the problem to finding an index where a secret-shared
array of length ` contains an all-zero string, which has Θ(` log `) communication
complexity. Our KSearch implementation has 2`(c + log `) bandwidth where 2−c

is the probability of having to re-run KSearch because of collisions in ` pairs of
(c + log `)-bit hash values. The overall bandwidth is optimal for c≈ log log `, but
we report performance numbers for c= 20.

Secondly, we use a Secret-Shared PIR (SS-PIR) protocol, which creates a fresh
sharing of the j-th record given the shared array and the shared index j. We
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implement SS-PIR in two rounds from any 2-server PIR [13] whose servers’ PIR
responses form an xor-sharing of the retrieved record. Many 2-PIR’s have this
property, e.g. [9, 2, 20], but we exemplify this generic construction with the simplest
form of 2-server PIR of Chor et al. [9] which has 3`+ 3D bandwidth. This is not
optimal in `, but in our case `≤ 150 + b where b is the number of accesses with
postponed eviction, the optimized version of SS-PIR sends only ≈`+3D bits on-
line, and KSearch already sends O(` log `) bits. Our generic 2-PIR to 3PC-SS-PIR
compiler is simple (a variant of it appeared in [20]) but the 3-round 3PC Kw-SS-
PIR protocol is to the best of our knowledge novel.

Fig. 4: Randomization of Circuit ORAM’s Bucket Map

Efficient 3PC Circuit-ORAM Eviction. In Eviction we use a simple Data
Movement protocol, with 2 round and ≈ 2|path| bandwidth. With three parties
denoted as (C,D,E), our protocol creates a two-party (C,E)-sharing of path′ =
EM(path) from a (C,E)-sharing of path if party D holds eviction map EM in the
clear. Naively outputting EM = Route(path) to party D is insecure, as eviction map
is correlated with the ORAM access pattern, so the question is whether EM can
be masked by some randomizing permutation known by C and E. [14] had an easy
solution for its binary tree ORAM variant because its algorithm Route outputs a
regular EM, that buckets on every except the last level of the retrieved path always
move two tuples down to the next level, so all [14] needed to do is to randomly
permute tuples on each bucket level of path, and the resulting new EM′ on the
permuted path leaks no information on EM. By contrast, Circuit-ORAM eviction
map is non-regular (see Fig. 4): Its bucket level map Φ of EM can move a tuple
by variable distance and can leave some buckets untouched, both of which are
correlated with the density of tuples in path, and thus with ORAM access pattern.

Thus our goal is to transform the underlying Circuit-ORAM eviction map
EM = (Φ, t) into a map whose distribution does not depend on the data (Φ de-
scribes the bucket-level movement, while t is an array containing one tuple index
from each bucket that will be moved). We do so in two steps. First, we add an
extra empty tuple to each bucket and we modify Circuit-ORAM algorithm Route

to expand function Φ : Zd→Zd ∪ {⊥} into a cyclic permutation σ on Zd (d is the
depth of path, Zd is the set {0, ..., d − 1}), by adding spurious edges to Φ in the
deterministic way illustrated in Fig. 4. Second, we apply two types of masks to
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the resulting output (σ, t) of Route, namely a random permutation π on Zd and
two arrays (δ, ρ), each of which contains a random tuple index in each bucket. Our
Eviction Logic protocol will use (π, δ, ρ) to mask (σ, t) by computing (σ◦, t◦) s.t.
σ◦=π ·σ ·π−1 (permutation composition) and t◦= ρ⊕π(t⊕ δ). And now we have
a masked eviction map EMσ◦,t◦ that can be revealed to party D but does not leak
information on EMσ,t or EMΦ,t.

3 Our Protocol: 3PC Emulation of Circuit-ORAM

Protocol Parties. We use C,D,E to denote the three parties participating in 3PC-
ORAM. We use xP to denote that variable x is known only to party P ∈ {C,D,E},
xP1P2 if x is known to P1 and P2, and x if known to all parties.

Shared Variables, Bitstrings, Secret-Sharing. Each pair of parties P1,P2 in
our protocol is initialized with a shared seed to a Pseudorandom Generator (PRG),
which allows them to generate any number of shared (pseudo)random objects. We
write xP1P2 $←− S if P1 and P2 both sample x uniformly from set S using the PRG
on a jointly held seed. We use several forms of secret-sharing, and here introduce
four of them which are used in our high level protocols 3PC-ORAM.Access and
3PC-ORAM.ML (Alg. 1 & 2):

〈x〉 = (xDE
1 , xCE2 , xCD3 ) for x1, x2, x3

$←− {0,1}|x| where x1 ⊕ x2 ⊕ x3 = x

〈x〉P1–P2

xor = (xP1
1 , xP2

2 ) for x1, x2
$←− {0,1}|x| where x1 ⊕ x2 = x

〈x〉P1P2–P3

shift = (xP1P2
12 , xP3

3 ) for x ∈ Zm, x12, x3
$←− Zm s.t. x12 + x3 = x mod m

〈x〉shift = (〈x〉CD–E
shift , 〈x〉CE–D

shift , 〈x〉DE–C
shift )

Integer Ranges, Permutations. We define Zn as set {0, ..., n−1}, and permn as
the set of permutations on Zn. If π, σ ∈ permn then π−1 is an inverse permutation
of π, and π · σ is a composition of σ and π, i.e. (π · σ)(i) = π(σ(i)).

Arrays. We use arraym[`] to denote arrays of ` bitstrings of size m, and we write
array[`] if m is implicit. We use x[i] to denote the i-th item in array x. Note that
x ∈ arraym[`] can also be viewed as a bitstring in {0,1}`m.

Permutations, Arrays, Array Operations. Permutation σ ∈ perm` can be
viewed as an array x ∈ arraylog `[`], i.e. x = [σ(0), ..., σ(`−1)]. For π ∈ perm` and
y ∈ array[`] we use π(y) to denote an array containing elements of y permuted
according to π, i.e. π(y) = [yπ−1(0), ..., yπ−1(`−1)].

Garbled Circuit Wire Keys. If variable x ∈ {0,1}m is an input/output in
circuit C, and wk ∈ arrayκ[m, 2] is the set of wire key pairs corresponding to this
variable in the garbled version of C, then {wk :x} ∈ arrayκ[m] denotes the wire-key
representation of value x on these wires, i.e. {wk :x} = {wk[x[i]]}mi=1. If the set of
keys is implicit we will denote {wk :x} as x.

3PC ORAM Protocol. Our 3PC ORAM protocol, 3PC-ORAM.Access, Alg 1,
performs the same recursive scan through data-structure tree0, ..., treeh−1 as the
client-server Path-ORAM (and Circuit-ORAM) described in Section 2, included
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Algorithm 1 3PC-ORAM.Access: 3PC Circuit-ORAM

Params: Address size log n, address chunk size τ , number of trees h = logn
τ + 1

Input: 〈OM,N, rec′〉, for OM = (tree0, ..., treeh−1), N = (N1, ...,Nh−1)

Output: 〈rec〉: record stored in OM at address N

1: {〈L′i〉 $←− {0,1}i·τ}h−1
i=1 ; 〈N0,Nh,L

′
0,L
′
h〉 := ⊥ ; L0 := ⊥

2: for i = 0 to h−1 do

3PC-ORAM.ML: Li,
〈
treei, (N0|...|Ni),Ni+1,L

′
i,L
′
i+1, * rec

′〉
−→ Li+1 (* 〈rec〉 instead of Li+1), 〈treei〉

Algorithm 2 3PC-ORAM.ML: Main Loop of 3PC Circuit-ORAM

Param: Tree level index i. path depth d (number of buckets). Bucket size w.
Input: Li,

〈
tree,N, ∆N,L′i,L

′
i+1

〉
(* 〈rec′〉)

Output: (1) Li+1 = T.data[∆N] for tuple T on tree.path(Li) s.t.
T.(fb|adr) = 1|N (* 〈rec〉 := 〈T.data〉)

(2) 〈tree.path(L)〉 modified by eviction, with T.lb := L′i and
T.data[∆N] := L′i+1 (* T.data := rec′)

Offline: pick (π, δ, ρ)CE, for π $←− permd, δ, ρ $←− arraylog(w+1)[d]

## Retrieval of Next Label/Record ##

〈path〉 := 〈tree.path(Li)〉
1: KSearch: 〈path.(fb|adr), 1|N〉 → 〈j〉shift . path[j].(fb|adr) = 1|N
2: 3ShiftPIR: 〈path.data〉 , 〈j〉shift → 〈X〉 (* 〈rec〉 := 〈X〉) . X = path[j].data

3: 3ShiftXorPIR: 〈path.data, ∆N〉 , 〈j〉shift →Li+1(*skip) . Li+1=path[j].data[∆N]

## Post-Process of Found Tuple ##

4: ULiT:
〈
X,N, ∆N,L′i,L

′
i+1 (* rec′)

〉
,Li+1 → 〈T〉

. X[∆N] := L′i+1 (* X := rec′), T= (1,N,L′i, X)

5: FlipFlag: 〈path.fb〉 , 〈j〉shift → 〈path.fb〉 . path[j].fb := 0

〈path〉 := 〈path.append-to-root(T)〉
## Eviction ##

6: GC(Route): Li, δ
CE, 〈path.(fb, lb)〉 → (σ, t′)D , wkE

. σ = {wk :σ} and t′ = t⊕ δ for expanded Circ-ORAM eviction map (σ, t)

7: PermBuckets: σD, πCE,wkE → σ◦D . σ◦ = π · σ · π−1

8: PermTuples: t′
D
, (π, ρ)CE → t◦D . t◦ = ρ⊕ π(t′)

9: XOT: 〈path〉 , (π, δ, ρ)CE, (σ◦, t◦)D →
〈
path′

〉
. path′ = EMσ,t(path)

〈tree.path(Li)〉 :=
〈
path′

〉
*: On top-level ORAM tree, i.e. i = h− 1. .: Comments.
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rounds bandwidth

KSearch 2 ≈ 2`(c+ log `)
3ShiftPIR 2 3`+ 3|data| for |data| = 2τ |L|

3ShiftXorPIR 2 3 · 2τ `+ 6|L|
ULiT 2 ≈ 4|data| (+4|data| offline)

FlipFlag 2 4`
GC(Route) 1 2|x|κ (+4|circ|+ 2|x|)κ offline)

PermBuckets 2 3d log d (+d2(κ+ 2 log d) + 3d log d offline)
PermTuples 2 2d(w+1) (+d(w+1) offline)

XOT 3 4|path|+ 2` log(`) (+2|path| offline)

Fig. 5: Round and bandwidth for subprotocols of Alg. 2, for ` the number of
tuples on path and x the circuit input size (≈ `(d+ logn) + d log(w + 1))

for reference as Alg. 23 in Appendix B, except it runs on inputs in 〈·〉 secret-
sharing format, i.e. sharings of ORAM trees, 〈tree0〉 , ..., 〈treeh−1〉, sharing of ad-
dress 〈N〉, and sharing of a new record 〈rec′〉 if instr = write. The main loop of
3PC-ORAM.Access, i.e. protocol 3PC-ORAM.ML, Alg. 2, also follows the correspond-
ing client-server algorithm ORAM.ML, included for reference as Alg. 24 in Appendix
B, except that apart of the current-level leaf label L which is known to all parties,
all its other inputs are secret-shared as well.

Protocol 3PC-ORAM.ML calls subprotocols whose round/bandwidth specifica-
tions are stated in Fig. 5. (We omit computation costs because they are all com-
parable to link-encryption of communicated data). The low costs of these subpro-
tocols are enabled by different forms of secret-sharings, e.g. xor versus additive,
or 2-party versus 3-party, and by low-cost (or no cost) conversions between them.
For implementations of these protocols we refer to Appendix A.

Three Phases of 3PC-ORAM.ML: Protocol 3PC-ORAM.ML computes on sharing
〈path〉 for path = tree.path(L) and it contains the same three phases as the client-
server Path-ORAM, but implemented with specialized 3PC protocols:

(1) Retrieval runs protocol KSearch to compute “shift” (i.e. additive) sharing
〈j〉shift of index for tuple T= path[j] in path s.t. path[j].adr= N and path[j].fb= 1,
i.e. it is the unique (and non-empty) tuple pertaining to address prefix N; Then
it runs protocol 3ShiftPIR to extract sharing 〈X〉 of the payload X = path[j].data
of this tuple, given sharings 〈path〉 and 〈j〉shift; In parallel to 3ShiftPIR it also
runs protocol 3ShiftXorPIR to publicly reconstruct the next-level label stored at
position ∆N in this tuple’s payload, i.e. Li+1 = (path[j].data)[∆N], given sharing
〈path〉 and 〈∆N〉. This construction of the Retrieval emulation allows for presenting
protocols 3ShiftPIR and 3ShiftXorPIR (see resp. Alg. 9 and 11 in Appendix A) as
generic SS-PIR constructions from a class of 2-Server PIR protocols. However,
a small modification of this design achieves better round and on-line bandwidth
parameters, see an Optimizations and Efficiency Discussion paragraph below.

(2) Post-Process runs the Update-Label-in-Tuple protocol ULiT to form sharing
〈T〉 of a new tuple using sharing 〈X〉 of the retrieved tuple’s payload, sharings
〈N〉 and 〈∆N〉 of the address prefix and the next address chunk, and sharings
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〈L′i〉 ,
〈
L′i+1

〉
of new labels; In parallel to ULiT it also runs protocol FlipFlag to flip

the full/empty flag to 0 in the old version of this tuple in path, which executes on
inputs the sharings 〈path.fb〉 of field fb of tuples in path and on the “shift” sharing
〈j〉shift; Once ULiT terminates the parties can insert 〈T〉 into sharing of the root
bucket in path. At this point the root bucket has size s+1 (or s+b if we postpone
eviction for a batch of b accesses).

(3) Eviction emulates Circuit-ORAM eviction on sharing 〈path〉 involved in re-
trieval (or another path because 3PC-ORAM.Access, just like client-server Circuit-
ORAM, performs eviction on two paths per access). It uses the generic garbled
circuit protocol GC(Route) to compute the Circuit-ORAM eviction map (appropri-
ately masked), and then runs protocols PermBuckets, PermTuples, and XOT to apply
this (masked) eviction map to the secret-shared 〈path〉. We discuss the eviction
steps in more details below.

Eviction Procedure. As we explain in Section 2, we split Eviction into Eviction
Logic, which uses garbled circuit subprotocol to compute the eviction map EM,
and Eviction Movement, which uses special-purpose protocols to apply EM to
the shared path, which in protocol 3PC-ORAM.ML will be 〈path〉. However, recall
that revealing the eviction map to any party would leak information about path
density, and consequently the access pattern. We avoid this leakage in two steps:
First, we modify the Circuit-ORAM eviction logic computation Route, so that when
it computes bucket-level map Φ and the tuple pointers array t, which define an
eviction map EMΦ,t, the algorithm scans through the buckets once more to expand
the partial map Φ into a complete cycle σ over the d buckets (see Fig. 4). (We
include the modified Circuit-ORAM algorithm Route in Appendix D.) Second, the
garbled circuit computation GC(Route), see Step 6, Alg. 2, does not output (σ, t)
to D in the clear: Instead, it outputs t′= t⊕δ where δ is a random array, used here
as a one-time pad, and the garbled wire encoding of the bits of σ= [σ(1), ..., σ(d)],

i.e. the output wire keys {wk :σ}=wk[i][σ[i]]}d log d
i=1 .

Recall that we want D to compute (σ◦, t◦), a masked version of (σ, t), where
σ◦=π · σ · π−1 and t◦= ρ ⊕ π(t ⊕ δ), for π a random permutation on Zd and δ, ρ
random arrays, all picked by C and E. This is done by protocol PermBuckets, which
takes 2 on-line rounds to let D translate {wk :σ} into σ◦=π ·σ ·π−1 given wk held
by E and π held by C,E, and (in parallel) PermTuples, which takes 2 rounds to let
D translate t′= t⊕ δ into t◦= ρ⊕ π(t′) given π, ρ held by C,E. Then C,E permute

〈path〉C–E
xor (implied by 〈path〉, because 〈x〉 = (xDE

1 , xCE2 , xCD3 ) → (xE1 , x
E
2 , x

C
3 ) =

〈x〉C–E
xor ) by Π = ρ̃ · π̈ · δ̃ where π̈, δ̃, and ρ̃ are permutations on ` = d · (w+1) tuples

in the path induced by π, δ, ρ:

– π ∈ permd defines π̈ ∈ perm` s.t. π̈(j, t) = (π(j), t), i.e. π̈ moves position t in
bucket j to position t in bucket π(j);

– δ ∈ arraylog (w+1)[d] defines δ̃ ∈ perm` s.t. δ̃(j, t) = (j, t ⊕ δ), i.e. δ̃ moves
position t in bucket j to position t⊕ δ[j] in bucket j; same for ρ and ρ̃;

Now use protocol XOT in 2 round and ≈ 2|path| bandwidth to apply map EMσ◦,t◦

held by D to 〈Π(path)〉C–E
xor . The result is 〈path◦〉C–E

xor for path◦ = (EMσ◦,t◦ ·Π)(path),

and when C,E apply Π−1 to it they get
〈
path′

〉C–E
xor

for path′ = (Π−1 · EMσ◦,t◦ ·
Π)(path). Finally

〈
path′

〉
can be reconstructed from

〈
path′

〉C–E
xor

in 1 round and
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2|path| bandwidth (see Appendix A for secret-sharing conversions and reasoning),
and can then be injected into 〈tree〉.
Eviction Correctness. We claim that the eviction protocol described above im-
plements mapping EMσ,t applied to path, i.e. that (note that (x̃)−1 = x̃):

EMσ,t = Π−1 · EMσ◦,t◦ ·Π = (δ̃ · π̈−1 · ρ̃) · (EMπσπ−1,ρ⊕π(t⊕δ)) · (ρ̃ · π̈ · δ̃) (1)

Consider the set of points S = {(j, t[j]) | j ∈ Zd} which are moved by the left
hand side (LHS) permutation EMσ,t. To argue that eq. (1) holds we first show
that the RHS permutation maps any point (j, t[j]) of S in the same way as the
LHS permutation:

(j, t[j])
(ρ̃·π̈·δ̃)−→ (π(j), ρ[π(j)]⊕ t[j]⊕ δ[j]) = (π(j), t◦[π(j)])

EMπσπ−1,t◦−→ (πσπ−1(π(j)), t◦[πσπ−1(π(j))]) = (πσ(j), t◦[πσ(j)])

= (πσ(j), ρ[πσ(j)]⊕ t[σ(j)]⊕ δ[σ(j)])

ρ̃−→ (πσ(j), t[σ(j)]⊕ δ[σ(j)])
π̈−1

−→ (σ(j), t[σ(j)]⊕ δ[σ(j)])

δ̃−→ (σ(j), t[σ(j)])

It remains to argue that RHS is an identity on points not in S, just like LHS.
Observe that set S′ of tuples moved by EMσ◦,t◦ consists of the following tuples:

(k, t◦[k]) = (k, ρ[k]⊕ t[π−1(k)]⊕ δ[π−1(k)]) = (π(j), ρ[π(j)]⊕ t[j]⊕ δ[j])
Also note that:

(ρ̃·π̈·δ̃)(j, t[j]) = (ρ̃·π̈)(j, t[j]⊕δ[j]) = ρ̃(π(j), t[j]⊕δ[j]) = (π(j), ρ[π(j)]⊕t[j]⊕δ[j])
which means that S′=Π(S), so if (j, t) 6∈S then Π(j, t) 6∈S′, hence (EMσ◦,t◦ ·
Π)(j, t) =Π(j, t), and hence Π−1 · EMσ◦,t◦ ·Π and EMσ,t are equal on (j, t) 6∈S.

Optimizations and Efficiency. As mentioned above, we can improve on both
bandwidth and rounds in the Retrieval phase of 3PC-ORAM.ML shown in Alg. 2.
The optimization comes from an observation that our protocol KSearch (see Alg. 6,

App. A) takes just one round to compute shift-sharing 〈j〉DE–C
shift of index j, and its

second round is a resharing which transforms 〈j〉DE–C
shift into 〈j〉shift. This round of

resharing can be saved, and we can re-arrange protocols 3ShiftPIR and 3ShiftXorPIR

(shown as Alg. 9 and 11 in App. A) so they use only 〈j〉DE–C
shift as input and effectively

piggyback creating the rest of 〈j〉shift in such a way that the modified protocols,
denoted resp. 3ShiftPIR-Mod and 3ShiftXorPIR-Mod (shown as Alg. 12 and 13 in App.
A) take 2 rounds, which makes the whole Retrieval take only 3 rounds, hence access
protocol 3PC-ORAM.Access takes 3h rounds in Retrieval(Protocols 3ShiftPIR-Mod

and 3ShiftXorPIR-Mod also use resp. 2` and 2·2τ ` less bandwidth than 3ShiftPIR and
3ShiftXorPIR.)

Surprisingly, the modified Retrieval and Post-Processing phases together take
only 3 rounds, amortized over the tree traversal, which enables pipelined processing
of b accesses in 3b+ 3h rounds (with postponed eviction). Very briefly, this is
because (1) the 2-round protocol FlipFlag can start after the first round of Retrieval

(and thus terminates in round 3) because KSearch produces FlipFlag’s input 〈j〉DE–C
shift
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in round 1; and (2) protocol ULiT has 2 rounds, but its first round can be computed
in parallel to 1st round of KSearch because it needs only ∆N as an input, and while
its 2nd round requires Li+1 which is output only in round 3 by 3ShiftXorPIR-Mod

(other inputs of ULiT are available before), this 2nd round of ULiT can execute in
parallel with the 1st round of Retrieval instance for the next access request on the
same tree, and this is because the 1st round of retrieval consists of KSearch which
takes only fb, adr fields of the tuples in path as inputs while the 2nd round of ULiT
works only on the data field of tuple T.6

Eviction takes 6 rounds, which can run in parallel on all trees per access, and
O(κlog3n+Dlog n) bandwidth, which in practice is about 100x more than Retrieval
and Post-Processing, but it can be postponed for a batch of accesses.

4 Security

Protocol 3PC-ORAM of Section 3 is a three-party secure computation of an Obliv-
ious RAM functionality, i.e. it can implement RAM for any 3PC protocol in the
RAM model. To state this formally we define a Universally Composable (UC)
Oblivious RAM functionality FORAM for 3-party computation (3PC) in the frame-
work of Canetti [7], and we argue that our 3PC ORAM realizes FORAM in the
setting of m= 3 parties with honest majority, i.e. only t= 1 party is (statically)
corrupted, assuming honest-but-curious (HbC) adversary, i.e. corrupted party fol-
lows the protocol. We assume secure pairwise links between the three parties. Since
we have static-corruptions, HbC adversary, and non-rewinding simulators, security
holds even if communication is asynchronous.

3PC ORAM Functionality. Functionality FORAM is parametrized by address
and record sizes, resp. log n and D, and it takes command Init, which initial-
izes an empty array M ∈ arrayD[n], and Access(instr, 〈N, rec′〉) for (instr,N, rec′) ∈
{read,write} × {0,1}logn × {0,1}D, which returns a fresh secret-sharing 〈rec〉 of
record rec=M[N], and if instr=write it also assigns M[N] := rec′. Technically, FORAM

needs each of the three participating parties to make the call, where each party
provides their part of the sharing, and FORAM’s output 〈rec〉 is also delivered in
the form of a corresponding share to each party. However, in the HbC setting
all parties are assumed to follow the instructions provided by an environment
algorithm Z, which models higher-level protocol which utilizes FORAM to imple-
ment oblivious memory access. Hence we can simply assume that Z sends Init and
Access(instr, 〈N, rec′〉) to FORAM and receives 〈M[N]〉 in return.

Security of our 3PC ORAM. Since our protocol is a three-party secure emula-
tion of Circuit-ORAM, we prove that it securely realizes FORAM in the (t,m) = (1, 3)
setting if Circuit-ORAM defines a secure Client-Server ORAM, which implies se-
curity of 3PC-ORAM by the argument for Circuit-ORAM security given in [27].
We note that protocol 3PC-ORAM.Access of Section 3 implements only procedure
Access. Procedure Init can be implemented by running 3PC-ORAM.Access with
instr=write in a loop for N from 0 to n−1 (and arbitrary rec′’s), but this requires

6 We include Fig. 10 in Appendix E.1 to visualize the dependencies between subprotocols
of 3PC-ORAM.ML, both in single and pipelined execution.
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some adjustments in 3PC-ORAM.Access and 3PC-ORAM.ML to deal with initializa-
tion of random label assignments and their linkage. We leave the specification
of these (straightforward) adjustments to the full version, and our main security
claim, stated as Corollary 1 below, assumes that Init is executed by a trusted-party.

We defer the proof of Corollary 1 to Appendix C. Very briefly, the proof uses UC
framework, arguing that each protocol securely realizes its intended input/output
functionality if each subprotocol it invokes realizes its idealized input/output func-
tionality. All subprotocols executed by protocol 3PC-ORAM.ML of Section 3 are ac-
companied with brief security arguments which argue precisely this statement. As
for 3PC-ORAM.ML, its security proof, given in Appendix C, is centered around two
facts argued in Section 3, namely that our way of implementing Circuit-ORAM
eviction map, with D holding σ◦ = π ·σ ·π−1 and t◦ = ρ⊕π(t⊕δ) and E,C holding
π, ρ, δ is (1) correct, because Π−1 ·EMσ◦,t◦ ·Π = EMσ,t for Π = ρ̃ · π̈ · δ̃, and (2) it
leaks no information to either party, because random π, ρ, δ induce random σ◦, t◦

in D’s view.

Corollary 1 (from Appendix C) Assuming secure initialization, 3PC-ORAM.Access
is a UC-secure realization of 3PC ORAM functionality FORAM.

5 Performance Evaluation

We tested a Java prototype of our 3PC Circuit-ORAM, with garbled circuits im-
plemented using the ObliVM library by Wang [27], on three AWS EC2 c4.2xlarge
servers, with communication links encrypted using AES-128. Each c4.2xlarge in-
stance is equipped with eight Intel Xeon E5-2666 v3 CPU’s (2.9 GHz), 15 GB
memory, and has 1 Gbps bandwidth. (However, our tested prototype utilizes multi-
threading only in parallel Eviction, see below.)

In the discussion below we use the following acronyms:
- cust-3PC: our 3PC Circuit-ORAM protocol;
- gen-3PC: generic 3PC Circuit-ORAM using 3PC of Araki et al. [1];
- 2PC: 2PC Circuit-ORAM [27];
- C/S: the client-server Path-ORAM [26].

Wall Clock Time. Fig. 6 shows online timing of cust-3PC for small record sizes
(D= 4B) as a function of address size log n. It includes Retrieval wall clock time
(WC), End-to-End (Retrieval+PostProcess+Eviction) WC, and End-to-End WC
with parallel Eviction for all trees, which shows 60% reduction in WC due to better
CPU utilization. Note that Retrieval takes about 8 milliseconds for log n= 30 (i.e.
230 records), and that Eviction takes only about 4-5 times longer. Recall that
Retrieval phase has 3h rounds while Eviction has 6, which accounts for much
smaller CPU utilization in Retrieval.

CPU Time. We compare total and online CPU time of cust-3PC and 2PC in Fig.
7 with respect to memory size n, for D = 4B.7 Since 2PC implementation [27] does

7 We include CPU comparisons only with 2PC Circuit-ORAM, and not SQRT-ORAM
[30] and DPF-ORAM [12], because the former uses the same Java ObliVM GC library
while the latter two use the C library Obliv-C. Still, note that for n = 30, the on-line
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Fig. 6: Our 3PC-ORAM Online Wall-Clock
Time(ms) vs logn for D = 4B

Fig. 7: CPU Time (ms) vs logn, for D = 4B

Fig. 8: Online bndw.(MB) vs logn for D=4B Fig. 9: Comparison with 2PC-ORAM’s in
online+offline bndw.(MB) vs logn for D=4B

not provide online/offline separation, we approximate 2PC online CPU time by its
garbled circuit evaluation time, because 2PC costs due to OT’s can be pushed to
precomputation. As Fig. 7 shows, the cust-3PC CPU costs are between 6x and 10x
lower than in 2PC, resp. online and total, already for log n = 25, and the gap widens
for higher n. In Appendix E.2 we include CPU time comparison with respect to
D, which shows CPU ratio of 2PC over cust-3PC grows to ≈ 25 for D ≥ 10KB.

Bandwidth Comparison with Generic 3PC. Timing results depend on many
factors (language, network, CPU, and more), and bandwidth is a more reliable
predictor of performance for protocols using only light symmetric crypto. In Fig.
8 we compare online bandwidth of cust-3PC, gen-3PC, and C/S, as a function of the
address size log n, for D = 4B. We see for small records our cust-3PC is only a factor
of 2x worse than the optimal-bandwidth gen-3PC (which, recall, has completely
impractical round complexity). In Appendix E.2 we show that as D grows, cust-

3PC beats gen-3PC in bandwidth for D≥1KB.

Bandwidth Comparison with 2PC ORAMs. In Fig. 9 we compare total
bandwidth of cust-3PC and several 2PC ORAM schemes, including 2PC, the DPF-
based FLORAM scheme of [12], the 2PC SQRT-ORAM of [30], and a trivial linear-
scan scheme. Our cust-3PC bandwidth is competitive to FLORAM for all n’s,

computation due to FSS evaluation and linear memory scans contributes over 1 sec to
wall-clock in [12], while our on-line wall-clock comes to 40 msec.
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but for n≥ 24 the O(
√
n) asymptotics of FLORAM takes over. Note also that

FLORAM uses O(n) local computation vs. our O(log3n), so in the FLORAM case
bandwidth comparison does not suffice. Indeed, for n = 230 and D = 4B, [12]
report > 1 sec overall processing time on LAN vs. 40 msec for us.

For further discussions of bandwidth and CPU time with respect to record size D,
and cust-3PC CPU time component, refer to Appendix E.2.
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A Auxiliary Three-Party Protocols

In this section we specify all sub-protocols used in the 3PC-ORAM protocol 3PC-
ORAM.ML, Alg. 2, of Section 3, together with the round/bandwidth characteristics
of their implementation. In subsection A.2 we also include modified versions of pro-
tocols 3ShiftPIR, Alg. 9, and 3ShiftXorPIR, Alg. 11, namely protocols 3ShiftPIR-Mod,
Alg. 12, and 3ShiftXorPIR-Mod, Alg. 13. As we explain in Section 3, using these
protocols results in reducing the round complexity of 3PC-ORAM.ML from 4 to 3
per ORAM tree in the retrieval and post-processing phase.

Types of Secret-Sharing. In Alg. 3 we list the types of secret-sharing used in
all our protocols. Random sharings of the first three types can be chosen non-
interactively by random sampling each sharing component. First four sharings
are xor-homomorphic, e.g. for any shared variables 〈x〉 , 〈y〉 and constant c, we
write 〈x⊕ y〉 and 〈x⊕ c〉 for sharing of x ⊕ y and x ⊕ c locally computed by all
players. We can transform one sharing to another via either local transformations,
denoted Extract, Alg. 4, or via 1-round protocols, denoted Reshare, Alg. 5. All
Reshare protocols output fresh sharings of the target type, while the non-interactive
transformations Extract are deterministic.

Additional Tools and Notation. In the description of some of the protocols in
this section we will find it helpful to use shortcuts which we list below.

Sometimes we need to randomize a secret-sharing with a fresh zero-sharing,
i.e. a random secret-sharing of a zero. We will use a two-party zero-sharing,
〈0m〉P1–P2

xor = (xP1
1 , xP2

2 ), generated by sampling rP1P2 $←− {0,1}m and setting (x1, x2) :=
(r, r), and a three-party zero-sharing, 〈0m〉xor = (xC1 , x

D
2 , x

E
3), generated by sam-

pling rDE
1

$←− {0,1}m, rCE2
$←− {0,1}m, rCD3

$←− {0,1}m, and setting (x1, x2, x3) :=
(r2 ⊕ r3, r1 ⊕ r3, r1 ⊕ r2).

If σ ∈ permm and we permute σ by π ∈ permm, then the result, [ρ] = π(σ),
encodes permutation ρ = σ · π−1, because ρ(i) = ρ[i] = σ[π−1(i)] = σ(π−1(i)) =
(σ ·π−1)(i). More generally, consider a 1-1 function σ : Zk → Zm for m ≥ k, and a
relation in Zm × Zk defined as σ−1 = {(j, i) s.t. (i, j)∈σ}. If m > k then π = σ−1

is not a function, but if x ∈ array[m] then π(x) denotes an array y ∈ array[k] s.t.
y[i] = x[π−1(i)] = x[σ(i)] for i ∈ Zk.

We use additional shortcuts, for a∈ array`[m], t∈Zm, p∈{0,1}k, v ∈{0,1}`:
– ashift[t] denotes b ∈ array`[m] s.t. b[i] = a[i+ t mod m] for i ∈ Zm;

– arot[p] denotes array b ∈ array`[m] s.t. b[i⊕ p] = a[i] for i ∈ Zm;

– axor[ v @ t] denotes b ∈ array`[m] s.t. b[t] = a[t]⊕ v and b[i] = a[i] for i 6= t;
– indmt denotes x ∈ array1[m] s.t. x[t] = 1 and x[i] = 0 for all i 6= t;
– tbit[i] denotes the i-th bit of binary representation of t, for i ∈ log(m).
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Algorithm 3 Types of Secret-Sharing

– 〈x〉 = (xDE
1 , xCE2 , xCD3 ) for x1, x2, x3

$←− {0,1}|x| s.t. x1 ⊕ x2 ⊕ x3 = x

– 〈x〉xor = (xC1 , x
D
2 , x

E
3) for x1, x2, x3

$←− {0,1}|x| s.t. x1 ⊕ x2 ⊕ x3 = x

– 〈x〉P1–P2

xor = (xP1
1 , xP2

2 ) for x1, x2
$←− {0,1}|x| s.t. x1 ⊕ x2 = x

– 〈x〉2,1-xor = ( 〈x〉CD–E
2,1-xor , 〈x〉

DE–C
2,1-xor , 〈x〉

EC–D
2,1-xor ),

where 〈x〉P1P2–P3

2,1-xor = (xP1P2
12 , xP3

3 ) for x12, x3
$←− {0,1}|x| s.t. x12 ⊕ x3 = x

– 〈x〉shift = ( 〈x〉CD–E
shift , 〈x〉DE–C

shift , 〈x〉EC–D
shift ), for x ∈ Z`,

where 〈x〉P1P2–P3

shift = (xP1P2
12 , xP3

3 ) for x12, x3
$←− Z` s.t. x12 + x3 = x mod `

Algorithm 4 Extract on input 〈x〉= (xP1P2
1 , xP2P3

2 , xP3P1
3 )

−→ 〈x〉P1–P2

xor = ((x1 ⊕ x3)P1, x2
P2)

−→ 〈x〉xor = (x1
P1, x2

P2, x3
P3)

−→ 〈x〉2,1-xor = (((x1
P1P2,(x2⊕x3)P3), (x2

P2P3,(x1⊕x3)P1), (x3
P3P1,(x1⊕x2)P2))

Algorithm 5 Reshare: Interactive Sharing Transformation

(i) 〈x〉P1–P2

xor = (xP1
1 , xP2

2 ) −→ 〈x〉 = (zP2P3
1 , zP1P3

2 , zP1P2
3 )

Pick zP2P3
1 , zP1P3

2
$←− {0,1}|x|;

P1 and P2 exchange (x1 ⊕ z2) and (x2 ⊕ z1), set z3 := (x1 ⊕ z2)⊕ (x2 ⊕ z1)

(ii) 〈x〉xor = (xP1
1 , xP2

2 , xP3
3 ) −→ 〈x〉 = (zP1P2

1 , zP2P3
2 , zP3P1

3 )

Generate random m-bit zero-sharing, (sP1
1 , sP2

2 , sP3
3 ) $←− 〈0m〉xor;

Each Pi sets zi := xi ⊕ si and sends zi to P(i+1 mod 3)

(iii) 〈x〉P2P3–P1

shift = (xP2P3
23 , xP1

1 ) → 〈x〉shift = (〈x〉P1P2–P3

shift ,〈x〉P2P3–P1

shift ,〈x〉P3P1–P2

shift )
If x12

P1P2 $←− Zm, P1 sends δ = x1−x12 to P3, and P3 sets x3 := x23+δ
(modm), then 〈x〉P1P2–P3

shift := (xP1P2
12 , xP3

3 ); (〈x〉P3P1–P2

shift computed likewise.)

(iv) 〈x〉P1–P2

xor = (xP1
1 , xP2

2 ) , zP1
1 −→ zP2

2 s.t. (zP1
1 , zP2

2 ) = 〈x〉P1–P2

xor

P1 sends δ = x1 ⊕ z1 to P2 who sets z2 := x2 ⊕ δ
Note: Protocol Reshare type (iv) is deterministic given input z1, but InsertLbl,
Alg. 15, invokes it on random z1, making (z1, z2) a fresh sharing of x.

Bandwidth: (i): 2|x|, (ii): 3|x|, (iii): 2|x|, (iv): |x|; Rounds: 1 (for each protocol);
Security: (i): Message x2 ⊕ z1 received by P1 can be computed from P1’s input and
output as x1 ⊕ z2 ⊕ z3, likewise for P2; (ii) Sharing (z1, z2, z3) is fresh by security of
zero-sharing, and each party receives only its output; (iii) Sharing (x23, x1) is fresh, and
value δ received by P3 can be computed from P3’s input and output; (iv) P2 can
compute message δ from its input and output.
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A.1 Protocols for Retrieval

Algorithm 6 Protocol KSearch (from [14]) (Step 1 in Alg 2)

Param: Security parameter κ, round-complexity parameter λ,
PRF F : {0,1}κ → {0,1}λ, array size `, record size c ≤ κ

Input: 〈u, v〉D–E
xor for u ∈ arrayc[`], v ∈ {0,1}c s.t. u[i] = v for exactly one i ∈ Z`

Output: 〈i〉shift for i as above, i.e. unique i s.t. u[i] = v

Offline: kDE $←− PRF F keyspace (can be re-used for multiple protocol instances)

1: rDE $←− arrayκ[`], sDE $←− Z`; (aD, bE) := 〈z〉D–E
xor where 〈z〉D–E

xor is locally trans-

formed from 〈u, v〉D–E
xor s.t. z[j] =u[j+s mod `]⊕ v for all j

D sends array x to C s.t. x[j] = Fk ( r[j]⊕ (a[j] | 0κ−c) ) for all j
E sends array y to C s.t. y[j] = Fk ( r[j]⊕ (b[j] | 0κ−c) ) for all j

2: Let 〈i〉DE–C
shift := (sDE, tC) for unique t s.t. x[t] = y[t]

(if x[t] = y[t] for ≥ 2 t’s, C asks D,E to re-run from step 1 with fresh rDE)

3: Reshare: 〈i〉DE–C
shift → 〈i〉shift

Bandwidth: ≈(1 + 2−λ+1)2`λ; Rounds: 2 (with ≤ 2−λ+ln ` re-run probability);
Security: By randomness of PRF pre-pad r and PRF property of F, each pair x[j], y[j]
of entries in x, y received by C is indistinguishable from a random pair of λ-bit values
except for unique i in Z` s.t. a[i] = b[i], where x[i] = y[i] is distributed as a single
random λ-bit value.
Note: This holds over multiple executions with same PRF key k due to freshness of r.

Algorithm 7 Protocol SSPIR (from [9]) (Used in Alg. 10 and 8)

Input: xP1P2 ∈ arraym[n], tP3 ∈ Zn

Output: 〈x[t]〉P1–P2

xor

Pick aP1P3
1

$←− {0,1}n, rP1P2 $←− {0,1}m;
1: P3 sends a2 = a1 ⊕ indnt to P2 (Note that a2 = a1 except a2[t] = a1[t]⊕ 1)
2: P1 sets z1 := r ⊕ XORSelect(x, a1), and P2 sets z2 := r ⊕ XORSelect(x, a2),

where XORSelect(x, a) =
⊕

i s.t. a[i]=1 x[i]

Output 〈x[t]〉P1–P2

xor = (zP1
1 , zP2

2 ).

Bandwidth: n; Rounds: 1;
Security: This is the basis of security of PIR of Chor et al. [9]: P2’s received message a2
is a random string because a1 is a one-time pad. Moreover, the secret-sharing of x[t] is
random because r is a one-time pad.

Algorithm 8 Protocol ShiftPIR (Used in Alg. 9)

Input: xP1P2 ∈ array`[m], 〈i〉P1P2–P3

shift = (sP1P2 , tP3), for i ∈ Zm

Output: 〈x[i]〉P1–P2

xor

1: P1 and P2 set x′ := xshift[s], i.e. x′[j] = x[j + s mod m] for all j

2: SSPIR: (x′)
P1P2 , tP3 → 〈x′[t]〉P1–P2

xor (= 〈x[i]〉P1–P2

xor )

Bandwidth: m; Rounds: 1; Security: No message sent besides SSPIR.
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Algorithm 9 Protocol 3ShiftPIR (Step 2 in Alg 2)

Input: 〈x〉 = (xDE
1 , xEC2 , xCD3 ), 〈i〉shift, for x ∈ array`[m], i ∈ Zm

Output: 〈x[i]〉
1: ShiftPIR: xDE

1 , 〈i〉DE–C
shift → 〈x1[i]〉D–E

xor = (dD1 , e
E
1)

ShiftPIR: xEC2 , 〈i〉EC–D
shift → 〈x2[i]〉E–C

xor = (eE2 , c
C
1 )

ShiftPIR: xCD3 , 〈i〉CD–E
shift → 〈x3[i]〉C–D

xor = (cC2 , d
D
2 )

Note: (d1 ⊕ e1)⊕ (e2 ⊕ c1)⊕ (c2 ⊕ d2) = x1[i]⊕ x2[i]⊕ x3[i] = x[i]
2: Reshare: 〈x[i]〉xor =

(
(c1 ⊕ c2)C, (d1 ⊕ d2)D, (e1 ⊕ e2)E

)
−→ 〈x[i]〉

Bandwidth: 3(m+ `); Rounds: 2;
Security: No message is sent besides secure computation ShiftPIR and Reshare, which
outputs random shares to each participant.

Algorithm 10 Protocol ShiftXorPIR (Used in Alg. 11)

Input: xP1P2 , 〈i1〉P1P2–P3

shift = (sP1P2
1 , tP3

1 ), 〈i2〉P1P2–P3

2,1-xor = (sP1P2
2 , tP3

2 ),

for x ∈ array`[n,m], i1 ∈ Zn, i2 ∈ Zm

Output: 〈x[i1][i2]〉P1–P2

xor

1: P1 and P2 set x′ ∈ array`[nm] s.t. for all (j1, j2) ∈ Zn × Zm,
x′[j1 ·m+ j2] = x[j1 + s1 mod n][j2 ⊕ s2]

P3 computes t = t1 ·m+ t2 (over integers)

2: SSPIR: x′
P1P2 , tP3 → 〈x′[t]〉P1–P2

xor (= 〈x[i1][i2]〉P1–P2

xor )

Bandwidth: nm; Rounds: 1; Security: No message sent besides SSPIR.

Algorithm 11 Protocol 3ShiftXorPIR (Step 3 in Alg 2)

Input: 〈x〉 = (xDE
1 , xCE2 , xCD3 ), 〈i1〉shift, 〈i2〉2,1-xor,

for x ∈ array`[n,m], i1 ∈ Zn, i2 ∈ Zm
Output: x[i1][i2]

Generate (δc
C, δd

D, δe
E) $←−

〈
0`
〉
xor

1: ShiftXorPIR: xDE
1 , 〈i1〉DE–C

shift , 〈i2〉DE–C
2,1-xor → 〈x1[i1][i2]〉D–E

xor

ShiftXorPIR: xEC2 , 〈i1〉EC–D
shift , 〈i2〉EC–D

2,1-xor → 〈x2[i1][i2]〉E–C
xor

ShiftXorPIR: xCD3 , 〈i1〉CD–E
shift , 〈i2〉CD–E

2,1-xor → 〈x3[i1][i2]〉C–D
xor

2: Denote 〈x1[i1][i2]〉D–E
xor = (dD1 , e

E
1), 〈x2[i1][i2]〉E–C

xor = (eE2 , c
C
1 ),

〈x3[i1][i2]〉C–D
xor = (cC2 , d

D
2 )

3: Each party Pt, for t = c, d, e broadcasts vt where
vc = c1 ⊕ c2 ⊕ δc, vd = d1 ⊕ d2 ⊕ δd, ve = e1 ⊕ e2 ⊕ δe

Output x[i1][i2] := vc ⊕ vd ⊕ ve.
Bandwidth: 3nm+ 6`; Rounds: 2;
Security: By security of zero-sharing (δc, δd, δe), the broadcast values (vc, vd, ve) are
distributed as random xor-sharing of output x[i1][i2]. The rest is secure computation
ShiftXorPIR which outputs random shares to each participant.
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A.2 Protocols for Reduced-Round Retrieval

Algorithm 12 Protocol 3ShiftPIR-Mod (Step 2 in Alg 2)

Input: 〈x〉 = (xDE
1 , xEC2 , xCD3 ), 〈i〉DE–C

shift = (sDE
1 , tC1 ), for x ∈ array`[n], i ∈ Zn

Output: 〈x[i]〉
Offline: Pick aCD12 , a

DE
23 , a

DE
32

$←− {0,1}n
D picks t2 $←− Zn and sends a21 := a23 ⊕ indnt2 to C
E picks t3 $←− Zn and sends a31 := a32 ⊕ indnt3 to C

On input sDE
1 :

1: D sends δ12 = s1 − t2 mod n to C
E sends δ13 = s1 − t3 mod n to C

On input 〈x〉 , tC1 :

1: C sets s2 := t1 + δ12 mod n, s3 = t1 + δ13 mod n, and
a13 := a12 ⊕ indnt1 ; C sends s3 to D and (s2, a13) to E

C sets c1 := XORSelect((x2)shift[s2], a21)

C sets c2 := XORSelect((x3)shift[s3], a31)

D sets d1 := XORSelect((x1)shift[s1], a12)

D sets d2 := XORSelect((x3)shift[s3], a32)

E sets e1 := XORSelect((x1)shift[s1], a13)

E sets e2 := XORSelect((x2)shift[s2], a23)

2: Reshare: 〈x[i]〉xor =
(
(c1 ⊕ c2)C, (d1 ⊕ d2)D, (e1 ⊕ e2)E

)
−→ 〈x[i]〉

Correctness: Observe that d1 ⊕ e1 = (x1)shift[s1][t1] = x1[s1 + t1], because
a12 ⊕ a13 = indnt1 , and therefore XORSelect(z, a12)⊕ XORSelect(z, a13) = z[t1] for any z,
e.g. z = (x1)shift[s1]. Likewise c1 ⊕ e2 = x2[s2 + t2] and c2 ⊕ d2 = x3[s3 + t3].
Note that s1 + t1 = i, but also
s2 + t2 = (t1 + δ12) + t2 = (t1 + (s1 − t2)) + t2 = t1 + s1 = i and
s3 + t3 = (t1 + δ13) + t3 = (t1 + (s1 − t3)) + t3 = t1 + s1 = i.
It follows that d1 ⊕ e1 = x1[i], c1 ⊕ e2 = x2[i], and c2 ⊕ d2 = x3[i].
Consequently, (c1 ⊕ c2)⊕ (d1 ⊕ d2)⊕ (e1 ⊕ e2) = x1[i]⊕ x2[i]⊕ x3[i] = x[i].

Bandwidth: on-line: ≈n+ 3`, off-line: ≈2n (assuming sDE
1 known off-line) ;

Rounds: 2;
Security: Party C receives only δ21 and δ31, but these are random in Zn because of
one-time pads t2 and t3. These one-time pads were used also in computing a21 and a31
(resp. by D and E) but nevertheless a21, a31 are uniform random strings in C’s view
because of onetime pads a23 and a32. Party D receives s3 = t1 + δ13 from C, but
t1 + δ13 = t1 + (s1 − t3) = i− t3 where t3 is E’s one-time pad, so s3 is random in Zn in
D’s view. Party E receives a13 and s2 = t1 + δ12 from C, but
t1 + δ12 = t1 + (s1 − t2) = i− t2 where t2 is D’s one-time pad, so s2 is random in Zn in
E’s view. Value a13 = a12⊕ indnt1 is also random in E’s view because of one-time pad a12.
Finally, by correctness of Reshare, the final sharing is a random sharing of x[i].
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Algorithm 13 Protocol 3ShiftXorPIR-Mod (Step 3 in Alg 2)

Input: 〈x〉 = (xDE
1 , xEC2 , xCD3 ), 〈i〉DE–C

shift = (sDE
1 , tC1 ),

〈j〉2,1-xor = ((uDE
1 , vC1 ), (uCE2 , vD2 ), (uCD3 , vE3 )),

for x ∈ array`[n][m], i ∈ Zn, j ∈ Zm
Output: x[i][j]

Offline: Pick aCD12 , a
DE
23 , a

DE
32

$←− {0,1}n×m
D picks t2 $←− Zn and sends a21 := a23 ⊕ indn×mt2×m+v2 to C

E picks t3 $←− Zn and sends a31 := a32 ⊕ indn×mt3×m+v3 to C

On input (s1, u1)DE:

1: D sends δ12 = s1 − t2 mod n, ρ12 = u1 ⊕ v2 to C
E sends δ13 = s1 − t3 mod n, ρ13 = u1 ⊕ v3 to C

On input 〈x〉 , (t1, v1)C:

1: C sets s2 := t1 + δ12 mod n, s3 = t1 + δ13 mod n, u2 = v1⊕ ρ12, u3 = v1⊕ ρ13,
and a13 := a12 ⊕ indn×mt1×m+v1 ; C sends s3 to D and (s2, a13) to E

For every P ∈ {C,D,E}, kC ∈ {2, 3}, kD ∈ {1, 3}, kE ∈ {1, 2}, f ∈ Zn, g ∈ Zm,
P sets x′kP ∈ array`[n][m] s.t. x′kP [f ][g] = xkP [f + skP mod n][g ⊕ ukP ].

C sets c1 := XORSelect(x′2, a21), c2 := XORSelect(x′3, a31)
D sets d1 := XORSelect(x′1, a12), d2 := XORSelect(x′3, a32)
E sets e1 := XORSelect(x′1, a13), e2 := XORSelect(x′2, a23)

2: C,D,E broadcast shares they have among (c1, c2, d1, d2, e1, e2), and compute
x[i][j] = (d1 ⊕ e1)⊕ (c1 ⊕ e2)⊕ (c2 ⊕ d2).

Correctness: Observe that
d1 ⊕ e1 = XORSelect(x′1, a12)⊕ XORSelect(x′1, a13) = XORSelect(x′1, a12 ⊕ a13) =
XORSelect(x′1, ind

n×m
t1×m+v1

) = x′1[t1][v1] = x1[t1 + s1 mod n][v1 ⊕ u1] = x1[i][j].
It follows that c1 ⊕ e2 = x2[i][j] and c2 ⊕ d2 = x3[i][j].
Consequently, (c1 ⊕ c2)⊕ (d1 ⊕ d2)⊕ (e1 ⊕ e2) = x1[i][j]⊕ x2[i][j]⊕ x3[i][j] = x[i][j].

Bandwidth: on-line: ≈nm+ 6`, off-line: ≈2nm (assuming (s1, u1)DE known off-line) ;
Rounds: 2;
Security: Party C receives (δ12, δ13, ρ12, ρ13), but these are random because of one-time
pads t2 and t3 and freshness of v2 and v3. The rest follows the same security of
3ShiftPIR-Mod.
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A.3 Protocols for PostProcess

Algorithm 14 Protocol ULiT - Update Labels in Tuple (Step 4, Alg 2)

Input:
〈
X,N, ∆N,L′,L′i+1

〉
,Li+1 = X[∆N]

where X ∈ array`[2τ ], |∆N| = τ , |Li+1| = |L′i+1| = `

Output: 〈T〉 for T = (1|N|L′|X) with X[∆N] := L′i+1

Offline:

1: xCD1 , xDE
2

$←− {0,1}|X|
2: Run the offline phase of two InsertLbl instances of step 2, where first instance

outputs aD1 and second instance outputs aD2 .
3: D sends me = a1 ⊕ x1 ⊕ x2 to E and mc = a2 ⊕ x1 ⊕ x2 to C.

Online:

1: 〈xor-Li+1〉 :=
〈
L′i+1 ⊕ Li+1

〉
Extract: 〈∆N, xor-Li+1〉 → 〈∆N, xor-Li+1〉C–D

xor

Extract: 〈∆N, xor-Li+1〉 → 〈∆N, xor-Li+1〉E–D
xor

2: InsertLbl: 〈∆N〉C–D
xor , 〈xor-Li+1〉C–D

xor → 〈M〉D–E
xor = (aD1 , b

E
1)

InsertLbl: 〈∆N〉E–D
xor , 〈xor-Li+1〉E–D

xor → 〈M〉D–C
xor = (aD2 , b

C
2 )

for M which is an all-zero array except M [∆N] = xor-Li+1

3: 〈M〉 :=(xCD1 , xDE
2 , xCE3 ) for xC3 := mc ⊕ b2, xE3 := me ⊕ bE1

Output 〈T〉 :=〈1|N|L′|(X ⊕ M)〉

Bandwidth: Online: ≈ 4|X|, Offline: ≈ 4|X|;
Rounds: 2 (the first round requires only input 〈∆N〉, see Alg 15);
Security: Note that by security of InsertLbl, everything the parties receive in the
InsertLbl instances can be simulated from their inputs and outputs in these instances.
Security for D: Party D’s view includes only its InsertLbl outputs, aD1 and aD2 , which are
random strings by security of InsertLbl.
Security for C: Party C receives mc = a2 ⊕ x1 ⊕ x2 and b2, but b2 is random by security
of InsertLbl and mc is random by randomness of x2.
Security for E: Likewise E receives me = a1 ⊕ x1 ⊕ x2 and b1, but b1 is random by
security of InsertLbl and me is random by randomness of x1..
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Algorithm 15 Protocol InsertLbl - Inserting Label (Used in Alg 14)

Input: 〈∆N〉P1–P2

xor , 〈L〉P1–P2

xor = (LP1
1 ,LP2

2 ), for |∆N| = τ , |L| = `

Output: 〈M〉P2–P3

xor = (zP2
2 , zP3

3 ),
for M ∈ array`[2τ ] s.t. M [∆N] = L and M [t] = 0` for t 6= ∆N

Offline:

1: (p, a, b)P1P2 $←− array`[2τ ], (v, w)P1P2 $←− {0,1}τ
2: P1 : α1

$←− {0,1}τ , set u1 := α1 ⊕ v, p∗ := p⊕ arot[u1]

3: P2 : β2
$←− {0,1}τ , set u2 := β2 ⊕ w, z2 := p⊕ brot[u2]

4: P1 sends (u1, p
∗) to P3; P2 sends u2 to P3; P2 outputs z2

Online:

1: Reshare: 〈∆N〉P1–P2

xor , αP1
1 → αP2

2 s.t. (α1, α2) = 〈∆N〉P1–P2

xor

Reshare: 〈∆N〉P1–P2

xor , βP2
2 → βP1

1 s.t. (β1, β2) = 〈∆N〉P1–P2

xor

2: P1 sends s1 = bxor[ L1 @ β1⊕w] to P3

i.e. s1 = b except s1[β1 ⊕ w] = b[β1 ⊕ w]⊕ L1

P2 sends s2 = axor[ L2 @ α2⊕v] to P3

i.e. s2 = a except s2[α2 ⊕ v] = a[α2 ⊕ v]⊕ L2

3: P3 outputs z3 := p∗ ⊕ (s2)rot[u1] ⊕ (s1)rot[u2]

Correctness: Observe that z2 = p⊕ brot[β2⊕w] and p∗ = p⊕ arot[α1⊕v].

Note that (s2)rot[u1]
= (axor[ L2 @ α2⊕v])rot[α1⊕v]

= (arot[α1⊕v])
xor[ L2 @ (α2⊕v) ⊕ (α1⊕v) ]

= (arot[α1⊕v])
xor[ L2 @ ∆N ].

Likewise (s1)rot[u2]
= (brot[β2⊕w])

xor[ L1 @ ∆N ].
It follows that
z3 = p∗ ⊕ (s2)rot[u1]

⊕ (s1)rot[u2]

= p ⊕ arot[α1⊕v] ⊕ (arot[α1⊕v])
xor[ L2 @ ∆N ] ⊕ (brot[β2⊕w])

xor[ L1 @ ∆N ]

By xor-ing z2 and z3 observer that pad p and rotated pads a and b cancel out and we
get M = z2 ⊕ z3 = [0, ..., 0]xor[ L @ ∆N] where [0, ..., 0] is an all-zero array.

Bandwidth: Online: 2 · (2τ `+ τ) ≈ 2 · 2τ `, Offline: ≈ 2τ `;
Rounds: 2 (the first round requires only input 〈∆N〉P1–P2

xor );
Security:
(1) For P1,P2: Let (∆NP1

1 ,∆NP2
2 ) denote input 〈∆N〉P1–P2

xor . P2 receives ∆N1 ⊕ α1 and
P1 receives ∆N2 ⊕ β2 in in Reshare in step 1. Bot values are random because α1, β2 are
randomly chosen resp. by P1 and P2, and neither value affects the distribution of
protocol outputs (z2, z3), because z2 is uniform by randomness of a, and z3 is a
deterministic function of z2 and protocol inputs.

(2) For P3: Values p∗, u1, u2, s1, s2 sent to P3 are independently random because of resp.
random pads p, v, w, a, b. Sharing (z1, z2) is fresh by randomness of p.
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Algorithm 16 Protocol FlipFlag (Step 5, Alg 2)

Input: 〈fb〉 , 〈i〉DE–C
shift = (iC1 , i

DE
2 ), for fb ∈ array1[n], i ∈ Zn

Output:
〈
fb′
〉

s.t fb′ is the same as fb except fb′[i] = fb[i]⊕ 1

1: C creates a1 ∈ array1[n] s.t. a1[i1] = 1 and a1[j] = 0 for j 6=i1
2: E creates a2 ∈ array1[n] s.t. a2[j] = 0 for all j

3: Shift: 〈a〉C–E
xor = (aC1 , a

E
2), (s = n− i2)DE → 〈m〉C–E

xor

note: m[i] = a[(i1+i2)+s] = 1, and m[j] = 0 for j 6= i

4: Reshare: 〈m〉C–E
xor → 〈m〉

5:
〈
fb′
〉

:= 〈fb⊕m〉

Bandwidth: 4n; Rounds: 2;
Security: Protocol FlipFlag is secure if protocol Shift is a secure computation of 〈m〉C–E

xor

and Reshare produces fresh secret-sharing 〈m〉 from 〈m〉C–E
xor .

Algorithm 17 Protocol Shift (based on [14]) (Used in Alg 16)

Input: 〈x〉C–E
xor = (xC1 , x

E
2), sDE ∈ Zn, where x ∈ array`[n]

Output: 〈y〉C–E
xor = (yC1 , y

E
2 ) s.t. y[t] = x[(t+ s) mod n] for all t

Offline: pCD, rDE, qCE $←− array`[n]

1: D sends array a to C s.t. a[t] = (p⊕ r)[(t+ s) mod n]
2: C sends z = x1 ⊕ p to E, and outputs y1 = a⊕ q
3: E outputs y2 = b⊕ q for b s.t. b[t] = (x2 ⊕ z ⊕ r)[(t+ s) mod n]

y[t] = (y1 ⊕ y2)[t] = (a⊕ b)[t] = ((p⊕ r)⊕ (x2 ⊕ z ⊕ r))[t+ s]

= (p⊕ x2 ⊕ z)[t+ s] = (p⊕ x2 ⊕ (x1 ⊕ p))[t+ s] = x[t+ s]

Bandwidth: 2n`; Rounds: 1;
Security: Sharing 〈y〉C–E

xor is fresh by randomness of q, message a received by C is
random by randomness of r, message z received by E is random by randomness of p.
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A.4 Protocols for Eviction

Algorithm 18 Protocol GC(circ) (Step 6, Alg 2)

Input: 〈x〉C–E
xor , for x the input of circuit circ

Output: ((y, z)D, owkE), for y = {owk : y}, (y, z) = circ(x), owk $←− arrayκ[|y|, 2]

Offline: E sends to D a garbled version of circ′, where circ′(x1, x2) = circ(x1⊕x2),
which includes the wire-key-to-bit translation table only for the output wires
corresponding to variable z;
E also sends to C the set of wire keys iwk1 corresponding to input variable
x1, and retains the set of wire keys iwk2 corresponding to input variable x2

and set owk corresponding to output variable y

1: C and E on input 〈x〉C–E
xor = (xC1 , x

E
2), select input wire keys according to their

respective input xC1 , x
E
2 and send to D resp. {iwk1 :x1} and {iwk2 :x2}

2: D evaluates the garbled circuit circ′ starting given the received sets of wire
keys; Because the garbled circuit contains the wire-key-to-bit translation table
only for the wires corresponding to variable z, D outputs the z part of the
output in the clear, but for variable y it can only output the wire key set
{owk : y} corresponding to value y.

Bandwidth: Online: 2|x|κ, for sec. par. κ; Offline: (4|circ|+ 2|x|)κ; Rounds: 1;
Security: This is a trivial modification of Yao’s garbled circuit computation procedure.

Algorithm 19 Protocol PermTuples (Step 8, Alg 2)

Param: Number of buckets d, bucket size w

Offline Input: (π, ρ)CE for π ∈ permd, ρ ∈ arrayw+1[d]

Input: tD ∈ arrayw+1[d]

Output: t◦D = ρ⊕ π(t)

Offline: pED, rEC $←− arrayw+1[d]; E sends a = π(p⊕ r) to D

1: D sends z = t⊕ p to C.
2: C sends g = ρ⊕ π(z ⊕ r) to D.
3: D outputs t◦ = a⊕ g.

Correctness: t◦ = a⊕ g = π(p⊕ r)⊕ ρ⊕ π(z ⊕ r) = π(p⊕ r)⊕ ρ⊕ π(t⊕ p⊕ r)
= π(p⊕ r)⊕ ρ⊕ π(t)⊕ π(p⊕ r) = ρ⊕ π(t)

Bandwidth: Online: 2|t| = 2d(w+1); Offline: |t| = d(w+1); Rounds: 2;
Security: Array z received by C is random because p is a one-time pad known only to D
and E. Array a received by D off-line is random because r is a one-time pad known only
to C and E, and array g received by D on-line gives no additional information because it
can be computed as g = a⊕ t◦ from a and D’s output t◦.
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Algorithm 20 Protocol PermBuckets (Step 7, Alg 2)

Param: Path depth d, security parameter κ;
hash function HDE : {0,1}log(d)·κ → {0,1}κ.

Input: σD, πCE,wkE, s.t. π ∈ permd, wk ∈ arrayκ[d, log(d), 2],
and σ = {wk :σ} for some σ ∈ permd

Output: σ◦D s.t. σ◦ = π · σ · π−1

Offline: (assume pre-generated πCE and wkE)

1: E sets keys ∈ arrayκ[d, d, log(d)] s.t. for each i, j ∈ Zd, k ∈ Zlog(d),
keys[i][j][k] = wk[i][k][jbit[k]], which means keys[i][j] = σ[i] for σ[i] = j.

2: E picks MK $←− arraylog(d)[d, d], and sets TB ∈ arrayκ+log(d)[d, d] s.t.
each TB[i] ∈ arrayκ+log(d)[d] is a sequence of d (key,value) pairs, each
of which binds key H(keys[i][j]) to value π(j) ⊕ MK[i][j], i.e. TB[i][j] =
(H(keys[i][j]), π(j) ⊕ MK[i][j]). In another words, TB[i](·) is a look-up func-
tion s.t. TB[i](H(keys[i][j])) = π(j)⊕MK[i][j] for j ∈ d.

3: For every i ∈ Zd, E picks a random permutation in permd and uses it to
permute the entries of both TB[i] and MK[i].

4: E picks p, r $←− arraylog(d)[d], and computes a = π(p⊕ r).
5: E sends TB, p, a to D and MK, r to C.

Online:
1: D initializes I ∈ arraylog(d)[d]. For every i ∈ Zd, D sets [σ′][i] = TB[i](H(σ[i])),

and sets I[i] = j s.t. H(σ[i]) is the key of TB[i][j] (key,value) pair. D then sends
z = σ′ ⊕ p and I to C.

2: C sets m ∈ arraylog(d)[d] s.t. m[i] = MK[i][I[i]] for every i ∈ Zd. C sends g =
π(z ⊕ r ⊕m) to D

3: D outputs σ◦ s.t. σ◦ = a⊕ g.

Correctness:

σ◦ = a⊕ g = π(p⊕ r)⊕ π(σ′ ⊕ p⊕ r ⊕m) = π(σ′ ⊕m)

= π([(TB[0][I0]⊕MK[0][I0]), ..., (TB[d− 1][I[d− 1]]⊕MK[d− 1][I[d− 1]])])

= π([π(σ0), ..., π(σd−1)]) = π(π · σ) = π · σ · π−1

Bandwidth: Online: 3d log(d); Offline: d2(κ+ 2 log(d)) + 3d log(d); Rounds: 2;
Security: C’s view z and I are indistinguishable from random strings because p is
random and unknown to C, and for every i ∈ Zd,TB[i] and MK[i] are permuted by a
random permutation in Zd. Given D’s input a (from pre-computation) and output σ◦,
D’s view g can be simulated as a⊕ σ◦. E receives nothing online.
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Algorithm 21 Protocol XOT (Step 9, Alg 2)

Input: 〈path〉 , (π, δ, ρ)CE, (σ◦, t◦)D, for σ◦ = π · σ · π−1, t◦ = ρ⊕ π(δ ⊕ t)

Output:
〈
path′

〉
, for path′ = EMσ,t(path)

Offline: D picks p $←− {0,1}|path| and executes the first step of the two instances of
HalfXOT below (see step 1, Alg. 22)

Extract: 〈path〉 → 〈path〉C–E
xor . Parties sets EM◦

D
:=EMσ◦,t◦ , ΠCE := ρ̃ · π̈ · δ̃,

and (xC1 , x
E
2) = 〈path◦〉C–E

xor := 〈Π(path)〉C–E
xor . (see eq. (1) in Sec. 3)

1: The following two steps are performed in parallel:
HalfXOT: xC1 , (EM

◦, p)D → yE1 . y2 = p⊕ EM◦(x1)
HalfXOT: xE2 , (EM

◦, p)D → yC2 . y1 = p⊕ EM◦(x2)

Parties set 〈y〉C–E
xor := (yC1 , y

E
2 ), . y=EM◦(x) =EMσ◦,t◦(Π(path))

and set
〈
path′

〉C–E
xor

:=
〈
Π−1(y)

〉C–E
xor

. path′ = Π−1(y) = EMσ,t(path)

2: Reshare:
〈
path′

〉C–E
xor
→
〈
path′

〉
Bandwidth: Online: 4|path|+ 2m log(m), m = # tuples; Offline: 2|path|; Rounds: 3;
Security: Because p is a one-time pad known only to D, both y1 and y2 are individually
random, and by security of HalfXOT, the protocol leaks nothing beyond (locally
random) values y1 to E and y2 to C. Moreover, by correctness of HalfXOT we have that
(y1, y2) is an xor-sharing of y = EM◦(x). Then by eq. (1) in Sec. 3, we have
path′ = Π−1(y) = Π−1 · EMσ◦,t◦ ·Π(path) = EMσ,t(path).

Algorithm 22 Protocol HalfXOT (Steps 1 and 2 in Alg 21)

Param: n, k, ` s.t. k ≤ n.

Input: xP1 , (σ, p)P2 s.t. x ∈ array`[n], p ∈ array`[k], and σ−1 : Zk
1−1→ Zn

Output: yP3 s.t. y = p⊕ σ(x), i.e. y[i] = p[i]⊕ x[σ−1(i)] for i ∈ Zk
Offline: rP1P2 $←− array`[n]; δP2P3 $←− permn

1: On P2’s input p: P2 sends s = p⊕ δ(r) to P3

2: On P2’s input σ: P2 sends π = δ−1 · σ to P1

3: On P1’s input x (and message π): P1 sends a = r ⊕ π(x) to P3

P3 outputs y = s⊕ δ(a)

Note that y = s⊕ δ(a) = p⊕ δ(r)⊕ δ(a) = p⊕ δ(r ⊕ a) = p⊕ δ(π(x)) = p⊕ (δ · π)(x) =
p⊕ (δ · (δ−1 · σ))(x) = p⊕ σ(x)
Bandwidth: n`+ k`+ k log(n); Rounds: 2;
Security: P3’s view includes s, a where a is random n`-bit string because of one-time
pad r and s reveals no additional information beyond P3’s output because it can be
computed as s = y⊕ δ(a); P1’s view includes π = δ−1 · σ but π is a random 1-1 function
from Zk to Zn because δ is a random permutation in Zn .
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B Algorithms for Client-Server Path-ORAM [26]

For completeness we recall the access algorithm of Client-Server Path-ORAM of
Shi et al. [26], which we briefly recall in Section 2. As we explain in Section 2, we
call the main Path-ORAM algorithm ORAM.Access and its main loop ORAM.ML,
and here we show both algorithms as resp. Alg 23 and Alg 24.

The main point of including these algorithms here is to observe that our 3PC
ORAM protocol described in Section 3 is a 3PC emulation of the (client-server)
Path-ORAM algorithm, shown here, except that the eviction map computation
in step 6 of algorithm ORAM.ML, algorithm PathORAM-Route, is replaced by the
eviction computation algorithm Route of Circuit-ORAM [27] (with some necessary
modifications described in Section 3). In particular, observe that our top-level
protocol, 3PC-ORAM.Access shown as Alg 1 in Section 3, and its main loop 3PC-

ORAM.ML, shown as Alg. 2 in Section 3, are 3PC emulations of resp. algorithms
ORAM.Access, Alg 23, and ORAM.ML, Alg 24.

Algorithm 23 ORAM.Access: Client/Server Path-ORAM

Param: Address size log n, address chunk size τ , number of trees h = logn
τ + 1

Input: OMS = (tree0, ..., treeh−1), NC = (N1, ...,Nh−1), (* rec′C)

Output: recC: record stored in OM at address N

1: {L′Ci $←− {0,1}i·τ}h−1
i=1 ; (N0,Nh,L

′
0,L
′
h)C := ⊥ ; L0 := ⊥

2: for i = 0 to h−1 do (for i = 0 see footnote “!” in Alg. 24)

ORAM.ML: Li, tree
S
i , ( N0|...|Ni, Ni+1, L′i, L′i+1, *rec′ )C

−→ Li+1 (* recC instead of Li+1), treeSi

*: On top-level ORAM tree

C Security Proof for the 3PC ORAM Protocol

Client-Server ORAM. Since our protocol is an emulation of client-server ORAM
we need to formally define the latter notion. We define client-Server ORAM scheme
Σ as a pair of algorithms (Init,Access) parametrized by log n,D, where Init ini-
tializes array OM of plaintext in the encrypted data stored on the server, while
Access(instr,OM,N, rec′), for (instr,N, rec′) as above, outputs (rec, locL,OM′), where
rec is the record output by the client, locL is the list of locations in OM touched by
the access procedure, and OM′ is identical to OM except at locations locL where
the values in OM′ and OM can differ. In Path-ORAM variants like Circuit-ORAM,
OM is a serialized list of nodes of trees tree0, , .., treeh−1 (see Sec. 2) and locL is
the list of the nodes retrieved during access (and any additional nodes retrieved in
eviction). Note that locL captures the only information the server learns because
the positions of retrieved nodes define labels L1, ...,Lh−1 received by the server.
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Algorithm 24 ORAM.ML: Main Loop of Client/Server Path-ORAM

Input: L, treeS, (N, ∆N,L′,L′i+1, * rec′)C

Output: (1) Li+1 where Li+1 = T.data[∆N] for T on tree.path(L) s.t.
T.(fb|adr) = 1|N (* or recC where rec = T.data)

(2) tree.path(L)S modified by eviction, with T.lb := L′ and
T.data[∆N] := L′i+1 (* T.data := rec′)

S sends path = tree.path(L) to C, who computes the following:

## Retrieval of Next Label/Record ##

1: T := retrieve(path.(fb|adr), 1|N) . T ∈ path s.t. T.(fb|adr) = 1|N
2: Li+1 := T.data[∆N] (* replace with rec := T.data)

## Post-Process ##

3: T.lb := L′, T.data[∆N] := L′i+1 (* T.data := rec′)

4: set fb := 0 at position in path where T was found in step 1

5: path := path.append-to-root(T)

## Eviction ##

6: EM := PathORAM-Route(L, path.(fb, lb)) . EM is an eviction map

7: path′ := ApplyMovement(EM, path) . path′ = EM(path)

C sends Li+1 and path′ to S, who inserts it in tree as tree.path(L)

*: On top-level ORAM tree; .: Comments;
!: For i = 0, C runs steps 2-3 for T := tree0 and sends Li+1 and (modified) tree0 to S

For the sake of definition 1 below, consider experiment ExpΣ which on input
accL = {(instri,Ni, rec

′
i)}

q
i=1 sets OM $←− Σ.Init, then sets (reci, locLi,OMi) $←−

Σ.Access(instri,OMi−1,Ni, rec
′
i) for i = 1, .., q, and outputs {(reci, locLi)}qi=1.

Definition 1. We call a client-server ORAM scheme Σ (statistically) secure
if there exists an efficient algorithm SIM s.t. for any log n,D and list accL =
{(instri,Ni, rec

′
i)}

q
i=1 polynomial in security parameter, variables Viewideal and

Viewreal are (statistically) indistinguishable, where Viewideal
$←− SIM(log n,D, q) and

Viewreal = {locLi}qi=1 where {(reci, locLi)}qi=1
$←− ExpΣ(accL).

We call Σ (statistically) correct if experiment ExpΣ(accL) retrieves records
{reci}qi=1 which are consistent, except for negligible probability, with the write in-
struction sequence {(instri,Ni, rec

′
i) ∈ accL s.t. instri = write} in accL.

Secure Realization of 3PC ORAM Functionality. We argue that our 3PC
ORAM realizes functionality FORAM by arguing that it is a 3PC emulation of
a secure client-server ORAM, namely the Circuit-ORAM. Consider an ORAM
scheme Σ and define two functionalities: FΣ.Init, which runs OM $←− Σ.Init and
outputs a random sharing 〈OM〉, and functionality FΣ.Access, which on Z’s input
(instr, 〈OM,N, rec′〉) does the following: (1) it reconstructs OM,N, rec′ from their
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sharings; (2) it runs (rec, locL,OM′) $←− Σ.Access(instr,OM,N, rec′); (3) it creates
fresh sharing 〈rec〉; (4) it creates

〈
OM′

〉
, which is identical to 〈OM〉 for all i 6∈ locL,

but for all i ∈ locL sharings
〈
OM′[i]

〉
are fresh; (5) it outputs (

〈
rec,OM′

〉
, locL)

where locL is public, i.e. it is sent to each party. The following proposition is
elementary:

Lemma 1. If Σ is a secure and correct client-server ORAM scheme, and Π =
(Π.Init, Π.Access) where Π.Init securely realizes FΣ.Init and Π.Access securely real-
izes FΣ.Access then Π securely realizes 3PC ORAM functionality FORAM.

Let ΣCircO be the client-server Circuit-ORAM scheme. Theorem 1 below is the
key part of the security proof:

Theorem 1. Protocol 3PC-ORAM.Access securely realizes functionality FΣCircO.Access.

We argue theorem 1 below, but first we state its implication together with Lemma
1 and the fact that the client-server ORAM scheme ΣCircO is secure [27]. Corollary
1, restated in a simpler form in Section 4, is the main security claim of our paper.

Corollary 1. Protocol Π = (Init,Access) where Π.Init is implemented by calling
functionality FΣCircO.Init directly while Π.Access runs protocol 3PC-ORAM.Access, is a
secure realization of 3PC ORAM functionality FORAM in the FΣCircO.Init-hybrid world
(i.e. assuming secure initialization according to FΣCircO.Init).

Proof of Theorem 1. We argue Theorem 1 in a recursive way, relying on the
composition property of UC security [7], which says that in order to argue that
protocol Π, which makes calls to sub-protocols Π1, ...,Πk, securely realizes func-
tionality F, you need to argue two facts: (1) first, that protocol Π realizes F if
sub-protocols Π1, ...,Πk are replaced by calls to idealized functionalities F1, ...,Fk,
where Fi is an algorithm that implements the intended input/output behavior of
sub-protocol Πi (note that we state the intended input/output behavior of each
protocol at the beginning of the Algorithm figure containing that protocol), and
(2) for each i protocol Πi securely realizes functionality Fi. If a protocol Πi makes
calls to other sub-protocols then the above proof procedure is recursively applied
to Πi. Following this methodology, we first argue that protocol 3PC-ORAM.Access
securely realizes FΣCircO.Access if subprotocol 3PC-ORAM.ML is replaced by a call to
an ideal functionality F3O-ML, which implements the desired input/output behavior
of 3PC-ORAM.ML as stated in Alg. 2. Then, we argue that protocol 3PC-ORAM.ML

securely realizes functionality F3O-ML, and we do so using the same procedure
as in the case of the top-level protocol 3PC-ORAM.Access, i.e. we first argue that
3PC-ORAM.ML realizes functionality F3O-ML if the calls to each of the subproto-
cols 3PC-ORAM.ML invokes are replaced by calls to the ideal functionalities which
implement the intended input/output behavior of these subprotocols.

Following this recursive methodology we argue that each of these sub-protocols
indeed realizes its corresponding idealized functionality F, and we do so (following
the same recursive procedure, i.e. replacing any sub-protocol calls by their idealized
functionalities) not “centrally”, i.e. in the proof below, but by supplementing each
sub-protocol figure with a security argument. The goal of each of these arguments
is to briefly argue (1) that the protocol outputs are distributed as specified by
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F, and (2) that for each party Pi there exists an efficient simulator SIMi s.t. the
distribution of messages Pi receives in the subprotocol is indistinguishable from
a distribution produced by SIMi from the inputs to F and outputs of F held by
that party. These two components show that a protocol Π securely realizes F,
because it shows that for each corrupt party Pi ∈ {P1,P2,P3} and every input
x = (x1, x2, x3), the distribution Viewreal,Pi = (y,Tri) where y = (y1, y2, y3) are
the parties’ outputs in a random execution of protocol Π on inputs x and Tri is
Pi’s transcript in that execution, is indistinguishable from Viewideal,Pi = (y,Tri)
where y $←− F(x) and Tri $←− SIMi(xi, yi). Because most of our protocols employ
information-theoretic tools, for most protocols we do not explicitly show simulator
algorithms, but instead we argue that the messages received by each party in
the protocol are either randomly distributed or are determined by (and efficiently
computable from) other messages and input/outputs of this party. All of these
arguments can be turned into corresponding simulators. We note that our protocols
often generate pseudorandom values using a pair-wise shared PRG seeds. The
security arguments we provide are simplified by treating all such values as random,
but by standard reduction to PRG security they imply computational security of
the respective protocol.

Security argument for 3PC-ORAM.Access. It remains for us to argue that 3PC-

ORAM.Access securely realizes FΣCircO.Access if subprotocol 3PC-ORAM.ML realizes
an ideal functionality F3O-ML which is stated as the input/output requirements
of 3PC-ORAM.ML, Alg. 2, and that 3PC-ORAM.ML realizes F3O-ML if subprotocols
KSearch, 3ShiftXorPIR, 3ShiftPIR, ULiT, FlipFlag, GC, PermBuckets, PermTuples, and
XOT realize the ideal functionalities stated as their input/output requirements.

We thus first argue that protocol 3PC-ORAM.Access securely realizes FΣCircO.Access

if calls to subprotocol 3PC-ORAM.ML are replaced by calls to an ideal functionality
F3O-ML. As stated by the input/output requirements of 3PC-ORAM.ML, Alg. 2,
functionality F3O-ML takes input x = (L,

〈
tree,N, ∆N,L′,L′i+1, rec

′〉) and outputs
y = (Li+1, 〈tree′〉) (or y = (〈rec〉 , 〈tree′〉) if the call pertains to a final tree),
where (1) Li+1 = T.data[∆N] (or rec = T.data for a final tree) for a unique T
in tree.path(L) s.t. T.(fb|adr) = 1|N, and (2) tree′ is identical to tree except for
tree.path(L) which is modified by (2a) inserting into the root bucket in tree.path(L)
tuple T modified s.t. T.lb = L′ and T.data[∆N] := L′i+1 (or T.data = rec′ for a final
tree and instr = write), (2b) flipping the full/empty bit to empty at the original
location in tree.path(L) where T is found, and (2c) applying the Circuit-ORAM
eviction algorithm to tree.path(L). Note that if one removes the secret-sharing layer
from the inputs and outputs of F3O-ML then this is a deterministic procedure which
the client-server Circuit-ORAM algorithm performs for each tree. Note also that
protocol 3PC-ORAM.Access follows ΣCircO.Access, i.e. algorithm ORAM.Access, Alg.
23, except that it also operates on secret-shared inputs 〈OM,N, rec′〉. Therefore
the final output 〈rec〉, the modified 〈OM〉 datastructure, and the location list locL,
uniquely defined by labels L1, ...,Lh−1, are created exactly as by functionality
FΣ.Access. Since the only non-secret-shared information protocol 3PC-ORAM.Access
reveals are labels L1, ...,Lh−1, which are implied by the location list locL, there is
no further information to simulate.
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Security argument for 3PC-ORAM.ML. We argue that protocol 3PC-ORAM.ML se-
curely realizes F3O-ML defined above if calls to subprotocols KSearch, 3ShiftXorPIR,
3ShiftPIR, ULiT, FlipFlag, GC, PermBuckets, PermTuples, and XOT are replaced by calls
to the ideal functionalities which these procedures implement, stated by the in-
tended input/output behavior of these subprotocols. We will argue this only for
the non-boundary case, because the case of the first tree tree0 and the final tree
treeh−1 are both simplifications of the processing for the non-boundary case. We
need to argue two things: First, that for any x = (L,

〈
tree,N, ∆N,L′,L′i+1, rec

′〉)
the outputs y = (Li+1, 〈tree′〉) of 3PC-ORAM.ML on input x are distributed as the
outputs of F3O-ML(x). And secondly, that for every player Pi there is an efficient
simulator SIMi s.t. Tri $←− SIMi(xi, yi) is indistinguishable from Pi’s transcript in
an instance of 3PC-ORAM.ML which outputs y on input x, and where xi and yi
are Pi’s parts in respectively x and y. First, note that given 〈tree〉 in x, the only
part of 〈tree′〉 in y that matters is the part that is modified by both protocol 3PC-
ORAM.ML and functionality F3O-ML, i.e. path tree.path(L) uniquely defined by L in
x. In other words, we can think of both 3PC-ORAM.ML and F3O-ML as outputting
y = (Li+1,

〈
path′

〉
) where

〈
path′

〉
in the case of 3PC-ORAM.ML is defined in step

9, Alg. 2, and in the case of F3O-ML it is a fresh sharing of modified tree.path(L)
described in points (2a)-(2c) above.

We first argue that (Li+1,
〈
path′

〉
) output by 3PC-ORAM.ML is distributed as

outputs of F3O-ML. Let path = tree.path(L) for tree,L in x. By the input/output
functionality of KSearch, see Alg. 6, invoked in step 1 of 3PC-ORAM.ML, the out-
put 〈j〉shift of this call is a fresh sharing of j s.t. path[j].(fb|adr) = 1|N, be-
cause by the Path-ORAM invariant there is a unique index j of a tuple in path
s.t. path[j].(fb, adr) = (1,N). By the input/output functionalities 3ShiftPIR and
3ShiftXorPIR (in Alg. 9,11), invoked in steps 2 and 3, outputs 〈X〉 and Li+1 of
these calls satisfy that 〈X〉 is a fresh sharing of X = path[j].data and Li+1 =
path[j].data[∆N] = X[∆N]. (Observe that path.data in the call to 3ShiftXorPIR is
an ` by m array containing next-level labels, for ` the number of tuples in path and
m = 2τ , the size of the data array field in each tuple.) This already shows that Li+1

is computed as in F3O-ML. By the input/output functionality ULiT (in Alg. 14), in-
voked in step 4, this call outputs fresh 〈T〉 for T = (1|N|L′|X ′) s.t. X ′[∆N] = L′i+1

and payload X ′ is identical to payload X in all other entries. It follows that T is
a new copy of the retrieved tuple (1|N|L|X) with the modified labels as in step
(2a) of F3O-ML. Next, the input/output functionality FlipFlag (in Alg. 16), invoked
in step 5, ensures that path.fb values are modified so that the free bit is flipper
at position j, i.e. that path[j].fb becomes 1 ⊕ path[j].fb, but since path[j].fb was
1 (by the functionality of KSearch) it now becomes 0, as in step (2b) of F3O-ML.
Finally, as we argue in Section 3, steps 6-9 implement the Circuit-ORAM eviction
procedure correctly: GC(Route) in step 6 outputs (σ, t′) for D s.t. EMσ,t is the
Circuit-ORAM eviction map for t = t′ ⊕ δ, and PermBuckets and PermTuples calls
in steps 7-8 output σ◦ and t◦ for D s.t. σ◦ = π · σ · π−1 and t◦ = ρ⊕ π(t′). Finally,
equation (1) in Section 3 implies that if Π = ρ̃ · π̈ · δ̃ then Π−1 ·EMσ◦,t◦ ·Π, which
is a permutation applied to path in call to XOT in step 9, is the same permutation
as EMσ,t, hence path′ is computed as in step (2c) of F3O-ML.
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It thus remains for us to exhibit simulators SIMi for each party Pi ∈ {C,D,E}
s.t. Tri $←− SIMi(xi, yi) is indistinguishable from Pi’s transcript in an instance
of 3PC-ORAM.ML which outputs y on input x. Recall also that we need only to
consider 3PC-ORAM.ML in the hybrid world where each of its subprotocol calls is
replaced with a call to the corresponding functionality. (As explained above, this
suffices if we argue, as we do, that each of the subprocedure protocols securely real-
izes its ideal functionality.) First, observe that in steps 1-5 the functionalities called
in each step produce random sharings of various values, specifically 〈i〉shift, 〈X〉,
〈T〉, and 〈path.fb〉, so the views of any party of these outputs can be easily simu-
lated because each party’s shares of each of these outputs are randomly distributed.
The one exception is step 3, which produces public value Li+1 = path[j].data[∆N],
but since this is the same value that is output by F3O-ML, as argued above, each
simulator can trivially reproduce it given F3O-ML’s output. In steps 6-8 only E and
D receive outputs, namely wk for E and σ, t′, σ◦, t◦ for D. Value wk is an array
of random keys, which the simulator of E’s view can trivially produce. By the
definition of the input/output behavior of GC(Route) (defined by GC and Route),
PermBuckets, and PermTuples, the outputs of D are distributed as (σ, t′, σ◦, t◦) =
({wk :σ}, t ⊕ δ, π · σ · π−1, ρ ⊕ π(t′)), where wk are random keys chosen by E,
π $←− permd and δ, ρ $←− arraylog(w+1)[d] are chosen by C and E, and pair (σ, t),
for σ ∈ permd and t ∈ arraylog(w+1)[d], forms the expanded Circ-ORAM eviction
map computed (deterministically) by circuit Route given leaf L and label-data
path.(fb, lb) of the path tuples. Variable σ is random because it is a selection of
keys in wk which are distributed as random strings to D regardless of the value of
σ. Since σ output by circuit Route is guaranteed to be a cycle in permd, for every σ
the random variable σ◦ = πσπ−1, for π $←− permd, is distributed as a random cycle
in permd. The other two values, t′ and t◦, are random in arraylog(w+1)[d] because
of one-time pads δ and ρ. Thus the whole string of values learned by D in these
steps can be produced by a simulator. Since calls to XOT in steps 9 produce only
random shares to each party, this concludes the argument.

D Routing Circuit Computation

In this section we explain the construction of the routing circuit Route used in the
eviction phase of protocol 3PC-ORAM.ML (see Step 6 in Alg. 2, Section 3).

D.1 Main Routing Circuit

Circuit Route determines the eviction map by generating a dp array (PrepareDeep-
est), computing the eviction array σ from dp (PrepareTarget), and making the evic-
tion map σ into a cycle (MakeCycle). Circuits PrepareDeepest and PrepareTarget are,
with minor variations, the same circuits which implemented the original Circuit-
ORAM eviction computation CircORAM-Route [27], but circuit MakeCycle is new.
Because of some small differences in the implementation of PrepareDeepest and Pre-

pareTarget, the combined size of circuit Route is virtually identical to the size of
CircORAM-Route reported in [27]. We discuss these three circuits in the following
subsections.
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Algorithm 25 Circuit Route (Used in Step 6, Alg 2)

Param: Tree height d, bucket size w.

Input: Full/empty bits fb ∈ array1[d,w]; labels lbl ∈ arrayd[d,w];
path label L ∈ {0,1}d; masks δ ∈ arraylog (w+1)[d]

Output: σ ∈ permd and t′ ∈ arraylog (w+1)[d], where σ extends Φ into a cycle and
t′ = δ ⊕ t for Eviction Map Φ and Tuple Index t computed as in Circuit-
ORAM [27]

1: (dp, jd, je, e) :=PrepareDeepest(L, fb, lbl)
2: (Φ, t′, nTop, nBot, eTop, eBot) :=PrepareTarget(dp, jd, je, e, δ)
3: σ :=MakeCycle([Φ], nTop, nBot, eTop, eBot)

Circuit cost: [3wd+ (2w + 5) · log(w) + (d+ 34) · log(d)] · d → O(d2 log(d))

D.2 Prepare Array dp

Algorithm PrepareDeepest in Alg. 26, based on the same name algorithm in [27],
outputs an array dp where dp[i] < i is the index of the first bucket in the path
which contains a tuple that can be evicted to the i-th bucket. (If no tuples in higher
levels can be evicted to the i-th bucket then dp[i] =⊥.) In addition, PrepareDeepest
outputs three other arrays jd, je, e, where jd[i] is the index of the “deepest tuple”
in the i-th bucket, i.e. a tuple which could be evicted furthest down from that
bucket, e[i] = 1 if and only if there is an empty tuple at this level, and je[i] is the
index of that empty tuple. (If e[i] = 0 then je[i] is meaningless.)

Algorithm 26 Circuit PrepareDeepest [27] (Used in Alg. 25)

Param: Tree height d, non-root bucket size w.

Input: Path label L ∈ {0,1}d, array of full/empty bits fb ∈ array1[d,w] and labels
lbl ∈ arrayd[d,w]

Output: dp ∈ arraylog(d)[d], e ∈ array1[d], jd, je ∈ arraylog(w+1)[d],
s.t. jd[i], je[i] are indexes of deepest/empty tuples in i-th bucket, e[i] = 1
if there i-th bucket has an an empty tuple, and dp[i] = i′ s.t. the deepest
tuple in (i′)-th bucket can move to bucket i (dp[i] =⊥ if no such i′ exists)

1: dp := [⊥,⊥, ...,⊥], src :=⊥, goal := −1
2: for i := 0 to d− 1 do . cycle: d
3: if goal ≥ i then . cost: log(d)
4: dp[i] := src . cost: log(d)

5: (l, jd[i], je[i], e[i]) :=FDAE(i,L, fb[i], lbl[i]) . cost: Alg 27
6: if l > goal then . cost: log(d)
7: goal := l . cost: log(d)
8: src := i . cost: log(d)

Circuit cost: (3w + log d) · d2 + (2w logw + 5 log d) · d
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Find the Deepest and Empty Tuples. Algorithm FDAE in Alg. 27 (which
stands for FindDeepestAndEmpty) is adopted from [27], and it is a sub-procedure
of Alg. 26 which finds the “deepest tuple”, i.e. a tuple which can be evicted the
furthest down the path, in a bucket at level (=depth) i in the path, and outputs
its index jd in the bucket together with the target level l′. FDAE also determines if
there is an empty tuple in this bucket, and outputs its index je and a flag e which
is set to 1 if an empty tuple was found. If no tuple can be moved down from the
i-th bucket then FDAE returns (jd, l

′) = (0, i), and if there is no empty tuple then
(je, e) = (0, 0).

Algorithm 27 Circuit FDAE [27] (Used in Alg. 26)

Param: Tree height d, non-root bucket size w.

Input: Level index i ∈ Zd, path label L ∈ {0,1}d, tuples’ full/empty bits fb ∈
array1[w] and labels lbl ∈ arrayd[w].

Output: l′ ∈ Zd, jd, je ∈ Zw+1, e ∈ {0,1}, where l′ is the deepest level index, jd, je
are indexes of resp. the first deepest tuple and the first empty tuple, and e
is a flag indicating whether the bucket contains an empty tuple.

1: l := 0i|1d−i−1; jd, je, et := 0
2: for j := 0 to w−1 do . cycle: w
3: lz := lbl[j]⊕ L
4: lz′ := set all bits after the first bit 1 in lz to 1 . cost: d
5: if fb[j] = 1 and lz′ < l then . cost: d
6: jd := j . cost: logw
7: l := lz′ . cost: d
8: else if fb[j] = 0 and e = 0 then
9: je := j . cost: logw

10: e := 1
11: l′ := number of leading 0s in l . cost: d · log(d)

Circuit cost: d · (3w + log d) + 2w logw

Step explanations of Alg. 26 FDAE:
Line 1: jd stores the index and l the target-depth of the first “deepest tuple”, i.e.
the tuple which can go deepest along the path L. jd is initialized as 0, the first
tuple in the bucket, and l as the current depth i, kept in a special-purpose unary
format as the number of leading zeros. je, initialized as 0, stores the index of the
first empty tuple. Flag e, initialized as 0, indicates if an empty tuple is found.
Lines 3-4: the number of leading zeros in the xor of a tuple’s label with leaf L
defines the deepest level the tuple can be evicted to.
Line 5: Bitstring lz′ is smaller than bitstring l iff lz′ has more leading 0’s.
Line 6-7: If the new tuple is non-empty, i.e. fb[j] = 1, and lz′ has more leading 0’s
than l, then the new tuple can go deeper then the previously found one, in which
case we update index jd and target-depth l.
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Line 8-10: If the new tuple is empty, update je and e.
Line 11: Compute the deepest level number in an integer format by counting the
number of leading zeros in l.

D.3 Prepare Arrays σ and t

Algorithm 28 Circuit PrepareTarget (following [27]) (Used in Alg. 25)

Param: Tree height d, non-root bucket size w

Input: dp ∈ arraylog(d)[d], jd, je ∈ arraylog(w+1)[d],
e ∈ array1[d], δ ∈ arraylog(w+1)[d]

Output: σ ∈ arraylog(d)[d], t′ ∈ arraylog(w+1)[d], nTop, nBot, eTop, eBot ∈ Zd
1: nTop, nBot, eTop, eBot, src,dest := ⊥
2: σ, t := [⊥,⊥, ...,⊥]
3: for i := d− 1 to 0 do
4: if i = src then . cost: log(d)
5: σ[i] := dest . cost: log(d)
6: t[i] := jd[i] . cost: log(w)
7: src :=⊥ . cost: log(d)
8: if dp[i] = ⊥ then . cost: log(d)
9: dest := i . cost: log(d)

10: else
11: dest := ⊥ . cost: log(d)

12: if dp[i] 6= ⊥ then
13: if dest 6= ⊥ and src = ⊥ then . cost: 2log(d)
14: σ[i] := dest . cost: log(d)
15: t[i] := je[i] . cost: log(w)

16: if (dest = ⊥ and e[i] = 1) or σ[i] 6= ⊥ then . cost: log(d)
17: src := dp[i] . cost: log(d)
18: dest := i . cost: log(d)
19: eTop := src . cost: log(d)
20: if eBot = ⊥ then . cost: log(d)
21: eBot := dest . cost: log(d)
22: t[i] := je[i] . cost: log(w)

23: if t[i] = ⊥ then . cost: log(w)
24: t[i] := w . cost: log(w)
25: nTop := i . cost: log(d)
26: if nBot = ⊥ then . cost: log(d)
27: nBot := i . cost: log(d)

28: t′[i] = t[i]⊕ δ[i]

Circuit cost: [5log(w) + 18log(d)] · d
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Algorithm PrepareTarget in Alg. 28 is an extended version of the corresponding
algorithm in [27], which determines the final eviction pattern. PrepareTarget out-
puts a σ array which contains the same eviction movement as in [27], plus the
eviction jumps filling up the possible gaps. PrepareTarget also outputs an array t
where t[i] is the index of the tuple that will be evicted on level i. Note that each
t[i] is selected from one of jd[i], je[i], or w (fake/empty tuple index) depending on
what kind of eviction movement level i is doing. And this t will be finally masked
by δ so the real indices will be hidden to D.

Step explanations of Alg. 28 PrepareTarget:
Line 1: nTop stores the index of the top level which has no movement during
eviction; nBot stores the index of the bottom level which has no movement; eTop
stores the index of the top level which contains a tuple to be evicted; eBot stores
the index of the bottom level which a tuple will be evicted to. src indicates the
current level which has a tuple that can be evicted; dest stores the current target
level which a tuple can be evicted to.
Line 2: σ[i] indicates the target level that a tuple at level i will be evicted to; ti
is the index of the tuple that will be evicted at level i.
Line 4-5: If we reach the source level i which contains a tuple to be evicted, then
we update σ[i] as the destination level where the tuple should go to.
Line 6: We are evicting a full tuple in this case, so we should update t[i] as the
full tuple index jd[i].
Line 8-11: If dp[i] =⊥ but we are evicting a tuple on level i, then level i can
be the tail level of a gap, so we should still keep track of i as a possible eviction
destination level.
Line 12: We are at the level where a tuple may be evicted to. This also means
this level can be the head level of a gap.
Line 13-15: Because of Line 8-9, we have a gap tail level on record, so we update
σ[i] to add this gap jump, and thus use an empty tuple index je[i] as t[i].
Line 16-18: If we have an empty spot on this level, or we will also evict a tuple on
this level, then we can allow some tuple to be evicted to this level. So we update
src and dest so later on we can enter Line 4 section and update σ.
Line 19-21: We update eTop every time we find a new eviction jump; we update
eBot only for the first time.
Line 22: At the bottom level where a tuple will be evicted to, we must choose an
empty tuple spot to accept the incoming tuple.
Line 23-27: If the current level i does not have any movement during the eviction,
then we will set the fake empty tuple index w as t[i]. Also we will update nTop
and nBot if necessary.
Line 28: Mask each t[i] with δ[i] so the real value is hidden.

D.4 Making the Eviction Map into A Cycle

Algorithm MakeCycle in Alg. 29 adds upwards spurious jumps to the eviction jump
array σ output from PrepareTarget and makes the final eviction map as a cycle.

Step explanations of Alg. 29 MakeCycle:
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Algorithm 29 Circuit MakeCycle (Used in Alg. 25)

Param: Tree height d.

Input: σ ∈ arraylog(d)[d], nTop, nBot, eTop, eBot ∈ Zd
Output: σ ∈ arraylog(d)[d]

1: nPrev :=⊥
2: for i := 0 to d− 1 do
3: if nTop = ⊥ then . cost: log(d)
4: if i = eBot then . cost: log(d)
5: σ[i] := eTop . cost: log(d)

6: else if i = eBot then
7: σ[i] := nBot . cost: log(d)
8: else if σ[i] = ⊥ then . cost: log(d)
9: if i = nTop then . cost: log(d)

10: if eTop = ⊥ then . cost: log(d)
11: σ[i] := nBot . cost: log(d)
12: else
13: σ[i] := eTop . cost: log(d)

14: else
15: σ[i] := nPrev . cost: log(d)

16: nPrev := i . cost: log(d)

Circuit cost: 11log(d) · d

Line 1: nPrev keeps track of the one previous level during the linear scan that
does not have tuple movement.
Line 3-5: It is possible that after PrepareTarget every level is involved in eviction,
so we only have real eviction sequence(RS) and no spurious sequence(SS) (nTop
and nBot will be ⊥). In this case we only do one thing to make the eviction cycle:
when we are at the bottom level of RS, evict to the top level of RS.
Line 6-7: When i = eBot, which means eBot 6=⊥, this is the case where there are
both RS and SS. And because we are now at the bottom level of RS, we should
evict to the bottom level of SS.
Line 8: This means we are at the level where there is no eviction jump given by
output of PrepareTarget. It is possible we have both RS and SS, or just SS (meaning
no real eviction will be done on this path).
Line 9: We are at the top level where there is no real eviction.
Line 10-11: When eTop =⊥, we do not have RS but only SS. So we only need to
do one thing to make the eviction cycle, which is to evict from the top level of SS
to the bottom level of SS.
Line 12-13: If eTop 6=⊥, then we have both RS and SS. So when we are at the
top level of SS, we should evict to the top level of RS.
Line 14-15: When we are at the no-real eviction levels except the top level, we
should evict to the one previous no-real eviction level we encountered (because we
are doing linear scan from root to leaf now, and we want the eviction direction of
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SS to be from leaf to root).
Line 16: Every time we are on a new no-real eviction level, we should record it
so we can add eviction jump from the next no-real eviction level to this one.

E Efficiency and Performance

E.1 3PC ORAM Round Complexity

Fig. 10: Accesses and Rounds

In Figure 10 we show pictorially the dependencies between subprotocols of
3PC-ORAM.ML, both in single and in pipelined execution. This figure illustrates
the points we make in the Optimizations and Efficiency paragraph at the end of
Section 3.

First, using part (a) of the figure one can confirm which subprotocols of a single
instance of 3PC-ORAM.ML execution can run in parallel, and which block requires
as inputs the outputs produced by another. In particular note that protocol FlipFlag
can run in parallel to 3ShiftPIR-Mod and 3ShiftXorPIR-Mod.

Secondly, in part (b) we show the parallelism in Retrieval+PostProcess(PP)
and Eviction phases of h executions of 3PC-ORAM.ML, for i from 0 to h−1, which
are part of a single 3PC-ORAM.Access memory access instance. In particular, this
shows why a single execution of 3PC-ORAM.Access takes 3h+ 6 rounds.

Third, in part (c) we show how Retrieval+PP phases can be pipelined if pro-
tocol 3PC-ORAM.Access services a batch of b accesses with postponed Eviction.
As we explain in the aforementioned paragraph in Section 3, the Retrieval+PP
phases take 4 rounds, but the next execution of the Retrieval+PP block can start
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after 3 rounds both for processing the same access on the next tree and for pro-
cessing the next access on the same tree. The former is the case because protocol
3ShiftXorPIR-Mod returns the next-level label in round 3 of the Retrieval+PP phase.
The latter is the case because protocol FlipFlag completes in round 3, at which point
the retrieved path (and hence the whole tree) has proper sharings of fields fb and
adr, and this is all that is needed for the KSearch protocol to start servicing the
next access on the same tree. When protocol ULiT terminates in round 4, it does
so in parallel to this KSearch instance (hence in Fig. 10 the last round of one
Retrieval+PP execution coincides with the first round of the next execution of
Retrieval+PP), at which point the data fields of all tuples in the path (and hence
in the tree) are properly shared.

E.2 Additional Performance Data

Online Bandwidth. In Fig. 11-12 we compare online bandwidth between 2PC
and 3PC Circuit ORAM. Because 2PC’s online bandwidth can be estimated by
counting the total bits of circuit input wire keys, we used this estimate to sketch
2PC’s bandwidth graph so it can be compared with our 3PC’s bandwidth for large
log n and D. In Fig. 11, for small D = 4B, the bandwidth comparison between
2PC and 3PC is similar to the comparison on CPU time, because circuit input
wire keys are the major components of bandwidth, just like circuit evaluation time
is the major cost of CPU time. But if we fix log n and estimate bandwidth with
respect to D, we see that as D grows, eventually bandwidth on D will dominate,
and thus reflect the factor of κ for the 2PC/3PC bandwidth ratio because 2PC
sends wire keys on D while 3PC does not. And this D turning point should be
around/before D = 1KB according to Fig. 12.

Bandwidth and Comparison to Generic 3PC. In 13 we compare on-line
bandwidth of three schemes, cust-3PC, gen-3PC, and C/S as a function of record
size D (for log n = 30). To make this comparison clearer Fig. 14 and 15 show
the ratios between the bandwidth of our 3PC-ORAM protocol and the “base-line”
bandwidth cost of client-server Path-ORAM, i.e. bndw(cust-3PC)/bndw(C/S), and
for comparison the corresponding ratio for the generic 3PC Circuit-ORAM, i.e.
bndw(gen-3PC)/bndw(C/S). Fig. 14 shows these ratios as a function of the address
size log n (for D = 4B), and Fig. 15 shows them as a function of record size D
(for log n = 30). From Fig. 14 we see clearly that for small records our protocol is
factor of 21x over the client-server Path-ORAM, about 2x worse than the optimal-
bandwidth generic 3PC protocol (which, recall, has completely impractical round
complexity), but in Fig. 15 we see that our bandwidth is only about 5x over client-
server Path-ORAM, beating the generic 3PC protocol even in exact bandwidth for
D≥1KB.

Low Bandwidth in Retrieval Phase. In Fig. 16 we show the ratio between our
End-to-End bandwidth over our Retrieval bandwidth, which asymptotically differs
by an O(log n) factor but in practice for log n= 30 we see it grow from 88x for
small D to 300x for D= 10KB. Secondly we show the ratio between our Retrieval
bandwidth and the Ring-ORAM [24], which is a recent client-server Path-ORAM
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Fig. 11: Online Bandwidth (MB) vs logn
(bits), for D = 4 bytes

Fig. 12: Online Bandwidth (MB) vs D (KB)

Fig. 13: Online bndw.(MB) vs D(KB) for
logn=30

Fig. 14: Online bndw. ratio vs logn for D =
4B

variant with low-bandwidth Retrieval using symmetric key cryptography: We see
that our bandwidth is only 4x to 3x over the cost of its client-server counterpart.

Online CPU Time. We compare online CPU time between 2PC and 3PC Circuit
ORAM with respect to both record sizeD and address bit length log n. We measure
2PC’s online CPU time by only counting its garbled circuit evaluation time, while
counting everything 3PC computed online (garbled circuit, link encryptions, etc.)
as its online CPU time.

According to our measurements, when D is fixed to some small number like 4B,
the online CPU time ratio between 2PC and 3PC grows as log n increases (shown
in Fig. 7), and 3PC’s online CPU time can be about 6 times smaller than 2PC for
log n = 25 mainly because 2PC has much larger circuit size. We also concluded
that if fixing log n and comparing CPU time with respect to D, when D becomes
larger, eventually D will out-weight other metadata fields in tuples and become the
dominating factor in CPU time. For 3PC’s CPU time, this turning point will be
D between 1-10KB as the log-scale Fig. 17 shows. And based on our calculations,
the upper-bound of CPU time ratio between 2PC and 3PC should be around 4κ

13
when D is large, which is about 25 when κ = 80.

CPU Cost Components. In Fig. 18 we show the online CPU cost components
of our 3PC-ORAM. As shown in the graph, when D is small, garbled circuit com-
putation, which stays constant as D changes, dominates the CPU cost. And as D
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grows, link encryption/decryption weights more and more as expected. However,
what we also see is that there exists huge costs besides link encryptions and circuit
computation when D becomes large. We found that the major part of these costs
appears to be data handling cost, i.e. data structure conversions, reading/writing
link bytes. Then it makes sense that these costs will also grow as D grows. To
further improve the online CPU cost, we suppose more efficient languages than
Java on this may show better performance.

τ Optimization. Parameter τ affects many things of the recursive tree structure
ORAM schemes: number of trees, circuit sizes, bandwidth, message rounds, etc.
Picking the best τ is not obvious, because it often involves trade-offs between dif-
ferent measurements (i.e. bandwidth vs circuit size), and different ORAM schemes
may have different optimal τ values. To select the best τ for our 3PC-ORAM, we
estimated our Online CPU cost as a function of τ . Based on the function curve,
we found the estimated optimal τ is between 5 and 6. Though the optimal point
is closer to 5 than 6 in the estimate, the actual measurements of our 3PC-ORAM

shows that both τ = 5 and 6 can be good choices in practice, where τ = 6 actually
has slight advantages on circuit size, CPU time, and Access WC time. We also
estimated CPU cost of Circ-ORAM in terms of τ , and found that the optimal τ
for Circ-ORAM is 3, which is the value used in Circ-ORAM paper. This verifies our
estimates on τ is indeed correct.

Fig. 15: Online bndw. ratio vs D for logn=30
Fig. 16: Online bndw. ratio vs D(B) for
logn=30

Fig. 17: Online CPU (ms) vs D (KB) Fig. 18: Online CPU Time Components(ms)
vs D(KB)
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