
Cryptography with Dispensable Backdoors

Kai-Min Chung∗1, Marios Georgiou†2, Ching-Yi Lai‡1 and Vassilis Zikas§3

1Academia Sinica
2City University of New York

3University of Edinburgh

April 18, 2018

Abstract

Backdooring cryptographic algorithms is an indisputable taboo in the cryptographic literature for a
good reason: however noble the intentions, backdoors might fall in the wrong hands, in which case security
is completely compromised. Nonetheless, more and more legislative pressure is being produced to enforce
the use of such backdoors.

In this work we introduce the concept of dispensable cryptographic backdoors which can be used only
once and become useless after that. These exotic primitives are impossible in the classical digital world
without stateful and secure trusted hardware support, but, as we show, are feasible assuming quantum
computation and access to classical stateless hardware tokens.

Concretely, we construct a dispensable (single-use) version of message authentication codes, and use
them to derive a black-box construction of stateful hardware tokens in the above setting with quantum
computation and classical stateless hardware tokens. This can be viewed as a generic transformation from
stateful to stateless tokens and enables, among other things, one-time programs and memories.

We then use the latter primitives to propose a resolution to the most prominent recent legislative push
in favor of backdooring cryptography: the conflict between Apple and FBI last year. We show that it is
possible for Apple to create a one-time backdoor which unlocks any single device, and no more than one,
i.e., the backdoor becomes useless after it is used. We further describe how to use our ideas to derive a
version of CCA-secure public key encryption, which is accompanied with a dispensable (i.e, single-use, as
in the above scenario) backdoor.

1 Introduction

The use of strong cryptographic primitives for widely available devices has led to controversial debates
between the computer security community and public policy makers. On the one hand, law enforcement
agencies argue that allowing access to such primitives enables cyber-terrorists to use it to elude detection,
and thereby reduces the effectiveness of law enforcement. On the other hand, the computer security—and
most vocally the cryptographic—community argues that allowing everyone to use such strong primitives can
help protect their security and make cybercrime less effective in the first place. In fact, this debate dates
back to the Cold War era and due to its severity has been often referred to as the Crypto Wars [11].

Although the Electronic Frontier Foundation (EFF) legally fought—and won in court—policies which
could undermine security of the offered solutions, the debate is holding. And with the wide spread of the
Internet, it has been reignited. One of the most high-profile recent cases was that of the FBI against Apple
Inc. [18]. In short, the FBI wanted Apple Inc. to create and electronically sign a new software that would
enable the FBI to unlock a work-issued iPhone 5C, recovered from one of the shooters in a December 2015
terrorist attack in San Bernardino, CA [21]. Apple Inc. refused to comply with this request. The main

∗kmchung@iis.sinica.edu.tw
†mgeorgiou@gradcenter.cuny.edu
‡cylai0616@iis.sinica.edu.tw
§vzikas@inf.ed.ac.uk

1

argument was that such a software would effectively serve as a backdoor and anyone who got his hands
on it would be able to breach the privacy of the smartphone’s holder at will. Thus if the backdoor fell in
malicious hands, it would yield unprecedented havoc.

The question of “whether or not law-enforcement agencies’ selective access—e.g., with a court order—
would immediately imply some sort of broken cryptography” has become by its own a matter of debate (see,
e.g., [22]). Arguably, unlike what was suggested by the FBI [9], there does not seem to be a way to create
some digital information that can only be used by the “good guys” and becomes useless in the hands of
malicious actors.

Notwithstanding, in this work we prove that with the help of quantum storage, we can develop backdoors
that can be used only once to bypass the security of any device from a defined set, and then become
completely useless. In particular, we show that these single-use backdoors allow an arbitrary smartphone
to be unlocked and they become useless after this phone has been unlocked.

1.1 Our Contributions

We propose a general framework called “dispensable backdoored cryptography,” where the goal is to compile
standard cryptographic primitives, such as authentication/identification and encryption schemes, into their
dispensable backdoored counterparts. At a high-level, for a cryptographic primitive where security is defined
in terms of a game between an adversary and a challenger, e.g., CCA secure encryption, we define its
“dispensable backdoored” version. In this version the generation algorithm outputs additionally a quantum
key that can be used to gain knowledge about the secret information, e.g., the decryption key. Importantly,
the security property ensures that in absence of the trapdoor the backdoored scheme achieves the same
guarantees as its non-backdoored counterpart. Additionally, anyone given access to the backdoor can use
it only once, i.e., an adversary, participating in two CCA games and is given access to the trapdoor might
only win in one of these games.

The above transformation is feasible by using the so called one-time programs [15]. Informally, these are
programs that can be executed once and then become useless, i.e., they terminate and cannot be reused.
This exotic primitive is known to be impossible both in the classical world [15] and in the quantum world [7]
without any further setup assumptions. We overcome this limitation by defining one-time programs relative
to a stateless classical oracle—this corresponds to equipping the programs with access to a classical honestly
generated stateless hardware token. We prove that one-time programs are possible in this stateless (classical)
hardware token model. In fact, our construction of one-time programs from stateless (classical) tokens is a
special instantiation of a more general transformation that with the use of quantum computation reduces a
stateful (classical) oracle to a stateless (also classical) one.

Our work continues the line of research of investigating the power of stateless tokens which are known
to be much weaker than their stateless counterparts. For example, stateful tokens are in general susceptible
to resetting attacks. Using the stateful-to-stateless transformation we can prevent such an attack in the
quantum world.

Equipped with this, we demonstrate construction of “dispensable backdoored devices” as a way to
resolve the smartphone vs. law enforcement conundrum. Concretely, our construction allows a device (e.g.,
smartphone) vendor to embed in its devices a content locking mechanism, and create (and locally store) a
dispensable unlocking backdoor that can unlock exactly one smartphone—any one from a specified set. To
make our scheme most general we look at the question of how we can extend the set of devices/smartphones
that can be unlocked. An obvious solution would be to create a new one-time backdoor and update every
phone in the set we want it to be able to unlock. However, this solution is clearly not scalable, as it requires
such an update every time a new (batch of) phone needs to be added to this set. Instead, we provide a
mechanism for extending the set of devices that can be unlocked with the existing single-use backdoors
without interacting with the ones already in the set.

Finally, we show how to construct dispensable backdoored CCA secure encryption as discussed above
to demonstrate the generality of our framework. We believe that cryptography with dispensable backdoors
can also be extended to most if not all cryptographic primitives with game-based security definition. We
believe that such an extension and investigation of further applications/implications is a interesting future
direction.

2

1.2 Overview of our techniques

The main cryptographic tool for our constructions is dispensable message authentication codes (DMAC). This
primitive allows someone having a quantum key to use it exactly once in order to compute an authentication
tag to any message. Although we are the first to define this primitive, it turns out that we can directly use
the construction of quantum money scheme by Aaronson and Christiano [2] to implement it and its security
directly follows by the work of David and Sattath [10].

We use DMACS to devise a generic reduction of stateful to stateless classical oracles. These oracles
correspond to the notion of stateless honestly generate (classical) hardware tokens. Concretely, for any
given stateful token T we show how to generate code for a stateless token along with one-time (quantum)
backdoors, so that we can use them to devise a protocol that implements the stateful token T with un-
conditional security. We note in passing that in the purely classical setting, stateful tokens are strictly
more powerful than stateless. E.g., one-time programs are trivial in the stateful token model—simply run
the program inside a token that is instructed to halt after the first use—whereas they can be easily shown
impossible from stateless tokens without quantum computation—the standard argument that “if I can run
a classical stateless program on any one input I can also run it on any two inputs” [15] trivially applies
here. Importantly, the tokens/oracles considered in this work can only be queried in a classical manner. In
fact, such a reduction would become impossible if quantum superposition queries to the stateless token are
allowed (see further discussion below), and restriction to classical queries is the key to enable our transfor-
mation. We believe that such restriction is a mild assumption that holds in most existing instantiations of
such primitives such as smartcards, trusted co-processors etc.

The idea behind our stateful-to-stateless transformation is to generate a (quantum) DMAC tagging key
to be used to emulate each round of interaction with the stateful token/oracle T . Denote this key sequence
by k1, . . . , km. We then derive (a program for) our stateless oracle which given any sequence of inputs
(x1, t1), . . . , (xq, tq), checks that each ti is a valid DMAC tag corresponding to the i-th instance, and if this
is the case, performs the same computation that T would on input x1, . . . , xq. The security of the DMAC
will ensure that none can receive responses from the stateless tokens on query-sequences that have different
prefixes. Hence, once any sequence of q queries has been successfully submitted, there is no way to “rewind”
the token and query it on a different sequence, which emulates the behavior of the stateful token T .

Having built such a stateful-to-stateless transformation, we go on to create a transformation from any
program to its one-time version relative to a classical oracle. The idea here is to first describe the one-time
program as a stateful oracle/token and then use the above transformation to turn it into a stateless one.
Finally, using one-time programs and one-time memories as their special case, we are ready to attack our
original problem of building one-time backdoors for unlocking phones. To achieve this, we allow the vendor
to create phones that are hardcoded with a fresh symmetric-encryption key. When a phone locks, it uses
this key to encrypt its state and subsequently discards the key. Now, the key can only be accessed through
the one-time memory.

In order to allow extendability of our construction, i.e. the vendor can create new phones at any time,
we define a notion of extendability of one-time memories. Informally, an extendable OTM is an OTM that
can be updated so that it encodes one more secret. We achieve this by having n (1-out-of-2) OTM for n
secrets. Each (1-out-of-2) OTM i encodes two things. First, a random key ki. Second, the actual secret si
xor’ed with all previous keys k1 ⊕ . . . ⊕ ki−1. Informally, in order to extract the secret si, we first need to
extract all keys kj for j < i, thus destroying all previous OTM.

Finally, we define the notion of encryption with dispensable backdoors and we show how to achieve this
primitive out of IND-CCA encryption and one-time programs. The security definition now asks from an
adversary to break two challenge ciphertexts given only one backdoor. We finally construct such a scheme
by creating a one-time program for the decryption algorithm and prove formally that this construction is
secure.

1.3 Related Literature

Our work combines elements from several different areas of classical and quantum cryptography, ranging
from quantum money to quantum tokens for message authentication codes and one time memories.

An important element in our construction is what we call quantum dispensable message authentication

3

codes (DMAC). Those can easily be thought as the symmetric key version of the one-time tokens for digital
signatures which was proposed by Ben-David and Sattath [10]. It can also be viewed as a generalization
of secret-key quantum money in the following sense: in quantum money, an adversary given a quantum
state corresponding to a coin should not be able to come up with another valid coin. In quantum tokens
for MACs, an adversary should not be able to come up with two tags (for two different messages) given
only one token. Clearly, impossibility of tagging two messages implies impossibility of copying the quantum
state. Importantly, the adversary should be also given oracle access to the verification algorithm. Related
works that implicitly contained this relation is that of Gavinsky [12] and that of Pastawski [20]. Gavinsky
calls this primitive a quantum retrieval game (QRG) and it differs from a DMAC in the sense that it does
not allow the adversary to have access to a verification oracle. Gavinsky proved that such a primitive is
enough to construct secret-key quantum money by having a 3-round verification protocol with the bank.
Later Georgiou and Kerenidis [13] improved this construction by achieving only one round verification.

Gordwasser et al. [15] introduced the notion of one-time memories (in short, OTMs); these are devices
that contain two secrets but only one of the two can be extracted. They proved that OTMs are enough to
achieve one-time programs, i.e. programs that can be run only once. Broadbent et al. [7] extended this
result to the quantum setting by showing that quantum OTMs are enough to construct quantum one-time
programs.

Interestingly, despite being very close to a non-interactive version of oblivious transfer, OTMs are im-
possible to achieve in the plain model, both in the classical world and in the quantum world, even in the
computational setting. The classical impossibility comes from the fact that a memory should correspond to
a classical bitstring and therefore by copying the bitstring we can easily extract both secrets.

Quantumly, the no-cloning theorem could potentially give a way to construct such a primitive. Unfortu-
nately, this is still impossible, since it is theoretically possible to extract a value from a quantum state with
probability close to 1 without collapsing the state, and thus we can invert the extraction procedure and then
extract the second value as well [1]. Since this impossibility is the motivation for the necessity of classical
tokens to achieve one-time primitives (i.e., programs and memories), we sketch the proof intuition in the
following (For more details see Aaronson’s “Almost as good as new lemma” [1].): Measuring a quantum
state returns a random outcome with probability that is proportional to the inner product of the state and
the corresponding measurement operator. After the measurement the state collapses to that outcome. The
correctness of the OTM, requires that this measurement returns a outcome with high probability. This in
turn means that the inner product between the state and the particular measurement operator equals to
(say) 1 and thus the measurement does not destroy our state at all. Therefore, an adversary after retrieving
the first secret can undo the unitary applied to the quantum state, and then run the second unitary followed
by a measurement to retrieve the second secret. Note that this argument shows that stateful-to-stateless
transformation is impossible if quantum query to the stateless token (and its inverse) is allowed.

The above quantum-token rewinding attack indicates that shifting from stateless to stateful quantum
tokens might not have such a big effect on the feasibility landscape as the switch from stateless to stateful
classical tokens. The natural question of what the minimal assumptions are regarding the adversarial model
in order to achieve one-time memories—for example, can we achieve OTM relative to a classical oracle that
allows only classical queries?— was first address by Liu [19], who proved that OTMs are possible in the
isolated-qubits model, where the adversary is restricted to act on each individual qubit of the (quantum)
OTM separately.

A more general attempt to address the above problem was taken by Broadbent et al. [6] which ini-
tiated the study of feasibility of OTMs in the quantum setting from stateless trusted hardware tokens.
Concretely, [6] proposes a definition of one-time memories in the UC framework. The proposed OTM func-
tionality behaves as an oblivious transfer functionality, with the difference that the sender is not notified
when the receiver gets one of the messages. Most interestingly, they proposes a construction of OTM and
prove that is satisfies their proposed security notion. Although our work is also in the setting of quantum
computation with stateless classical token, it differs from [6] in its goals, definitions, and approach it takes
as well as in the underlying techniques.

In terms of the goals, our aim is to equip cryptographic primitives with dispensable backdoors. This,
in general, requires one time programs (cf. Section 5.2.) Although the latter are known to be reducible to
one-time memories, the reduction is achieve by means of a garbled-circuit-based approach. Note that in the

4

garbled-circuit approach, we need an OTM –and thus one token– per gate. Here, we show how to construct
one-time programs directly, without going through one-time memories and using a single token, thus our
construction is more efficient.

In terms of the used techniques, one of our main contribution is the reduction of stateful to stateless
tokens which uses only dispensable MACs (DMACs) which we introduce in this work. As we show, DMACs
can be easily constructed and proved secure using techniques from the existing quantum literature, in
particular from [10], in a black-box manner. This allows us to avoid the proof complications apparent
in [10].

Last but not least, the UC security definition proposed in [6] seems to introduce some inconsistencies
in the security statements. Concretely, [6] proves security of their construction only against a corrupted
receiver. And it seems to be impossible to argue security for the proposed OTM functionality against a
malicious sender. Indeed, to simulate a corrupted sender, the simulator would have to extract the two values
from the sender, which appears not to be possible in the construction. Furthermore, one cannot claim that
since the token is assumed to be honestly generated the only interesting case is that of an honest sender, as
this assumption trivializes the problem. Indeed, with the assumption of an honest sender the functionality
can be trivially implemented by assigning the sender the role of a trusted party which does not report to
the environment when the receiver receives his secret. We avoid these issues in this work by proposing a
property-based definition of one-time memories and programs in the hardware token model, which treats
the constructions are oracle algorithms.

Finally, strong, i.e., virtual black-box (VBB) obfuscation can yield a method to go from secret-key to
public-key quantum money, can also be used as a way to go from one-time tokens for MACs to one-time
tokens for signatures as shown by the work of Ben-David and Sattath [10]. In particular, they showed that
it is enough to achieve average case virtual black-box obfuscation for the subspace membership problem.
Unfortunately, it is impossible to achieve a general purpose VBB obfuscator [3] and only a handful of
functions are known to be are known to be VBB obfuscatable today [23, 8, 24, 17] and none of them seems
to be able obfuscate the oracle of [2] that would yield a construction of DMACs.

1.4 The model

We complete this section by describing our model of computation and attack. Before that, we provide some
necessary terminology and notation: A function f is negligible if f(n) ∈ o(1/poly(n)) for any polynomial
poly. For two quantum states ρ, σ we denote by ∆(ρ, σ) their trace distance 1

2 ||ρ−σ||1. If the trace distance
between two quantum states is negligible then we will denote this by ρ ∼s σ and we will say that the
quantum states are statistically indistinguishable. For two quantum algorithms A,B that possibly have
inputs and oracle access to some algorithms, we will write A ∼s B if the quantum states that they output
are statistically indistinguishable.

Our results consider systems that might be classical and/or quantum computation enabled. E.g., our iQ-
phone application considers a classical smartphone but the vendor—who also stores the one-time backdoor—
can perform quantum computation, i.e., create, store, and measure qubits. We consider information-theoretic
security in the quantum setting, i.e., the adversary is a computationally unbounded quantum machine and
the (quantum enabled) parties can transfer quantum states between each other. On the other hand, we
assume that the adversary can only make polynomial number of (classical) queries to the stateless token.

Similarly to [6] our constructions are assumed access to classical tokens which allow only classical access—
in particular, the only way to interact with such a token is to hand it as input a classical string. However, to
avoid the aforementioned complications we devise natural definitions of such primitives as oracle algorithms
in the plain (non-UC) model of computation. Recall that the assumption of classical-only tokens is not just
consistent with the capabilities of common devices that can be used as hardware tokens, e.g., smartcards, but
it is also minimal since quantum-accessible tokes are known to be insufficient to circumvent the impossibility
of one-time primitives [1].

We model algorithms with access to classical tokens as oracle algorithms, where the oracle is classical
and offers the same functionality as the corresponding token. In particular, our classical oracles can only be
queried with classical string (no quantum interfaces), may only perform classical computations, and produce
classical output. Throughout this work we use the terms oracle and token interchangeably.

5

2 Dispensable MACs

In this section we introduce the notion of dispensable message authentication codes (DMACs, in short) and
demonstrate how they can be implemented. In a nutshell, DMACs are a one-time version of classical MACs,
i.e., the secret key can be used to authenticate only a single message and then becomes useless (except
for verification purposes.) We remark that DMACs are different from what is called one-time MACs in
the cryptographic literature. Indeed, the latter are MACs that preserve their security as long as they are
used at most once, i.e., they could be used for tagging more than one message but this would render them
insecure/forgeable. Instead, DMACs do not allow anyone—honest or adversarial—to use the same MAC
key to tag two different messages.1

Concretely, classical message authentication codes (MACs) are symmetric-key primitives that allow two
parties, who share a key, to exchange messages in an authenticated manner. In a nutshell, any of the parties
can use the key within a tagging algorithm Tag to create an authentication tag t to any given message (t
is often referred to as a MAC tag). The security of the scheme ensures that only the message/tag pairs
generated with the shared key will always be accepted by the receiver (completeness); however, no adversary
who does not know the key can forge an acceptable authentication tag on a new message (existential
unforgeability).

DMACs are MACs whose key can be used to tag exactly one message. This is achieved by making a
quantum state as a part of the tag-generation key. This quantum state allows whoever holds it to tag any
one message of their choice. We remark that DMACs authenticate classical (not quantum) messages. The
formal definition follows.

Definition 1 (Dispensable single-bit MACs). A single-bit dispensable MAC (DMAC) is a triplet of algo-
rithms (Gen,Tag,Ver) defined as follows:

• Gen(1n) → (s, ρ) is a quantum algorithm that takes as input a security parameter n and returns a
dispensable (secret) key-pair consisting of a classical bit-string s of size n and a quantum state ρ. We
will refer to ρ as the dispensable (part of the) key.

• Tag(ρ, b)→ t is a quantum algorithm that takes as input a quantum state ρ and a bit b, and returns a
classical tag t.

• Ver(s, b, t) → {0, 1} is a classical algorithm that takes as input a secret s, a bit b, and a tag t, and
either accepts or rejects.

The security of DMACs is similar to the security of the original MACs (we refer to [14] for a formal
definition), but instead of existential unforgeability, it requires dispensable existential unforgeability property
which forbids the adversary from creating valid tags for two different (classical) messages with a single
tagging key. Note that unlike standard EUCMA-security, the adversary is not given access to a MAC-tag
generation oracle—since the dispensable key can be used only once. However, we do allow the adversary
to use a classical verification oracle that, given a received (message,tag)-pair (b, t), responds whether or not
Ver(s, b, t) = 1.

Definition 2 (Security of DMACs). A DMAC (scheme) (Gen,Tag,Ver) is said to be secure if it satisfies
the following properties:

Completeness. Let (s, ρ) be the output of Gen; then for any bit b, it holds that

Ver(s, b,Tag(ρ, b)) = 1.

Dispensable Existential Unforgeability (DEU). Let Vs be a classical oracle, which on input a bit
b and a tag t, outputs Ver(s, b, t). A DMAC (Gen,Tag,Ver) is DEU-secure if for any (computationally

1There is an unfortunate clash in terminology in the literature as one-time programs and one-time memories achieve a similar
“one-timeness” as DMACs, which is different from what one-time MACs and one-time signatures achieve. Here, we choose to
use the term dispensable for MACs to avoid ambiguity.

6

unbounded) quantum algorithm A with oracle access to Vs and polynomially many queries to Vs, it holds
that AdvDMAC

A ≤ negl(n), where

AdvDMAC

A := Pr
(s,ρ)

$←Gen(1n)

(t0,t1)
$←AVs(·,·)(ρ)

[Ver(s, 0, t0) = 1 ∧ Ver(s, 1, t1) = 1].

Note that in the above experiment, the adversary is not given the secret verification key s generated
by Gen. This is the reason why this primitive is a secret-key primitive. In fact, in our constructions, if
the adversary would get s, then he would be trivially able to generate valid MACs. This is true not only
because he is unconditional—he can bruteforce the tag space, but also because our constructions generate
the dispensable part of the key ρ from the secret s. It is also easy to verify that the DEU-security implies
the classical notion of existential unforgeability [16] but without the MAC-tag generation oracle. Indeed, if
the adversary had a process A for generating a valid MAC tag on a message without knowing any part of
the key, then he could trivially break DEU-security by first running A to forge a MAC on one message b0
and then use the dispensable key ρ to generate a MAC tag for b1 (the completeness property ensures that
the latter will always succeed).

Construction of DMACs. Despite our work being the first to provide a formal definition of DMACs,
there are a couple of heavily related primitives studied in the quantum cryptography literature—e.g., quan-
tum retrieval games [12], unforgeable quantum tokens [20], and one-time quantum digital signatures [10]. In
fact as part of their one-time quantum digital signatures, David and Sattath [10] already developed the tech-
niques and implicitly defined the algorithms that one needs for implementing DMACs. For completeness,
we include this construction and the security argument in Appendix 6. Notice that although we can create
directly dispensable MACs from dispensable signatures, such an approach loses the information theoretic
security of the definition (since public-key signatures require computational assumptions). Instead, by being
careful and using only part of [10], we achieve information theoretic security.

Theorem 1. There exists a secure single-bit DMAC in the plain model.

From single-bit to string DMACs. Definition 1 can be extended to the case where we want to tag a
string of several (polynomially many) bits. In this case we require that there is no algorithm that can tag
two different bit-strings. We refer to this primitive as DMAC for strings or string DMAC. The corresponding
scheme and security definitions are trivially derived by modifying Definitions 1 and 2 so that instead of bits
b, b0, and b1, they are applied to strings m,m0, and m1. For the remainder of this paper, we use DMAC to
refer to string DMAC.

The construction of string DMACs from single-bit DMACs is straightforward: To generate tags for an n-
bit string m ∈ {0, 1}n, simply create n independent key-pairs (s1, ρ1), . . . , (sn, ρn) for single-bit DMACs; the
ith dispensable key ρi is used to authenticate the i-th bit of m. The security intuition of the construction
follows from the fact that since the key-pairs are honestly and independently generated, the single-bit
DMAC schemes can be trivially executed in parallel. Note that as straightforward as this might be in the
classical setting, quantum interference requires special treatement. Nonetheless, as our DMAC construction
is effectively extracted from the one-time quantum signature from [10], the proof follows immediately from
their reduction of multi-bit to single-bit one-time quantum signatures [10, Section 5].

Corollary 1. There exists a secure DMAC for strings in the plain (quantum) model.

3 Reducing stateful to stateless oracles

Here we show that the notion of quantum DMACs is powerful enough to turn any stateful and classically-
queried classical oracle into a stateless one. We model a stateful oracle as a stateless oracle together with a
stateful database that stores the queries. Then every time the oracle is queried, it is reset and then runs all
the previous queries, followed by the last one.

Using this formalization the transformation of a stateful algorithm A into a stateless B works as follows.
As a first step assume some polynomial number q of queries are allowed. We create q single-bit DMAC

7

A :
i← 1
state← ⊥
loop: On query x

(y, state)← Ci(x, state)
i+ +
return y

Figure 1: Stateful Algorithm with respect to {Ci}i∈Z

A :
S ← []
loop: On query x

Append x on S and parse S as (x1, . . . , xτ)
state← ⊥
for i ∈ [τ] do

(y, state)← Ci(xi, state)

return y

Figure 2: Equivalent formulation of stateful Algorithm with respect to {Ci}i∈Z

key-pairs (ski, ρi). Then the algorithm B has the following structure. At the first time it is called, it is
queried with x1 together with a tag t1 on x1 with respect to the key sk1. If the tag is valid, then the
algorithm runs as a subroutine A with input x1 and returns A’s output. For the next query x2, the calling
algorithm should provide both (x1, t1) and (x2, t2), where t2 is a tag of x2 with respect to sk2. Now B will
first run A on the first input and then run A on the second input and return this result.

Stateful oracle. A stateful oracle can be thought of as a sequence of stateless oracles {Ci}, where each
of them after execution outputs a state that is fed as input to the next oracle together with a query. Equiv-
alently, a stateful oracle could keep a list of all the previous queries and re-execute the whole computation
from the beginning for each new query.

Definition 3 (Stateful algorithm). A stateful oracle A with respect to a family of stateless oracles {Ci}i∈Z
works as follows (fig. 1):

Up to a polynomial slowdown, an equivalent formulation of a stateful oracle is the following (fig. 2):

Stateful to stateless transformation A stateful to stateless oracle transformation is an algorithm that
takes as input the description of a stateful oracle and returns the description of a stateless oracle together
with a quantum state. We require the correctness that any algorithm with oracle access to the stateful
algorithm can be simulated by another algorithm with oracle access to the stateless one. We also require
the security that an algorithm with access to the stateless oracle does not have extra power over one that
has access to the stateful one.

Definition 4 (Stateful to Stateless transformation). Let A be a family of stateful oracles {Ai}i∈Z. Gen is
a stateful to stateless oracle transformation with respect to A if there is a family B = {Bj}j∈Z of stateless
oracles such that:

• Gen(1n, i) → (ρ, j) is an algorithm that takes as input a security parameter n as well as an index i
that corresponds to the stateful oracle Ai and returns a quantum state ρ together with an index j that
corresponds to the stateless oracle Bj.

8

B(s1,...,sq ,i)((x1, t1), . . . , (xτ , tτ))
if DMAC.Ver(sj , xj , tj) = 0 for some j ∈ [τ] then

return “Invalid tag”

state← ⊥
for j ∈ [τ] do

(y, state)← Ci,j(x, state)

return y

Figure 3: The class of stateless oracles B

Gen(1n, i)
for j ∈ [q] do

(sj , ρj)← DMAC.Gen(1n)

return ((s1, . . . , sq, i), ρ1 ⊗ . . .⊗ ρq)

Figure 4: The generation algorithm Gen

The transformation has to satisfy the following properties:

Completeness. For any (polynomial time) algorithm C, there exists a (respectively polynomial time) sim-
ulator S such that for any i ∈ Z,

CAi ≡ SBj (ρ),

where (j, ρ)← Gen(1n, i).

Security. For any (polynomial time) algorithm C, there exists a (respectively polynomial time) time simu-
lator S such that for any possibly mixed quantum state aux and for any i ∈ Z,

CBj (1n, ρ⊗ aux) ∼s SAi(1n, aux),

where (j, ρ)← Gen(1n, i).

3.1 The transformation

Here we formally present the construction that transforms any polynomial time stateful oracle into a stateless
one. Intuitively, the construction works as follows. Our new stateless oracle B has to take as input all the
previous queries. In this way, we guarantee that B does not need to keep a state. On the other hand, we
have to impose that B cannot be rewound, i.e., if the first query is x, then there is no way we can start B
from the beginning with a query x′ 6= x. To achieve this, B is parameterized by a list s1, . . . , sq of secret
keys for a DMAC, where q is the total number of queries. For each query xj , the calling algorithm has to
also provide a tag tj for xj corresponding to the secret key sj . Before executing the query, B first verifies
that the tags for all the queries are valid. If this is the case, then it runs all the queries one by one and
returns the final outcome.

Let A = {Ai}i∈Z = {Ci,j}i,j∈Z be the class of all polynomial time oracles, where Ci,j are the stateless
oracles corresponding to Ai. Moreover, let (DMAC.Gen,DMAC.Tag,DMAC.Ver) be a secure DMAC. We
define the class B = {B(s1,...,sq ,i)}s1,...,sq ,i in figure. 3.

Clearly, B is a class of stateless oracles. Now, the generation algorithm Gen works as shown in figure 4.
To argue completeness, let C be any algorithm that has access to the stateful oracle A. We will create a

simulator S that takes as input the quantum state ρ1⊗ . . .⊗ ρq and has oracle access to the stateless oracle
B. S initializes τ = 0 and the sequence S to be the empty sequence. Then it starts C and simulates C’s
oracle as shown in figure 5.

9

Oracle(x)
τ ← τ + 1
t← DMAC.Tag(ρτ , x)
Append (x, t) on S and parse S as ((x1, t1), . . . , (xτ , tτ))
return B((x1, t1), . . . , (xτ , tτ))

Figure 5: The oracle that S simulates

Therefore, the completeness follows from that of the DMAC.

3.2 Security analysis

To argue security, we create a simulator S that takes as input an auxiliary state aux and has oracle access
to the algorithm A. S first creates q pairs of DMAC keys s1, . . . , sq together with their quantum states
ρ1, . . . , ρq. Then S starts C with input ρ1 ⊗ . . . ⊗ ρq ⊗ aux. Moreover, S simulates the oracle B as shown
in figure 6. During the simulation, S initializes two empty lists Q,A whose size increases at the same time.
Informally, Q will contain the longest sequence of queries x1, . . . , x|Q| that have a valid tag. A will contain
the corresponding answers that the algorithm A replies. We denote by Qi the i-th element of Q and similarly
for A.

Bsim((x1, t1), . . . , (xτ , tτ))
if DMAC.Ver(sj , xj , tj) = 0 for some j ∈ [τ] then

return “Invalid tag”

if (x1, . . . , xτ) is a prefix of Q then
return Aτ (no need to query A)

if Q is not a prefix of (x1, . . . , xτ) then
return ⊥

l← |Q|+ 1
for i ∈ [l, τ] do
Qi ← xi (i.e. append xi to Q)
Ai ← A(xi) (i.e. append the answer to A)

return Aτ

Figure 6: The oracle Bsim that S simulates

Note that if the execution reaches the line return ⊥, then the adversary will be able to tag two messages
using the same key.

Notice that if C is computationally unbounded but limited to a polynomial number of queries, then S
has to be also computationally unbounded.

Let E be the event that the line return ⊥ is executed. Let q′ be the number of queries C makes to its
oracle B and let also {(x1j , t1j), . . . , (xτjj , tτjj)}j∈[q′] be the queries. Equivalently, this event can be defined
as the event that C makes two queries with different messages in some position i and the corresponding tags
are both valid:

E ={∃j, j′ ∈ [q′], i ∈ [q] : xij 6= xij′

∧ DMAC.Ver(si, xij , tij) = 1

∧ DMAC.Ver(si, xij′ , tij′) = 1}.

Then, our simulator works exactly as C except for the event E; i.e., for any output o, any n ∈ Z and

10

Bsim((x1, t1), . . . , (xτ , tτ))
if DMAC.Ver(sj , xj , tj) = 0 for some j ∈ [τ]− {i∗} then

return “Invalid tag”

if i∗ ≤ τ and V (xi∗ , ti∗) = 0 then
return “Invalid tag”

if (x1, . . . , xτ) is a prefix of Q then
return Aτ (no need to query A)

if Q is not a prefix of (x1, . . . , xτ) and xi∗ 6= Qi∗ then
Stop simulation and return (xi∗ , ti∗ ,Qi∗ , t∗)

else
Abort

if i∗ ≤ τ then
t∗ ← ti∗ (remember the first tag)

l← |Q|+ 1
for i ∈ [l, τ] do
Qi ← xi (i.e. append xi to Q)
Ai ← A(xi) (i.e. append the answer to A)

return Aτ

Figure 7: The oracle Bsim simulated by C ′.

any auxiliary quantum state aux, it holds that∣∣∣Pr[CB(s1,...,sq,i)(1n, ρ1 ⊗ . . .⊗ ρq ⊗ aux) = o]− Pr[SAi(1n, aux) = o]
∣∣∣ ≤ Pr[E].

Now, suppose that there exists an adversary C, value n ∈ Z and quantum state aux such that Pr[E] ≥ e(n)
for some non-negligible function e. We use C to create an adversary C ′ against the DMAC. C ′ takes as
input a quantum state ρ and has oracle access to the algorithm V (·, ·). It starts by picking a random
position i∗ ← [q]. In this position, C ′ will plug the quantum state ρ. For simplicity we rename ρ as ρi∗ .
Moreover, C ′ creates q − 1 pairs (si, ρi) ← DMAC.Gen(1n) for i ∈ [q] − {i∗}. Then C ′ runs C with input
(ρ1 ⊗ . . .⊗ ρq ⊗ aux) and simulates the oracle B as shown below (fig. 7). As before C ′ has to keep two lists
Q,A that are initialized to the empty lists.

Informally, C ′ runs by simulating the stateless oracle and at the same time looking for a pair of inputs
that can break the challenge DMAC. For the queries that do not correspond to i∗, C can use its own secret
key. For the ones that correspond to i∗, the simulator uses its verification oracle V . If the adversary ever
submits two different sequences of queries such that they are not a prefix of each other, then the simulation
stops. With probability 1/q the sequences will differ on the i∗-th position, in which case C ′ will be able to
break its challenge.

We can see that AdvDMAC
C′ = Pr[E]/q ≥ e(n)/q, which implies that C ′ breaks the DMAC game with

non-negligible probability by using only polynomially many queries to the verification oracle.

4 Constructing One-time Primitives

In this section we present definitions and constructions of one-time primitives. In particular, we define
one-time memories (OTMs) and one-time programs (OTPs). In Subsection 4.1 we define OTMs in the plain
model and we discuss their impossibility. We then provide a definition of OTMs relative to an oracle. In
Subsection 4.2 we define OTPs again relative to an oracle. In Subsection 4.3 we present a construction of
OTM relative to a classical oracle. Last, in Subsection 5.1 we define “extendable OTMs,” which are OTMs
that can be extended to encapsulate more secrets.

11

4.1 One-time memories

An OTM is a memory that stores k secrets s1, s2, . . . , sk but only one can be extracted. OTMs were first
defined by Goldwasser and Rothblum [15] in order to construct OTPs. OTMs have then been studied
extensively in the quantum setting, with Broadbent et al. [7] presenting a construction of quantum OTPs
from quantum OTMs. Liu [19] has shown that OTMs are possible in the isolated qubits model, where
each single qubit is manipulated by an adversary and those adversaries are allowed to communicate only
classically.

Definition 5 (One-time memories). A 1-out-of-k one-time memory (OTM) scheme is a pair of algorithms
(Gen,Extract) defined as follows:

• Gen(1n, s1, s2, . . . , sk)→ ρ is an algorithm that takes as input k secret classical bit-strings s1, s2, . . . , sk,
each of length n, and outputs a quantum state ρ that encodes the k secrets.

• Extract(ρ, i) → s is an algorithm that takes as input an index i and a quantum state ρ and outputs a
classical bit-string s.

An OTM scheme satisfies the following security properties.

Completeness. For any s1, s2, . . . , sk ∈ {0, 1}n and for any index i, it holds that Extract(Gen(1n, s1, s2, . . . , sk), i) =
si.

One-timeness. For any (possibly unbounded) adversary A, there exists a (respectively unbounded) simulator
S, such that for any k bit-strings s1, s2, . . . , sk of length n and any auxiliary (mixed) quantum state aux,

A(1n,Gen(1n, s1, s2, . . . , sk)⊗ aux) ∼s SOTs1,s2,...,sk (1n, aux),

where the distributions are over the coins of A,S, and Gen. The oracle OTs1,s2,...,sk on input i returns si
and then halts.

By a slight abuse of terminology, we at times refer to ρ← Gen(1n, s1, s2, . . . , sk) as an OTM with contents
s1, s2, . . . , sk.

It is well known that it is impossible to achieve OTM even in the quantum world and even with compu-
tational assumptions.

(Classical) oracle OTMs. A possible way to bypass the above impossibility is allowing OTMs classical
oracle access to a classical algorithm. Our definition below is inspired by the definition of Broadbent et
al. [6].

Definition 6 (Classical-oracle one-time memories). Let C = {Cj}j∈{0,1}∗ be a family of polynomial-sized
classical circuits. A C-oracle one-time memory (C-OTM) scheme is a pair of polynomial-sized quantum
algorithms (Gen,Extract) with the following properties:

• Gen(1n, s1, s2, . . . , sk)→ (ρ, j) is an algorithm that takes as input k secret classical bit-strings s1, s2, . . . , sk,
each of length n, and outputs a quantum state ρ that intuitively encodes the k secrets. In addition, it
outputs an index j corresponding to the circuit Cj.

• ExtractC(ρ, i) → s is an oracle algorithm that takes as input an index i and a quantum state ρ and
makes a single oracle query to a circuit C. It outputs a classical bit-string s.

A C-OTM satisfies the following security properties.

Completeness. For any s1, s2, . . . , sk ∈ {0, 1}n, for any index i and for any (ρ, j) that is output by
Gen(1n, s1, s2, . . . , sk), it holds that ExtractCj (ρ, i) = si.

One-timeness. For any (possibly unbounded) adversary A there exists a (respectively unbounded) simulator
S, such that for any k bit-strings s1, s2, . . . , sk of length n and for any auxiliary (mixed) quantum state aux,

ACj (1n, ρ⊗ aux) ∼s SOTs1,s2,...,sk (1n, aux),

where (ρ, j) ← Gen(1n, s1, s2, . . . , sk) and the distributions are over the coins of A,S, and Gen. The oracle
OTs1,s2,...,sk on input i returns si and then halts.

12

Similarly to the original terminology, we will refer to ρ derived as above, as a C-OTM with contents
s1, s2, . . . , sk and oracle Cj ∈ C. We will also use OTM(s1, s2, . . . , sk) to denote the corresponding pair
(ρ, Cj).

Notice that this primitive is impossible to achieve in the classical world. Indeed, an adversary A with
oracle access to C, given a classical bitstring ρ, can do the following trivial attack. First, copy the ρ into a
new register ρ′. Then, run ExtractC(ρ, 0) and ExtractC(ρ′, 1) and return the two results. Clearly, this cannot
be simulated by S.

On the other hand, currently it is not clear whether this primitive is achievable in the quantum world.
Now A cannot simply undo the computation since the oracle C works only classically and A has only oracle
access to it.

Remark: The above definition seems to be the most natural way to model classical stateless tokens. In
practice the above definition can be instantiated by having a programmable trusted hardware that runs
some code based on some secret information. For example, smartcards or Intel’s SGX could be a possible
way to achieve such a hardware. Notice that obfuscating such an oracle and giving it to the adversary is
not secure: since the adversary is given actual (albeit obfuscated) code in the form of a description of a
quantum circuit with elementary quantum gates, it is always possible to reverse the gates and thus the
whole computation.

4.2 One-Time Programs

We next define OTPs [15, 7]. As they are a generalization of OTMs, they are also impossible in the quantum
plain model.

(Classical) oracle one-time programs. In the following we define oracle OTPs, which are programs
that can be run exactly once. To overcome the impossibility, we allow OTPs access to a classical oracle with
classical interface. Our definition is inspired by the definition of Broadbent et al. [6].

Definition 7 (Classical Oracle one-time Programs). Let C = {Cj}j∈{0,1}∗ , C′ = {C ′j′}j′∈{0,1}∗ be two classes
of polynomial-sized classical circuits. A (C, C′)−one-time program (denoted as (C, C′)−OTP) is a pair of
algorithms (Gen,Extract) with the following properties:

• Gen(1n, j) → (ρ, j′) is an algorithm that takes as input a security parameter n and an index j and
outputs a quantum state ρ and an index j′.

• ExtractC(ρ, x)→ y is a quantum algorithm that takes as input a quantum state ρ and a classical input
x and has oracle access to a circuit C. It outputs a bit-string y.

An OTP satisfies the following two properties.

Completeness. For any n ∈ Z, any j ∈ {0, 1}n and any input x, it holds that

Extract
C′

j′ (ρ, x) = Cj(x),

where (ρ, j′)← Gen(1n, j).

Security. For any (possibly unbounded) adversary A, there exists a (respectively unbounded) simulator S,
such that for any n ∈ Z, any j ∈ {0, 1}n and any quantum auxiliary (mixed) quantum state aux,

A
C′

j′ (1n, ρ⊗ aux) ∼s SOTj (1n, aux),

where (ρ, j′) ← Gen(1n, j) and the distributions are over the coins of A,S, and Gen. The oracle OTj on
input x returns Cj(x) and then halts.

13

4.3 One-time program construction

Using our general transformation of stateful to stateless oracles, it is easy to create OTPs relative to a
classical oracle. To see this, notice that any algorithm with oracle access to an OTP can be turned into an
algorithm that has oracle access to a stateless version of an OTP together with a quantum state.

In the following we formally prove this idea. The reader can feel free to skip the formal proof without
missing important details.

Let C = {Ci} be the class of polynomial-sized classical circuits. Moreover, let OTi be the one-time
version of the circuit Ci, i.e., OTi on input x returns Ci(x) and then halts. Let Gen′ be the transformation
from Section 3 with respect to the class {OTi}i. In other words, Gen′ turns the class of stateful algorithms
{OTi}i into the class of stateless algorithms B = {Bj}j . Let ρ be the quantum state output by Gen′. Let
DOTi
x be an algorithm with oracle access to OTi that returns OTi(x). In other words, Dx queries its oracle

OTi with the value x and returns the result. By the completeness of the stateful-to-stateless transformation,
there exists an algorithm Sx such that

DOTi
x ≡ SBj

x (ρ),

where (j, ρ)← Gen′(1n, i). Our goal is to create a (C,B)−OTP (Gen,Extract). We define the two algorithms
in the following (fig. 8):

Gen(1n, i)
return Gen′(1n, i)

ExtractB(ρ, x)
return SBx (ρ)

Figure 8: One-time Program construction

Notice that the simulator Sx with oracle access to Bj indeed returns the value Ci(x), and hence the com-
pleteness follows. One-timeness follows directly from the security of the stateful-to-stateless transformation.
For any adversary A there exists a simulator S′ such that for any auxiliary quantum state aux, it holds that

ABi(1n, ρ⊗ aux) ∼s S′OTi(1n, aux).

4.4 Many-time Primitives

The definitions above trivially extend to the many-time cases. However, the corresponding constructions are
not trivial. In other words, we cannot just create an n-time primitive by outputting n one-time primitive. To
see this, consider the case of multi-bit DMACs. If we have two copies of the quantum state for tagging each
bit, we can tag both 0 and 1 for each position of a bit-string, and this makes it trivial to tag any bit-string.
To overcome this we use again our stateful to stateless oracle reduction. In other words, we can consider
a stateful program that allows only n runs and then turn it into a stateless one. Since n-time memories
and n-time message authentication codes are a special case of an n-time program, we get the corresponding
primitives. In order to keep our constructions easy to read, we restrict this paper to the one-time versions.

5 Applications

In this section we give applications of our oracle one-time (i.e., dispensable backdoors) primitives. In
Section 5.1 we demonstrate how one-time backdoors can resolve the smartphone conundrum of privacy
vs. law enforcement, thus addressing the original problem that motivated this paper. Subsequently, in
Section 5.2 we show how to extend the one-time backdoor paradigm to standard cryptographic primitives.
Concretely, we look at the case of public-key encryption schemes with dispensable decryption-backdoors
and we show how we can construct them. We believe that cryptography with dispensable backdoors can
also be generalized to most cryptographic primitives with game-based security definition. We believe it is
interesting to consider such an extension and investigate further applications/implications.

14

Figure 9: One-time quantum unlock key. Unlocking a phone requires measuring the state and thus collapsing
the key which results in one-time use.

5.1 One-time Backdoored Devices

The original motivation was to create a system that allows a device (e.g., smartphone) vendor to embed in
its devices a content locking mechanism, and create (and locally store) a dispensable unlocking backdoor.
The system should satisfy the following properties:

Setup. There should be a setup algorithm that creates the code for the locking device and the relevant
unlock backdoor.

Confidentiality. No one (in particular, no PPT adversary) should be able to extract any information from
the locked device without the backdoor. This should be true even if the adversary has (partial) knowledge
about the keys and/or states of the unlocked devices and about the state of the locked devices.

One-time unlock. Using the unlocking backdoor, the vendor should be able to unlock exactly one phone.
In particular, it should not be able to use the backdoor to extract information from two locked devices.
This should, again, be true even if the adversary has (partial) knowledge about the keys and/or states
of the unlocked devices and about the state of the locked devices.

(Non-interactive) Extendibility. The vendor should be able to program more (new) devices to be un-
lockable with the dispensable backdoor without resetting the entire system, or, in particular, interacting
with the devices that are already set up and distributed.

The above can be achieved by having a quantumly enabled vendor equipped with a stateless token and
a classical set of devices. Note that we assume classical devices as it is unlikely that current technology will
yield hand-held devices with quantum storage and computation capabilities any time soon. In addition, we
do not assume that each device has a secure storage or trusted-hardware module.

Our system works as follows (see also Figure 9 for an illustration):

The Setup Algorithm: Let N be the number of initial devices, denoted by D1, . . . , DN that the vendor
wishes to set up, and (Gen,Enc,Dec) denote the key-generation, encryption, and decryption algorithms for
a symmetric-key encryption scheme. Without loss of generality, we will assume the scheme to be IND-
CPA-secure [4] as this will already provide us with the desirable confidentiality. Of course one can consider
schemes with higher level of security, e.g., IND-CCA-security, if an application needs additional security
guarantees. The vendor V performs the following steps to set up all the N devices:

1. The vendor V uses the key generation algorithm Gen N times to generate N independent n-bit secret
keys k1, . . . , kN (where n is the security parameter).

2. The code of each Di contains the following locking procedure: Di has the key ki locally stored; to lock
itself—e.g., if its user inputs incorrect pins too many times—Di uses Enc to encrypt its state with key
ki and erases the key ki. Without loss of generality, we assume that in the locked state, the phone
might accept a command to output its encrypted state.2

2It is assumed that the vendor can extract the encrypted state from the phone’s storage, anyway.

15

3. V creates a 1-out-of-N OTM that encodes the keys k1, . . . , kN . Subsequently, the vendor erases the
keys k1, . . . , kN from its local state (so that they only reside in the OTM) and also the coins used in
their generation. Notice that, after the phone locks itself, the key is only available through the OTM,
and even the vendor cannot extract the encryption key.

Unlocking a Device with the backdoor: The vendor (or anyone in possession of the OTM) can use
the OTM to unlock any locked device in a straightforward manner: To unlock Di, the vendor extracts the
key ki from the OTM and uses it to decrypt the state.

One can easily confirm the security of OTMs and the encryption scheme ensures that our protocol
satisfies the properties required above, i.e., setup, confidentiality, and the one-time-unlock property: The
fact that the setup algorithm achieves the setup guarantees follows directly by inspection of the protocol.
Confidentiality follows directly from the CPA-security of the encryption scheme. Finally, the one-time-unlock
property follows from the CPA-security of the encryption scheme and the security of the OTMs. Note that
OTMs are assumed secure even with respect to any auxiliary information. Hence, (partial) knowledge about
the state/keys of the unlocked devices or the state of the locked devices does not help the adversary to learn
any information from the OTM about any key (or about the corresponding encrypted states) other than
the extracted.

To complete our analysis, we need to describe how to obtain non-interactive extendibility. In order to do
this, we define in the following an extendable version of OTMs, which are memories that can be extended
by adding more secrets into them. Using such memories, one can trivially add new devices in the system
without interacting with existing devices by simply running the setup algorithm for the new devices and
adding the new keys to the existing OTM, instead of storing them in a new OTM.

Extendable OTMs Informally, extendable OTMs are OTMs that can be encapsulated with additional
secrets. Correctness should guarantee that any of the up-to-now secrets encoded can be extracted, whereas
security should guaranteed that only one of these secrets can be extracted. In this section we will omit the
oracles in notation to simplify the presentation.

Definition 8 (Extendable one-time memories). An extendable one-time memory (EOTM) is an OTM (as
in Definition 5) augmented with an extra algorithm Extend as follows:

• Extend(1n, ρ, s)→ ρ′ is an algorithm that takes as input a quantum state ρ encoding some secrets and
a classical bit-string s of length n, and returns a quantum state ρ′ encoding the previous secrets plus s.

The completeness and security extend trivially from the definitions of OTMs. In particular, in this case
we want that for any algorithm A that takes as input an EOTM encoding k secrets s1, . . . , sk to have a
simulator that can compute anything that A can compute but with only oracle access to OTs1,...,sk , where
OTs1,...,sk takes as input an index i, returns si and then halts.

5.1.1 A black-box construction of EOTMs

Our construction turns any OTM into an EOTM in a black-box manner. We give the intuition with an
example below that illustrates how to go from an OTM that encodes two secrets (the first line) to one that
encodes three secrets (the second line). We denote by OTM(s0, s1) the outcome of an one-out-of-two OTM
generation algorithm with input s0, s1.

OTM(s1, k1),OTM(s2 ⊕ k1, k2), k1 ⊕ k2
OTM(s1, k1),OTM(s2 ⊕ k1, k2),OTM(s3 ⊕ k1 ⊕ k2, k3), k1 ⊕ k2 ⊕ k3

One can see that we use the classical value of an OTM as a mask for the next secret and then we update
the classical value by XORing it with a new key. Notice that in order to extract the value, say s3, we need
to extract both k1 and k2 from the previous OTMs and thus we do not have the option to extract any of
the other secrets.

Formally, let (OTM.Gen,OTM.Extract) be an one-out-of-two OTM. In the following we omit the security
parameter input 1n for simplicity. We create an EOTM (Gen,Extend,Extract) as follows (fig. 10):

16

Gen(s1, s2)
k1, k2 ← {0, 1}n
return OTM.Gen(s1, k1)⊗ OTM.Gen(s2 ⊕ k1, k2), k1 ⊕ k2

Extend((ρ, k), s)
k′ ← {0, 1}n
return ρ⊗ OTM.Gen(s⊕ k, k′), k ⊕ k′

Extract((ρ1 ⊗ . . .⊗ ρi,), j)
k ← 0n

for l = 1 to j − 1 do
k ← k ⊕ OTM.Extract(ρl, 1)

return OTM.Extract(ρj , 0)⊕ k

Figure 10: Extendable OTM construction

Theorem 2. The construction above is an extendable OTM.

Proof. Any algorithm with access to the OTM and an auxiliary input aux can be simulated, using a straight-
forward hybrid argument, by one algorithm that has oracle access to the respective one-time OT oracles
and is also given aux as input. Moreover, any such algorithm S can be easily simulated by an algorithm S′

that has oracle access to the algorithm OTs1,...,sn (that on input i returns si and then halts) as follows. S′

on input aux, starts S with input aux. If S queries oracle i with bit b = 1, S′ returns a random key ki. If
S queries oracle i with bit b = 0, then S′ queries its oracle with value i. Upon getting answer si, it returns
the value si ⊕ (

⊕
j<i kj), by fixing at random all the keys kj , j < i that have not been queried.

Note that it is mandatory for the previous values of k to be erased and only the final one is kept. Indeed,
if an adversary has continuous access to the previous classical values of the OTM, it can retrieve all the
classical keys k1, . . . , k` without destroying the OTMs and thus it can retrieve all the secrets by always
extracting the first part of the OTM and XORing it with the respective secret.

5.2 Encryption with Dispensable Decryption backdoor

Our goal in this section is to turn any CCA encryption scheme into a one-time backdoored one in the sense
that one can have access to a quantum backdoor that can be used only once to perform decryptions.

First, we give a general encryption definition. We then extend this definition to its one-time backdoored
version. The backdoored version should satisfy three properties. First, it should satisfy the correctness of
the original scheme. Second, it should satisfy the correctness of the backdoor, i.e., the backdoor correctly
decrypts a ciphertext. Last, in the security game, the adversary is given additionally a quantum backdoor
and its goal is to now break two challenges.

Definition 9 (Encryption). An encryption scheme consists of three algorithms E = (Gen,Enc,Dec) with
the following properties:

• Gen(1n)→ (ek, dk) is a key-generation algorithm that takes as input a security parameter n and returns
an encryption key and a decryption key. In the case of symmetric encryption dk = ek.

• Enc(ek,m) → c is the encryption algorithm that takes as input the encryption key and a message m
and returns a ciphertext c.

• Dec(dk, c)→ m is the decryption algorithm that takes as input the decryption key and a ciphertext and
returns a message m or ⊥.

Completeness. E is complete if

Pr[Dec(dk,Enc(ek,m)) = m] = 1,

where the randomness is over (ek, dk)← Gen(1n).

17

Security is defined via a code-based game G [5] between a challenger and an adversary A, where A is
given access to some oracles as shown below. The adversary begins by calling the oracle Init, which returns
an encryption key. Then the adversary is allowed to call the oracles Enc, Dec and Chal and in the end
it calls the oracle Fin, which finally outputs a bit. For an adversary A, let AdvCCAA =

∣∣Pr[Fin = 1]− 1
2

∣∣ for
the security game defined below (fig. 11).

Security. E is secure if for any polynomial time quantum adversary A it holds that

AdvCCAA ≤ negl(n).

Oracle Init(1n)
b← {0, 1}
S ← ∅
(ek, dk)← Gen(1n)
return ek

Oracle Enc(m)
return Enc(ek,m)

Oracle Chal(m0,m1)
c∗ ← Enc(ek,mb)
return c∗

Oracle Dec(c)
S ← S ∪ {c}
return Dec(dk, c)

Oracle Fin(b′)
if c∗ 6∈ S then

return b = b′

else
return ⊥

Figure 11: Standard CCA security

The above definition captures both public-key and secret-key encryption. In the case of secret-key
encryption, the oracle Enc is not redundant. A more general definition that captures both public-key
encryption and identity-based encryption is also possible. Moreover, it could be possible to abstract the
definition even more in order to capture signatures or ideally any cryptographic primitives. We reserve such
a definition and its corresponding one-time backdoor construction for a future work.

Encryption with dispensable backdoors. An encryption scheme with a dispensable backdoor is an
encryption scheme augmented so that the generation algorithm produces also a quantum backdoor β as well
as a description of a classical oracle. Moreover, the scheme has an additional algorithm Rec that uses the
backdoor to decrypt a ciphertext.

Definition 10 (Encryption with dispensable backdoors). Let C = {Ck}k∈{0,1}∗ be a family of polynomial-
sized classical circuits. A C-backdoored encryption scheme (C-Back) consists of algorithms (Gen,Rec,Enc,Dec)
with the following properties:

• Gen(1n) → (ek, dk, β, k) is a key-generation algorithm that takes as input a security parameter n and
returns an encryption-key ek, a decryption-key dk, a quantum state β, and an index k to a circuit Ck.

• RecC(β, c)→ m is a “one-time decryption” algorithm that takes as input a backdoor β and a ciphertext
c and returns a message m or ⊥. Rec has also oracle access to a classical circuit C.

18

Oracle Init(1n)
b0, b1 ← {0, 1}
S ← ∅
(ek, dk, β, k)← Gen(1n)
return (ek, β)

Oracle Enc(m)
return Enc(ek,m)

Oracle Chal0(m0,m1)
c∗0 ← Enc(ek,mb0)
return c∗0

Oracle Chal1(m0,m1)
c∗1 ← Enc(ek,mb1)
return c∗1

Oracle Dec(c)
S ← S ∪ {c}
return Dec(dk, c)

Oracle C(x)
return Ck(x)

Oracle Fin(b′0, b
′
1)

if c∗0 6∈ S and c∗1 6∈ S then
return b0 = b′0 and b1 = b′1

else
return ⊥

Figure 12: One-time backdoored CCA security

• Enc(ek,m) → c is the encryption algorithm that takes as input the encryption key and a message m
and returns a ciphertext c.

• Dec(dk, c)→ m is the decryption algorithm that takes as input the decryption key and a ciphertext and
returns a message m or ⊥.

Completeness. C-Back is complete if

Pr
(ek,dk,β,k)←Gen(1n)

[Dec(dk,Enc(ek,m)) = m] = 1,

and moreover,
Pr

(ek,dk,β,k)←Gen(1n)
[RecCk(β,Enc(ek,m)) = m] = 1.

The security game is similar to the original one, with the additional property that the adversary is given
one backdoor and has to break two challenges as shown in the game below. Notice that an adversary, who
just uses the backdoor to decrypt one challenge and then guesses the other, has a probability of 1/2 to
win. Moreover, notice the adversary is also given access to the classical oracle Ck. For an adversary A, let
AdvBCCAA :=

∣∣Pr[Fin = 1]− 1
2

∣∣ in the security game defined below (fig. 12).

Security. C-Back is secure if for any polynomial time quantum adversary A it holds that

AdvBCCAA ≤ negl(n).

19

Gen(1n)
(ek, dk)← Gen′(1n)
(β, k)← OTP.Gen(dk)
return (ek, dk, β, k)

RecC(β,m)
return OTP.ExtractC(β,m)

Enc(ek,m)
return Enc′(ek,m)

Dec(dk, c)
return Dec′(dk, c)

Figure 13: Encryption with Dispensable Backdoor construction

5.3 Constructing Encryption with Dispensable Backdoor

Here we show how to construct Encryption with Dispensable Backdoor using oracle OTPs. As we have
shown above, oracle OTPs are possible in the plain model. The idea is to use the OTP generation algorithm
with input the description of the decryption algorithm. In other words, all we have to do is to create a
one-time version of the decryption algorithm and this will be our backdoor. Let G′ = (Gen′,Enc′,Dec′) be
an IND-CCA secure encryption scheme. Let D = {Ddk}dk be the class of polynomial-sized circuits such
that Ddk(m) = Dec′(dk,m). We have shown above how to construct OTPs for any class of polynomial-sized
circuits, and thus, in particular for D. Therefore, let (OTP.Gen,OTP.Extract) be a (D, C)−OTP for some
class of circuits C = {Ck}k. We create a C-backdoored encryption scheme G = (Gen,Rec,Enc,Dec) as follows
(fig.13):

Theorem 3. G is a C−backdoored encryption scheme.

Proof. The two completeness properties are trivially satisfied by invoking the completeness property of
the original encryption scheme and the completeness property of the OTP.

To argue security, note that an adversary A with a backdoor β can be simulated by a simulator S who
has access to an additional stateful oracle that decrypts only once and does not add this ciphertext to the
set of queried ciphertexts. In this step, the decryption key dk is considered as the auxiliary state. Call G1
the game played by S. Now an adversary S who can win this game can easily be turned into an adversary
A′ that breaks CCA. A′ simulates S’s oracles Init,Enc,Dec by calling its own oracles. A′ will pick a
random bit b and when S calls its oracle Chal(b) with messages m0,m1, A

′ will use its own challenge oracle
with input m0,m1. It will get a ciphertext c∗b and will forward this answer to S. When S calls its oracle
Chal(1−b) then A′ will encrypt at random one of the two messages using its own encryption oracle; call this
ciphertext c∗1−b. When S calls its one-time decryption oracle, there are three cases. If S queries c∗b , then A′

will reply either m0 or m1 with probability 1/2. If S queries c∗1−b, then A′ will reply with the corresponding
plaintext since A′ knows which message it corresponds to. If S queries any other ciphertext, then A′ will
use its own decryption oracle. Since A′ picks the bit b at random, there is at most 1/2 probability that S
will not query its one-time decryption oracle with the ciphertext c∗b . Finally, when S makes a guess between
m0,m1, A

′ will return the same guess.
Suppose that there exists a non-negligible function e(n) such that

AdvBCCAA ≥ e(n).

Then by the security of OTP, for the advantage AdvG1
S of S to win the modified game G1, it holds that

AdvG1
S ≥ e(n)− negl(n).

Thus the advantage of A′ in the CCA game is

AdvCCAA′ ≥
1

2
· AdvG1

S ≥
1

2
· e(n)− negl(n),

20

which is non-negligible.

References

[1] Scott Aaronson. Limitations of quantum advice and one-way communication. In Computational Com-
plexity, 2004. Proceedings. 19th IEEE Annual Conference on, pages 320–332. IEEE, 2004.

[2] Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In Proceedings of the
Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12, pages 41–60, New York,
NY, USA, 2012. ACM.

[3] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and
Ke Yang. On the (im) possibility of obfuscating programs. In Annual International Cryptology Con-
ference, pages 1–18. Springer, 2001.

[4] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of
security for public-key encryption schemes. In Hugo Krawczyk, editor, Advances in Cryptology —
CRYPTO ’98, pages 26–45, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[5] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In Advances in Cryptology - EUROCRYPT 2006, 25th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May
28 - June 1, 2006, Proceedings, pages 409–426, 2006.

[6] Anne Broadbent, Sevag Gharibian, and Hong-Sheng Zhou. Quantum one-time memories from stateless
hardware. Cryptology ePrint Archive, Report 2015/1072, 2015.

[7] Anne Broadbent, Gus Gutoski, and Douglas Stebila. Quantum one-time programs - (extended abstract).
In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part II, pages 344–360, 2013.

[8] Ran Canetti, Guy N Rothblum, and Mayank Varia. Obfuscation of hyperplane membership. In TCC,
volume 5978, pages 72–89. Springer, 2010.

[9] James B. Comey. Transcripts from a public speech, Brookings In-
stitution, Washington, D.C. https://www.fbi.gov/news/speeches/

going-dark-are-technology-privacy-and-public-safety-on-a-collision-course.

[10] Shalev Ben David and Or Sattath. Quantum tokens for digital signatures. arXiv preprint
arXiv:1609.09047, 2016.

[11] Electronic Frontier Foundation (EFF). The crypto wars: Governments working to undermine encryp-
tion. Technical Report, 2014. https://www.eff.org/files/2014/01/03/cryptowarsonepagers-1_

cac.pdf.

[12] Dmitry Gavinsky. Quantum money with classical verification. In Computational Complexity (CCC),
2012 IEEE 27th Annual Conference on, pages 42–52. IEEE, 2012.

[13] Marios Georgiou and Iordanis Kerenidis. New constructions for quantum money. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 44. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2015.

[14] Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cambridge university
press, 2009.

[15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. One-time programs. In Annual Interna-
tional Cryptology Conference, pages 39–56. Springer, 2008.

21

[16] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. IACR Cryptology ePrint
Archive, 2017:274, 2017.

[18] Arash Khamooshi. Breaking down Apple’s iPhone fight with the U.S. Government. The
New York Times, 2016. https://www.nytimes.com/interactive/2016/03/03/technology/

apple-iphone-fbi-fight-explained.html?_r=0.

[19] Yi-Kai Liu. Single-shot security for one-time memories in the isolated qubits model. In Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August
17-21, 2014, Proceedings, Part II, pages 19–36, 2014.

[20] Fernando Pastawski, Norman Y Yao, Liang Jiang, Mikhail D Lukin, and J Ignacio Cirac. Unforgeable
noise-tolerant quantum tokens. Proceedings of the National Academy of Sciences, 109(40):16079–16082,
2012.

[21] Michael S. Schmidt and Richard Perez-Pena. F.B.I. treating san bernardino attack as
terrorism case. The New York Times, 2015. https://www.nytimes.com/2015/12/05/us/

tashfeen-malik-islamic-state.html.

[22] Bruce Schneider. More crypto wars ii. Blog: Schneider on Security, 2014. https://www.schneier.

com/blog/archives/2014/10/more_crypto_war.html.

[23] Hoeteck Wee. On obfuscating point functions. In Proceedings of the thirty-seventh annual ACM sym-
posium on Theory of computing, pages 523–532. ACM, 2005.

[24] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under lwe. IACR
Cryptology ePrint Archive, 2017:276, 2017.

6 Appendix: DMAC construction

Here we include the construction of dispensable message-authentication codes as defined implicitly by David
and Sattath [10] which builds upon the construction of Aaronson and Christiano [2]. Let H be the n-qubit
Hadamard operator. For a subspace A ≤ Fn2 , let A⊥ be its orthogonal complement.

Gen(1n)
Pick a random subspace A ≤ Fn2 of dimension n/2
ρ = 1√

|A|

∑
v∈A |v〉

return (A, ρ)

Tag(ρ, b)
if b = 0 then

Measure ρ and return the outcome
else

Measure HρHᵀ and return the outcome

Ver(A, b,v)
if b = 0 then

return v ∈? A
else

return v ∈? A⊥

The completeness of the scheme follows easily from [2, Lemma 21]. The security of the scheme follows
directly from [10, Theorem 16]. In particular, it is proven that any (even computationally unbounded)

22

quantum adversary that is given as input ρ, needs an exponential number of queries to the verification
oracle in order to find a vector in A and a vector in A⊥.

23

