Statistical Ineffective Fault Attacks
on Masked AES with Fault Countermeasures

Christoph Dobraunig!, Maria Eichlseder!, Hannes Gross', Stefan Mangard®,
Florian Mendel? and Robert Primas!*

! Graz University of Technology, Austria
robert.primas@iaik.tugraz.at
2 Infineon Technologies AG, Germany

Abstract. Implementation attacks like side-channel and fault attacks are a threat
for deployed devices especially if an attacker has physical access to a device. As
a consequence, devices like smart cards usually provide countermeasures against
implementation attacks, such as masking against side-channel attacks and detection-
based countermeasures like temporal redundancy against fault attacks. In this paper,
we show how to attack implementations protected with both masking and detection-
based fault countermeasures by using statistical ineffective fault attacks using a single
fault induction per execution. Our attacks are largely unaffected by the deployed
protection order of masking and the level of redundancy of the detection-based
countermeasure. Our observations refute the intuition that masking is a viable
countermeasure against biased faults, statistical fault attacks, or statistical ineffective
fault attacks.

Keywords: Implementation attack - Fault attack - SFA - SIFA

1 Introduction

Fault attacks and passive side-channel attacks, like power [KJJ99] or EM analysis [QS01],
are very powerful attacks on implementations of cryptographic algorithms. Therefore,
devices like smart cards and IoT devices, which are potentially physically accessible
by an attacker, implement corresponding countermeasures. In the case of symmetric
cryptography, the typical approach to protect an implementation against these attacks
is to use masking and redundancy mechanisms. Masking is the most prominent and
widely deployed countermeasure against passive side-channel attacks. There exists a wide
range of masking schemes for software and hardware [RP10, RBNT15, GMK17| providing
protection up to a given protection order.

For redundancy mechanisms against fault attacks, there has been less research compared
to masking. A standard approach to counteract fault attacks is to use temporal or spacial
redundancy mechanisms in order to do error detection. The basic idea is to do critical
operations multiple times and to release the output only if the outputs of all redundant
computations match. There are also works that directly combine masking and redundant
encoding techniques for error detection [SMG16]. The standard reasoning when combining
masking and error-detection mechanisms is that their effects add up. For example, assume
an implementation of AES is protected by a masking scheme of protection order d and all
encryption/decryption operations are always computed twice, compared, and the output is
only released if the output of both operations match. In this case, the typical assumption is
that this implementation is secure against a single fault induction because this is detected
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by the redundant computation and secure against side-channel attacks of up to order d
due to the masking scheme.

This reasoning is valid for fault attacks that exploit faulty outputs of a cryptographic
algorithm in order to reveal the key. The most prominent attacks of this type are
Differential Fault Attacks (DFA) [BS97] and Statistical Fault Attacks (SFA) [FJLT13].
However, some variants of fault attacks are based on a different approach. Ineffective fault
attacks (IFA) [Cla07] and Statistical Ineffective Fault Attacks (SIFA) [DEK™18] exploit
those outputs of a cipher that are correct although a fault induction has been performed.
While IFA requires exact knowledge about the location and effect of a fault, SIFA has
much more relaxed requirements, thus allowing to exploit noisy faults whose exact effect is
unknown to the attacker. The basic idea of SIFA is to repeatedly execute a cryptographic
operation with a fixed key and to apply a fault induction for each execution. The attacker
then collects those outputs of the cryptographic operation, where the fault induction has
not changed any intermediate value. Given that the implementation is protected by an
error-detection scheme, such as redundant computations, this corresponds exactly to the
valid outputs of the system. In fact, the error detection that is implemented against DFA
provides exactly the filtering of the outputs that is needed to apply SIFA or IFA.

So far, implementations combing masking and error-detection schemes were typically
thought to be secure against attacks exploiting single ineffective faults due to the masking,
as discussed for example by Clavier for IFA [Cla07]. It was typically assumed that all
shares representing an intermediate value would need to be faulted to exploit ineffective
faults and it was an open question whether this can be done efficiently in practice. In this
work, we show that SIFA attacks are much more powerful than expected so far. Our central
contribution is to show that SIFA is not only independent of the degree of redundancy, but
also essentially independent of the degree of masking for typical masked implementations.
SIFA attacks can be performed efficiently in practice on masked implementations with
error detection by using a simple glitching device.

We demonstrate that faulting a single share is sufficient to induce a bias in an unshared
intermediate value, which can then be exploited with a statistical analysis based on SIFA.
More specifically, we induce a biased fault in one share during the computation of an S-box.
Unlike classical fault attacks, attackers cannot directly use this fault as a distinguisher for
the key recovery attack: they cannot recover this intermediate value from observing the
ciphertext and guessing parts of the key, but can only recover the unshared output of the
S-box (Figure 1). We analyze the impact of the local fault on the unshared output for
several different S-boxes (including the AES S-box), fault distributions, masking schemes,
and protection orders, as well as other fault countermeasures. We conclude that in all
analyzed cases, a simple fault setup with a single fault attempt per encryption is sufficient
to recover part of the key, given a suitable number of faulted encryptions. This number
depends on the precision of the fault and the deployed countermeasures; for example, 1000
encryptions with a cheap clock glitching setup are sufficient for an 8-bit AES software
implementation protected with 10th-order masking and arbitrary temporal redundancy.

2 Background on Statistical Faults

In this section, we cover the necessary background of Statistical Fault Attacks (SFA) and
Statistical Ineffective Fault Attacks (SIFA). While we show results for both attacks in
our practical evaluation, the more practically relevant attack is SIFA, since it cannot be
prevented easily using standard fault countermeasures.

2.1 Statistical Fault Attacks

Statistical Fault Attacks (SFA), originally proposed by Fuhr et al. [FJLT13], present a way
to recover an AES key with, compared to other fault attacks, quite relaxed assumptions
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Figure 1: Biased fault attacks on masked, redundant implementations: High-level view.

on the fault induction. In fact, SFA solely requires the attacker to let one AES state byte
in round 9 follow any (possibly unknown) non-uniform distribution. This can be achieved
in practice, e.g., by using several types of stuck-at faults or instruction skips.

Given a set of faulty ciphertexts, SFA works by partially decrypting every ciphertext
back to the faulted state byte Sg in round 9. This requires guessing 32 bits of the last round
key Kig, as well as the calculation of the inverse ShiftRows, SubBytes, and MixColumns
operation:

Sg=MC ' oSB™' o SR™HC @ Kyp).

Guessing the penultimate round key (Ky) is not needed, since it does not influence the
non-uniformity of Sg. For each key guess the distance of the distribution of Sy to a
uniform distribution can now be measured, e.g., by using the y2-statistic (CHI) or the
closely related Squared Euclidean Imbalance (SEI). For a sufficient number of evaluated
ciphertexts, the key guess corresponding to the highest CHI or SEI statistic is most likely
correct. The necessary number of ciphertexts depends on the strength of the bias, i.e., the
distance of the biased distribution p from the uniform distribution, which is quantified by
the capacity C(p). If the bias is small, then the necessary number of faulted ciphertexts is
inverse proportional to C(p); we refer to [DEK'18] for a more detailed discussion.

One obvious downside of SFA, from a practical perspective, is that it relies on exploiting
faulty ciphertexts. This is problematic since most cryptographic implementations that
operate with critical data can be expected to have various countermeasures against
implementation attacks in place. A fault countermeasure like temporal redundancy would
already prevent SFA using single fault inductions. While an adoption of SFA to some
fault countermeasures is possible, a significantly more powerful attacker would be required.
Hence the threat of SFA to such protected implementations is limited.

2.2 Statistical Ineffective Fault Attacks

Statistical Ineffective Fault Attacks (SIFA) [DEK'18] allow an attacker to circumvent
many popular fault countermeasures. As the name suggests, and in contrast to SFA, SIFA
solely relies on exploiting faulted encryptions where the induced faults are ineffective and
the obtained (filtered) ciphertexts are hence always correct. The basic observation of STFA
is that biased ineffective faults lead to a non-uniform distribution of intermediate values,
that can be exploited in a key-recovery attack. The data complexity of the attack then
depends on the strength of the bias in the targeted intermediate variable and the necessary
number of faulted encryptions to obtain sufficiently many ineffective samples.

SIFA is applicable just as easily for more than two redundant computations, since
only one computation needs to be faulted. In fact, the authors from [DEK™18] show
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the applicability of SIFA not only against redundancy countermeasures, but also against
infective countermeasures. In the latter case, more faulted encryptions are necessary, but
the presented attacks are still efficient.

Consider an AES with simple temporal redundancy and an attacker that is able to force
a certain byte in round 9 to follow a (to the attacker unknown) non-uniform distribution. If
the attacker is faulting only one of the redundant computations, the attacker will eventually
observe correct ciphertexts where the induced fault was ineffective. This filtered set of
correct ciphertexts will, when partially decrypted using a correct key guess, show the
same bias in the faulted byte as the originally forced non-uniform distribution after fault
induction. All that is left to do now for the attacker is to perform the same key recovery as
in SFA. The basic intuition here is that certain values of the faulted byte lead to ineffective
faults and hence correct ciphertexts more often than others. As a consequence, when
decrypting this filtered set of correct ciphertexts using a correct key guess, certain values
in the faulted byte will show up more frequently than others. Still, knowledge about the
exact effect of the fault induction (and the resulting non-uniformity) is not required since
the SEI or CHI metric measures the distance of any distribution to a uniform distribution.

This fact will be especially important when SIFA is performed against masked im-
plementations (cf. Section 3). Here it is almost impossible to predict the actual effect
of a fault induction if the attacked implementation is unknown. At the same time it is
still comparably easy to cause any joint non-uniform distribution over all shares of an
intermediate variable as discussed in the upcoming sections. However, as we will see,
it is beneficial to change the usual view that faults just manipulate values. Instead, as
introduced in Subsection 3.4, it is beneficial to use the view that faults change the actual
function that is computed in order to gasp the underlying principles exploited in our
attack.

3 Faults on Masking

In this section, we study the influence of single faults on masked AND gates and sub-
sequently on masked S-boxes. To do so, we first briefly recapitulate the fundamentals
of masking. Then, we discuss how faults influence the distribution of unmasked values
by taking masked AND gates as an example. After that, we evaluate how single faults
influence masked implementations of several S-boxes. Finally, we have a closer look at
the internal activities in a faulted masked S-box that allow an SFA and SIFA and argue
that it should be almost always possible to influence the distribution of input and output
values of masked S-boxes, so that an attacker can exploit this behavior using techniques
introduced for SFA and SIFA.

For easier understanding why single faults on a single share can cause a bias in
unshared values, we consider very simple fault models such as stuck-at faults in the
following exposition. However, it is important to note that the attack approach generalizes
efficiently to noisy, unpredictable and imprecise faults. For a discussion of how the attack
complexity scales under the influence of noise, we refer to Section 5 and the SIFA analysis
[DEKT18].

3.1 Concept of Masking

The goal of masking is to randomize the representation of security-sensitive data in each
execution to counteract side-channel analysis by making the produced side-channel leakage,
such as power consumption or electromagnetic emanation, independent of the underlying
data. The most popular masking approaches are Boolean masking schemes, which are
formed over finite field arithmetic in GF(2").
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Algorithm 1 : Masked GF(2™) multiplication according to Ishai et al. [ISW03] (ISW)

Input: zo,...24, Yo,-..yd € GF(2™)
Output: qo,...qs € GF(2")

1: for i =0 to d do
for j=i+1toddo

Ti,j (l GF(Q”)

ti’j — Tij
: tji <= Tij O 2iY; © ;Y
: for i =0toddo
qi < Z;Y;
for j =0toddo

if i # j then

Qi < q; Dty
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In Boolean masking, a sensitive variable x is split into a number of so-called shares
(denoted ;) which, when considered on their own or in conjunction of up to d shares,
are statistically independent of the unshared variable x. This degree of independence
is usually referred to as the protection order d and requires to split each variable with
sensitive information into at least d 4+ 1 shares. The shares are uniformly random in each
execution, but at any time, it is ensured that the sum over all shares again results in the
unshared variable z:

r=20DPx1 DroD---Dxyq.

In a similar manner, functions over shared variables are split into component functions
f;(...) such that again a correct and secure sharing of the original function is established:

fle,y) =f(...)@H(..)@hL((..)B - dfy(...).

Throughout the entire implementation, a proper separation of shares and of the output
of the component functions needs to be ensured in order to not violate the d*"-order
independence, which is commonly expressed in the probing model of Ishai et al. [[SWO03].
In the probing model, an attacker is modeled with the ability to probe up to d intermediate
results of the masked implementation. An implementation is said to be secure if the
probing attacker cannot gain any statistical advantage in guessing any secret variable by
combining the probed results in an arbitrary manner. While this share separation can
be easily ensured for functions which are linear over GF(2") — for example, the masked
calculation of x @ y can be performed share-wise (x; ® y;) —, the secure implementation of
nonlinear functions usually requires the introduction of fresh randomness.

As an example for a shared implementation of a nonlinear function, we consider the
generic masked multiplication algorithm by Ishai et al. [[SW03] (Algorithm 1). In order
to securely calculate ¢ = zy, each of the d + 1 shares of x is multiplied with each of the
shares of y, resulting in (d + 1)? multiplication terms. Subsequently, the multiplication
terms are summed up together with fresh random variables denoted r; ;, and distributed
over the output shares g;.

A first-order masked GF(2) multiplication, which corresponds to the calculation of an
AND gate, is given in Equation 1:

o = ToYo D 10,1
q1 = T1y1 D (7“0,1 ® zoy1 D T1Y0)

(1)

A uniform distribution of each of the shares of ¢ is ensured by the random r shares. In
general, the joint distribution of any d shares of ¢ in the masked multiplication algorithm
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is uniform, or in other words, any d shares are independently and identically (uniformly)
distributed. It thus appears as if in order to insert a bias in the underlying unshared value,
an attacker would need to insert a biased fault in either each share of = or ¥, or to insert a
bias in each of the component functions in the calculation of q. However, in the following,
we show that this intuition is not true.

3.2 Faulting Masked AND Gates

We first note that the calculation of the AND function itself has a probability of 25%
for ¢ to be 1. An attacker therefore successfully biases the masked AND function if the
probability of ¢ to be 1 is more or less likely than 25%. As an example, we consider an
attacker who can skip any AND calculation in Equation 1, for instance the first AND
calculating xoyp in go. The shared function then effectively calculates ¢ (= go @ ¢1) to be
T1Y1 D Toy1 @ 1Yo which has a probability of 37.5% to be 1. If the attacker would instead
introduce a fault that skips the addition of the uniformly random bit 7o ; in ¢o, then the
distribution of ¢ is again biased since the probability of observing a 1 changes from 25%
to 50%.

We observe the same biases when looking at single faults for other masked AND gates,
like the one used in the CMS scheme of Reparaz et al. [RBNT15] or in the Domain-Oriented
Masking scheme by Gross et al. [GMK16, GMK17]. This same bias behavior results from
the fact that these masked ANDs calculate the same terms z;y;. The masked ANDs only
differ in the arrangement of x;y; in go and ¢;, and the amount of used fresh randomness.
Since q is equal to qg @ g1, the arrangement of the terms has no influence on the bias
behavior of ¢, and a fault of an addition of a single random r bit has the same impact on
all masked ANDs.

Another prominent protection mechanism falling in the category of masking schemes
are threshold implementations [NRR06]. Threshold implementations use an increased
number of shares to achieve first-order side-channel resistance without requiring fresh
randomness. In order to explore the impact on threshold implementations, we look at a
four-share realization of a first-order masked AND gate by Nikova et al. [NRROG6]:

qo = (2@ x3) (11 B Y2) D1 DY2 Y3 B w1 D T2 D 3

1= (20 ®22) (Yo © y3) D Yo D Y2 ® Y3 O T O T2 ® 23 @
2= (1 Dx3) (Yo D ys) Dy1 © 11

g3 = (0o @ 21)(y1 D Y2) D Yo ® o

For this shared AND gate, we perform two experiments. In the first experiment, we
have a look at the distribution of the output ¢ = go ® q1 B g2 ® g3 assuming an instruction
skip. In the second, we fix one input share zy to zero and look what happens.

For the instruction skip, we assume that in gy one instruction is skipped and so
go = (22)(y1 DY2) Dy1 Dy2 Dys D x1 Do B3 is calculated, the other shares are processed
correctly. In this case, we observe that for all 256 possible values of the shared input, the
unshared output is 160 times (62.5%) 0 and 96 (37.5%) times 1, a clear deviation of the
value an unfaulted AND should have.

Next, we fix 2 to zero and perform the computations according to (2) for all 256
possible values the shared input can take. If we now look at ¢, we see that 192 times a 0
(75%) appears and 64 times a 1 (25%), which corresponds to the distribution of a correct
AND gate. However, if we only consider correct computations of ¢ = x - y, we observe that
only 192 out of 256 computations are performed correctly. For those correct computations
q is 160 times a 1 (83.3%) and 32 times a 0 (16.6%). This “filtered” distribution is the one
an attacker would observe and exploit in the case of a SIFA [DEKT18].

In the next section, we will discuss the consequences of our observations with respect
to S-boxes.
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3.3 Faulting Masked S-boxes

In this section, we discuss how single faults influence the behavior of S-boxes. It is worth
mentioning that our selection of masked S-boxes is arbitrary and does not imply that those
S-boxes are weaker or more susceptible to fault attacks than others. We have selected those
S-boxes because they have a simple and compact description. We will start with a compact
4-bit S-box called Sbox13 [UDCI*11] shown in Figure 2. We have implemented a masked
implementation of this S-box in software by using a four-shared threshold implementation
of AND (2), OR and XOR. We target exclusively the AND labeled with ¢, z, and y in

Figure 2.
o
ZTID
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4
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1 :
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Figure 2: Schematic of the 4 x 4 S-box: Sbox13 [UDCI*11].

For the first experiment, we assume an instruction skip that alters the execution
of only the first AND of the S-box, changing the calculation of one share ¢g to ¢y =
(22)(y1 D y2) ®yr D y2 D ys ® x1 B x2 ® x3. In Figure 3, we record the distribution of
each unshared input value and each unshared output value for each of the 244 = 65536
shared input combinations, which can be exploited by an SFA [FJLT13], as well as the
“filtered” distribution for ineffectively faulted S-box transitions, which can be exploited by
a SIFA [DEK'18]. This “filtered” distribution stems from the subset of transitions, for
which the induction of the fault has no influence on the output of the S-box.

0123456789 abcdei f

OEAOEAAREAAEEEEE []4.6875%
NN AR EEC E6.25%(y
**************************************** 7.8125%

Figure 3: Distribution of input I and output O for faulted Sbox13 with instruction skip.

As we can see in Figure 3, in the unfiltered case, we see a clearly non-uniform distribution,
which can be possibly exploited by an SFA. However, we observe a uniform distribution
in the SIFA case. So does this mean this S-box is secure against SIFA? Let us consider
the distributions we obtain when setting one share xg at the input of the first AND
permanently to 0. The corresponding distributions we get in this experiment are shown
in Figure 4.

As we can see in Figure 4, the situation for this fault changes, so that now, the
ineffective faults can be exploited, whereas the distribution without filtering cannot be
exploited. Until now, we have exploited the sequential sharing of instructions, especially
that we can change the distribution of an AND gate. So one might wonder what happens
if an S-box is directly shared, so that the output shares are uniformly distributed.
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Figure 4: Distribution of I, O for Sbox13 setting input share z of the first AND to zero.

To explore the case of directly shared S-boxes, let us have a look at the uniform 4-share
threshold implementation of the Keccak S-box proposed by Bilgin et al. [BDN'13]. Here,
A,y B;, C;, and D; represent the 4 shares of bit 4. For the bits i = 0,1, 2,4, the sharing is
calculated by:

A < Bi ® Bita @ ((Bit1 @ Cip1 © Diy1)(Bia © Ciy2 © Diy2))

B} + C; @ Ciy2 ® (Aix1(Cira @ Diga) ® Ai2(Cit1 @ Dig1) ® Aip1Aiga)
Ci« D;®Di1o® (Ai41Biyo ® Aip2Biy1)

D+ A; @ Aiyo

Bit 3 is calculated by:

A+ B3® By® Co® Dy ((By @ Cy @ Dy)(Bo ® Co & Dy))
Bé — C3® Ao ® (A4(Co @ D) ® Ag(Cs @ Dy) © ApAys)

C4 < D3 @ (A4By ® ApBa)

Dj + As

Now, in our simple experiment, let us consider that bits 0 to 3 are calculated correctly and
an attacker changes the value of one input share Ag always to 0 before the calculation of
the 4 shares for output bit 4 = 4. Then an attacker is able to mount a SIFA as indicated
by the distributions of Figure 5. This leads again to an exploitable bias of the distribution
of unmasked values at the output of the S-box and the attacker can mount a SIFA attack.

0123456789 abcde£101112131415161718191alblcldlelf

N | (| | [eim] | [m{em] | [em{em] | [em{em] | [om{em] | [‘m{em] | [

OF [mim| | | [owiowimi | (| [ [owiow] | [om{ow| | [owiowimmiemi | [ [ [mm[l
[12083% M 4.167%

SIFA

Figure 5: Distribution of I, O for faulted 4-shared Keccak S-box.

The aim of this section was to give easy to follow and reproducible examples to induce
a bias in the unshared variable of masked S-boxes by just faulting one share of the S-box.
We want to mention that the given ways and locations of introducing the faults are not
exhaustive and that there are many more location and various types of faults that make
an attack successful. In the next section, we want to give a closer view on the problem
of protecting an S-box against these attacks and get more insight into the effect allowing
statistical attacks with the help of a 3-bit S-box as an example.

3.4 A Closer Look

In general, fault attacks exploit knowledge about intermediate values of cryptographic
primitives, which are gained by disturbing the computation or intermediate values directly
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by the means of faults. In the case of DFA [BS97], this knowledge is that in certain
intermediate bits or bytes a difference is induced, while others remain fault-free. In the
case of SFA and SIFA, this is knowledge that the distribution of certain intermediate
values is changed from a uniform to a non-uniform distribution. This allows an attacker
to guess parts of the round key and calculate backwards to these influenced intermediate
values from collected ciphertexts. If a key guess is wrong, an attacker expects to see a
distribution of intermediate values, which is closer to uniform compared to the guess of
the right key.

Getting such a non-uniform distribution of intermediate values can be achieved in many
ways. For ciphers following the SPN structure, where every S-box and the linear layer
is a bijective function (permutation), non-uniform distribution of intermediate value can
be achieved, for instance, by disturbing the computation of a single S-box, so that this
S-box does not act as a permutation anymore. While such a behavior can be expected
from an unmasked S-box in the case of a fault induction, it is quite counterintuitive for
masked implementations. Thus, we will first discuss the unmasked case to get more insight
in which cases SFA and SIFA will work. Then we will have a closer look on masked S-box
implementations.

3.4.1 Influencing Unmasked S-boxes

First, we will explore the case of SFA. We consider a bijective S-box, as illustrated
in Figure 6. For the sake of simplicity, let us assume that the S-box is implemented in
a bit-sliced manner (as a sequence of instructions), or as a Boolean circuit in hardware.
Let us further assume that an attacker influences the correct computation by the means
of faults. By faulting this computation, it is very likely that the faulted S-box does not
behave as a bijection, but rather becomes a general function, which is non-surjective. This
leads to a non-uniform distribution of intermediate values, which can be exploited in an
SFA. In the case of a SIFA, transitions where a fault induction has an effect and causes
a change in the output of the S-box are filtered. This filtering can happen by using the
fact that detection-based countermeasures do not deliver an output in the case the fault
has an effect, or by comparing the obtained output with an output where no fault was
injected. So if we apply a SIFA, we observe a function, where a reduced set of transitions
remain compared to the unfaulted S-box.

I —> S-box —> O

Figure 6: An unmasked S-box.

To get more insight into the behavior of a faulted S-box, we will use the 3 x 3 S-box x
based on Daemen’s y-layer [DGV94, Dae95] as an illustrative example. Figure 7a shows the
3-bit S-box x, where the red cross represents a fault that sets the input of the subsequent
inversion to zero and hence the input of the AND to 1. Please note that this is only one
example of many how to fault an S-box in order to apply an SFA or SIFA.

The fault depicted in Figure 7a changes the behavior of the x S-box, which is not
bijective anymore. Figure 7c shows the transition graph for the faulted S-box. The fault
just changes the transitions depicted in red.

In our case, the transitions mapping from 3 — 1 and 7 — 7 in the unfaulted S-box
(Figure 7b), now map from 3 — 5 and 7 — 3 (considering Iy and Oy being the LSB).
This means that the output values 1 and 7 never appear, but 3 and 5 twice, leading to a
non-surjective behavior. In the case of a SIFA, the red edges represent fault inductions



10 SIFA on Masked AES with Fault Countermeasures
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0 0 0 0
1 1 1 —1

I o> 01 4 4 4 4
5 5 b 5
6 6 6 6
7 T 7 — 7
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(a) Circuit with single fault (b) Unfaulted mapping (¢) Faulted mapping

Figure 7: 3-bit S-box x with a single fault.

that show an effect on the output. When applying a SIFA, those edges are filtered (e.g by
detection-based countermeasure) and just the black edges remain. Hence, when performing
a SIFA, the correct transitions 3 — 1 and 7 — 7 do not appear and an attacker can observe
an exploitable non-uniform distribution of intermediates.

3.4.2 Influencing Masked S-boxes

Now let us have a look at a shared bijective S-box. For instance, consider the masked S-box
shown in Figure 8a that takes two shares as input and returns two output shares. Here,
an attacker has also the goal to influence the distribution or transitions of the unshared
values I = I[0] ® I[1] and O = O[0] @ O[1], but does not care about the concrete values
the shares take.

R[OR[1} - le
I[0] —» — O[0]
S-box 1 — S-box — O
I1] —» —= O[1]
(a) Implementation with 2 shares (b) Functional equivalent view

Figure 8: A masked S-box.

For this reason, it is easier to work with the functional equivalent model shown
in Figure 8b. In this model, we see a masked S-box as a function, which takes an unshared
input I and some randomness R[i] and produces an unshared output O. Here, some of the
random bits symbolize all values a shared input can take in a real implementation, e.g.,
I[0] = I @ R[0], and I[1] = R[0], while others represent randomness used in the masked
implementation. Now, we can see masking as a very special and complicated function,
which takes as input I, R[0], R[1],... R[i] and produces an output O, so that the same
I always leads to the same O for all possible choices of R[0], R[1],... R[i]. It seems very
unlikely that a shared S-box behaves in the same manner in the presence of faults.

To apply SFA successfully, we need that not all values for O (iterating over all values
of I) appear the exact same number of times when counting for all possible assignments of
R[0], R[1], and R[2]. This prerequisite is very likely to hold considering an attacker that
can tamper with the intermediate calculation performed, even when restricting the attacker
to just manipulate one share used in an intermediate calculation. Similarly, to apply SIFA
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successfully, we need a fault such that among the ineffectively faulted computations, not all
values for I or O appear the exact same number of times over all values of Ry, Ry,...R;.
This condition is similarly very likely to happen in practice when introducing just single
faults, as we will show with our practical experiments in Section 4.

As an example, consider again the 3-bit Keccak x S-box, now with the following masked
implementation:

I[0] <= (Zi41[0] @ 1)1142[0] © ((1i41[0] @ 1) Li42[1] © Li40[0])
L[ ¢ i1 [11i42(0] & (Ziv1 [1]Li42[1] © Ligo[1])

This masked S-box just serves us as an illustrative example of the effect of faults on
an S-box, hence, we do not care about potential positioning of registers or additional
randomness at the output for re-sharing. Figure 9 shows the equivalent circuit of the
S-box, where again we just set a single value to 0. The result of this fault is that the value
of O3]0] equals I3]0]. Everything else is calculated correctly.

R[0] R[] R[]
| L[1] ul] %% o}
| 010! 3

I, — o 1>[0] e \ ‘
: L Oo[1] e 0y
‘ L[0] Oo[0] |

I — !
: L[]

Iy :J L[

Figure 9: Single fault on masked 3-bit x S-box.

For our example depicted in Figure 9, we list all possible assignments of Iy, I, I, R[0],
R[1], and R[2] in Table 1. The entries marked in red in Table 1 are entries where the fault
pictured in Figure 9 has an effect. Due to the more complex calculations that happen for
masked S-boxes, we get more complex relation between masks and actual values of bits.
For instance, the transition 2 — 6 is only valid if R[0] =1 and wrong (2 — 2) if R[0] = 0.

Again, we can represent all possible transitions from inputs I, to the outputs O in
a graph shown in Figure 10 (in a similar way as in Figure 7c). However, due to the 23
possible ways of masking our input values, each transition from input to output would
happen 8 times for an unfaulted masked 3-bit S-box x. In the faulted case, this condition
does not hold anymore as shown in Table 1. Hence, we have additional transitions shown in
red in Figure 10. These “wrong” transitions also reduce the number of times the “correct”
transition happens.
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Table 1: Transitions of faulted masked 3-bit S-box .

I R[2] I, R[] I R0]|O2 O; Op I, R2] I, R[] I, R0]|Os Oy Op
0 0 0 0 0 0 0 0 O 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0o 0 O 1 0 0 0 0 1 1 0 1
0 0 0 0 1 0 0o 1 1 1 0 0 0 1 0 1 0 0
0 0 0 0 1 1 0o 1 1 1 0 0 0 1 1 1 0 O
0 0 0 1 0 0 0 0 O 1 0 0 1 0 0 1 0 1
0 0 0 1 0 1 0 0 O 1 0 0 1 0 1 1 0 1
0 0 0 1 1 0 0o 1 1 1 0 0 1 1 0 1 0 O
0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0 O

—_
o
oI

0 L1 1 0 10 0 1 10
0 0 0 1 0 1 1 0 1 0 1 0 11
0 0 1 1 0 1 10 1 0o L L 0 1 ]0 1 0
0 0 1 1 1 0 0 1 1 0 1 1 1 0 11
0 0 t 1 1 1j}1 0 1 1 0 1 1 1 1]0o 1 1
O L 0 0 0 0[]0 0 0 1 1 0 0 0 0 [1 0 1
0O 1 0 0 0 1[0 0 0 1 1 0 0 0 1 [1 0 1
0o 1 0 0 1 00 1 1 1 1 0 0 1 0/]1 0 0
o 1 0 0 1 1[0 1 1 1 1 0 0 1 1 [1 0 0
O 1 0 1 0 00 0 0 1 1 0 1 0 01 0 1
0o 1 0 1 0 1[0 0 0 1 1 0 1 0 1 [1 0 1
o 1 0 1 1 00 1 1 1 1 0 1 1 0/]1 0 0
0 1 0 1 1 1[0 1 1 1 1 0 1 1 1 [1 0 0
0 1t 0 o0 o0jo t 0 1 1 1 0 0 01 1 0
o L 1 0 0 1|1 1 r 1 1 0 0 | 10
0 1 1 0 1 0]0 0 1 1 1 0 1 0 11
o L 1 1 0 L |1 1 0 T 1 1 1L 0 L]0 1 0
0 1 1 1 1 0[]0 0 1 1 1 1 1 1 0 [1 1 1

If we now count the number of transitions in Figure 10 that lead to a certain value O,
we see that 12 transitions lead to values 3 and 5, whereas only 4 lead to 1 and 7. This
means that an attacker faulting a device can apply an SFA, since the attacker can expect a
non-uniform distribution of the value after the S-box for correct key guesses. If we apply a
SIFA, the transitions marked in red in Figure 10, get filtered. As an effect, the transitions
2—6,3—1,5—2 and 7 — 7 appear with reduced frequency for uniformly distributed
R[0], R[1], and R[2]. Again, this can be exploited in a key recovery attack.

S S N

4 o oe w = o O

EN{
~

Figure 10: Transition graph of faulted masked 3-bit S-box .
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4 Attack Evaluation

In this section, we demonstrate the applicability of (ineffective) biased faults for a publicly
available higher-order masked AES software implementation. More concretely, we target the
provable secure higher-order masked AES from Rivain et al. [RP10] on an ATXmega 128D4.
The used implementation is from Coron et al. [Corl7]. Our experiments require multiple
faulted encryptions but only one fault induction per encryption. The exact location as well
as the actual effect of the induced fault does not need to be known by the attacker. Indeed,
inducing a fault anywhere in the shared S-box in round 9 possibly leads to a situation as
described in Subsection 3.4. The resulting joint non-uniform (biased) distribution over all
shares of an intermediate variable can then be used to distinguish key candidates like in
SFA and SIFA. Our practical fault attacks were performed by means of clock glitches.

The higher-order masked AES from Rivain et al. [RP10] consists of a generic dth-order
masked S-box that is combined with a linear layer for the d + 1 shares of the AES state.
The target of our fault induction is the shared S-box implementation in round 9. Hence
we briefly describe its implementation in the following.

4.1 Generic Higher-Order Masked S-box

The algebraic description of the 8-bit AES S-box consists of determining the multiplicative
inverse of a number in Fos = Fo[z]/(2%+2*+23+2+1), followed by an affine transformation
over F§. While masking the affine transformation is trivial since it can be calculated
separately for each share, the calculation of the masked multiplicative inverse requires
more work. In the design of Rivain et al. the inversion is calculated via the power function
x — x2%* over Fys which is in return calculated via the square-and-multiply algorithm.
The squaring operation in Fas is a linear function which leaves the masking of the field
multiplication as the only non-trivial task. The used algorithm for dth-order masked
field multiplication is based on the ISW scheme (cf. Algorithm 1). For a more detailed
description we refer to the original paper [RP10].

4.2 Practical Results

In our practical evaluation we perform fault inductions on an ATXmega 128D4 via clock
glitching. More precisely, we insert an additional fast clock cycle in between two ordinary
clock cycles. The width of the induced clock cycle is chosen such that it is recognized by the
microprocessor but too short to allow the correct execution of the current instruction. The
target of our fault is the higher-order masked field multiplication operation (SecMult) that
occurs multiple times (1st-order: 64 times, 10th-order: 2880 times) during the computation
of the masked S-box in round 9. We neither require to fault one specific SecMult invocation
nor to fault one specific instruction within any of the SecMult invocations. In fact, any
fault that causes a joint non-uniform distribution over all shares (cf. Subsection 3.3) is
sufficient for our attack. For this very reason, attacking unknown implementations might
actually be easier if higher-order masking is used since the vulnerable masked S-box
operations take up a higher percentage of the overall runtime.

The implementation of the higher-order masked AES by Coron et al. [Corl7] has a
configurable masking order d. Our experiments were performed up to 10th-order masking,
with or without temporal redundancy as an additional fault countermeasure. First, we
present the results of attacking the higher-order masked AES without additional fault
countermeasures using SFA. Our attack works equally well for any masking order d, hence
we only state concrete results for d = 10. We then present the results of attacking the
same implementation with temporal redundancy as an additional fault countermeasure
using SIFA. Please note that our attack is not influenced by the degree of the temporal
redundancy, since we only fault one of the redundant AES calculations.
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SFA on 10th-order masked AES. For this attack we performed 50 000 faulted encryptions
where a single fault was induced somewhere within the masked S-box in round 9. From
the obtained faulty ciphertexts we can calculate backwards using partial key guesses (cf.
Subsection 2.1) and observe the distribution of the AES state bytes after the S-box in round
9, as illustrated in Figure 11. In this concrete example a significant peak can be observed
in the distribution of state byte 0, if the corresponding partial key guess is correct. Already
after evaluating about 35000 faulty ciphertexts the SEI of the observed distributions is
highest for the correct partial key guess. Hence about 35000 faulted encryptions are
sufficient to recover 32 key bits. However, this number can be reduced to around 1000
faulted encryptions if we apply SIFA, as we have to do anyway if the masked AES is
additionally protected with temporal redundancy against fault attacks.
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(a) Correct key guess. (b) An incorrect key guess.

Figure 11: 10th-order masked AES. Distribution of AES state bytes after S-box in
round 9. Calculated from 50 000 faulty ciphertexts, only about 35000 are needed to recover
32 key bits.

SIFA on 10th-order masked AES with temporal redundancy. We then repeated the
previous attack but additionally add temporal redundancy as a fault countermeasure to
the higher-order masked AES implementation. In temporal redundancy the encryption
is performed n-times and the computed ciphertext is only released if all individual com-
putations match up. Such a countermeasure prevents the previous attack that relied on
observing faulty ciphertexts and single fault inductions per encryption.

In order to attack such a protected implementation we need to change our attack
strategy in that we now exploit statistical ineffective faults, such as in SIFA. Again, we
induce single faults during the calculation of the masked S-box in round 9, but only in one
out of n redundant encryptions. If the induced fault results in a faulty computation we do
not observe any ciphertext because of the redundancy countermeasure. However, we do
observe correct ciphertexts stemming from faulted encryptions where the induced fault
was ineffective. This filtered set of correct ciphertexts can then again be used to perform
key recovery.

In Figure 12, we show the distribution of the AES state bytes in round 9 when calculated
from 48 collected correct ciphertexts. Similar to the previous attack, for a correct partial
key guess, we can observe a strong biased distribution in one of the state bytes in round 9
and thus can perform key recovery (cf. Subsection 2.1). This time we only exploit correct
ciphertexts and thus successfully circumvent the redundancy countermeasure while using
the same assumptions as for the previous attack. Interestingly, the required number of
faulted encryptions in this scenario is significantly lower compared to before. Already after
collecting about 20 correct ciphertexts stemming from about 1000 faulted encryptions the
SEI of the observed distributions is highest for the correct partial key guess. In other words,
for this concrete higher-order masked AES implementation, SIFA allows us to perform
key recovery 35 times faster than SFA. This might seem counterintuitive but we need to
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recall that the effect of a fault is different between SFA, where we partially decrypt faulted
ciphertexts and SIFA, where we only partially decrypt ciphertexts where the induced fault
was ineffective (cf. Subsection 3.3). Hence, depending on the attacked implementation and
the actual fault effect, either of the two techniques might work better, however the results
for SIFA are more interesting in a practical setting where typically fault countermeasures
are implemented.
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(a) Correct key guess. (b) An incorrect key guess.

Figure 12: 10th-order masked AES with temporal redundancy. Distribution of
AES state bytes after S-box in round 9. Calculated from 48 correct ciphertexts stemming
from about 2000 faulted encryptions, only about 20 correct ciphertexts (1000 faulted
encryptions) are needed to recover 32 key bits.

5 Discussion

5.1 On the Nature and Number of Faults

In Section 3, we explore the behavior of masked building blocks using deterministic stuck-
at-0 faults, or instruction skips. The reason for this is to make the processes leading
to a bias easier to digest for a reader. However, it is easy to see that making the fault
probabilistic, e.g., going to a more realistic setup, where an instruction skip does not work
all the time, or that a bit is only set with a certain probability to 0, just effects the bias
an attacker observes and hence, the amount of ciphertext the attacker has to collect, but
the attack still works (see [DEK 18] for more details).

Furthermore, clock glitches and setting values to zero are not an exhaustive list of effects
that a fault could have in order to make the attack work. All in all, the only requirement
we have on the fault is that it leads to a biased distribution of the real (unmasked) value
at some place in the primitive. Hence, even for random faults and bitflips one could
sometimes observe a biased distribution in the primitive in practice. In general, a fault
can have a more complex nature than only the cases discussed in Section 3. For instance,
in software implementations of masked ciphers, a large amount of instructions are LOAD
instructions from memory since all shares might not fit in the registers. We have observed
in practical experiments that faulting a LOAD can also lead to biased S-box distributions,
but having a quite complex effect depending on previous calculations. However, the big
benefit of SIFA is the fact that an attacker does not have to know or model the effect of a
fault. For the attack to work, there just has to be a bias.

This fact also comes into play when dealing with the location of a fault. The examples
for the location (e.g., skipped instruction) of the fault given in Section 3 just show one out
of many different locations, where a fault targeting the S-box leads to a biased distribution
that can be exploited in SFA or SIFA. How many such locations exists crucially depends
on how the S-box is implemented. In a similar manner as for the effect of a fault, an
attacker does not have to know, or to aim for just one specific instruction of location to
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fault. The only requirement for the attack to work in practice is that the faulted location
leads to a bias. All these points make the attack to be executed in practice quite easily,
even with a cheap setup using clock-glitches as demonstrated in Section 4.

The last point we want to discuss regarding faults is the number of faults per execution.
We have opted for a single fault per execution, since inserting multiple faults per execution
is usually considered to be harder. This is probably related to the prominence of fault attack
techniques, where attacks requiring multiple faults per execution have high requirements of
the exact location and effects of the induced faults. However, at least in the case of an SFA,
we could not care less about the number of faults, since there are no strong requirements
regarding effect and location. In fact, injecting multiple consecutive faults usually just
leads to a lower number of necessary ciphertexts as the bias increases. For SIFA, the
situation is slightly different; however, multiple faults injected in the computation of a
single S-box have the potential to reduce the required number of ciphertexts, while being
not necessarily harder to conduct in practice.

5.2 Countermeasures

In the following, we discuss the effectivity and practicability of well-known countermeasures
against our attacks. Since most fault countermeasures prevent the SFA variants of our
attack using a single fault per execution, we focus on the SIFA variants and show that it
is not easy to prevent these attacks. In fact, some countermeasures (e.g., detection) even
facilitate certain aspects of our SIFA variants in practice.

5.2.1 Self-Destruct

The most radical approach of destroying the device as soon as a fault is detected is a valid
countermeasure against any fault attack. However, this technique has several downsides
and limitations, including false positives and additional effort to reliably destroy a circuit.

A lot of cryptographic devices deployed in the field like smart cards and RFID tags
have to function and operate under rather tough conditions. They typically have to deal
with abrupt loss of power, for instance if a smart card is withdrawn from the terminal while
working. Furthermore, they have to handle power spikes from electrostatic discharges, or
electromagnetic fields. Hence, deciding between an active fault attack and interference
due to normal usage is not a trivial task and would potentially lead to detection of a
huge amount of false positives that render such an approach useless for a wide range of
applications.

5.2.2 Detection and Correction

We classify countermeasures as detection-based if they use some kind of redundancy to
detect a fault and do not return a ciphertext in this case. As demonstrated in [DEK™ 18],
such a countermeasure does not effect SIFA at all, regardless of the degree of redundancy.

A different approach to make use of redundancy is to correct the effect of a fault, for
instance using error-correcting codes or simple majority voting. However, correction-based
countermeasures usually can be reduced to the detection-based case using additional faults.
How hard this is and which requirements this might have on the precision of the fault
crucially depends on the implementation of the countermeasure. As an example let us
assume a simple majority voting between the result of 3 block cipher calls. To do this, the
3 block cipher calls take the same inputs and hence, perform redundant computations. An
attacker can now use an additional fault to just ensure that the computations performed on
one redundant block cipher call are always incorrect. This usually does not require a precise
fault. This reduces the majority voting of 3 block cipher calls to a construction, which
essentially behaves as a detection-based countermeasure (or infection-like countermeasure if
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the majority voting happens at bit-level of the ciphertext). Then, an attacker can proceed
with the same attacks as usual, using a second fault.

5.2.3 Infection

In [DEK 18], the application of SIFA on an infective countermeasure [TBM14] has been
demonstrated. The employed dummy rounds in this countermeasure increase the needed
number of faulted encryptions until the key can be recovered. However, when aiming to
prevent SIFA, dummy rounds that do not infect the state in the case of a fault should
provide even more protection. Hence, we explore this countermeasure next.

5.2.4 Hiding

The goal of hiding countermeasures is to reduce the attacker’s knowledge of what is
currently computed, and thus effectively decrease his precision when placing the fault.
Examples include adding dummy rounds randomly between the relevant rounds, or shuffling
the order of execution, for example the order in which the 16 AES S-boxes per round are
executed. In the following, we analyze the case of dummy AES rounds in more detail, and
show that the noise introduced this way quadratically increases the necessary number of
faulty encryptions for the analysis.

Dummy Rounds. We consider a protected AES implementation and make the following
assumptions for our model:

e The attacker needs to fault round 9 out of 10 (identical) AES rounds.

e The protected implementation executes 10 real AES rounds and (k—1)- 10 ineffective
dummy rounds in a uniformly random ordering, labeled 1,..., R with R = 10k.

e The attacker targets round R — ¢. Three outcomes are possible:

1. Hit: It is the real round 9 with probability o, resulting in a distribution with
ineffectivity rate msyw and ineffective distribution peay.

2. Miss: It is a dummy round with ineffectivity rate mgummy = 1 and uniform
ineffective distribution 6

3. Miss: It is a real round, but not round 9, with ineffectivity rate mgy and
uniform ineffective distribution 6. For simplicity, we assume an ineffectivity
rate of Tqummy = 1, so this case can be merged with item 2.

With these assumptions, the success probability that round R — ¢ of R is a hit (signal) is

(R—t—1 ) 9 _
Ofauit|R, 1] = P[Hit in round R — ¢ of R] = t ((R; ) = Rg(%i ) . H [1 — It%—ls] .
10 s=2
R

This parametrized function is plotted in Figure 13 and attains its maximum near t = k = 5.
The resulting function of,it[10k, k] for the optimized success probability is also plotted in
Figure 13 (dashed, with z-axis ¢ = k), and can be approximated as

Ofaute[10k, k] = P[Hit in round 9% of 10k] = L-ﬁ o kol
foult EEI " 10k - (10k — 1) 10k — s

s5=2

9 9
1 2 0k—s+1 4o 1 (9 1
_ 1 S(2) ~2.0387  for large k.
k g 10k — 5 k (10> k of aree
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Figure 13: Success probability o[R,t] when targeting round R — ¢, for different R = 10k.
For the choice ¢ = k (dashed line), o[10k, k] ~ 2357 for k > 2.
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Figure 14: Increasing data complexity with dummy factor k, for different mey.

A SIFA attacker samples the resulting distribution pioia among the ineffective faults,
with a total ineffectivity rate of mota) and a signal of oyetar:

Ttotal = Ofault * Tfault T (1 - Ufault) 1=1- (]- - Wfault) * Ofault

_ Ofault " Tfault

Ototal = ————————
Ttotal

ptotal(x) = Ototal * pfault(x) + (1 - Utotal) . 0(17)
The necessary sample size to distinguish piota is inverse proportional to the capacity
O(ptotal) = Ut20t3| : C((pfault) »

which corresponds to a data complexity proportional to (Ttal - 020 - C(Pauit)) ™1
Thus, for a fixed fault setup with pfayit, Trault, increasing the dummy factor & increases
the data complexity of the attack quadratically (Figure 14):

1- (1 - 7Tfau|t) “Ofault ;2 1 1 — Tauie

2 —1
. = ~ : - k‘ ’ ’
(Wtotal Utotal) Ufzault . 7Tf23ult (0387 . 7Tfault)2 0.387 - 7TanuIt

Shuffling. Similar to dummy rounds, shuffling operations reduces the attacker’s precision
and success probability in hitting the right S-box and thus induces noise in the distribution.
However, in the case of SIFA, there is an important difference due to the ineffectivity rate
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in case of misses, which we assume is the same as in case of hits. For this reason, the
data complexity will also grow quadratically in the number of shuffled operations in the
relevant scope (e.g., 16 S-boxes), but only linearly instead of quadratically in the inverse
ineffectivity rate ﬂ'f;}lt.

5.2.5 Reducing the Data Complexity

For our attacks to work, we usually need several faulty encryptions per key to retrieve
it. Therefore, methods that restrict the usage of the key and hence, put a limit on the
data complexity can be a viable strategy for providing protection against this type of
attack. Existing re-keying strategies can be roughly split into two groups, one where the
used key is derived via a re-keying functions from a static master key [MSGR10, DEM ™17,
DKM™15, BPPS17] and the other group being methods where a secret internal state is
maintained and constantly updated. In the first group, the problem of protection against
the attack is basically shifted to the re-keying function and has to be solved there.

5.3 Choice of the Target and Attack Setup

It is important to note that we have not chosen the S-boxes in Section 3, or AES in
Section 4 as targets of our attacks because we have found them to be weaker than others.
In fact, we have chosen them because a lot of masked or threshold implementations for
them are publicly available.

Furthermore, we have done the practical experiments using clock glitches, because the
equipment is cheap and we do not have easy access to other equipment at the moment.
Obviously, the attack is not limited to a specific fault injection method. Quite the contrary,
we expect other methods of inserting faults like lasers, needle probes, etc to be far superior
compared to our cheap setup using clock glitches [DEK'16].

5.4 Further Applications

For the sake of simplicity, we have put the main focus of our paper on the application
of statistical fault attacks for (masked) design strategies using bijective S-boxes. Doing
so allows us to follow the simpler to digest and for the human reader to gasp narrative
that the attack can be applied if the distribution is shifted away from uniform. However,
this does not mean that the attack only applies on primitives using bijective S-boxes. As
discussed in Subsection 3.4, a fault attack may influence only some transitions in the
transition graph, while leaving other intact. In the case of a SIFA, an attacker can observe
and exploit the “filtered” graph, where most likely only the intact transitions remain.
Note that in the masked case, there is more than one transition from one input to one
output value, due to masks. Hence, an attacker can potentially exploit all cases, where
this “filtered” transition graph shows a differently distributed occurrence of input and
output transitions.

As another narrative restriction, we have restricted our focus on block ciphers. One
potential countermeasure one could come up against our attack is the use of a PRF like the
AES-PRF [MN17]. Such a PRF prevents an attacker seeing ciphertexts from decrypting
backwards under guessing the key. So the attack does not work anymore right? No. In
fact a SIFA still remains possible targeting the input of the AES-PRF since here, a known
input is most likely to be processed. In general, our presented attacks are almost always
applicable whenever some known input is mixed with a secret, which covers most stateless
symmetric cryptographic primitives. However, it is an interesting future research topic
how good such attacks work.
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6 Conclusion

This paper demonstrates that SIFA is a very powerful attack. We show that state-of-the-art
countermeasures against implementation attacks: redundancy against faults and masking
against side-channels are not as effective against SIFA as expected. In particular, SIFA is
still possible using just a single fault per execution, contradicting the common folklore that
masking plus a detection-based countermeasure provides sufficient protection against fault
attacks. We show the practical feasibility of the attack by using a cheap clock glitch setup
attacking a 10th-order masked AES software implementation with arbitrary temporal
redundancy on a standard 8-bit microcontroller without specific security features. Even
with such a cheap setup, we are able to recover 32 bits of the key after collecting 20
ciphertext where the fault is ineffective, needing approximately a total of 1000 encryptions
where a single fault induction is performed.
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