
Ouroboros Genesis: Composable Proof-of-Stake Blockchains with
Dynamic Availability

Christian Badertscher?, Peter Gaži??, Aggelos Kiayias? ? ?, Alexander Russell†, and Vassilis Zikas‡

May 3, 2018

Abstract. Proof-of-stake-based (in short, PoS-based) blockchains aim to overcome scalability, effi-
ciency, and composability limitations of the proof-of-work paradigm, which underlies the security of
several mainstream cryptocurrencies including Bitcoin.
Our work puts forth the first (global universally) composable (GUC) treatment of PoS-based blockchains
in a setting that captures—for the first time in GUC—arbitrary numbers of parties that may not be
fully operational, e.g., due to network problems, reboots, or updates of their OS that affect all or
just some of their local resources including their network interface and clock. This setting, which we
refer to as dynamic availability, naturally captures decentralized environments within which real-world
deployed blockchain protocols are assumed to operate.
We observe that none of the existing PoS-based blockchain protocols can realize the ledger functionality
under dynamic availability in the same way that bitcoin does (using only the information available in
the genesis block). To address this we propose a new PoS-based protocol, “Ouroboros Genesis”, that
adapts one of the latest cryptographically-secure PoS-based blockchain protocols with a novel chain
selection rule. The rule enables new or offline parties to safely (re-)join and bootstrap their blockchain
from the genesis block without any trusted advice—such as checkpoints—or assumptions regarding
past availability. We say that such a blockchain protocol can “bootstrap from genesis.”
We prove the GUC security of Ouroboros Genesis against a fully adaptive adversary controlling less
than half of the total stake. Our model allows adversarial scheduling of messages in a network with
delays and captures the dynamic availability of participants in the worst case. Importantly, our protocol
is effectively independent of both the maximum network delay and the minimum level of availability—
both of which are run-time parameters. Proving the security of our construction against an adaptive
adversary requires a novel martingale technique that may be of independent interest in the analysis of
blockchain protocols.

1 Introduction

The primary real-world use of blockchains, thus far, has been to offer a platform for decentralized cryptocur-
rencies with various capabilities [25, 5]. A unique feature of blockchain protocols (in contrast to standard
multiparty computation) from which the setting draws much of its appeal is the fact that the parties that
run the protocol may engage only in passing with the protocol and need not identify themselves to other
protocol participants. In fact, the Bitcoin blockchain protocol remains robust in the presence of a Byzantine
adversary even if parties arbitrarily desynchronise, join at any moment of the execution or go offline for
arbitrary periods of time (a set of execution features that we will refer to as dynamic availability), as long
as a majority of hashing power is always following of the protocol. Motivated by this novel setting, several
applications have recently emerged that use blockchains (or the cryptocurrencies that build on top of them)
as enablers for cryptographic protocols. For example, a number of recent work [2, 4, 23, 22, 1] describe
? ETH Zurich, christian.badertscher@inf.ethz.ch.
?? IOHK, peter.gazi@iohk.io.

? ? ? University of Edinburgh and IOHK. akiayias@inf.ed.ac.uk. Research partly supported by EU Project No. 780477,
PRIVILEDGE.
† University of Connecticut. acr@cse.uconn.edu. This material is based upon work supported by the National

Science Foundation under Grant No. 1717432.
‡ University of Edinburgh and IOHK. vassilis.zikas@ed.ac.uk.

how blockchain-based cryptocurrencies can be used to obtain a natural notion of fairness in multi-party
computation against dishonest majorities; or to allow parties to play games of chance—e.g., card games
like poker, lottery-based games, etc.—without the need of a trusted third party; or how to use blockchains
as bulletin boards in electronic voting. Such developments—in conjunction with the direct applicability to
cryptocurrencies—have led to a pressing need for a general, formal security analysis of the functionality that
blockchain protocols provide.

Recently, Badertscher et al. [3] put forth the first composable analysis of Bitcoin, by proving that it
implements, in a universally composable (UC) manner, an immutable transaction ledger. This improved on
previous works [16, 26] that provided a game-based security analyses and rigorously described an ideal ledger
that provides an answer to the question: What is the goal that Bitcoin aims to achieve? The advantage of
such a UC treatment of blockchains is that it allows for a modular design and security analysis of the above
cryptographic applications of blockchains.

Notwithstanding, the wide adoption of Bitcoin has revealed some serious efficiency and (in)composability
issues. The efficiency issues stem from the fact that it relies on proof-of-work (in short, PoW), a cryptographic
puzzle-solving procedure with increasing difficulty as more parties join the system.1 Composability issues
are due to the fact that the puzzle-solving procedure can, in principle, be useful also for other protocols—
independent from the Bitcoin mining process.2 This means that one cannot exclude the possibility that an
adversarial miner participating in such an independent protocol π and in Bitcoin in parallel, can potentially
double the value of his effort, by using the same hash query both for π and for Bitcoin.

The demand for blockchain solutions that do not suffer from the above issues gave rise to an exciting
recent line of work that propose to use alternative resources to achieve consensus and maintain a robust
ledger. The most popular such resource is stake in the system. Informally, instead of requiring a party to
invest computing power in order to be allowed to extend the blockchain, parties are given the chance to do
so according to their stake in the system, e.g., the number of coins they own. This paradigm, often referred
to as proof-of-stake (in short PoS), has yielded a number of proposals for PoS-based blockchains.3

Several of these PoS-based proposals originated from the cryptographic community, e.g., Algorand [18],
Snow White [12], and Ouroboros/Ouroboros Praos [21, 13]. As such they are accompanied by a formal
security proof that they achieve a well defined set of desirable properties. Alas, all these works focus on a
property-based specification of the provided security guarantees, i.e., they prove that they achieve a desirable
set of properties. Such property-based definitions are known not to ensure, in general, the composability of
the proposed schemes [7, 9, 19]. Furthermore, these protocols severely restrict the dynamic availability of
participants: Snow White [12] and Ouroboros/Ouroboros Praos [21, 13] require an honest blockchain to be
delivered as trusted “advice” to any joining party, while Algorand [18] requires the explicit knowledge of a
good estimate of the number of offline parties.

This leaves the following questions open:

– What is the ideal functionality implemented by PoS-based blockchains? How does it compare to the one
implemented by PoW?

– Does PoS suffer from the same incomposability issues as PoW?
– Can PoS offer the same level of dynamic availability guarantees as PoW?

Our work resolves all the above questions. In particular, we put forth the first UC treatment of PoS-
based blockchains. Our model captures for the first time dynamic availability and provides a fine-grained
classification of failures that determine all different settings that an honest protocol participant may find
itself in during the protocol execution. Given that none of the existing PoS protocols provide such strong
guarantees, we describe and analyze a new protocol based on Ouroboros Praos [13]. The major structural
1 Currently each single Bitcoin block requires more than 272 operations to be performed, cf. https://en.bitcoin.

it/wiki/Difficulty.
2 The concept of merged mining is an illustration of this fact from a positive angle; cf. https://en.bitcoin.it/

wiki/Merged_mining_specification.
3 In fact, as a responce to the criticism about the bottlenecks of PoW, the second most adopted decentralized

blockchain, Ethereum [5], has announced a plan to gradually transition from a PoW-based to a PoS-based protocol.

2

https://en.bitcoin.it/wiki/Difficulty
https://en.bitcoin.it/wiki/Difficulty
https://en.bitcoin.it/wiki/Merged_mining_specification
https://en.bitcoin.it/wiki/Merged_mining_specification

change in the protocol, which we call Ouroboros Genesis, is a novel chain selection rule that enables joining
parties to “bootstrap from genesis.” We prove that the protocol UC-securely implements the natural ledger
functionality proposed in [3]—the very same functionality shown to be possessed by Bitcoin. We prove
security in the setting of dynamic availability under the assumption of standard cryptographic primitives,
an initialisation functionality that is akin to public-key registration and a global random-oracle which is a
natural abstraction of deterministic hash functions. Our contributions and their significance are discussed in
more detail in the following.

Our Contributions. Our work provides a Universally Composable (UC) [7] treatment of proof-of-stake-
based blockchains. To obtain a tight abstraction of the real-world setting and stronger composability guar-
antees, our treatment is in the UC model with global setups, a.k.a. GUC [8]; note that all our statements
trivially apply also to the standard UC model by considering global setups as ideal UC functionalities.4

Global UC formalisation. Our first contribution is to provide a full specification of the real-world
resources needed for PoS as ideal functionalities and global setups in GUC. Concretely, following the paradigm
of [3], we capture protocols in the (semi-) synchronous model as (G)UC protocols with access to a global
clock functionality, and to a network with eventual (bounded) delivery. A delicate deviation from [3], which
also formally demonstrates the stronger composability guarantees that PoS offers, is with respect to how we
abstract the calls to the hash function. Concretely, we assume the protocol participants have access to a global
random oracle setup (in short, GRO). This captures the abstraction of hash functions as publicly available
random functions. This should be contrasted to their abstraction as a UC functionality proposed in [3], which
is less composable. Intuitively, a (deterministic) hash function can be queried by any party, whereas a UC
random-oracle functionality is available only to its calling protocol π; this implicitly restricts access to this
functionality (and therefore the hash function it is supposed to abstract) on the specific protocol π.5

In fact, a closer consideration of the idiosyncrasies of PoWs reveals that abstracting hash-queries as calls
to a GRO is not an option for PoW-based blockchains. This is true because of two reasons: (1) at an intuitive
level this would imply that the environment (i.e., other protocols) could make queries to the GRO and then
share them with the adversary, which, as discussed above, gives “free” out-of-band computing resources to
the adversary; (2) at the more technical level, the non-programmability of the GRO allows the environment
to check that the simulator creates blocks that indeed carry sufficient work; but since the simulator needs to
also simulate the hash queries of honest parties, this would only be feasible if he had a much larger query-
budget than the adversary, which is not possible as the GRO needs to behave identically in the real and
ideal world. We note in passing that in [10] a version of the GRO was proposed that reduces the power of the
environment to check on the simulator; this GRO—which is arguably not the most realistic abstraction of
hash functions—would still not work for PoWs because of the second issue. Demonstrating that PoS-based
schemes can be proved in a model where hash functions are abstracted as GROs (which is not the case for
the PoW setting) sheds light on the comparison between PoW and PoS.
Dynamic Availability. Our second contribution is capturing in an accurate manner the guarantees that
any such protocol can give to freshly joining parties and/or parties with temporary connectivity/availability
issues, a setting that we call dynamic availability. More concretely, our model distinguishes four types of
honest parties, called online, alert, stalled, and offline:
- Online parties are parties that have access to all their real-world resources—in our GUC terminology,

these are parties that are currently registered to all their global setups, i.e., the clock and the GRO, and
to the network. Sometimes we will call those parties fully online to emphasize the fact that they are
connected to all their setups, not just the network.

4 Informally, the main difference between ideal functionalities and global setups is that the former are bound to a
calling protocol and only expose their functionality to this protocol, whereas the latter can be accessed by any
protocol.

5 For readers familiar with the programmability issues of random oracles, e.g. [15, 10], the UC-functionality abstrac-
tion corresponds to a programmable RO that is only accessible by the protocol, whereas the random-oracle global
setup is both non-programmable and publicly available.

3

- Alert parties are parties that are fully online and they have maintained this status for a sufficient number
of rounds. More specifically, we will specify a parameter called Delay that will be a function of the upper
bound ∆ on the network delay that determines the time necessary that a fully online party needs to
maintain its status so that it becomes fully synchronised with the state of the protocol. These parties
enjoy full security guarantees and we will require a lower bound on their number (see below) to ensure
security. We stress that Delay is a parameter that is unknown to the protocol participants thus it is
impossible for an online party to determine whether it is alert or not.

- Offline parties are parties that do not have access to their network, e.g., because of network issues, or
because of a reboot. Formally, those are parties that have de-registered from the communication network
functionality;6 however, they might, if the environment wishes them to still be registered to the clock
and/or the GRO—this is to capture the fact that they might be running another protocol that does not
use the PoS network. Expectedly, these parties do not receive any messages while they are offline.

- Stalled parties are parties that have deregistered from their clock or GRO (at the environment’s in-
struction) but not from the communication network. They capture situations where parties are online
and listening to their network but their interface to their clock and/or hashing process is temporarily
unvailable. Note that while their resources are down, stalled parties do not proceed with their protocol,
but once they are up again, they continue from where they left off. Concretely, the time they have been
stalled counts against the delay of messages that have been sent to them, and messages that were sup-
posed to have been delivered while they were stalled are delivered as soon as they are back. Such parties
motivate the existence of what has been referred to as sleepy parties [27, 12]. Nevertheless, it should be
stressed that in our composable setting, stalled parties are not “sleeping” since, for instance, if they are
registered to the clock, they might continue operating as expected in other protocols that are running
concurrently to the PoS protocol.

The above classification of parties allows us to provide fine grained security guarantees that are maximal
for each case. In order to express these guarantees, we need to also distinguish the set of parties that are
active: this set is defined as all online and all adversarial parties. Note that for the purpose of expressing
our security guarantees, we consider adversarial parties to be active independently of the actions they are
instructed to take by the adversary.

Our objective is to realise the ledger functionality given the following two conditions: (i) The ratio α of
the number of alert over the active parties is above 1/2; the difference is by a constant that is sufficiently large
to absorb the partial synchrony delay parameter ∆. In particular (and similar to the Bitcoin blockchain, see
[16, 26]) the protocol will use a parameter f and will permit a meaningful security guarantee provided that
a suitable relation between f and ∆ is satisfied. For a fixed choice of f , the larger the delay ∆ is, the larger
the difference between 1/2 and the alert over active ratio should be. (ii) The ratio β of the number of active
over all parties is bounded from 0 by some arbitrary constant that is unknown to the protocol participants.

We argue that the above is an essentially optimal set of conditions for a ledger construction in the dynamic
availability setting. First, if the alert over active parties ratio drops below 1/2 in terms of stake, it basically
means that even though there might be an honest majority, a number of honest parties are either offline, or
have recently joined and they have not been able to get fully synchronised with the rest of the honest parties,
due to message delays imposed by the adversary. Given that the network delay ∆ is unknown to protocol
participants, honest parties that have recently joined (but also those that have been offline for some time and
are returning back online) have no other option other than to follow the protocol as prescribed. Since their
state is outdated, the messages they produce cannot be guaranteed to be acceptable to other honest parties;
furthermore they could even be exploited by the adversary who is free to deliver them confusing information
about the current state of the network. For this reason, such desynchronized parties have their stake counted
as adversarial at least until Delay rounds pass and they can be considered fully synchronised with the rest of
the honest parties. On the other hand, parties that are stalled, do not count as adversarial, i.e., their number
is independent of the ratio of alert over active parties. Furthermore, even though they might lose their turn
to play if their slot comes while they are stalled, once they become online again, their stake is immediately
6 A party de-registers from the Ouroboros Genesis network when it is instructed (by the environment); in the ideal

world this correspond to deregistering from the ledger.

4

counted as honest and they immediately resume playing as alert protocol participants. Finally, regarding the
ratio of active over all parties it is easy to see that a lower bound is necessary to guarantee a sufficient level
of participation for the protocol to make progress at all. Otherwise the adversary could deregister all parties
from the network and effectively pause the execution halting transaction processing.

The above guarantees are arguably the natural security guarantees one can give. However, none of the
existing PoS protocols provides them without additional assumptions and/or restrictions to the adversary’s
capabilities. Concretely, existing solutions and proposals [21, 12, 13, 6] either forfeit dynamic availability and
assume honest parties are regularly online or rely on an assumption that joining (or resuming) parties are
implicitly given access to a checkpointing functionality, which serves them a trusted recent honest chain and
is supposed to be implemented either “for-free” by the environment or by some fortuitous network connection
to existing honest parties. This solves the problem of joining parties getting up to speed with the correct
chain—which is the main challenge here–but is arguably a strong assumption. To see this, note that given
such a functionality parties only need to deregister and register in order to obtain eventual consensus, which
completely trivializes the main goal of a blockchain protocol. One can attempt to avoid such trivialization
by restricting the interval between deregistration and reregistration, or even forbidding it, but this makes
the assumption somewhat artificial and excludes natural scenarios from the analysis, such as short term
unavailability (e.g. due to a system crash, network outage, maintenance, or update restart). We also note
that even with the assumption of such an additional checkpointing functionality, there is no existing PoS
solution which can tolerate both the optimal threshold of adversarial stake ratio approaching 1/2, and for
full adaptivity in corruptions and in the (re-)joining schedule, i.e., (re-)registration/deregistration.

On the other hand, Algorand [18] does not require such checkpointing or being regularly online, however
it requires a good estimate on participation to be fixed in the protocol, thus forfeiting dynamic availability
as well. This requirement stems from the fact that the core of the protocol runs a Byzantine agreement sub-
protocol that requires to be able to know the level of expected participation and hence estimate in advance
the number of messages that are required to proceed with key protocol decisions.
A PoS Blockchain with Bootstrapping from Genesis. Given the deficiencies of existing protocols
to handle dynamic availability we present a new protocol, Ouroboros Genesis, that is based on a recent PoS
protocol, Ouroboros Praos [13]. The novelty of our protocol lies in its chain selection rule that instantiates
the so-called maxvalid procedure in [16, 21, 3, 13] in a way that allows the parties to identify a chain whose
prefix has been part of the prefix of a recent honest chain, using only knowledge of the genesis block. For this
reason we refer to this process as bootstrapping from genesis.

Concretely, we prove that Ouroboros Genesis (G)UC-securely realizes the ledger functionality as long as
in any epoch, the majority of stake in the system—as defined by the stake distribution in a specific recent
previous epoch7—is such that the number of alert over active ratio is bounded above 1/2 and the active
over all parties ratio is bounded above zero, which are the two essential conditions for dynamic availability
introduced above.

In order to prove that Ouroboros Genesis securely realizes the ledger with the above full granularity of
guarantees to the honest parties, we develop a new technique which non-trivially extends the martingale
argument from [28] so that we can use it to analyze an adaptive adversary in the presence of a worst-case
(adversarial) joining-schedule. This technique is of independent interest, as it might prove useful for analyzing
other PoS-based blockchains. Overall our security proof naintains the same cryptographic assumptions as
[13].

Our results and analysis thus categorically answer the three questions posed above: Ouroboros Genesis
can realise the same ledger functionality as Bitcoin, Gledger [3], in a setting with dynamic availability using
standard cryptographic assumptions. Furthermore, the realisation shares none of the composability issues
that PoW based protocols have. As a result PoS protocols can effectively drop-in replace PoW based ones
with the only added requirement being the initialisation functionality that should provide a key registration
as opposed to merely a common random string.
7 As with most PoS based blockchains, in Ouroboros Genesis the protocol evolves in epochs where parties extending

the blockchain in any given epoch (a.k.a. the current epoch’s slot leaders) are chosen according to their stake as
defined by a snapshot of the system at some fixed time point in the past.

5

Related Work. A number of recent works have studied—in a rigorous cryptographic manner—the security
of existing and newly proposed blockchain protocols both PoW-based, e.g, [16, 26, 3] and PoS-based,
e.g., [21, 13, 27, 12, 18]. In the PoW-based setting, [3] describes and proves the composable security guarantees
of the most representative protocol, namely Bitcoin; furthermore, the security proof tolerates an adaptive
adversary and achieves optimal resilience—the adversary can control any percentage less than 50% of the
network’s total computing power. In contrast, in the PoS-based setting, no simulation-based (UC) proof
existed, and different proposed schemes tolerate different types of adversaries in terms of adaptivity. For
example, Ouroboros [21] achieves only “semi-adaptive” security (corruptions with delay), whereas among
the adaptively secure ones, Algorand [18] needs less than 1/3 of the stake of the system to be held by
malicious parties, whereas Show White [12] and Ouroboros Praos [13] achieve the optimal 1/2 bound, at the
cost of needing a checkpointing functionality to accommodate joining parties.

The idea of parties that are muted for some time but do receive their messages was first proposed in [27]
where those parties were referred to as sleepers. Our modeling of such parties differs from that of [27] in various
ways: first, instead of describing them by means of whether they are paused or not, we characterize them
by means of the availability of their resources, making clear how those parties enter this state. Furthermore,
our notion is only affecting the PoS session that is being executed and thus, in our composable setting,
such parties are not restricted as to how they should behave within other protocols that they concurrently
participate in. To emphasise this distinction and the fact that they may be continuing to operate in other
protocol sessions we use the term ”stalled” for these parties. In addition to the modeling distinctions, our
model allows us to obtain more general statements regarding the adaptivity of the adversary. Concretely,
we can tolerate fully adaptive adversaries and worst-case registration/deregistration scheduling. In contrast,
[12] tolerates semi-adaptive adversaries, whose corruption only takes effect after a certain number of rounds.
Interestingly, there is no need for distinguishing a class of parties called deep-sleepers in [12] (i.e., those that
are in sleepy mode for a prolonged time) that required a safe initialisation string in [12]. Taking advantage
our bootstrapping from genesis chain selection rule, all parties that are stalling, even for prolonged periods
of time, can safely resynchronise without the assistance of a trusted initialisation exactly as in the case of
PoW-based protocols.

Outline of the remainder of the paper. In Section 2 we provide a formal description of our model of
computation, including our real and ideal world functionalities and setups. In Section 3 we describe Ouroboros
Genesis as a (G)UC protocol. The security analysis of the protocol, i.e., the proof that it UC-securely realizes
the ledger functionality is given in Section 4. The proof starts by considering the interaction of the old chain
selection procedure from [13] (called maxvalid-mc here, the protocol using it is dubbed Ouroboros-Praos) with
online and stalled parties only (Section 4.2), gradually incorporates the new maxvalid-bg procedure which
allows the protocol to bootstrap from the genesis block (Section 4.3), along with proofs that this procedure is
sufficient to provide all the guarantees offered to newly joining and temporarily offline parties (Section 4.4).
Finally, there results are transformed into the full UC statement in Section 4.5.

2 The Model

This section includes the main component of the computation model including the real and ideal function-
alities used in this work. We assume the reader has some familiarity with the universal composition (UC)
framework [7]. In addition to the new functionalities, we make use of the number of already existing func-
tionalities from the literature. For completeness we nonetheless include these functionalities in Section A of
the supplementary material.

UC defines security via the simulation paradigm: the protocol execution in the real world is compared
to an ideal execution, where the parties have access to an ideal functionality F which abstracts the goals of
the protocol. In the ideal world honest parties act as simply relayers between their environment Z and the
functionality F (i.e., they run the so called dummy protocol [7]). Informally, security requires that the attack
of any adversary against the (real-world) protocol can be simulated in the ideal world. More concretely, for
any real-world adversary A there should exists an ideal-world simulator S that corrupts the same parties as

6

A and makes the ideal-world execution indistinguishable from the real-world in the eyes of any environment
Z.

Importantly, the (real-world) protocol might be given access to some functionalities (often called hybrids),
which capture the resources that the parties have available, e.g., their communication network. In standard
UC, these resources appear only in the real-world—in fact they are formally treated as part of the protocol—
whereas GUC [8] allows such resources to be preserved in the ideal world and as such be accessible directly by
the environment (instead of their interface being filtered by the protocol.) To avoid confusion with standard
UC functionalities, the GUC resources of the above type as often referred to as (global) setups. They capture,
among others, settings where different protocols might share a common state, and allow to address deniability
issues that the original UC framework has [8]. Furthermore, the fact that they do not disappear in the ideal
world makes global setups more suitable for capturing universally accessible resources such as deterministic
hash functions as discussed in the introduction.

In the following, we describe the reald-world resources that are needed in Ouroboros Praos protocol, along
with the ideal world functionality that the protocol implements. Before doing so, we discuss some common
conventions that we will use in the descriptions.

Dynamically available party sets. A significant extension in the model of computation in our work,
is the high granularity in the treatment of the protocol participant’s availability. Concretely, already in [3]
all functionalities, protocols, and global setups have a dynamic party set. I.e., they all include special in-
structions allowing parties to register, de-register, and allowing the adversary to learn the current set of
registered parties. Additionally, global setups allow any other setup (or functionality) to register and dereg-
ister with them, and they also allow other setups to learn their set of registered parties.8 These registration
commands, as outlined in Section A.1 will be part of the code of all (hybrid and ideal) functionalities and
setups considered in this work. For simplicity, we will not write them explicitly in the pseudo-code of the
functionalities.

Having such a flexible and dynamic registration/deregistration schedule, requires special care in the
blockchain setting. E.g., in [3] it is observed that parties that have very recently joined the Bitcoin network
cannot receive all guarantees of honest parties. Intuitively, the reason is that, due to network delays, these
parties, called desynchronized, might be temporarily tricked into working on a fake (adversarial) chain. In this
work we go one step further towards capturing all availability scenarios, and the corresponding guarantees
that can be offered to parties with different availability patterns. We refer to Section 2.2 for more details.

The adversary. We assume a central adversary A who corrupts miners and uses them to attack the
protocol. The adversary is adaptive meaning that he can add miners to his corrupted set at any point in the
protocol execution and can do so depending on his current view of it.

Assumptions on the environment/adversary as setup-functionality wrappers. In order to prove
statements about cryptographic protocols, one often makes assumptions about what the environment (or
the adversary) can or cannot do. For example, to prove resistance against sleepy parties [27], one needs to
assume that awake (non-sleepy) honest parties are always in the majority. Such assumptions can be captured
by a restricted environment and/or adversary. However, this is against the spirit of a general composition
theorem and technically prevents us from applying it in a further construction step (where for example the
ledger is used as a hybrid). To circumvent this undesirable property, we follow the paradigm of [3] to capture
such assumption by means of a functionality wrapper that wraps the (local setup) functionalities that the
protocol accesses and forces the required assumptions on the adversary/environment. In some sense, we shift
such assumption or restrictions from the environment into the setup resources. We refer to [3] for a more
detailed discussion. Looking ahead, the wrapper used in our security statements is sketched in Section D
(This wrapper will only become relevant to interpret Theorem 3 without the need of a restricted environment
or adversary).

8 The latter is done by use of a technical modeling trick from [11] (cf. Section A.1.)

7

2.1 The Real World Execution

Protocol participants are represented as parties—formally Interactive Turing Machine instances (ITIs)—in
a multi-party computation. The main aspects of this computation are as follows:

Communication. The parties interact which each other by means of a network of eventual delivery uni-
cast channels [3]—informally, every party Up has an open incoming-connections interface where he might
receive messages on from arbitrary other parties. This captures the natural joining procedure of real-worlds
blockchains where new parties find a point of contact and use it to communicate with other parties by means
of a gossiping (flooding) protocol. As argued in [3] assuming the honest parties are strongly connected, this
netowrk can be used to build the (UC version of the) standard multicast network with eventual delivery
assumed in [16, 26, 21]. The abstraction of this network as a (local)9 UC functionality and its implementation
from unicast channels was described in [3]. For completeness, we include this functionality in Section A.2.

For the remainder of this work we will assume parties have access to such a multicast network. This
network, denoted as F∆N-MC, has an upper bound ∆ in the delay that the adversary can incur on the delivery
of any message; we stress, however, that the protocol is oblivious of ∆ and this bound in only used in the
security statement. Hence from the protocol’s point of view the network is no better that an eventual delivery
network (without a concrete bound).

Synchrony. All known PoS-based blockchains, including Ouroboros Genesis, are (partially) synchronous,
i.e., they proceed in synchronized rounds with either a known (or an unknown, in the case of partial syn-
chrony) message delay. We model synchronous computation using the synchronous-UC paradigm introduced
in [20] and adapted to GUC in [3]. Concretely, the parties are assumed access to a global clock setup, dedoted
as Gclock (see Section A.3.) Each registered party can signal the clock that it is done with the current round,
and once all honest registered parties (and functionalities) have done so, the clock advances by one tick. In
addition, every party can query the clock to read the (logical) time.

As observed in [3], to obtain UC realization in such a globally synchronized setting, the target ideal
functionality needs to keep track of the number of activations that an honest party gets—so that it can
enforce in the ideal world the same pace of the clock as in the real world. This can be achieved by describing
the protocol so that it has a predictable behavior when it comes to the pattern of activations that it needs
before it sends the clock an update command. To capture this, [3] defines a function predict-timeΠ(~ITH) that
predicts the time in which the clock is supposed to be according to the given protocol, given as input the
timed honest-input sequence. 10 For self-containment, we restate this property formalized in [3] in Definition 7
in Section A.3, where we also prove that Ouroboros Genesis indeed satisfies it.

Hash functions as global random oracles. Ouroboros Genesis assumes that parties can query a hash
function. As typically in cryptograpic proofs the queries to hash function are modeled by assuming access
to a random oracle (functionality): Upon receiving a query (eval, sid, x) from a registered party, if x has
not been queried before, a value y is chosen uniformly at random from {0, 1}κ (for security parameter κ)
and returned to the party (and the mapping (x, y) is internally stored). If x has been queried before, the
corresponding y is returned.

The random oracle is typically captured as a local UC functionality. As discussed in the introduction,
this raises a number of issues, both with respect to how natural this abstraction of a hash function is, and
with respect to the induced programmability that comes from this choice. Instead in this work we choose
to capture it as a global setup, referred to as GRO and denoted as GRO (see Section A.4 for a detailed
description.) The fact that Ouroboros Genesis can be proved secure under such an assumption serves as
an indication of the augmented composability that PoSs bring to the blockchain ecosystem. As mentioned
before, Bitcoin cannot be proved secure in the GRO model.
9 It is natural to capture network functionalities as local UC functionalities, since networks are often ad-hoc tailored

to a specific task.
10 The timed honest-input sequence looks like ~ITH = ((x1,pid1, τ1), . . . , (xm,pidm, τm)) where

((x1, pid1), . . . , (xm, pidm)) are the honest inputs corresponding to an execution (up to a certain point),
and for each i ∈ [n], τi is the time of the global clock when input xi was handed to pidi.

8

The genesis block generation and distribution. Agreement on the first, so-called genesis block, is a
necessary condition in all common blockchains for the parties to achieve eventual consensus. In Ouroboros
Genesis, this block includes the keys, signatures, and original stake distribution of the parties that are
around at the beginning of the protocol. This assumption— i.e., that the genesis block is properly created
and distributed to the initial parties, and that it is properly distributed to anyone who joins even later—is
captured in [13] by assuming access to a (local) functionality FINIT. For each stakeholder registered at the
beginning of the protocol, FINIT records his key in the genesis block; this block is distributed to anyone who
requests it in any future round. To simplify the protocol description, we will assume throughout the paper
that the first round—i.e., the genesis round—of the protocol occurs when the global time is τ = 0. This is
wlog as the actual genesis-round index is written on the genesis block and we assume that all parties are
synchronized with the global clock. For completeness we include a description of FINIT in Section A.5.

Hybrids used (only) in the security proof Ouroboros Praos requires only access to the above func-
tionalities and global setups, i.e., F∆N-MC,FINIT,Gclock, and GRO. However, for a clearer protocol description
it is convenient to assume hybrid access to two more functionalities, one that abstracts verifiable random
functions (VRF), denoted as FVRF, and another one that abstracts key-evolving signature schemes (KES),
denoted as FKES. We note that these functionalities—which are taken verbatim from [13]—are hybrids that
simplify the protocol description and proof, as they are shown to be UC-realizable in [13] by cryptographic
constructions assuming access only to our original four functionalities and setups. (The overall security once
instantiated by these constructions follows from the UC composition theorem). For completeness we include
their description in Section A.6.

2.2 The Ideal World Execution

We next turn to the functionalities available in the ideal-world. Recall that in this world, the parties execute
the so-called dummy protocol. Since the clock and the random oracle are modeled as global setups, i.e.,
Gclock and GRO, they are available also in the ideal world. However, the big change in the ideal world, is
that the Ouroboros Genesis protocol (and the corresponding network and initialization functionality) are
replaced by the ideal functionality that abstracts the protocol’s goals. We call this functionality the (ideal)
ledger and formally specify it in the following.

The Ledger Functionality. The ledger that Ouroboros Genesis realizes is almost identical to the abstract
ledger that was proved in [3] to be implemented by (the UC adaptation of) Bitcoin. In fact, the abstract
ledger proposed in [3] is parameterizable by a collection of four algorithms. The ledger implemented by
Ouroboros Genesis is effectively derived by appropriately instantiating these algorithms. This similarity can
be seen as a confirmation of the ledger abstraction, and as an affirmation that Ouroboros Praos meets strong
composable security.

Given their common core, in order to describe the Ouroboros Genesis ledger its is helpful to start with
a briefly recap of the abstract ledger from [3].

The ledger from [3] maintains a central and unique ledger state denoted by state. Each registered party
can request to see the state, but is guaranteed to receive a only a sufficiently long prefix of it; the size of
each party’s view of the state is captured by (monotonically) increasing pointers that define which part of
the state each party can read; the adversary has a limited control on these pointers. The dynamics of this
can be seen as a sliding window over the sequence of state blocks, with width windowSize and starting at
the head of the state, and each party’s pointer points to a location withing this window. (The adversary can
choose the position of the pointers within this sliding window.) As is common in UC, parties advance the
ledger when they are intsructed to (activated with specific maintain-ledger input by their environdment Z.)
The ledger uses these queries along with the function predict-time(·) to ensure that the ideal world execution
advances with the same pace (relatively to the clock) as the protocol does.11

Any party can input a transaction to the ledger (upon instructed by Z); upon reception, transactions are
validated using a predicate Validate and, if found valid, are added to a buffer. Each new block of the state
11 Recall that the clock waits (also) for the ledger to check-in to advance its time/round index.

9

consists of transactions which were previously accepted to the buffer. (Note that transaction are treated as
abstract objects/input-values.) To give protocols syntactic freedom of how a state block looks like, a vector
of transactions, say ~Ni is mapped to the ith state block via function Blockify(~Ni). Validate and Blockify are
two of the ledger’s parametrization algorithms.

A defining part of the behavior of the ledger is the (parameterizable) procedure which defines when/how
to extend state. One needs to allow the adversary enough influence, since this is the case in the real
protocol, but the ledger should impose certain policies/restrictions regarding such extensions. For example
it should require a minimum chain growth rate, a certain chain quality, and liveness of transactions, which
are properties studied in [13] for Ouroboros Genesis. The procedure ExtendPolicy is responsible for enforcing
such a policy. In nutshell, to enable adversarial influence, ExtendPolicy takes as an input a proposal from
the adversary for extending the state, and can decide to follow this proposal if it satisfies its policy; if it
does not, ExtendPolicy can ignore the proposal (and enforce a default extension). This mechanism is flexible
enough to model different kind of scenarios; in particular, as we show in this work, it enables to capture the
composable guarantees of proof-of-stake as well.

Setting the ledger functionality parameters. To specify the ledger achieved by Ouroboros Genesis,
we need to instantiate the relevant parameters/procedures from above. Blockify, Validate, and predict-time
are chosen to mimic the input/output format restrictions of the protocol; concretely, Blockify := blockifyOG,
predict-time := predict-timePraos (defined in Lemma 3), and

Validate(BTX, state, buffer) := ValidTxOG(tx, state),

where blockifyOG, predict-timePraos, and ValidTxOG are identical to what real protocol uses, whose description
appears in Section 3. As in [3], blockifyOG and ValidTxOG must not disqualify each other12 (see [3, Defintion
2]). This is easily ensured and also the case for Ouroboros Genesis.

The procedure ExtendPolicy policy is trickier, but it again follows the same principles as in [3]. It enforces
the following properties: First, all blocks of state are semantically valid. Furthermore, it ensures the following
properties:

1. The state grows at a minimal rate of blocks over a time interval. This is formalized by specifying a value
maxTimewindow in which at least windowSize blocks have to be inserted into the ledger state.

2. Not all blocks can be adversarial, i.e., meaning that a certain fraction of blocks in a sequence of
windowSize blocks have to be honestly generated. This is enforced by requiring a limit advBlckswindow
of adversarial blocks in each window of windowSize state blocks.

Note that honestly generated blocks are crucial to ensure a liveness guarantee for transactions. The liveness
guarantee captures that if a transaction is old enough and still valid, then it is guaranteed to be inserted
into the state. This guarantee is enabled by using digital signatures in a modular next step, i.e., within a
ledger-hybrid protocol. We refer to [3] for details.

A detailed specification of the Ouroboros Genesis ExtendPolicy can be found in Section A.8.

Guarantees for dynamic availability. The analysis (and ledger) of [3] separates the honest parties
into two different categories, called synchronized and desynchronized. Desynchronized parties are honest
parties that have registered with the protocol within the last Delay rounds (where Delay is the parameter
of the ledger that expresses how long a newly joining party is not considered synchronized and can often be
bounded by some mulitple of the network delay in a security analysis). Because we cannot guarantee that
these parties’ view is consistent with the rest of the honest network, the ledger treats them as adversarial.
However, as soon as the interval of Delay rounds from registration passes, these parties become synchronized
and are treated as fully honest.

As already discussed in the introduction, in this work we aim (and achieve) the highest granularity in the
guarantees that honest parties receive, with respect to their availability status. In particular, we separate
honest parties in the following classes: offline parties are honest parties that are deregistered from the network
12 If they do, only empty state blocks would emerge

10

Honest Parties

offline (have network)

(online, but) stalled

stalled
desynchronized

stalled
synchronized

(fully) online

online
desynchronized alert

Honest party “Synchronized”
state

Registered with
Gclock and GRO

Registered with
FN-MC

- alert X X X
- synchronized X ? X
- online ? X X
- stalled ? × X
- offline ? ? ×

Fig. 1. Classification of honest parties. Based on access to resources (clock Gclock, random oracle GRO, network
FN-MC) and presence in their current non-offline status for more than Delay rounds (synchronised or desynchronised).

functionality. We then separate parties which are not offline into two (sub-)categories, called (fully) online—
parties which are registered with all their setups and ideal resources—and (online but) stalled—parties that
are registered with their local network functionality, but are unregistered with at least one of the global
setups Gclock and GRO. 13 Each of these (non-offline) subclasses is further split into two subcategories along
the lines of the classification of [3]: those that have been in their current (non-offline) state for more that
Delay rounds are synchronized, whereas the remainder are desynchronized. This classification is illustrated
in Figure 1. Additionally, we call a party active if it is either online (and hence honest) or adversarial.

As in [3], the ledger keeps an updated track of registered parties with all global setups so it can know
which category each party belongs in. Desynchronized parties are treated as adversarial, whereas, offline and
stalled parties remain silent (i.e., the ledger produces no output for them). We note in passing that, although
not included in [3], this level of granularity is an interesting extension to the Bitcoin analysis too. In fact, as
an exercise the reader can be convinced that Bitcoin does also implement the ledger with respect to such a
fine-grained, dynamic-availability model.14

A minor deviation: Fitting the functionality to the PoS setting. There is one minor point where
the PoS ledger needs to deviate from the Bitcoin one. Concretely, in Bitcoin the contents of the genesis block
are irrelevant (i.e., the ledger can simply have this block hardwired.) However, in PoS it is inherent that the
initial stake (or tokens) is distributed in a trustworthy manner. This is reflected in the need for initialization,
where the parties associated to this setup need to register in the very first round. To make sure that the ledger
execution is indistinguishable from Ouroboros Genesis, we equip the ledger with an additional parameter,
the initial stakeholders set and corresponding stake distribution SinitStake := {(U1, s1), . . . , (Un, s1)}. If some
honest stakeholder abstains from registering in the first round, the ledger stops execution.
13 The semantics and interpretation of these terms was already discussed in the introduction.
14 Recall that in [3], a party is never stalled. If it is not offline, and hence contributes to the overall hashing power, it

either belongs to the synchronized or to the de-synchronized set (and de-synchronized parties increase adversarial
power).

11

Given its strong similarities with the abstract ledger from [3], the complete and formal specification of
the concrete ledger that Ouroboros Genesis realizes can be found in Section A.7.

3 Ouroboros Genesis as a UC-Protocol

In this section we provide a detailed description of our protocol Ouroboros-Genesis as a synchronous (G)UC
protocol. The protocol has a similar structure as Ouroboros Praos [13], but differs considerably in the novel
chain selection rule, which allows parties to join at any point without the need of external checkpointing.
As already discussed, the protocol only assumes access to the network functionalities and global setups,
i.e., F∆N-MC,FINIT,Gclock, and GRO. However, for clarity we describe the protocols as having access to two
additional functionalities FVRF and FKES; as mentioned in the Section 2.1, these latter two functionalities
can be implemented using the former.

The section is organized as follows: First we discuss how the hybrids are used and provide a high level
description of the protocol. Then we proceed to the detailed protocol specification.
Protocol overview. The protocol Ouroboros-Genesis assumes as hybrids a network F∆N-MC, a verifiable
random function FVRF, a key-evolving signature scheme FKES, a global random oracle GRO, and a global
clock Gclock.

The protocol execution proceeds in disjoint, consecutive time intervals called slots. Importantly, time is
divided in such a way that all parties know when a new slot starts—in our specification, every slot is one
round, hence the parties can compute the current slot by comparing the round, i.e., clock value, recorded on
the genesis block with the current round. Without loss of generality we will assume that the protocols starts
when the global time is τ = 0; in this case the current slot index will always be τ .

In each slot sl, the parties execute a so-called staking procedure to extend the blockchain. At a high level,
the staking procedure consists of the following steps: First, the parties execute an implicit lottery to elect a
slot leader from a distribution which, roughly, is biased by the stake distribution—the more stake a party
has in the system, the more likely he is to be elected slot leader.

In any given slot, the elected slot leaders are in charge of extending the blockchain. Concretely, slot
leaders are allowed to propose an updated blockchain. To this direction, the slot leader creates and signs a
block for the current slot. Each such block contains transactions that may move stake among stakeholders.
The slot leader then broadcasts the new chain extended by its block to its peers via Fbc

N-MC. We remark that
as in [13], in order to achieve adaptive security the blocks are signed using a key-evolving signature scheme
FKES instead of a standard signature, and honest parties are mandated to update their private key in each
slot.

A chain proposed by any party might be adopted only if it satisfies the following two conditions: (1) it is
valid according to a well defined validation procedure, and (2) the block corresponding to each slot is signed
by a corresponding certified slot leader.

To ensure the second property we need the implicit slot-leader lottery to provide its winners (slot leaders)
with a certificate/proof of slot-leadership. For this reason, we implement the slot-leader election as follows:
Each party Up checks whether or not it is a slot leader, by locally evaluating a verifiable random function
(VRF, [14], modelled by FVRF) using the secret key associated with its stake, and providing as inputs to
the VRF both the slot index sl and the so-called epoch randomness η (we will discuss shortly where this
randomness comes from). If the VRF output y is below a certain threshold Tp—which depends on Up’s
stake—then Up is an eligible slot leader; furthermore, he can use the verifiability of the VRF to generate a
proof π of the function’s output, thereby certifying his own eligibility to act as a slot leader. In particular,
in addition to transactions, each new block broadcast by a slot leader also contains the VRF output y and
a proof π of its validity to certify the party’s eligibility to act as a slot leader.

Using the output of a VRF to identify the slot leaders as above not only allows for certifying the winner,
but it also ensures that slot leaders are chosen from the appropriate distribution. In a nutshell, this is
achieved as follows: Multiple slots are collected into epochs, each of which contains R ∈ N slots.15 The idea
15 Unlike [13], where R is fixed, in this work we treat R as a protocol parameter, which will be bounded appropriately

by our security statements.

12

of having epochs is that it allows to use stake reference points that are old enough to be stable—with high
probability—and are therefore appropriate to be used in a universally verifiable proof. Concretely, during an
epoch ep, the stake distribution Sep that is used for deriving the threshold T ep

p used for the slot-leader election
corresponds to the distribution recorded in the ledger up to the last block of epoch ep− 2. Additionally, the
epoch randomness ηep for sampling slot leaders in epoch ep is derived as a hash of additional VRF-values yρ
that were included (together with their respective VRF-proofs πρ) into blocks from the first two thirds of
epoch ep− 1 for this purpose by the respective slot leaders. (To unify block structure, our protocol includes
these values into all blocks, but this would not be necessary in practice.) The values Sep and ηep are updated
at the beginning of each epoch.

A delicate point of the above staking procedure is that there will inevitably be some slots with zero
or several slot leaders. This means that the parties might receive valid chains from several certified slot
leaders. To determine which of these chains to adopt as the new state of the blockchain, each party collects
all valid broadcast chains and applies a chain selection rule maxvalid-bg. In fact, the power of the protocol
Ouroboros-Genesis and its superiority over all existing PoS-based blockchains stems from this new chain-
selection rule which we discuss in detail below.

We next turn to the formal specification of the protocol Ouroboros-Genesis. The protocol describes the
code that each party Up executes. Recall that in UC parties can be dynamically created by the environment;
upon its creation a party is assigned a session ID, sid, and connects to all global setups, to the adversary,
and to all functionalities with which it shares the same session ID sid. Then the party becomes idle (releases
the activation) and waits for the environment’s input or for a message by a party with which it has been
connected. (Using a standard UC convention, we assume that newly created parties do not register to
any functionality or setup unless they are explicitly instructed to, by receiving a special input from their
environment. Thus the party generation process is decoupled from the protocol itself.)

To make the protocol description modular, we describe different components as subprotocols and
include in their header the parameters they need to be aware of. All protocols described here are
{Gclock,GRO,F∆N-MC,FINIT,FVRF,FKES}-hybrid protocols, i.e., have access to all these functionalities (and
protocol participants share the same session ID with all local functionalities in this set.)

3.1 The Formal Protocol Description

We start with some notation. We use x ≺ y to indicate that the string x is a prefix of the string y. Consider
an arbitrary partitioning of the time axis into subsequent, non-overlapping, equally long intervals called slots.
For the purpose of this section, a block is an arbitrary piece of data that contains an identification of a time
slot to which it belongs. A blockchain (or chain, for short) is a sequence of blocks with increasing time slots,
starting with a special genesis block and with each subsequent block containing a hash of the previous one.
A more concrete description of blocks and chains created by the Ouroboros Genesis protocol will be given
in Section 3.

We denote the length of a chain C (i.e., the number of its blocks) by len(C). For a chain C and an interval of
slots I , [sli, slj], we denote by C[I] = C[sli : slj] the sequence of blocks in C such that their slot numbers
fall into the interval I. We replace the brackets in this notation with parentheses to denote intervals that do
not include endpoints; e.g., (sli, slj] = {sli + 1, . . . , slj}. Finally, we denote by #i:j (C) , #I (C) , |C[I]|
the number of blocks in C[I].

Before giving the formal specification we introduce some necessary terminology and notation. Each party
U stores a local blockchain CUploc —Up’s local view of the blockchain.16 Such a local blockchain is a sequence
of blocks Bi (i > 0) where each B ∈ Cloc has the following format: B = (h, st, sl, crt, ρ, σ). The first block
B0 is special and is referred to as the genesis block G. In each following block Bi, i > 0, h is a hash of the
previous block, st is the encoded data of this block, and sl is the slot number this block belongs to. The
value crt = (Up, y, π) certifies that the block was indeed proposed by an eligible slot leader Up for slot sl
by providing the output y of Up’s VRF evaluation for this slot, along with the corresponding VRF proof π.
16 For brevity, wherever clear from the context we omit the party ID from the local chain notation, i.e., write Cloc

instead of CUloc.

13

Additionally, ρ = (yρ, πρ) is an independent VRF output—along with its proof—that is also inserted into
the block by Up and is later used to derive the future epoch randomness. Finally, σ is the signature by Up
on the entire block (using a key-evolving signature scheme).

If Cloc = B0|| · · · ||B` is a (local) chain, we define its associated encoded state ~st as the sequence
st0|| . . . ||st`, where each sti—referred to as the ith state block of the state—is the encoded data stored
in block Bi. (The genesis data is defined to be st0 := ε.) The exported state is then a specific prefix ~st

dk

of this state (we define this expression to be ε if k is larger than the size of the chain). The exact format
of the state blocks depends on the actual implementation and is enforced by use of the function blockifyOG.
Concretely, each state block st is formed by applying this predicate on a vector N of transactions to de-
rive an appropriately formatted version of the block. This parameterization allows flexibility in the way the
exported state is formatted.

To enable dynamic availability every party stores in a variable ton (initially set to 1) the time/slot it was
last online (and not stalled). It also store in a variable twork (initially set to 0) the last time when the staking
procedure run to completion. Every protocol machine also stores the current (local) state ~st encoded in the
chain Cloc and the local buffer buffer (corresponding to the transactions seen so far on the network and not
added on the blockchain); ~st, Cloc and buffer are all initially empty.

For brevity, whenever in the protocol we say that a party uses the clock to update, τ, ep, and sl we mean
the following step:

Send (clock-read, sidC) to Gclock; receive the current time τ and update ep := dτ/Re and slot index
sl = τ , accordingly.17

Handling interrupts in a UC protocol. A protocol command might consists of a sequence of operations.
In UC, certain operations, such as sending a message to another party or outputting a message to the
environment, result into the protocol machine loosing the activation. Thus, one needs a mechanism for
ensuring that a party that looses the activation in the middle of such a multi-step command is able to
resume and complete this command. Such a mechanism is implicitly described in [20]. This mechanism can
be made explicit by introducing an anchor a that stores a pointer to the current operation; the protocol
associates each anchor with such a multiple command and an input I, so that when such an input is received
it directly jumps to the stored anchor, executes the next operation(s) and updates (increases) the anchor
before releasing the activation. We refer to execution in such a manner as I-interruptible.

For clarity we include an example of an interruptible execution. Assume that the protocol mandates that
upon receiving input I, the party should run a command that consists of m steps Step 1, Step 2, . . . , Step m,
but some of these steps might result in the executing party releasing its activation. Running this command
in an I-interruptible manner means executing the following code: Upon receiving input I if a < m go to
Step a and increase a = a+ 1 before executing the first operation that releases the activation; otherwise go
to Step 1 and set a = 2 before executing any operation that releases the activation.

The Ouroboros Genesis protocol is described in detail in Figure 2. For completeness, the description
includes a block of commands (in the bottom of the description) which specify what parties do when they
receive external, protocol-unrelated queries to their setups, such as independent queries to the global random
oracle. Because the ideal-world (dummy) parties would forward such queries to their setups, the protocol
needs to do the same. For simplicity this out-of-band interaction is ignored in our security arguments.

3.2 Registration and Deregistration

The first thing a party needs to do in order to have any role in the protocol is register with its resources.
Registration (and deregistration) is dictated to the (honest) parties by the environment. This captures the
fact that resource availability is not something controlled by the protocol itself. For example, a crash of the
timing or hashing process of the party’s computer is captured by the environment instructing the party to
17 Recall that we assume for simplicity that the protocol starts when τ = 0 and that R is a protocol parameter

defining the duration of an epoch (in rounds).

14

Registration/Deregistration (cf. Section 3.2):
Upon receiving input (register,R), where R ∈ {Gledger,Gclock,GRO} execute protocol
Registration-Genesis(Up, sid, Reg,R).
Upon receiving input (de-register,R), where R ∈ {Gledger,Gclock,GRO} execute protocol
Deregistration-Genesis(Up, sid, Reg,R).

Interacting with the Ledger (cf. Section 3.3):
Upon receiving a ledger-specific input I ∈ {(submit, . . .), (read, . . .), (maintain-ledger, . . .)} verify first that all
resources are available. If not all resources are available, then ignore the input; else execute one of the following
steps depending on the input I:

If I = (submit, sid, tx) then set buffer← buffer||tx, and send (multicast, sid, tx) to F∆N-MC.

If I = (maintain-ledger, sid,minerID) then invoke protocol LedgerMaintenance(Cloc, Up, sid, k, s, R, f); if
LedgerMaintenance halts then halt the protocol execution (all future input is ignored).
If I = (read, sid) then invoke protocol ReadState(k, Cloc, Up, sid, R, f).

Handling external (protocol-unrelated) calls to the clock and the RO:
Upon receiving (clock-read, sidC) forward it to Gclock and output Gclock’s response.
Upon receiving (clock-update, sidC), record that a clock-update was received in the current round.
Upon receiving (eval, sidRO, x) forward the query to GRO and output GRO’s response.

Protocol Ouroboros-Genesisk(Up, sid;Gledger,Gclock,GRO,F∆N-MC)

Fig. 2. The Ouroboros Genesis Protocol

deregister from the clock or the GRO, respectively. To capture our high-resolution (dynamic) availability,
the environment is allowed to register and deregister parties from any of the resources at will.

In the following we describe the protocol that the parties execute upon receiving a registra-
tion/deregistration request. For clarity, we assume that every party keeps a local registry, denoted by Reg,
that includes a registration-flag for each of the functionalities (local and global) the party is connected to;
whenever the party registers or deregisters with some functionality/setup the corresponding flag is updated
accordingly. The protocols for registration and deregistration are described in the following. Since such com-
mands are addressed to setups or to the ledger, they are only effecting in the real-world protocol if they
are addressed to one of the functionalities/setups that are present, i.e., to some G ∈ {Gclock,GRO,Gledger}.
Any registration input with session ID different than that of those three functionalities will be ignored by
the protocol. Without loss of generality, we do not write the session IDs of global setups and refer to them
simply with their name.

3.2.1 Registration

The registration with any of the global setups GRO and Gclock is straightforward. However, registering with
the ledger is a little more complicated. Upon receiving a ledger-registration query from the environment,
the party first checks that it is registered with the global functionalities GRO and Gclock. If not, then it
ignores the input (and is still considered offline). Otherwise, it registers with each functionality—excluding
the already registered-to global setup functionalities GRO and Gclock. Moreover, once a party registers with
its network it also stores the current time in variable ton. (Recall that ton stores the last time the party was
online, i.e., connected to all its resources.)

Note that the registration to and from the global functionalities has to stay under the control of the
environment. Only once this procedure is completed, the party becomes operational and otherwise is con-
sidered de-registered and does not answer any ledger-specific queries (i.e., it is offline). The activation after
any (de)registration goes back to the environment. The registration process is detailed in Figure 3.

15

1: if G ∈ {Gclock,GRO} then send (register, sid) to G, set registration status to registered with G, and output
the valued received by G.

2: end if
3: if G = Gledger then
4: if the party is not registered with Gclock or GRO then ignore this input
5: else
6: for each F ∈ {FINIT,FVRF,FKES} do
7: Send (register, sid) to F, set its registration status as registered with F, but do not output the

received values.
end for

8: Send (clock-read, sidC) to Gclock and receive the current time τ .
9: Send (register, sid) to F∆N-MC and set ton ← τ .

10: Output (register, sid, Up) once completing the registration with all the above resources F.
end if

end if

Protocol Registration-Genesis(Up, sid, Reg,G)

Fig. 3. The registration process.

3.2.2 De-registration
The deregistration process is analogous with registration and is described in Figure 4.

1: if G ∈ {Gclock,GRO} then Send (de-register, sid) to G, set registration status as de-registered with G, and
output the valued received by G.
end if

2: if G = Gledger then
3: for each F ∈ {F∆N-MC,FINIT,FVRF,FKES} do

Send (de-register, sid) to F, set its registration status as de-registered with F, but do not output the
received values.

end for
4: Output (de-register, sid, Up) once completing the registration will all the above resources F.

end if

Protocol Deregistration-Genesis(Up, sid, Reg,G)

Fig. 4. The deregistration process.

3.3 Interacting with the Ledger

At the core of the Ouroboros Genesis protocol is the process that allows parties to maintain the ledger. There
are three types of processes that are triggered by three different commands provided that the party is already
registered to all its local and global functionalities—if this in not the case, the corresponding command is
ignored.18

The command (submit, sid, tx) is used for sending a new transaction to the ledger (to be included in one
of the upcoming blocks). It results in the party storing the submitted transaction in its local transaction
buffer and multicasting it to the network so that other parties also add it to their buffers.

18 Recall that our ledger functionality ensures that a parties input is considered—not ignored—only if this party is
registered with all its global inputs (see Appendix A.7 for details.)

16

The command (read, sid) is used for the environment to ask for a read of the current ledger state. It
results in the party outputting a prefix ~st

dk of the state ~st extracted from its most recently updated
(local) blockchain. As we argue any such output will be a prefix of any output given by any other party
(this will follow from the common-prefix property).
The command (maintain-ledger, sid,minerID) triggers the main ledger update and maintenance pro-
cedure which is the most involved part. A party receiving this command first fetches from its network
all information relevant for the current round, then it uses the received information to update its local
info—i.e., asks the clock for the current time τ , updates its epoch counter ep, its slot counter sl, and its
(local view of) stake distribution parameters, accordingly; and finally it invokes the staking procedure
unless it has already done so in the current round. If this is the first time that the party processes a
(maintain-ledger, sid,minerID) message then before doing anything else, the party invokes an initial-
ization protocol to receive the initial information it needs to start executing the protocol—in particular
the genesis block. Furthermore, in order accommodate stalled parties, if the party is registered with
the network but not with all other setups, this stalled party remembers the time it was stalled and re-
turns the activation back to the environment. Also, since a stalled party remembers the last time it was
online—thereby also the time it became stalled—in variable ton, once such a party gets reconnected—i.e.,
re-registers with the ledger in the ideal world (resp. with the network, the VRF and the KES in the
real world)—then upon its next activation to maintain the ledger, the party fetches all messages it has
missed by comparing the current time τ to ton and querying the network the corresponding number of
times. Details of this procedure are given in Section 3.3.2.

The relevant sub-processes involved in the handling of a maintain-ledger query are detailed in the following
Sections 3.3.1 to 3.3.4. After introducing each of these basic ingredients, we conclude with a technical overview
of the main ledger maintenance protocol LedgerMaintenance in Figure 11 and a detail specification of the
protocol ReadState for answering requests to read the ledger’s state (see Figure 12.)

3.3.1 Party Initialization

A party that has been registered with all its resources and setups becomes operational by invoking the
initialization protocol Initialization-Genesis upon processing its first maintain-ledger command (see Figure 5
for detailed description). As a first step the party receives its keys from FVRF and FKES. Subsequently, protocol
Initialization-Genesis proceeds in one of the following two modes depending on whether or not the current
round is the genesis round. Concretely:

In the genesis mode, which is only executed during the genesis round τ = 0, the party interacts with the
initialization functionality FINIT to claim its stake.
In the non-genesis mode, i.e., when τ > 1, the protocol Initialization-Genesis queries FINIT to receive
the genesis block and uses the received stake distribution to determine the initial threshold T ep

p for each
stakeholder Up. Additionally, in order for the party to receive transactions and chains that were circulated
over the network prior to this current round, the party multicasts a special message hello upon its first
maintain-ledger activation (in addition to its normal round messages). Looking ahead, any Up receiving
this message will set a special welcome flag to 1 will trigger (at first chance) Up to multicast his local
buffer and chain; receiving these messages will enable the newly joining party to get up to speed. Recall
that in order to ensure that the genesis round has been completed (and all initial stakeholders have
claimed their stake) before the protocol starts advancing, the functionality FINIT throws an exception
(halts with an error) if the environment does not allow all stakeholder to claim their stake in the genesis
round. If this occurs, the calling protocol (i.e., Ouroboros Genesis) also halts (cf. Figure 2).

Independent of the round, the protocol concludes with the party setting isInit← true (to make sure that
it is never re-initialized) and ton ← τ to remember the last time it became online—which in this case is also
the first one.

17

The following steps are executed in an (maintain-ledger, sid,minerID)-interruptible manner:

1: Send (KeyGen, sid, Up) to FVRF and FKES; receiving (VerificationKey, sid, vvrf
p) and (VerificationKey, sid, vkes

p),
respectively.

2: Use the clock to update τ, ep← dτ/Re, and sl← τ .
// The following brunch in only executed if this is the genesis round

3: if τ = 0 then execute the following steps in an (maintain-ledger, sid,minerID)-interruptible manner:
4: Send (ver keys, sid, Up, vvrf

p , vkes
p) to FINIT to claim stake from the genesis block.

5: Send (clock-update, sidC) to Gclock.
6: Use the clock to update τ, ep← dτ/Re, and sl← τ . and give up the activation.
7: while τ = 0 do

Use the clock to update τ, ep, and sl and give up the actvation.
end while

// The following executed if this is a non-genesis round
8: else
9: Send (genblock req, sid, Up) to FINIT. If FINIT signals an error then halt. Otherwise, receive from FINIT the

response (genblock, sid,G = (S1, η1)), where

S1 =
(
(U1, v

vrf
1 , vkes

1 , s1), . . . , (Un, vvrf
n , vkes

n , sn)
)
.

10: Set Cloc ← (G).
11: Set T ep

p ← 2`VRFφf (αep
p) as the threshold for stakeholder Up for epoch ep, where αep

p is the relative stake of
stakeholder Up in Sep and `VRF denotes the output length of FVRF.

12: Send (hello, sid, Up, vvrf
p , vkes

p) to Fnew
N-MC.

end if
13: Set isInit← true and ton ← τ .

Global variables: The protocol stores the list of variables vvrf
p , vkes

p , τ, ep, sl, Cloc, T
ep
p , isInit, ton to make each

of them accessible by all protocol parts.

Protocol Initialization-Genesis(Up, sid, R)

Fig. 5. The initialization protocol of Ouroboros Genesis (run only the first time a party joins).

3.3.2 Fetching Information from the Network
The first thing that an already initialized (and fully online) party does is to attempt to read its incoming
messages. Recall that in our network setting, a party accesses its network interface by sending a fetch
command to its network. A network latency of, say, ∆ rounds, in the delivery of any given messages is then
captured by the network withholding this message until ∆ fetch commands are issued (cf. [20]). In order
to ensure that parties which have been stalled (but were not taken offline) can catch up with the messages
sent to them while they where stalled, we use the following mechanism. The party first gets the current time
τ from the clock, and then sets a counter fetchcount to τ − ton. (Since ton stores the last round that the
party was online, fetchcount will be the number of rounds this party was stalled.) Subsequently the party
issues fetchcount fetch-queries to its network. Recall that a party that was offline and becomes online is
considered de-synchronized for (at least) as many rounds as it needs for that party to receive all the relevant
information and for the chain-selection rule to bootstrap it19 —by detecting a chain that is guaranteed to
originate from an honest and synchronized party. This party does not get to retrospectively receive messages
sent to it while it was offline, which is is reflected in our protocol by the fact that this party will execute the
network-registration procedure from scratch and will therefore set ton = τ .

There are three types of messages that are exchanged through the network, namely: blockchains—e.g,.
when a slot leader creates a new block; regular messages, also referred to as transactions—which are broad-
casted to the network when received by the environment; and hello-messages, as described above, sent by
19 We give concrete bounds on the time it needs to become synchronized in Section 4.

18

newly joining parties. To simplify the exposition, in our description we make the convention that each of
these three types of messages is multicasted by its own network. Concretely, we will assume a network used
for disseminating transactions, denoted as F tx

N-MC, a network used for circulating hello message, denoted as
Fnew

N-MC, and a network used for disseminating other information (in particular new blockchains) as Fbc
N-MC.

We stress that this distinction of networks is only for sake of clarity, as these three networks can be simu-
lated over the original multicast network FN-MC by appending a special identifier indicating the type of the
exchanged message.

The protocol FetchInformation performing the above operations can be found in Figure 6.

// Fetching on Fbc
N-MC.

1: Send (clock-read, sidC) to Gclock, receive an answer (clock-read, sidC , τ); set fetchcount := τ − ton.
2: Send fetchcount fetch-queries (fetch, sid) to Fbc

N-MC; denote the ith response from Fbc
N-MC by (fetch, sid, bi).

3: Extract chains C1, . . . , Ck from b1 . . . bfetchcount.
// Fetching on F tx

N-MC.
4: Send fetchcount fetch-queries (fetch, sid) to F tx

N-MC; denote the ith response from F tx
N-MC by (fetch, sid, bi).

5: Extract received transactions (tx1, . . . , txk) from b1 . . . bfetchcount.
// Fetching on Fnew

N-MC.
6: Send fetchcount fetch-queries (fetch, sid) to Fnew

N-MC.
7: if a message (hello, sid, ·) was received then

set welcome = 1
8: else

set welcome = 0
end if

Output: The protocol outputs (C1, . . . , Ck), (tx1, . . . , txk), and welcome to its caller (but not to Z).

Protocol FetchInformation(k, Up)

Fig. 6. Fetching new information circulated through the multicast network.

3.3.3 The Staking Procedure
The next part of the ledger-maintenance protocol is the staking procedure which is used for the slot leader
to compute and send the next block.

Recall that a party Up is an eligible slot leader for a particular slot sl in an epoch ep if its VRF-output
(for an input dependent on sl) is smaller than a threshold value T ep

p . We next discuss how this threshold
in computed for the party’s current (local) blockchain, where we use the following notation: `VRF denotes
the VRF output length in bits. The (local) stake distribution Sep at epoch ep corresponding to the (local)
blockchain Cloc is a mapping from a party (identified by its public keys) to its stake and can be derived
solely based on encoded transactions in Cloc (and the genesis block).20 The relative stake of Up in the stake
distribution Sep, denoted as αep

p ∈ [0, 1], is the fraction of stake that is associated with this party (more
precisely, its public key) in Sep out of all stake. The mapping φf (·) is defined as

φf (α) , 1− (1− f)α (1)

and is parametrized by a quantity f ∈ (0, 1] called the active slots coefficient [13], which is an important
parameter of the protocol Ouroboros-Genesis (cf. Section 3.3.3).

Given the above, the threshold T ep
p is determined as

T ep
p = 2`VRFφf (αep

p) . (2)

20 The exact encoding is not of primary relevance. A possible, straightforward encoding is given in [13].

19

Note that by (2), a party with relative stake α ∈ (0, 1] becomes a slot leader in a particular slot with
probability φf (α), independently of all other parties. We clearly have φf (1) = f , hence f is the probability
that a hypothetical party controlling all 100% of the stake would be elected leader for a particular slot.
Furthermore, the function φ has an important property called “independent aggregation” [13]:

1− φ
(∑

i

αi

)
=
∏
i

(1− φ(αi)) . (3)

In particular, when leadership is determined according to φf , the probability of a stakeholder becoming a slot
leader in a particular slot is independent of whether this stakeholder acts as a single party in the protocol,
or splits its stake among several “virtual” parties. Therefore, we can conclude that under arbitrary stake
distribution, a particular slot has some slot leader with probability f , giving the active slots coefficient its
intuitive meaning.

The technical description of the staking procedure appears in Figure 7. It starts by two calls evaluating
the VRF in two different points, using constants NONCE and TEST to provide domain separation, and receiving
(yρ, πρ) and (y, π), respectively. The value y is used to evaluate slot leadership: if y < T ep

p then the party
is a slot leader and continues by processing its current transaction buffer to form a new block B. Aside of
this application data, each block contains control information as described in Section 3.1. The information
includes the proof of leadership (y, π), additional VRF-output (yρ, πρ) that influences the epoch-randomness
for the next epoch, and the block signature σ produced using FKES. Finally, an updated blockchain Cloc
containing the new block B is multicast over the network (note that in practice, the protocol would only
diffuse the new block B).
Transaction Validity. Blockchain ledgers typically put restrictions on transactions that can be added to a
block. For example, Bitcoin only allows transactions that are properly signed and are spending an unspent
coin. Although this is not directly related to the consistency guarantees, similarly to [3], our ledger also has
such a transaction filter in place (this makes it suitable for applications like cryptocurrencies). This filter is
implemented by means of a predicate ValidTxOG. To decide which transactions can be included in the state
of a new block, the party checks for each transaction contained in its buffer whether it is valid, according
to ValidTxOG, with respect to the current state of the chain. Note that to allow for full generality we leave
ValidTxOG as a protocol/ledger parameter (the same for both); this will allow to use the same protocol and
ledger for different definitions of transaction validity.

The transaction validity predicate ValidTxOG induces a natural transaction validity on blockchain-states.
This is captured by the predicate isvalidstate(~st) that decides whether a state consists of valid transac-
tions according to ValidTxOG. The predicate simply checks that each transaction tx of any state-block
sti included in the state ~st = st0|| . . . ||st` includes transactions that are valid with respect to the state
st0|| . . . ||sti−1||st−tx

i , where st−tx
i is the i-th state block sti with tx removed.

Remark 1 (Building a Cryptocurrency Ledger). Consistently with the cryptographic literature on
blockchains, we use the term transaction to refer to input values tx given to the ledger protocol (and
the ledger functionality). It is important to recall that in order to achieve the standard ledger functionality
of this work, where weak transaction liveness is enforced, transactions need not be signed (cf. [16, 3]). 21

Using composition, a protection to amplify the liveness of transactions can be applied as a next modular
step, on top of our ledger functionality. We note in passing that such an amplification has been achieved
assuming a signature scheme combined with an explicit encoding of transactions to contain the source and
destination addresses of the involved parties that relate to their public keys and/or identities; an honest
protocol participant would consequently only sign its transactions but no others, and signature verification
would be part of the validity check ValidTxOG. We refer to [3] for details on how to build a UC cryptocurrency
ledger on top of a generic transaction ledger using the composability guarantees of the UC framework.

21 More technically speaking, whether transactions are signed or not is completely orthogonal to the security proof in
this paper. The reason is that the main honest-stake-majority condition refers to the stake-distribution and hence
is a property of the basic content of the blockchain (and the corruption state of the miners) and therefore under
the control of the environment providing the contents via inputs to the protocol.

20

The following steps are executed in an (maintain-ledger, sid,minerID)-interruptible manner:

// Determine leader status
1: Send (EvalProve, sid, ηj ‖ sl ‖ NONCE) to FVRF, denote the response from FVRF by (Evaluated, sid, yρ, πρ).
2: Send (EvalProve, sid, ηj ‖ sl ‖ TEST) to FVRF, denote the response from FVRF by (Evaluated, sid, y, π).
3: if y < T ep

p then
// Generate a new block

4: Set buffer′ ← buffer, ~N ← txbase-tx
Up , and st← blockifyOG(~N)

5: repeat
6: Parse buffer′ as sequence (tx1, . . . , txn)
7: for i = 1 to n do
8: if ValidTxOG(txi, ~st||st) = 1 then
9: ~N ← ~N ||txi

10: Remove tx from buffer′

11: Set st← blockifyOG(~N)
end if

end for
until ~N does not increase anymore

12: Set crt = (Up, y, π), ρ = (yρ, πρ) and h← H(head(Cloc)).
13: Send (USign, sid, Up, (h, st, sl, crt, ρ), sl) to FKES; denote the response from FKES by

(Signature, sid, (h, st, sl, crt, ρ), sl, σ).
14: Set B ← (h, st, sl, crt, ρ, σ) and update Cloc ← Cloc ‖B.

// Multicast the extended chain and wait.
15: Send (multicast, sid, Cloc) to Fbc

N-MC and proceed from here upon next activation of this procedure.
end if

16: while A (clock-update, sidC) has not been received during the current round do
Give up activation. Upon next activation of this procedure, proceed from here.

end while

Protocol StakingProcedure(k, Up, ep, sl, buffer, Cloc)

Fig. 7. The Ouroboros Genesis staking procedure.

3.3.4 Chain Selection
The most novel component of our protocol is the way in which a party decides which chain to adopt given a set
of alternatives it (repeatedly) receives over the network. The chain selection protocol is invoked once a party
has collected all chains he can in the current round—denote the set of all these chains by N = {C1, . . . , CM}—
and is trying to decide whether to keep his current local chain Cloc, or adopt one of the newly received chains
in N . As we prove, the power of the new rule lies in the fact that it allows a desynchronized or even a
newly joining party—whose Cloc is empty—to eventually converge to a good chain. We refer to this process
as bootstrapping from genesis, and denote the new chain selection algorithm as maxvalid-bg.

The chain selection process proceeds in three steps: First the party Up uses the clock to make sure the
time-relevant parameters, i.e., τ, ep, and sl, are up-to-date, and updates its local state accordingly (see
below). Second, Up filters all the received chains, one-by-one, to keep only the ones that satisfy a syntactic
validity property. Informally, those are chains whose signatures are consistent with the genesis block, and
their block-contents are consistent with the keys recorded in KES, the VRF, and the global random oracle.
The filtering of any given chain C is done by an invocation of protocol IsValidChain described below. Finally,
the party applies our new chain selection rule maxvalid-bg on the filtered list of chains to (possibly) update
its local chain. The above three steps are detailed in the following.

Step 1: Updating the local state. Every time a party fetches new information from the network, it needs
to refresh its local view, and in particular to update the current epoch counter ep using the current clock time,
as well as its view of the state parameters: the current epoch stake distribution Sep, the relative stake αep

p ,
and epoch randomness ηep, and the staking threshold T ep

p . This is achieved by the protocol UpdateLocal (see

21

Figure 8). The algorithm used to update the stake parameters, in particular the threshold T ep
p was discussed

in Section 3.3.3.

1: Use the clock to update τ, ep← dτ/Re, and sl← τ .
2: Set Sep to be the stakeholder distribution at the end of epoch ep− 2 in Cloc.
3: Set αep

p to be the relative stake of Up in Sep and T ep
p ← 2`VRFφf (αep

p).
4: Set ηep ← H(ηep−1 ‖ ep ‖ v) where v is the concatenation of the VRF outputs yρ from all blocks in Cloc from

the first 2R/3 slots of epoch ep− 1.
Output: The protocol outputs τ, ep, sl,Sep, α

ep
p , T

ep
p , and ηep to its caller (but not to Z).

Protocol UpdateLocal(k, Up, R, f)

Fig. 8. The protocol for updating the local stake distribution parameters.

Step 2: Filtering out invalid chains. The protocol IsValidChain which filters out invalid chains is the
same as the corresponding protocol from [13]. For completeness we include it in Appendix B (see Figure 13).

Step 3: The new chain selection rule. The chain selection rule maxvalid from [13] (which, to avoid
confusion, we hereafter refer to as maxvalid-mc for “moving checkpoint”, cf. Section 4) prefers longer chains,
unless the new chain Ci forks more than k blocks relative to the currently held chain Cmax (in which case the
new chain would be discarded). This so-called moving checkpointing is crucial for the security proof in [13];
indeed, maxvalid-mc only guarantees satisfactory blockchain properties when coupled with a checkpointing
functionality that provides newly joining, or re-joining, parties with a recent trusted chain. In particular, such
checkpointing provides resilience against so-called “long-range attacks” (see [17] for a detailed discussion).

Our new chain selection rule, formally specified as algorithm maxvalid-bg(·) (see Figure 9), surgically
adapts maxvalid-mc by adding an additional condition (Condition B). When satisfied, the new condition
can lead to a party adopting a new chain Ci even if this chain did fork more than k blocks relative to the
currently held chain Cmax. Specifically, the new chain would be preferred if it grows more quickly in the s
slots following the slot associated with the last block common to both Ci and Cmax (here s is a parameter of
the rule that we discuss in full detail in the proof). Roughly, this “local chain growth”—appearing just after
the chains diverge—serves as an indication of the amount of participation in that interval. The intuition
behind this criterion is that in a time interval shortly after the two chains diverge, they still agree on the
leadership attribution for the upcoming slots, and out of the eligible slot leaders, the (honest) majority has
been mostly working on the chain that ended up stabilizing.

Thus the new rule substitutes a “global” longest chain rule with a “local” longest chain rule that prefers
chains that demonstrate more participation after forking from the currently held chain Cmax. As proven in
Section 4, this additional condition allows an honest party that joins the network at an arbitrary point
in time to bootstrap based only on the genesis block (obtained from FINIT) and the chains it observes by
listening to the network for a sufficiently long period of time. In prior work, a newly spawned party had to be
assumed to be bootstrapped by obtaining an honest chain from an external, and fully trusted, mechanism (or,
alternatively, be given a list of trustworthy nodes from which to request an honest chain); our solution does
not rely on any such assumption. We refer to this process/assumption as checkpointing; provably avoiding
this process by means of an updated chain selection rule is one of the major contributions of our work.

The protocol executed by the parties to select a new chain, denoted as SelectChain, can be found in
Figure 10.

22

// Compare Cmax to each Ci ∈ N
1: Set Cmax ← Cloc.
2: for i = 1 to M do
3: if (Ci forks from Cmax at most k blocks) then
4: if |Ci| > |Cmax| then // Condition A

Set Cmax ← Ci.
end if

5: else
6: Let j ← max {j′ ≥ 0 | Cmax and Ci have the same block in slj′}
7: if

∣∣Ci[0 : j + s]
∣∣ > ∣∣Cmax[0 : j + s]

∣∣ then // Condition B
Set Cmax ← Ci.

end if
end if

end for
8: return Cmax.

Algorithm maxvalid-bg(Cloc,N = {C1, . . . , CM}, k, s, f)

Fig. 9. The new chain selection rule.

// Step 1: Updating the local state
1: Invoke protocol UpdateLocal(k, Up, R, f) and denote the output as τ, ep, sl,Sep, α

ep
p , T

ep
p , and ηep.

// Step 2: Filter out invalid chains
2: Initialize Nvalid ← ∅
3: for i = 1 . . .M do

Invoke Protocol IsValidChain(Ci); if it returns true then update Nvalid ← Nvalid ∪ Ci
end for
// Step 3: Applying the chain selection rule.

4: Execute Algorithm maxvalid-bg(Cloc,Nvalid = {C1, . . . , CM}, k, s, f) and receive its output Cmax.
Output: The protocol outputs Cmax to its caller (but not to Z).

Protocol SelectChain(Cloc,N = {C1, . . . , CM}, k, s, R, f)

Fig. 10. The protocol for parties to adopt a (new) chain.

We conclude this section by referring to Figure 11 for the technical overview of the main ledger mainte-
nance protocol LedgerMaintenance which makes use of the previously introduced sub-processes.

23

The following steps are executed in an (maintain-ledger, sid,minerID)-interruptible manner:

1: if isInit is false then invoke Initialization-Genesis(Up, sid, R); if Initialization-Genesis halts then halt (this will
abort the execution); otherwise, use the list of initialized variables vvrf

p , vkes
p , τ, ep, sl, Cloc, T

ep
p , isInit, ton for

the ongoing computations.
end if

2: Execute FetchInformation to receive the newest messages for this round; denote the output by (C1, . . . , CM),
(tx1, . . . , txk), and read the flag welcome.

3: if welcome = 1 then
4: Send (multicast, sid, Cloc) to Fbc

N-MC.
5: for each tx ∈ buffer do

Send (multicast, sid, tx) to F tx
N-MC.

end for
end if

6: Use the clock to update τ, ep← dτ/Re, and sl← τ .
7: Set buffer← buffer||(tx1, . . . , txk), ton ← τ , N ← {C1, . . . , and CM}
8: Invoke Protocol SelectChain(Cloc,N = {C1, . . . , CM}, k, s, R, f).
9: if twork < τ then

10: Invoke protocol StakingProcedure(k, Up, ep, sl, buffer, Cloc) (in a (maintain-ledger, sid,minerID)-
interruptible manner).

11: Set twork ← τ and send (clock-update, sidC) to Gclock.
end if

Protocol LedgerMaintenance(Cloc, Up, sid, k, s, R, f)

Fig. 11. The main ledger maintenance protocol.

3.3.5 Reading the State

The last command related to the interaction with the ledger is the read command (read, sid) that is used
to read the current contents of the state. Note that in the ideal world, the result of issuing such a command
is for the ledger to output a (long enough prefix) of the current state of the ledger. Analogously, in the real
world, the result is for the party receiving it to execute protocol ReadState which works as follows: the party,
first, gets up to speed with time, and updates its local blockchain using the blockchains that have been sent
to it,22 and then it computes and outputs the prefix of its local chain (chopping of k blocks.) The protocol
ReadState is detailed in Figure 12.

22 Observe that a stalled party that returns to the alert status will fetch all messages sent to it while it was stalled.

24

1: if isInit is false then invoke Initialization-Genesis(Up, sid, R); if Initialization-Genesis halts then halt (this will
abort the execution); otherwise, use the list of initialized variables vvrf

p , vkes
p , τ, ep, sl, Cloc, T

ep
p , isInit, ton for

the ongoing computations.
end if

2: Execute FetchInformation to receive the newest messages for this round; denote the output chains by
(C1, . . . , CM) (the list of transactions (tx1, . . . , txk) and the flag welcome can be ignored).

3: Invoke protocol UpdateLocal(k, Up, R, f) and denote the output as τ, ep, sl,Sep, α
ep
p , T

ep
p , and ηep.

4: Use the clock to update τ, ep← dτ/Re, and sl← τ .
5: Set ton ← τ , N ← {C1, . . . , CM}.
6: Invoke Protocol SelectChain(Cloc,N = {C1, . . . , CM}, k, s, R, f).
7: Extract the state ~st from the current local chain Cloc.
8: Output (read, sid, ~stdk) (to Z). // ~stdk denotes the prefix of ~st with the last k state blocks chopped off

Protocol ReadState(k, Cloc, Up, sid, R, f)

Fig. 12. The protocol for parties to adopt a (new) chain.

4 Security Analysis

4.1 Blockchain Security Properties

We first define the standard security properties of blockchain protocols: common prefix, chain growth and
chain quality. While the security guarantees we prove in this paper are formulated in the UC setting, these
standalone properties will turn out to be useful tools for our analysis.

Common Prefix (CP); with parameters k ∈ N. The chains C1, C2 possessed by two alert parties at the
onset of the slots sl1 < sl2 are such that Cdk1 � C2, where Cdk1 denotes the chain obtained by removing
the last k blocks from C1, and � denotes the prefix relation.

Chain Growth (CG); with parameters τ ∈ (0, 1], s ∈ N. Consider a chain C possessed by an alert party
at the onset of a slot sl. Let sl1 and sl2 be two previous slots for which sl1 + s ≤ sl2 ≤ sl, so sl2 is
at least s slots ahead of sl1. Then |C[sl1 : sl2]| ≥ τ · s. We call τ the speed coefficient.

Chain Quality (CQ); with parameters µ ∈ (0, 1] and k ∈ N. Consider any portion of length at least k
of the chain possessed by an alert party at the onset of a slot; the ratio of blocks originating from the
adversary is at most 1− µ. We call µ the chain quality coefficient.

Note that previous work identified and studied a stronger version of chain growth (denoted below as CG2),
which controls the relative growth of chains held by potentially distinct honest parties.

(Strong) Chain Growth (CG2); with parameters τ ∈ (0, 1], s ∈ N. Consider the chains C1, C2 possessed
by two alert parties at the onset of two slots sl1, sl2 with sl2 at least s slots ahead of sl1. Then it holds
that len(C2)− len(C1) ≥ τ · s. We call τ the speed coefficient.

We remark that the notion of chain growth CG2 follows from CP and CG (with some appropriate decay in
parameters). However, it appears that CG is a preferable formulation in our setting, as it can be established
with stronger parameters than CG2 and more naturally dovetails with several aspects of the security proofs.

Finally, we will also consider a slight variant of chain quality called existential chain quality:

Existential Chain Quality (∃CQ); with parameter s ∈ N. Consider a chain C possessed by an alert
party at the onset of a slot sl. Let sl1 and sl2 be two previous slots for which sl1 + s ≤ sl2 ≤ sl.
Then C[sl1 : sl2] contains at least one honestly generated block.

As a side remark, the CG (resp. CQ) property follows from ∃CQ and an additional property called honest-
bounded chain growth HCG (resp. honest-bounded chain quality, HCQ). We define HCG and HCQ and establish
these relationships in Appendix E.5.

25

Note that typically these security properties for blockchain protocols are formulated so that they grant
the above-described guarantees to all honest parties. However, in our more fine-grained modelling of parties’
availability, a natural choice is to analyze these properties for the alert parties only.

4.2 Security of Ouroboros Praos with maxvalid-mc

The original Ouroboros Praos protocol given in [13] differs from Ouroboros Genesis in a single point: it
employs a different chain selection rule, which we call maxvalid-mc here and outline below. The difference in
maxvalid-mc compared to maxvalid-bg is that if the considered chain Ci forks from the current chain Cloc more
than k blocks in the past, it is immediately discarded, without evaluating Condition B as in maxvalid-bg.
This can be seen as a “moving checkpoint” k blocks behind the current tip of the chain, which is what the
suffix -mc stands for. To preserve clarity, we will use Ouroboros-Praos to refer to the protocol that is identical
to the one given in Section 3 except that is uses maxvalid-mc instead of maxvalid-bg as its chain-selection
rule.

1: Set Cmax ← Cloc.
2: for i = 1 to ` do
3: if IsValidChain(Ci) then

// Compare Cmax to Ci
4: if (Ci forks from Cmax at most k blocks) then
5: if |Ci| > |Cmax| then // Condition A

Set Cmax ← Ci.
end if

end if
end if

end for
6: return Cmax.

Protocol maxvalid-mc(Cloc, C1, . . . , C`)

Our first goal is to establish that the useful properties of common prefix, chain growth, and chain quality
are achieved by Ouroboros-Praos, when executed in a slightly restricted environment. Namely, we start by
assuming that all parties participate in the protocol run from the beginning and never get deregistered from
the network FN-MC (i.e., honest parties are either online or stalled); we refer to this setting as the setting
with static FN-MC-registration. We will drop this assumption later.

The desired statement for this limited environment is given in Theorem 1, the rest of Section 4.2 will
be dedicated to sketching its proof, which is fully spelled out in Appendix E. First, we need to define some
relevant quantities.

Definition 1 (Classes of parties and their relative stake). Let P[t] denote the set of all parties at
time t, and let Ptype[t] for any type of party described in Figure 1 (e.g. alert, active) denote the set of all
parties of the respective type in time t. For a set of parties Ptype[t], let S(Ptype[t]) ∈ [0, 1] denote the relative
stake of the parties in Ptype[t] with respect to the stake distribution used for sampling stake leaders in time t.

Definition 2 (Alert ratio, participating ratio). At any time t during the execution, we let:

– the alert stake ratio be the fraction S(Palert[t])/S(Pactive[t]) of the alert stake out of all active stake; and
– the participating stake ratio be the fraction S(Pactive[t]) of all active stake out of all stake.

Note that in the setting with static FN-MC-registration, the set of active parties consists only of alert and
adversarial parties, while in general it also contains honest parties that are online but desynchronized (we
will discuss these in detail in Section 4.4).

26

Theorem 1. Consider the execution of Ouroboros-Praos with adversary A and environment Z in the setting
with static FN-MC-registration. Let f be the active-slot coefficient, let ∆ be the upper bound on the network
delay and let Q be an upper bound on the total number of queries issued to GRO. Let α, β ∈ [0, 1] denote a
lower bound on the alert ratio and participating ratio throughout the whole execution, respectively. Let R and
L denote the epoch length and the total lifetime of the system (in slots), If for some ε ∈ (0, 1) we have

α · (1− f)∆+1 ≥ (1 + ε)/2 , (4)

and R ≥ 36∆/εβf then Ouroboros-Praos achieves the following guarantees:

– Common prefix. The probability that Ouroboros-Praos violates the common prefix property with param-
eter k is no more than

εCP(k) , 19L
ε4

exp(∆− ε4k/18) + εlift ;

– Chain growth. The probability that Ouroboros-Praos violates the chain growth property with parameters
s ≥ 48∆/(εβf) and τCG = βf/16 is no more than

εCG(τCG, s) ,
sL2

2 exp
(
−(εβf)2s/256

)
+ εlift ;

– Existential chain quality. The probability that Ouroboros-Praos violates the existential chain quality
property with parameter s ≥ 12∆/(εβf) is no more than

ε∃CQ(s) , (s+ 1)L2 exp
(
−(εβf)2s/64

)
+ εlift ;

– Chain quality. The probability that Ouroboros-Praos violates the chain quality property with parameters
k ≥ 48∆/(εβf) and µ = εβf/16 is no more than

εCQ(µ, k) , kL2

2 exp
(
−(εβf)2k/256

)
+ εlift ;

where εlift is a shorthand for the quantity

εlift , QL ·
[
R3 · exp

(
− (εβf)2R

768

)
+ 38R

ε4
· exp

(
∆− ε4βfR

864

)]
.

Proof (sketch). The proof is inspired by the proof of property-based security of Ouroboros Praos given in [13];
however, a major extension of the techniques is necessary. To appreciate the need for this extension, let us
first recall in very broad terms how the proof in [13] proceeds:

1. First, the above security properties (or slight variations of them, cf. Section 4.1) are proven for a single
epoch. For this, the dynamics of the protocol execution is abstracted into combinatorial objects called
forks, while the slot leader selection (assuming static corruption) is captured by sampling a so-called
characteristic string.

2. A recursive rule is given that identifies whether a characteristic string allows for “dangerous” forks,
and a probabilistic analysis shows that under static corruption, leader schedules corresponding to such
characteristic strings are extremely rare.

3. Given the rarity of such undesirable characteristic strings, the CP, CG, and CQ properties are established
for a single epoch and a static-corruption adversary.

4. The analysis is generalized to fully adaptive corruption by showing a static-corruption adversary that
dominates any adaptive one.

5. The analysis is extended to an arbitrary number of epochs by analyzing the subprotocol for generating
new randomness to be used in the following epoch to sample the leader schedule.

27

The main improvement of Theorem 1 over the analysis in [13] is that it captures stalled parties (and making
honest parties stalled is a fully adaptive decision of the environment). Unfortunately, this makes it impossible
to start with a static analysis of the slot-leader selection as done above in steps 1–3. Moreover, the argument in
step 4 completely breaks down as the static adversary given in [13] no longer dominates any possible adaptive
combination of corruption and stalling. Therefore, our proof needs to revisit the steps 1–4 and replace the
analysis of a sequence of binomially distributed random variables (representing the characteristic string) by
considering inter-slot dependence right from the beginning. This is done via a martingale framework that is
an important contribution of this paper and might prove useful also outside of the analysis of the Ouroboros
protocols. We give all the details of our approach in Appendix E, where we also describe the parts of the
framework from [13] that are necessary to follow our proof. ut

4.3 Adopting the New maxvalid-bg Rule

Theorem 2. Consider the protocol Ouroboros-Genesis using maxvalid-bg as described in Section 3, executed
in the setting with static FN-MC-registration, under the same assumptions as in Theorem 1. If the maxvalid-bg
parameters, k and s, satisfy

k > 192∆/(εβ) and R/6 ≥ s = k/(4f) ≥ 48∆/(εβf)

then the guarantees given in Theorem 1 for common prefix, chain growth, chain quality, and existential chain
quality are still valid except for an additional error probability

exp (lnL−Ω(k)) + εCG(βf/16, k/(4f)) + ε∃CQ(k/(4f)) + εCP(kβ/64) . (5)

Proof. We show that when replacing maxvalid-mc with maxvalid-bg, the overall execution of the protocol re-
mains the same except with negligible probability. To see this, consider a run of the protocol with maxvalid-mc,
and let slb denote the first slot when any honest party discards a received candidate chain Ccand (longer than
Cloc) because it forks from its Cloc by more than k blocks, as described by maxvalid-mc. Until slb, the whole
execution would proceed identically if parties were using maxvalid-bg instead, as in both cases they would
always prefer the longer of the compared chains using Condition A.

Consider now the decision that a party running maxvalid-bg would make regarding this chain Ccand in the
slot slb. We will argue that it will also favor Cloc with overwhelming probability. This will then imply the
full statement, as the reasoning can be applied inductively to each of the slots where maxvalid-mc discards a
longer chain, throughout the whole execution.

Let sla be the slot associated with the last common block of Cloc and Ccand. Recall that by the design
of Ouroboros Praos (independently of the underlying maxvalid rule), for every slot sli there is an event Ei
such that: (i.) Pr[Ei] = 1 − f ; (ii.) the events E1, E2, . . . are independent; (iii.) if Ei occurs, then no valid
block can be created for the slot sli. Therefore, using a Chernoff bound (cf. Appendix F) and a union bound
over the running time L of the system, we can also lower-bound the number of slots between sla and slb
as a − b ≥ k/(2f), except with error probability exp (lnL−Ω(k)). For the remainder of the proof, we will
assume that the execution satisfies this property (that is, slb − sla > k/(2f) for all pairs of slots bounding
k blocks on an honestly held chain) and, further, that:

(CP) there is no kβ/64-CP violation;
(∃CQ) there is no s-∃CQ violation; and
(CG) there is no (βf/16, s)-CG violation.

As indicated in the statement of the theorem, s is fixed to be k/(4f). Observe that the error probabilities
associated with these events are then precisely those appearing in (5).

By the definition of maxvalid-bg, the chain Ccand can only be adopted in favor of Cloc if∣∣Ccand[0 : sla + s]
∣∣ > ∣∣Cloc[0 : sla + s]

∣∣ . (6)

28

We will show that under the assumptions described above, this is not possible. For convenience, we consider
two disjoint, consecutive subintervals of (sla, slb]:

Igrowth = (sla, sla + s] and Istabilize = (sla + s, sla + 2s] . (7)

Note that by the choice of s, both Igrowth and Istabilize are indeed subintervals of (sla, slb]. Moreover, since
2s ≤ R/3, the chains Cloc and Ccand use the same stake distribution and randomness to determine slot leaders
for the interval Igrowth ∪ Istabilize.

First, we observe that Cloc exhibits significant growth over the interval Igrowth: specifically, by the chain
growth property established in Theorem 1 and the assumption s = k/(4f) ≥ 48∆/(εβf), we have∣∣Cloc[Igrowth]

∣∣ ≥ sβf/16 = kβ/64 .

Similarly, observe that Cloc possesses at least one honestly-generated block over the interval Istabilize: specif-
ically, by the existential chain quality property established in Theorem 1 and the assumption s = k/(4f) ≥
24∆/(εβf), there must exists a slot sl∗ ∈ Istabilize for which Cloc[sl∗] was honestly generated.

To complete the argument, we observe that the assertion (6) would yield a violation of common prefix.
To argue this, we take advantage of the notions of characteristic strings, forks, (viable) tines and divergence,
defined in Appendix E.1.

Specifically, consider the characteristic string W and the fork F `∆ W associated with this execution of
the protocol. Let tloc denote the tine associated with the chain Cloc[0 : sl∗ − 1] and tcand denote the tine
associated with the chain Ccand[0 : sla + s]. The tine tloc is viable, as the honest leader associated with sl∗

chose Cloc to extend. To construct a viable tine from tcand, we extend it using the adversarial slots associated
with the portion of tloc in Istabilize. Specifically, recalling that sl∗ is associated with the first honestly
generated block of Cloc in Istabilize, any blocks of Cloc associated with slots in the interval (sla + s, sl∗) are
associated with adversarial slots of W , and we may use these adversarial slots to extend tcand: Let t̂cand
denote the extension of the tine tcand formed by adding an adversarial node for each slot in (sla + s, sl∗)
associated with a block of tloc. Note, also, that t̂cand is viable, as length(t̂cand) > length(tloc). (Note that
|Cloc[0 : sla]| < |Ccand[0 : sla]| by assumption, and the tines tloc and tcand have the same number of blocks
in the region (sla + s, sl∗).) Thus these two tines form a divergence-violation (that is, a CP-violation) with
parameter

∣∣Cloc[sla + 1, sla + s]
∣∣ ≥ sβf/16 = kβ/64 (by the chain growth guarantee above). ut

4.4 Newly Joining Parties

In this section we prove that the guarantees on common prefix, chain growth and (existential) chain quality
obtained for Ouroboros-Genesis in Section 4.3 remain valid also when new parties join the protocol later
during its execution.

To capture this, we proceed as follows. For any new party U that joins the protocol later during its
execution (say at slot sljoin), we consider a “virtual” party Ũ that holds no stake, but was participating in
the protocol since the beginning and was alert all the time. Moreover, we assume that starting from sljoin,
Ũ is receiving the same messages (in the same slots) as U . Clearly, the run of the protocol up to sljoin would
look the same with and without Ũ , as Ũ would never be elected a slot leader, and would not affect α or β.
Therefore, the execution of the protocol up to the point when the first party U tries to join is covered by
the statements proven in Section 4.3 (even when also considering the participation of Ũ).

Definition 3 (Adopting and discarding chains). We say that an honest party adopts a chain C when
an execution of the procedure maxvalid-bg by this party returns C. An honest party discards a chain C when
an execution of the procedure maxvalid-bg by this party takes C as one of its inputs, but does not output C.

Definition 4 (Virtual executions and virtual parties). We say that an honest party U is joining the
protocol execution at slot sljoin if sljoin is the slot in which U becomes online for the first time. For a party
U joining the execution E of the protocol Ouroboros-Genesis at slot sljoin, consider an execution E ′ that only
differs from E by one additional party Ũ being present from the beginning, registering 0 stake, remaining
honest and alert throughtout the execution, and receiving the same messages as U from sljoin on. We call E ′
(resp. Ũ) the virtual execution (resp. the virtual party) for U .

29

Definition 5 (Synchronizing chains). We call (a message containing) a chain Csync synchronizing for U ,
if this is the first chain that its virtual party Ũ adopts after slot sljoin.

Definition 6 (Synchronization parameter). The analysis considers a stalled or online party de-
synchronized at time t (cf. Fig. 1) with respect to synchronization parameter tsync ≥ 0, if the party registered
to the network FN-MC later than at time t− tsync.

The reason to introduce a parameter for synchronization is to increase the flexibility of the following
analysis. While the default of tsync = 2∆ might be sufficient for most real-world use cases, the analysis applies
to different determinations of tsync as will be made precise in Lemma 2. In the following, whenever we refer to
the set of synchronized/de-synchronized parties, we implicitly refer to the synchronization parameter tsync.

The heart of our argument for newly joining parties is captured in the following lemma.

Lemma 1. In the same setting as Theorem 2 but with dynamic FN-MC-registrations, any newly joining party
will adopt its synchronizing chain, except with probability (5).

Proof. We assume that none of the bad events considered in the proof of Theorem 2 occurs. Let U be a
new party joining the protocol at slot sljoin. Moreover, let U be the first such party in this execution, the
argument can then inductively be applied to other parties joining later.

Consider the virtual execution E ′ for U , let Ũ be its corresponding virtual party, let Csync be its synchro-
nizing chain, and let slsync be the slot in which U and Ũ receive Csync. For the sake of contradiction, assume
that U does not adopt Csync, and let C1 denote the chain that U is holding as its local chain Cloc when running
maxvalid-bg in slot slsync. Additionally, let slj1 denote the slot that contains the last common block of C1
and Csync. Finally, let C2 denote the chain that Ũ is holding as its local chain Cloc when running maxvalid-bg
in slot slsync. As Csync is the first chain Ũ adopts after sljoin, we know that C2 was adopted by Ũ before
sljoin. Let slj2 denote the slot that contains the last common block of C2 and Csync.

We have to analyze two possible cases here, depending on which condition in the procedure maxvalid-bg
was used by U to discard Csync.

– U discards Csync using Condition A. Since Condition A was invoked, this means that #j1:sync (C1) ≤ k,
and since Csync was discarded, we have |C1| ≥ |Csync|.
However, since Ũ adopted Csync, we argue that |Csync| > |C2|. This is because Ũ always adopts a new
chain using Condition A, as was argued in the proof of Theorem 2. Hence, we can derive |C1| > |C2|. To
obtain a contradiction with the fact that Ũ did not adopt C1 to replace C2, we only need to show that
when it received C1 it used Condition A to make its adoption decision, i.e., that C1 does not fork more
than k blocks back from C2.
This can be shown by case analysis. We need to consider two subcases:
Case j1 ≤ j2: This means that C2 forks from Csync not earlier than C1 does and hence C1 forks from C2

in slot slj1 . Since we know that #j1:sync (C1) ≤ k and |C1| ≥ |Csync| > |C2|, we can easily conclude
#j1:sync (C2) ≤ k in this case.

Case j1 > j2: Here C2 forks from Csync earlier than C1, and hence C1 forks from C2 in slot slj2 . The
desired inequality #j2:sync (C2) ≤ k in this case follows from the common prefix property.

– U discards Csync using Condition B. The contradiction in this case is obtained by using exactly the
same argument as in the proof of Theorem 2 to show that if U invokes Condition B on Csync, it must
actually adopt it.
Namely, observe that we have #j1:sync (C1) > k and hence with overwhelming probability sync − j1 >
k/(2f). For intervals Igrowth, Istabilize defined as in (7) for a := j1 and b := sync, on Csync we again have
a guarantee of sufficient chain growth in Igrowth and at least one honest block in Istabilize. Hence, by
the same argument, Condition B in maxvalid-bg will favor Csync, otherwise a violation of common prefix
would occur. ut

Finally, we show how to upper-bound the time interval tsync that a newly joining party will be desyn-
chronized, i.e., the time until it obtains its synchronizing chain. We present several practically relevant
alternatives beyond the default mechanism.

30

Lemma 2. Consider the same setting as Lemma 1 and let ∆ be the network delay. Consider an honest party
newly joining the protocol (and hence being registered to the network) at slot sljoin. For the time tsync it takes
until this party will receive its synchronizing chain, the following holds:

1) Using the default request mechanism presented in Section 3 we have tsync = 2∆.
2) If alert parties did multicast their local state every (constant) T rounds, we have tsync := T + ∆ even

without any active request by the newly joining party.

Proof. Both cases follow from observing when the alert party Ũ would receive a synchronizing chain in the
respective case. Clearly, for case (1) this is no more than the round-trip time 2∆ after the actual new party
joins the network, as any other alert party multicasts its local state by sljoin + ∆ (and in case of any later
state update, it will multicast such a newer state by definition of the protocol). Case (2) follows similarly by
observing that the above argument still holds, but where other alert parties multicast their local state by
sljoin + T . ut

Remark 2 (Self-synchronization). Note that the protocol Ouroboros-Genesis is self-synchronizing in the sense
that even without any active request, the newly joining party will receive its synchronizing chain by slot
sljoin + tsync except with error probability εCG2(tsync) of the event that Ũ does not adopt a new chain during a
period of tsync, which directly contradicts the CG2 security property for the respective parameters. A bound
on CG2-violation (and hence also εCG2(tsync)) could be established as described in Section 4.1, however it
would lead to longer synchronization times. We therefore do not pursue this option further, and instead
choose to consider the default synchronization process as presented in Section 3.

The analysis of the synchronization process that was outlined above applies also to resynchronization of
parties that have already participated in the protocol, acquired some stake, and then got deregistered from
FN-MC and hence became offline. The only difference is that, since the joining party does not know which
of the messages it receives is actually its synchronizing message containing Csync, it starts participating in
the protocol immediately after rejoining. Hence, before it receives Csync its participation is to some extent
controlled by the adversary and hence its stake has to be counted towards the adversarial stake even though
the party is not formally corrupted. This is already captured in the general form of Definition 2, and hence
we have established the following corollary.

Corollary 1. Consider the protocol Ouroboros-Genesis as described in Section 3, executed in an environ-
ment with dynamic FN-MC-registrations and deregistrations. Then, under the assumptions of Theorem 2, the
guarantees it gives for common prefix, chain growth, and chain quality are valid also in this general setting.

4.5 Composable Guarantees

In this section, we conclude the analysis by showing how the property-focused statement of Corol-
lary 1 can be turned into a universally composable security statement. This concludes the UC-analysis
of Ouroboros-Genesis. The statement is conditioned again on the honest majority assumption introduced
above. As explained in [3] for fully composable statements, it is desirable not to restrict the environment,
but rather model these restrictions as part of the setup. In [3], they put forth a general methodology to
model such restrictions as wrapper functionalities that control the interaction between an adversary and
the assumed setup functionality to enforce the restrictions. For completeness, we provide the corresponding
wrapper in Section A.

To prove composable security, the properties proven above for the real-world UC-execution play a crucial
role in realizing the ledger Gledger functionality (implementing a certain policy): first, the common-prefix
property ensures that the ledger can maintain a unique ledger-state (a chain of state-blocks). Second, the
chain quality ensures that the ledger can enforce a fraction of honestly generated blocks. Third, chain growth
ensures that the ledger functionality can enforce its state to grow. The remaining arguments are given in the
proof below. We now state the composable version of Corollary 1 (again for the default tsync = 2∆ case) as
a theorem:

31

Theorem 3. Let k be the common-prefix parameter and let R be the epoch-length parameter (restricted as in
Theorem 2), let ∆ be the network delay, let τCG and µ be the speed and chain-quality coefficients, respectively
(both defined as in Theorem 1), and let α and β refer to the respective bounds on the participation ratios (as
in Theorem 1). Let Gledger be the ledger functionality defined in Section 2.2 and instantiate its parameters
by

windowSize = k and Delay = 2∆

maxTimewindow = windowSize
τCG

and advBlckswindow = (1− µ)windowSize.

The protocol Ouroboros-Genesis (with access to its specified hybrids) securely UC-realizes Gledger under the
assumptions required by Theorem 1 (which are formally enforceable by a real-world wrapper functionality
WPoS

Praos(·) as given in Section D). In addition, the corresponding simulation is perfect except with negligible
probability in the parameter k when setting R ≥ ω(log k).

Proof. Secure realization is proven by providing a simulator Sledg in the ideal world (with access to the ledger,
global clock and random oracle) such that the protocol execution is indistinguishable from the ideal-world
execution with the ledger functionality and the simulator. The simulator Sledg is given in detail in Section C.
The simulator bascially runs internally an entire protocol execution and emulates this real-world view in a
black-box way towards the real world adversary A. This simulation can be done perfectly, as nothing restricts
the simulator in evaluating, in each round what the corresponding party does in the protocol upon a maintain
command (including aborts of protocols due to key collisions in FINIT for example). Also, the simulator can
extract the ledger state from the emulated blockchains (procedure ExtendLedgerState), and the views of
honest parties on this state (procedure AdjustView). The only events that prevent a succesfull simulation
are therefore when the ledger functionality does not allow the simulator to specify the state and the view
appropriately. Simulating a ledger state fails, if the simulator encounters a violation of the common prefix
property (in this case the simulation aborts as seen in the code of Sledg when flag BAD-CP is triggered).
Similarly, if the state grows too slowly, the simulator aborts (flag BAD-CG), or the state contains too few
honestly generated blocks (flag BAD-CQ). This events, however, hold except with negligible probability in
the parameter k which follows exactly as proven in the previous sections (under the given assumptions).
More precisely, the corresponding total error probability of Theorem 2 can be invoked here and yields an
upper bound of exp(ln poly(κ)−Ω(k))+exp(ln poly(κ)−Ω(R)), where poly(κ) denotes the polynomial upper
bound on the runtime of Z measured with respect to the security parameter κ. (Note that in particular, the
parameters L and Q of the security bound can simply be upper bounded by this polynomial.)

The remaining technical properties are straightforward to verify: first, pointers of alert parties are mono-
tonically increasing, since the chains adopted by alert parties are monotonically increasing in size (recall
from 6.2 that the new maxvalid-bg applied by alert parties essentially implements the longest-chain-rule but
does not need checkpointing). The pointers of alert parties can also not be too far apart, i.e., the slackness
is upper bounded by windowSize = k (meaning they fall within a window of size windowSize), as otherwise
the common-prefix property is violated in that execution (if the prefix of the chain known to any honest
party was further away than k blocks from the prefix of the actual longest chain, this would yield a fork
and violate common-prefix). Second, the synchronization time does not take more than Delay time as given
in the theorem statements, as this is exactly the time until the a newly joining party will have received a
synchronizing chain and all honest transactions that were sent out (and still are valid) before this party
joined the network (note that the round-trip time is just 2∆). Hence, the overall bound is exactly the time
it takes to receive a synchronizing chain as by Lemma 2.

Overall, this means that except with negligible probability, the simulator will not abort and does never
violate the ledger’s policy (as specified by (ExtendPolicy) or the additional restrictions on pointers into the
unique ledger state. ut

32

References

[1] Marcin Andrychowicz and Stefan Dziembowski. PoW-based distributed cryptography with no trusted setup. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
379–399. Springer, Heidelberg, August 2015.

[2] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure multiparty compu-
tations on bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 443–458. IEEE Computer Society
Press, May 2014.

[3] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction ledger: A
composable treatment. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401
of LNCS, pages 324–356. Springer, Heidelberg, August 2017.

[4] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 421–439. Springer, Heidelberg, August
2014.

[5] Vitalik Buterin. A next-generation smart contract and decentralized application platform, 2013. https://
github.com/ethereum/wiki/wiki/White-Paper.

[6] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR, abs/1710.09437, 2017.
[7] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS,

pages 136–145. IEEE Computer Society Press, October 2001.
[8] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security with global

setup. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 61–85. Springer, Heidelberg, February
2007.

[9] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor, CRYPTO 2001,
volume 2139 of LNCS, pages 19–40. Springer, Heidelberg, August 2001.

[10] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a global random oracle. In
Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14, pages 597–608. ACM Press, November 2014.

[11] Ran Canetti, Daniel Shahaf, and Margarita Vald. Universally composable authentication and key-exchange with
global PKI. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016,
Part II, volume 9615 of LNCS, pages 265–296. Springer, Heidelberg, March 2016.

[12] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake. Cryptology ePrint Archive,
Report 2016/919, 2016. https://eprint.iacr.org/2016/919.

[13] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake protocol. Cryptology ePrint Archive, Report 2017/573, 2017. http://eprint.
iacr.org/2017/573. To appear at EUROCRYPT 2018.

[14] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and keys. In Serge
Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages 416–431. Springer, Heidelberg, January 2005.

[15] Marc Fischlin, Anja Lehmann, Thomas Ristenpart, Thomas Shrimpton, Martijn Stam, and Stefano Tessaro.
Random oracles with(out) programmability. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of
LNCS, pages 303–320. Springer, Heidelberg, December 2010.

[16] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and applications.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 281–
310. Springer, Heidelberg, April 2015.

[17] Peter Gaži, Aggelos Kiayias, and Alexander Russell. Stake-bleeding attacks on proof-of-stake blockchains. Cryp-
tology ePrint Archive, Report 2018/248, 2018. https://eprint.iacr.org/2018/248.

[18] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling byzantine
agreements for cryptocurrencies. Cryptology ePrint Archive, Report 2017/454, 2017. http://eprint.iacr.
org/2017/454.

[19] Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 466–485. Springer, Heidelberg, May 2010.

[20] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable synchronous compu-
tation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 477–498. Springer, Heidelberg, March
2013.

[21] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably secure
proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 357–388. Springer, Heidelberg, August 2017.

[22] Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize correct computations. In Gail-Joon Ahn,
Moti Yung, and Ninghui Li, editors, ACM CCS 14, pages 30–41. ACM Press, November 2014.

33

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://eprint.iacr.org/2016/919
http://eprint.iacr.org/2017/573
http://eprint.iacr.org/2017/573
https://eprint.iacr.org/2018/248
http://eprint.iacr.org/2017/454
http://eprint.iacr.org/2017/454

[23] Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penalties. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16, pages 418–429.
ACM Press, October 2016.

[24] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, New York,
NY, USA, 1995.

[25] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. http://bitcoin.org/bitcoin.pdf.
[26] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous networks. In

Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 643–673. Springer, Heidelberg, May 2017.

[27] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 380–409. Springer, Heidelberg, December 2017.

[28] Alexander Russell, Cristopher Moore, Aggelos Kiayias, and Saad Quader. Forkable strings are rare. Cryptology
ePrint Archive, Report 2017/241, 2017. https://eprint.iacr.org/2017/241.

34

http://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2017/241

A The Model (Cont’d)

This appendix includes complementary material to Section 2.

A.1 Functionalities With Dynamic Party Sets

All our functionalities and global setups handle a dynamic party set. The employed mechanism works as
follows: such functionalities include the instructions that allow honest parties to join or leave the set P of
players that the functionality interacts with, and inform the adversary about the current set of registered
parties:23

– Upon receiving (register, sid) from some party Up (or from A on behalf of a corrupted Up), set P =
P ∪ {Up}. Return (register, sid, Up) to the caller.

– Upon receiving (de-register, sid) from some party Up ∈ P, the functionality sets P := P \ {Up} and
returns (de-register, sid, Up) to the caller.

– Upon receiving (is-registered, sid) from some party Up, return (register, sid, b) to the caller, where
the bit b is 1 if and only if Up ∈ P.

– Upon receiving (get-registered, sid) fromA, the functionality returns (get-registered, sid,P) toA.

For simplicity in the description of the functionalities, for a party Up ∈ P we will use Up to refer to
this party’s ID. In addition to the above registration instructions, global setups, i.e., shared functionalities
that are available both in the real and in the ideal world and allow parties connected to them to share
state [8], allow also UC functionalities to register with them. We note in passing that although we allow
no communication between functionalities, we will allow functionalities to communicate with global setups
along the lines of [11, Section 2].

Concretely, global setups include, in addition to the above party registration instructions, two
registration/de-registration instructions for functionalities:

– Upon receiving (register, sidC) from a functionality F, set F := F ∪ {F}.
– Upon receiving (de-register, sidC) from a functionality F, set F := F \ {F}.
– Upon receiving (get-registered-f, sidC) from A, return (get-registered-f, sidC , F) to A.

A.2 The Communication Network

We specify the multicast network with bounded delay in the following. The network is modeled as a local
functionality. However, we conjecture that it is straightforward to make it global since the simulator has to
simulate all the messages on the network. Since we do not consider properties such as network congestion,
we choose not to model it as a global functionality for simplicity. As it is sometimes useful to distinguish
(the same kind of network) according to the values sent over the network, we use the notation Fbc,∆

N-MC and
F tx,∆

N-MC to distinguish chain and transaction mulitcast in the protocol. However, since both networks can be
realized from a single network we often just refer to F∆N-MC for simplicity.

The functionality is parametrized with a set possible senders and receivers P. Any newly registered (resp.
deregistered) party is added to (resp. deleted from) P.

– Honest sender multicast. Upon receiving a message (multicast, sid,m) from some Up ∈ P, where
P = {U1, . . . , Un} denotes the current party set, choose n new unique message-IDs mid1, . . . ,midn, initialize

Functionality F∆N-MC

23 Note that making the set of parties dynamic means that the adversary needs to be informed about which parties
are currently in the computation so that he can chose how many (and which) parties to corrupt.

35

2n new variables Dmid1 := DMAX
mid1 . . . := Dmidn := DMAX

midn := 1, set
~M := ~M ||(m,mid1, Dmid1 , U1)|| . . . ||(m,midn, Dmidn , Un), and send

(multicast, sid,m, Up, (U1,mid1), . . . , (Un,midn)) to the adversary.
– Adversarial sender (partial) multicast. Upon receiving a message

(multicast, sid, (mi1 , Ui1), . . . , (mi` , Ui`) from the adversary with {Ui1 , . . . , Ui`} ⊆ P, choose ` new unique
message-IDs midi1 , . . . ,midi` , initialize ` new variables Dmidi1 := DMAX

midi1
:= . . . := Dmidi` := DMAX

midi`
:= 1, set

~M := ~M ||(mi1 ,midi1 , Dmidi1 , Ui1)|| . . . ||(mi` ,midi` , Dmidi` , Ui`), and send
((multicast, sid, (mi1 , Ui1 ,midi1), . . . , (mi` , Ui` ,midi`) to the adversary.

– Honest party fetching. Upon receiving a message (fetch, sid) from Up ∈ P (or from A on behalf of Up if
Up is corrupted):
1. For all tuples (m,mid, Dmid, Up) ∈ ~M , set Dmid := Dmid − 1.
2. Let ~M

Up
0 denote the subvector ~M including all tuples of the form (m,mid, Dmid, Up) with Dmid = 0 (in the

same order as they appear in ~M). Delete all entries in ~M
Up
0 from ~M , and send ~M

Up
0 to Up.

– Adding adversarial delays. Upon receiving a message (delays, sid, (Tmidi1 ,midi1), . . . , (Tmidi` ,midi`)) do
the following for each pair (Tmidij ,midij) in this message:
If DMAX

midij
+ Tmidij ≤ ∆ and mid is a message-ID registered in the current ~M , set Dmidij := Dmidij + Tmidij

and set DMAX
midij

:= DMAX
midij

+ Tmidij ; otherwise, ignore this pair.

– Adversarially reordering messages. Upon receiving a message (swap, sid,mid,mid′) from the adversary,
if mid and mid′ are message-IDs registered in the current ~M , then swap the triples (m,mid, Dmid, ·) and
(m,mid′, Dmid′ , ·) in ~M . Return (swap, sid) to the adversary.

A.3 Modeling Synchrony

As in [3], the basic functionality to capture a round-based protocol is the clock-functionality described below.
In this functionality, each registered party can update the clock and once all honest parties have done so,
the clock advances by one tick. In addition, every party can query the clock to read the (logical) time.

An important property thereby is that for an ideal-world functionality to be UC implementable by a
synchronous protocol, it needs to keep track of the number of activations that an honest party gets—such
that the advancement of the ideal process is identical to advancement of the real world process. This requires
that the protocol itself, when described as a UC interactive Turing-machine instance, has a predictable
behavior when it comes to the pattern of activations that it needs before it sends the clock an update
command. This is captured by defining a predictor predict-timeΠ(~ITH) of the time, given as input the timed
honest-input sequence.24 We restate this property formalized in [3] here for completeness in Definition 7.

Definition 7. A Gclock-hybrid protocol Π has a predictable synchronization pattern iff there exist an algo-
rithm predict-timeΠ(·) such that for any possible execution of Π (i.e., for any adversary and environment,
and any choice of random coins) the following holds: If ~ITH = ((x1,pid1, τ1), . . . , (xm,pidm, τm)) is the cor-
responding timed honest-input sequence for this execution, then for any i ∈ [m− 1] :

predict-timeΠ((x1,pid1, τ1), . . . , (xi,pidi, τi)) = τi+1.

Having such a predictor is beneficial in modeling synchronous protocols in UC, as the theorems and the
proofs only depend on this function but not on the exact number of activations of a party in each round. For
example, if an additional computation step requires one activation more, then the only thing that changes
is the concrete specification of the function predict-timeΠ but the theorems stay the same.

24 The timed honest-input sequence looks like ~ITH = ((x1,pid1, τ1), . . . , (xm,pidm, τm)) where
((x1, pid1), . . . , (xm, pidm)) are the honest inputs corresponding to an execution (up to a certain point),
and for each i ∈ [n], τi is the time of the global clock when input xi was handed to pidi.

36

The functionality is available to all participants. The functionality is parametrized with variable τ , a set of
parties P ′, and a set F of functionalities. For each party Up ∈ P ′ it manages variable dp. For each F ∈ F it
manages variable dF
Initially, τ := 0, P ′ := ∅ and F := ∅.
Synchronization:

– Upon receiving (clock-update, sidC) from some party Up ∈ P ′ set dp := 1; execute Round-Update and
forward (clock-update, sidC , Up) to A.

– Upon receiving (clock-update, sidC) from some functionality F ∈ F set dF := 1, execute Round-Update and
return (clock-update, sidC ,F) to F.

– Upon receiving (clock-read, sidC) from any participant (including the environment, the adversary, or any
ideal—shared or local—functionality) return (clock-read, sidC , τ) to the requestor.

Procedure Round-Update:
If dF := 1 for all F ∈ F and dp = 1 for all honest Up in P ′, then set τ := τ + 1 and reset dF := 0 and dp := 0 for
all parties in P ′.

Functionality Gclock

We next show that the protocol has a predictable synchronization pattern according to Definition 7.
Lemma 3. The protocol Ouroboros-Genesis satisfies Definition 7.

Proof. We will show that there is an easy and efficient algorithm predict-timePraos(·) that, given any possible
execution of the protocol (for any adversary, environment, and choice of random coins), we have that if ~ITH =
((x1,pid1, τ1), . . . , (xm,pidm, τm)) is the corresponding timed honest-inputs sequence for this execution, then
for any i ∈ [m− 1] :

predict-timeΠ((x1,pid1, τ1), . . . , (xi,pidi, τi)) = τi+1.

The basic mechanism to predict the clock time is an inductive process. The first advancement of the
clock from τ = 0 to τ = 1 is after all parties Up ∈ SinitStake have received a registration query from the
environment and if all additionally registered, uncorrupted parties have sent a clock-update message to the
clock. The advancement from τ to τ + 1 follows by observing that each honest miner that is registered with
all global functionalities needs one activation query maintain-ledger followed by an clock-update request
from the environment to send his clock-update message (other honest miners do not send such a request).
Once every honest party registered with the clock has sent its clock-update message, the clock advances. ut

A.4 The Global Random Oracle Setup.

The functionality is parametrized by a security parameter κ. It maintains a set of registered parties/miners P
(initially set to ∅) and a (dynamically updatable) function table T (initially T = ∅). For simplicity we write
T [x] =⊥ to denote the fact that no pair of the form (x, ·) is in T .

– Upon receiving (eval, sidRO, x) from some party Up ∈ P (or from A on behalf of a corrupted Up), do the
following:
1. If H[x] = ⊥ sample a value y uniformly at random from {0, 1}κ, set H[x]← y and add (x, T [x]) to T .
2. Return (eval, sidRO, x,H[x]) to the requestor.

Functionality GRO

A.5 The Genesis Block Distribution

The functionality FINIT describe below was introduces in [13] to formalize the procedure of genesis block
creation and distribution.

37

The functionality FINIT is parameterized by the set U1, . . . , Un of initial stakeholders n and their respective stakes
s1, . . . , sn.

– Upon receiving any message, the functionality first sends (clock-read, sidC , τ) to the clock to receive the
current round. Subsequently:
• If this is the first (genesis) round and the message is request from some initial stakeholder Ui of the form

(ver keys, sid, Ui, vvrf
i , vkes

i), then FINIT stores the verification keys tuple (Ui, vvrf
i , vkes

i) and acknowledges its
receipt. If some of the registered public keys are equal, it outputs an error and halts. Otherwise, it samples
and stores a random value η1

$← {0, 1}λ and constructs a genesis block (S1, η1), where
S1 =

(
(U1, v

vrf
1 , vkes

1 , s1), . . . , (Un, vvrf
n , vkes

n , sn)
)
.

• If this is not the first round, then do the following
∗ If any of the n initial stakeholders has not send a request of the above form, i.e., a

(ver keys, sid, Ui, vvrf
i , vkes

i)-message, to FINIT in the genesis round then FINIT outputs an error and halts.
∗ Otherwise, if the currently received input is a request of the form (genblock req, sid, Ui) from any

(initial or not) stakeholder U , FINIT sends (genblock, sid, (S1, η1)) to U .

Functionality FINIT

A.6 Additional Functionalities/Hybrids Used in the Security Proof

The security of Ouroboros Praos is proven in a hybrid world with access to a multicast-network with upper
bound on the message delay (unknown to the protocol), a global random oracle, a functionality that idealizes
verifiable random functions (VRF), a functionality that idealizes key-evolving signature schemes (KES), and
a setup functionality that distributes the initial tokens for proof-of-stake blockchains. The network, clock,
RO, and initialization (genesis block), are assumed resources (see Section 2). On the other hand the VRF and
KES functionalities are only hybrids used in the proof and are shown to be UC-realizable in [13] by concrete
constructions. Therefore, hence they are only employed for simplicity in the proof (the overall security once
instantiated by the constructions follows from the UC composition theorem). For completeness we include
their definition below.

Verifiable Random Functions. The following functionality FVRF capturing a verifiable random function
was introduced in [13].

FVRF interacts with stakeholders U1, . . . , Un as follows:

– Key Generation. Upon receiving a message (KeyGen, sid) from a stakeholder Ui, hand (KeyGen, sid, Ui) to
the adversary. Upon receiving (VerificationKey, sid, Ui, v) from the adversary, if Ui is honest, verify that v is
unique, record the pair (Ui, v) and return (VerificationKey, sid, v) to Ui. Initialize the table T (v, ·) to empty.

– Malicious Key Generation. Upon receiving a message (KeyGen, sid, v) from S, verify that v has not being
recorded before; in this case initialize table T (v, ·) to empty and record the pair (S, v).

– VRF Evaluation. Upon receiving a message (Eval, sid,m) from Ui, verify that some pair (Ui, v) is recorded.
If not, then ignore the request. Then, if the value T (v,m) is undefined, pick a random value y from {0, 1}`VRF

and set T (v,m) = (y, ∅). Then output (Evaluated, sid, y) to P , where y is such that T (v,m) = (y, S) for some
S.

– VRF Evaluation and Proof. Upon receiving a message (EvalProve, sid,m) from Ui, verify that some pair
(Ui, v) is recorded. If not, then ignore the request. Else, send (EvalProve, sid, Ui,m) to the adversary. Upon
receiving (Eval, sid,m, π) from the adversary, if value T (v,m) is undefined, verify that π is unique, pick a
random value y from {0, 1}`VRF and set T (v,m) = (y, {π}). Else, if T (v,m) = (y, S), set
T (v,m) = (y, S ∪ {π}). In any case, output (Evaluated, sid, y, π) to P .

– Malicious VRF Evaluation. Upon receiving a message (Eval, sid, v,m) from S for some v, do the
following. First, if (S, v) is recorded and T (v,m) is undefined, then choose a random value y from {0, 1}`VRF

Functionality FVRF

38

and set T (v,m) = (y, ∅). Then, if T (v,m) = (y, S) for some S 6= ∅, output (Evaluated, sid, y) to S, else ignore
the request.

– Verification. Upon receiving a message (Verify, sid,m, y, π, v′) from some party P , send
(Verify, sid,m, y, π, v′) to the adversary. Upon receiving (Verified, sid,m, y, π, v′) from the adversary do:
1. If v′ = v for some (Ui, v) and the entry T (Ui,m) equals (y, S) with π ∈ S, then set f = 1.
2. Else, if v′ = v for some (Ui, v), but no entry T (Ui,m) of the form (y, {. . . , π, . . .}) is recorded, then set

f = 0.
3. Else, initialize the table T (v′, ·) to empty, and set f = 0.
Output (Verified, sid,m, y, π, f) to P .

Key-Evolving Signatures. Ouroboros Praos also makes use of a key-evolving signature scheme for signing
blocks. The following formalization of key-evolving signatures was given in [13].

FKES is parameterized by the total number of signature updates T , interacting with a signer US and stakeholders
Ui as follows:

– Key Generation. Upon receiving a message (KeyGen, sid, US) from a stakeholder US , send
(KeyGen, sid, US) to the adversary. Upon receiving (VerificationKey, sid, US , v) from the adversary, send
(VerificationKey, sid, v) to US , record the triple (sid, US , v) and set counter kctr = 1.

– Sign and Update. Upon receiving a message (USign, sid, US ,m, j) from US , verify that (sid, US , v) is
recorded for some sid and that kctr ≤ j ≤ T . If not, then ignore the request. Else, set kctr = j + 1 and send
(Sign, sid, US ,m, j) to the adversary. Upon receiving (Signature, sid, US ,m, j, σ) from the adversary, verify
that no entry (m, j, σ, v, 0) is recorded. If it is, then output an error message to US and halt. Else, send
(Signature, sid,m, j, σ) to US , and record the entry (m, j, σ, v, 1).

– Signature Verification. Upon receiving a message (Verify, sid,m, j, σ, v′) from some stakeholder Ui do:
1. If v′ = v and the entry (m, j, σ, v, 1) is recorded, then set f = 1. (This condition guarantees completeness:

If the verification key v′ is the registered one and σ is a legitimately generated signature for m, then the
verification succeeds.)

2. Else, if v′ = v, the signer is not corrupted, and no entry (m, j, σ′, v, 1) for any σ′ is recorded, then set
f = 0 and record the entry (m, j, σ, v, 0). (This condition guarantees unforgeability: If v′ is the registered
one, the signer is not corrupted, and never signed m, then the verification fails.)

3. Else, if there is an entry (m, j, σ, v′, f ′) recorded, then let f = f ′. (This condition guarantees consistency:
All verification requests with identical parameters will result in the same answer.)

4. Else, if j < kctr, let f = 0 and record the entry (m, j, σ, v, 0). Otherwise, if j = kctr, hand
(Verify, sid,m, j, σ, v′) to the adversary. Upon receiving (Verified, sid,m, j, φ) from the adversary let f = φ
and record the entry (m, j, σ, v′, φ). (This condition guarantees that the adversary is only able to forge
signatures under keys belonging to corrupted parties for time periods corresponding to the current or
future slots.)

Output (Verified, sid,m, j, f) to Ui.

Functionality FKES

A.7 The Ouroboros Genesis Ledger

We next provide the complete description of the ledger functionality that, as we prove, is implemented by
Ouroboros Genesis.

39

Gledger is parametrized by four algorithms, Validate, ExtendPolicy, Blockify, and predict-time, along with three
parameters: windowSize, Delay ∈ N, and SinitStake := {(U1, s1), . . . , (Un, sn)}. The functionality manages
variables state, NxtBC, buffer, τL, and ~τstate, as described above. The variables are initialized as follows:
state := ~τstate := NxtBC := ε, buffer := ∅, τL = 0.

The functionality maintains the set of registered parties P, the (sub-)set of honest parties H ⊆ P, and the
(sub-set) of de-synchronized honest parties PDS ⊂ H (following the definition of de-synchronized from above).
The sets P,H,PDS are all initially set to ∅. When a new honest party is registered at the ledger, if it is
registered with the clock and the global RO already, then it is added to the party sets H and P and the current
time of registration is also recorded; if the current time is τL > 0, it is also added to PDS . Similarly, when a
party is deregistered, it is removed from both P (and therefore also from PDS or H). The ledger maintains the
invariant that it is registered (as a functionality) to the clock whenever H 6= ∅.
For each party Up ∈ P the functionality maintains a pointer pti (initially set to 1) and a current-state view
statep := ε (initially set to empty). The functionality also keeps track of the timed honest-input sequence in a
vector ~ITH (initially ~ITH := ε).

Handling initial stakeholders: If during round τ = 0, the ledger did not received a registration from each
initial stakeholder, i.e., Up ∈ SinitStake, the functionality halts.

Upon receiving any input I from any party or from the adversary, send (clock-read, sidC) to Gclock and
upon receiving response (clock-read, sidC , τ) set τL := τ and do the following if τ > 0 (otherwise, ignore input):

1. Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been registered (continuously) since
time τ ′ < τL − Delay. Set PDS := PDS \ P̂.

2. If I was received from an honest party Up ∈ P:
(a) Set ~ITH := ~ITH ||(I, Up, τL);
(b) Compute ~N = (~N1, . . . , ~N`) := ExtendPolicy(~ITH , state, NxtBC, buffer, ~τstate) and if ~N 6= ε set

state := state||Blockify(~N1)|| . . . ||Blockify(~N`) and ~τstate := ~τstate||τ `L, where τ `L = τL|| . . . , ||τL.
(c) For each BTX ∈ buffer: if Validate(BTX, state, buffer) = 0 then delete BTX from buffer. Also, reset

NxtBC := ε.
(d) If there exists Uj ∈ H \ PDS such that |state| − ptj > windowSize or ptj < |statej |, then set

ptk := |state| for all Uk ∈ H \ PDS .

3. If the calling party Up is stalled (according to the definition above), then no further actions are taken.
Otherwise, depending on the above input I and its sender’s ID, Gledger executes the corresponding code from
the following list:
• Submiting a transaction:

If I = (submit, sid, tx) and is received from a party Up ∈ P or from A (on behalf of a corrupted party Up)
do the following

(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL, Up)
(b) If Validate(BTX, state, buffer) = 1, then buffer := buffer ∪ {BTX}.
(c) Send (submit, BTX) to A.

• Reading the state:
If I = (read, sid) is received from a party Up ∈ P then set statep := state|min{ptp,|state|} and return
(read, sid, statep) to the requestor. If the requestor is A then send (state, buffer, ~ITH) to A.

• Maintaining the ledger state:
If I = (maintain-ledger, sid,minerID) is received by an honest party Up ∈ P and (after updating ~ITH as
above) predict-time(~ITH) = τ̂ > τL then send (clock-update, sidC) to Gclock. Else send I to A.

• The adversary proposing the next block:
If I = (next-block,hFlag, (txid1, . . . , txid`)) is sent from the adversary, update NxtBC as follows:

Functionality Gledger

40

(a) Set listOfTxid← ε

(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid,minerID, τL, Uj) ∈ buffer with ID txid = txidi then
set listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC := NxtBC||(hFlag, listOfTxid) and output (next-block, ok) to A.

• The adversary setting state-slackness:
If I = (set-slack, (Ui1 , p̂ti1), . . . , (Ui` , p̂ti`)), with {Upi1 , . . . , Upi`} ⊆ H \ PDS is received from the
adversary A do the following:

(a) If for all j ∈ [`] : |state| − p̂tij ≤ windowSize and p̂tij ≥ |stateij |, set pti1 := p̂ti1 for every j ∈ [`]
and return (set-slack, ok) to A.

(b) Otherwise set ptij := |state| for all j ∈ [`].

• The adversary setting the state for desychronized parties:
If I = (desync-state, (Ui1 , state′i1), . . . , (Ui` , state′i`)), with {Ui1 , . . . , Ui`} ⊆ PDS is received from the
adversary A, set stateij := state′ij for each j ∈ [`] and return (desync-state, ok) to A.

A.8 Formal Specification of ExtendPolicy for the PoS Ledger

The detailed ExtendPolicy for Ouroboros is given below.

function ExtendPolicy(~ITH , state, NxtBC, buffer, ~τstate)
Let τL be current ledger time (computed from ~ITH)
// The function must not have side-effects: Only modify copies of relevant values.
Create local copies of the values buffer, state, and ~τstate.
// First, create a default honest client block as alternative:
Set ~Ndf ← txbase-tx

minerID of an honest miner
Sort buffer according to time stamps.
Let ~tx = (tx1, . . . , tx`) be the transactions in buffer
Set st← blockifyB(~Ndf)
repeat

Let ~tx = (tx1, . . . , tx`) be the current list of (remaining) transactions
for i = 1 to ` do

if ValidTxB(txi, state||st) = 1 then
~Ndf ← ~Ndf||txi
Remove txi from ~tx
Set st← blockifyB(~Ndf)

end if
end for

until ~Ndf does not increase anymore
// Let τlow be the time of the block which is windowSize− 1 blocks behind the head of the state.
if |state|+ 1 ≥ windowSize then

Set τlow ← ~τstate[|state| − windowSize + 2]
else

Set τlow ← 1 // First epoch starts at time 1 (time 0 is initialization time).
end if
c← 1
while τL − τlow > maxTimewindow do

Set ~Nc ← txbase-tx
minerID of an honest miner

~Ndf ← ~Ndf|| ~Nc
c← c+ 1
// Update τlow to the time of the state block which is windowSize− c blocks behind the head.

Algorithm ExtendPolicy for Gledger

41

if |state|+ c ≥ windowSize then
Set τlow ← ~τstate[|state| − windowSize + c+ 1]

else
Set τlow ← 1

end if
end while
// Now, parse the proposed block by the adversary
// Possibly more than one block should be added
Parse NxtBC as a vector ((hFlag1, NxtBC1), · · · , (hFlagn, NxtBCn))
~N ← ε // Initialize Result
// Determine the time of the state block which is windowSize blocks behind the head of the state
if |state| ≥ windowSize then

Set τlow ← ~τstate[|state| − windowSize + 1]
else

Set τlow ← 1
end if
oldValidTxMissing← false // Flag to keep track whether old enough, valid transactions are inserted.
for each list NxtBCi of transaction IDs do

// Compute the next state block
// Verify validity of NxtBCi and compute content
Use the txid contained in NxtBCi to determine the list of transactions
Let ~tx = (tx1, . . . , tx|NxtBCi|) denote the transactions of NxtBCi
if tx1 is not a coin-base transaction then

return ~Ndf

else
~Ni ← tx1
for j = 2 to |NxtBCi| do

Set sti ← blockifyB(~Ni)
if ValidTxB(txj , state||sti) = 0 then

return ~Ndf

end if
~Ni ← ~Ni||txj

end for
Set sti ← blockifyB(~Ni)

end if
// Test that all old valid transaction are included
if the proposal is declared to be an honest block, i.e., hFlagi = 1 then

for each BTX = (tx, txid, τ ′, Up) ∈ buffer of an honest party Up with time τ ′ < τlow − Delay
2 do

if ValidTxB(tx, state||sti) = 1 but tx 6∈ ~Ni then
oldValidTxMissing← true

end if
end for

end if
~N ← ~N || ~Ni
state← state||sti
~τstate ← ~τstate||τL
// Must not proceed with too many adversarial blocks
Determine the most recent honest block sti in state (last proposal added with hFlag = 1).
if |state| − i ≥ advBlckswindow then

return ~Ndf

end if
// Update τlow: the time of the state block which is windowSize blocks behind the head of the
// current, potentially already extended state
if |state| ≥ windowSize then

42

Set τlow ← ~τstate[|state| − windowSize + 1]
else

Set τlow ← 1
end if

end for
// Final checks (if policy is violated, it is enforced by the ledger):
// Must not proceed too slow or with missing transaction.
if τlow > 0 and τL − τlow > maxTimewindow then // A sequence of blocks cannot take too much time.

return ~Ndf

else if τlow = 0 and τL − τlow > 2 · maxTimewindow then // Bootstrapping cannot take too much time.
return ~Ndf

else if oldValidTxMissing then // If not all old enough, valid transactions have been included.
return ~Ndf

end if
return ~N

end function

43

B Ouroboros Genesis as a UC-Protocol (Cont’d)

This appendix includes protocols that have been excluded from the body.

if C contains future blocks, empty epochs, starts with a block other than G, or encodes an invalid state with
isvalidstate(~st) = 0 then

return false
end if
for each epoch ep do

// Derive stake distribution and randomness for this epoch from C
Set SCep to be the stakeholder distribution at the end of epoch ep− 2 in C.
Set αep,C

p′ to be the relative stake of any party Up′ in SCep and T ep,C
p′ ← 2`VRFφf (αep,C

p′).
Set ηCep ← H(ηCep−1 ‖ ep ‖ v) where v is the concatenation of the VRF outputs yρ from all blocks in C from
the first 16k/f slots of epoch ep− 1, and ηC1 , η1 from G.
for each block B in C from epoch ep do

Parse B as (h, st, sl, crt, ρ, σ).
// Check hash
Set badhash← (h 6= H(B−1)), where B−1 is the last block in C before B.
// Check VRF values
Parse crt as (Up′ , y, π) for some p′.
Send (Verify, sid, ηep ‖ sl ‖ TEST, y, π, vvrf

p′) to FVRF,
denote its response by (Verified, sid, ηep ‖ sl ‖ TEST, y, π, b1).

Send (Verify, sid, ηep ‖ sl ‖ NONCE, yρ, πρ, vvrf
p′) to FVRF,

denote its response by (Verified, sid, ηep ‖ sl ‖ NONCE, yρ, πρ, b2),

Set badvrf ←
(
b1 = 0 ∨ b2 = 0 ∨ y ≥ T ep,C

Up′

)
.

// Check signature
Send (Verify, sid, (h, st, sl, crt, ρ), sl, σ, vkes

p′) to FKES,
denote its response by (Verified, sid, (h, st, sl, crt, ρ), sl, b3).

Set badsig← (b3 = 0).
if (badhash ∨ badvrf ∨ badsig) then

return false
end if

end for
end for
return true

Protocol IsValidChain(Up, k, C, h, f, R)

Fig. 13. The chain validation (filtering) protocol

44

C The Simulator

Below we present the simulator used in the proof that the UC implementation of Ouroboros Praos securely
realizes the ledger functionality Gledger. The simulator shares the basic structure with the simulator provided
in [3] and differs in several low-level details.

Overview:
– The simulator internally emulates all local UC functionalities by running the code (and keeping the state) of
FVRF, FKES, FINIT, Fbc

N-MC, and F tx
N-MC.

– The simulator mimics the execution of Ouroboros-Genesis for each honest party Up (including their state and
the interaction with the hybrids).

– The simulator emulates a view towards the adversary A in a black-box way, i.e., by internally running
adversary A and simulating his interaction with the protocol (and hybrids) as detailed below for each hybrid.
To simplify the description, we assume A does not violate the requirements by the wrapper WPoS

Praos(·) as this
would imply no interaction between Sledg (i.e., the emulated hybrids) and A.

– For global functionalities, the simulator simply relays the messages sent from A to the global functionalities
(and returns the generated replies). Recall that the ideal world consists of the dummy parties, the ledger
functionality, the clock, and the global random oracle.

Party sets:
– As defined in the main body of this paper, honest parties are categorized. Salert denote synchronized parties

that are not stalled, SsyncStalled are synchronized parties that are stalled, and PDS are de-synchronized parties.
– For each registered honest party, the simulator maintains the local state containing in particular the local

chain C(Up)
loc , the time ton it remembers when last being online. For each party Up and clock time τ , the

simulator stores a flag updateUp,τ (initially false) to remember whether this party has updated its state
already in this round. Note that an registered party is registered with all its local hybrids.

– Upon any activation, the simulator will query the current party set from the ledger, the clock, and the
random oracle to evaluate in which category an honest party belongs to. If a new honest party is registered to
the ledger, it internally runs the initialization procedure of Ouroboros-Genesis.

– We assume that the simulator queries upon any activation for the sequence ~ITH , and the current time τ from
the clock. We note that the simulator is capable of determining predict-time(·) of Gledger.

Messages from the Clock:
– Upon receiving (clock-update, sidC , Up) from Gclock, if Up is an honest registered party, then remember

that this party has received such a clock update (and the environment gets an activation). Otherwise, send
(clock-update, sidC , Up) to A.

Messages from the Ledger:
– Upon receiving (submit, BTX) from Gledger where BTX := (tx, txid, τ, Up) forward (multicast, sid, tx) to the

simulated network FN-MC in the name of Up. Output the answer of FN-MC to the adversary.
– Upon receiving (maintain-ledger, sid,minerID) from Gledger, extract from ~ITH the party Up that issued this

query. If Up has already completed its round-task, then ignore this request. Otherwise, execute
SimulateStaking(Up, τ).

Simulator Sledg (Part 1 - Main Structure)

Simulation of Functionality FINIT towards A:
– The simulator relays back and forth the communication between the (internally emulated) FINIT functionality

and the adversary A acting on behalf of a corrupted party.

Simulator Sledg (Part 2 - Black-Box Interaction)

45

– If at time τ = 0, a corrupted party Up ∈ SinitStake registers via (ver keys, sid, Up, vvrf
Up , v

kes
Up) to FINIT, then input

(register, sid) to Gledger on behalf of Up.

Simulation of the Functionalities FKES and FVRF towards A:
– The simulator relays back and forth the communication between the (internally emulated) hybrids and the

adversary A (either direct communication, communication to A caused by emulating the actions of honest
parties, or communication of A on behalf of a corrupted party).

Simulation of the Network Fbc
N-MC (over which chains are sent) towards A:

– Upon receiving (multicast, sid, (Ci1 , Ui1), . . . , (Ci` , Ui`) with a list of chains and corresponding parties from
A (or on behalf some corrupted P ∈ Pnet), then do the following:
1. Relay this input to the simulate network functionality and record its response to A.
2. Execute ExtendLedgerState(τ)
3. Provide A with the recorded output of the simulated network.

– Upon receiving (multicast, sid, C) from A on behalf of some corrupted party P , then do the following:
1. Relay this input to the simulate network functionality and record its response to A.
2. Execute ExtendLedgerState(τ)
3. Provide A with the recorded output of the simulated network.

– Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ Pnet forward the request to the simulated
Fbc

N-MC and return whatever is returned to A.
– Upon receiving (delays, sid, (Tmidi1 ,midi1), . . . , (Tmidi` ,midi`)) from A: Forward the request to the

simulated Fbc
N-MC and record the answer to A. Before giving this answer to A, query the ledger state state

and execute AdjustView(state).
– Upon receiving (swap, sid,mid,mid′) from A: Forward the request to the simulated Fbc

N-MC and record the
answer to A. Before giving this answer to A, query the ledger state state and execute AdjustView(state).

Simulation of the Network F tx
N-MC (over which transactionss are sent) towards A:

– Upon receiving (multicast, sid, (mi1 , Ui1), . . . , (mi` , Ui`) with list of transactions from A on behalf some
corrupted P ∈ Pnet, then do the following:
1. Submit the transaction(s) to the ledger on behalf of this corrupted party, and receive for each transaction

the transaction id txid
2. Forward the request to the internally simulated F tx

N-MC, which replies for each message with a message-ID
mid

3. Remember the association between each mid and the corresponding txid
4. Provide A with whatever the network outputs.

– Upon receiving (multicast, sid,m) from A on behalf of some corrupted party P , then execute the
corresponding steps 1. to 4. as above.

– Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ Pnet forward the request to the simulated
F tx

N-MC and return whatever is returned to A.
– Upon receiving (delays, sid, (Tmidi1 ,midi1), . . . , (Tmidi` ,midi`)) from A forward the request to the simulated
F tx

N-MC and return whatever is returned to A.
– Upon receiving (swap, sid,mid,mid′) from A forward the request to the simulated F tx

N-MC and return
whatever is returned to A.

procedure SimulateStaking(Up, τ)
Simulate the core staking procedure of party Up as in the protocol in round τ . This includes running
procedures FetchInformation and UpdateLocal of party Up (using the emulated network).
if updateUp,τ then

Send (clock-update, sidC , Up) to A if Sledg has received such an input in round τ
else

Simulator Sledg (Part 3 - Internal Procedures)

46

Execute the StakingProcedure and set updateUp,τ ← true
- Includes sending messages to the emulated network Fbc

N-MC.
Before the activation goes to A, execute ExtendLedgerState(τ).

end if
Remember that party Up has completed for this round τ .

end procedure

procedure ExtendLedgerState(τ)
for each synchronized party Up ∈ Salert ∪ SsyncStalled of round τ do

Let C(Up)
loc be the party’s currently stored local chain.

Determine the number of rounds ρ(Up) this party legs behind τ , i.e., ρ(Up) = τ − t(Up)
on .

Let C(Up)
1 , . . . , C(Up)

k be the chains contained in the receiver buffer ~M (Up) of Fbc
N-MC with delay at most

ρ(Up).
Evaluate CUp ← maxvalid-bg(C(Up)

loc , C(Up)
1 , . . . , C(Up)

k) and let this chains’s encoded state be ~stUp .
end for
Let ~st be the longest state among all such states ~stUp , Up ∈ Salert ∪ SsyncStalled from above.
Compare ~stdk with the current state state of the ledger
if |state| > | ~stdk| then // Only pointers need adjustments

Execute AdjustView(state)
end if
if state is not a prefix of ~stdk then // Simulation fails

Abort simulation: consistency violation among synchronized parties. // Event BAD-CPk
end if
Define the difference diff to be the block sequence s.t. state||diff = ~stdk.
Parse diff := diff1|| . . . ||diffn.
for j = 1 to n do

Map each transaction tx in this block to its unique transaction ID txid. If a transaction does not yet
have a txid, then submit it to the ledger first and receive the corresponding txid from Gledger

Let listj = (txidj,1, . . . , txidj,`j) be the corresponding list for this block diffj
if coinbase txidj,1 specifies a party honest at block creation time then

hFlagj ← 1
else

hFlagj ← 0
end if
Output (next-block, hFlagj , listj) to Gledger (receiving (next-block, ok) as an immediate answer)

end for
if Fraction of blocks whith hFlag = 0 in the recent k blocks > 1− µ then

Abort simulation: chain quality violation. // Event BAD-CQµ,k

else if State increases less than k blocks during the last k
τCG

rounds then
Abort simulation: chain growth violation. // Event BAD-CGτCG,k/τCG

end if
// If no bad event occurs, we can adjust pointers into this new state.
Execute AdjustView(state||diff)

end procedure

procedure AdjustView(state, τ)
// Adjust the view of synchronized parties.
pointers← ε
for Up ∈ P of round τ do

Let C(Up)
loc be the party’s currently stored local chain.

Determine the number of rounds ρ(Up) this party legs behind τ , i.e., ρ(Up) = τ − t(Up)
on .

47

Let C(Up)
1 , . . . , C(Up)

k be the chains contained in the receiver buffer ~M (Up) of Fbc
N-MC with delay at most

ρ(Up).
Evaluate CUp ← maxvalid-bg(C(Up)

loc , C(Up)
1 , . . . , C(Up)

k) and let this chains’s encoded state be ~stUp .
end for
for each synchronized party Up ∈ Salert ∪ SsyncStalled of round τ do

Determine the pointer ptUp s.t. ~stdkUp = state|ptUp
if such a pointer value does not exist then

return // Call on invalid input or event BAD-CPk occurred
end if
if updateUp,τ = false then // Party did not start StakingProcedure in τ .

pointers← pointers||(Up, ptUp)
end if // As otherwise, the new state is only fetched in the next round

end for
Output (set-slack, pointers) to Gledger
// Now, adjust the view of de-synchronized parties.
pointers← ε
desyncStates← ε
for each de-synchronized party Up ∈ PDS do

if updateUp,τ = false then
Set the pointer ptUp to be | ~stdkUp |
pointers← pointers||(Up, ptUp)
desyncStates← desyncState||(Up, ~stdkUp)

end if // As otherwise, the new state is only fetched in the next round
Output (set-slack, pointers) to Gledger
Output (desync-state, desyncStates) to Gledger

end for
end procedure

D Proof-of-Stake Assumptions as a UC Wrapper

This section includes complementary material for the main body. We sketch below the wrapper functionality
that is applied to the hybrid functionalities used by Ouroboros-Genesis. For details on more background of
functionality wrappers we refer to [3]. In a nutshell, the wrapper observes the advancement of the entire
system and checks whether the proportional stake of alert parties, of corrupted or de-synchronized parties,
and of stalled parties are withing the allowed range specified as required by our main theorems.

The wrapper functionality is parametrized by the bounds α,β on the alert and participating stake ratio (see
Definition 2), respectively, the network delay and a value ε > 0 (the parameter that describes the gap between
the honest and adversarial stake). The wrapper is assumed to be registered with the global clock Gclock and is
aware of sets of registered parties, and the set of corrupted parties.

General:

– Upon receiving any request I from any party Up or from A (possibly on behalf of a party Up which is
corrupted) to a wrapped hybrid functionality, record the request I together with its source and the current
time.

– The wrapper keeps track of the active parties and their relative share to the stake distribution.

Restrictions on obtaining VRF proofs:

Functionality WPoS
Praos(·)

48

– Upon receiving (EvalProve, sid, ·) to FVRF from A on behalf of a party Up which is corrupted or registered but
de-synchronized do the following:
1. If the fraction of alert stake relative to all active stake in this round τ so far does not satisfy the honest

majority condition 4 (of Theorems 1 and 2) then ignore the request.
2. Otherwise, forward the request to FVRF and return to A whatever GRO returns.

– Upon receiving (EvalProve, sid, ·) to FVRF from an alert party Up do the following:
1. Forward the request to FVRF and return to A whatever GRO returns.
2. If the minimal fraction (in stake) of participation (of alert parties and in total) as demanded by

Theorem 1 (and Theorem 2) is reached in round τ , send (clock-update, sidC) to Gclock to release the
clock for this round.

– Any other request is relayed to the underlying functionality (and recorded by the wrapper) and the
corresponding output is given to the destination specified by the underlying functionality.

E Proof of Theorem 1

In this appendix we prove Theorem 1. We begin with a detailed treatment of the relevant machinery from [13]
for reasoning about blockchain “forks” and the common prefix property in the semi-synchronous setting. Our
setting—which provides the adversary adaptive control over availability of the participating parties—appears
to require significant further considerations. In particular, the techniques of [13] assume that slot leaders are
elected by an independent process, so that various relevant events (such as whether a unique party has been
assigned to a particular slot) are independent across distinct slots. The stronger adversary in the dynamic
availability setting can conspire to correlate such events. Our analysis handles such correlations by modeling
the underlying process of leader assignment as a martingale, and constructs a parallel theory to that of [13]
that supports these richer distributions. Our exposition is self-contained; however, in some cases where the
particular arguments are similar in spirit to the treatment in [13], we only sketch them.

In Sections E.1 and E.2 we briefly lay out the framework of forks, divergence, and ∆-reduction developed
by Kiayias et al. [21] and David et al. [13]. With these definitions set down, we proceed in Section E.3
to the new proofs of divergence for the richer distributions induced by an adversary in the setting with
dynamic availability. We then describe the exact distribution of the characteristic strings that arises in the
real experiment in Section E.4 and combine these results in E.5 to establish common prefix, chain growth,
and chain quality for a single epoch. Finally, we lift these results into the multi-epoch setting in Section E.6.

E.1 Forks and Divergence in the Semi-synchronous Setting

We recall the notion of a characteristic string, which we use to record, for each slot in a sequence of slots,
whether any leader is elected for the slot and, if that is the case, whether this leader is unique and alert.

Definition 8 (Characteristic string). Let S = {sl1, . . . , slR} be a sequence of slots of length R; consider
an execution (with adversary A and environment Z) of the protocol. For a slot slj, let P(j) denote the set
of parties assigned to be slot leaders for slot j by the protocol (regardless of whether they are online, stalled,
or adversarial). We define the characteristic string w ∈ {0, 1,⊥}R of S to be the random variable so that

wj =

⊥ if P(j) = ∅,
0 if |P(j)| = 1 and the assigned party is alert,
1 otherwise.

(8)

For such a characteristic string w ∈ {0, 1,⊥}∗ we say that the index j is uniquely alert if wj = 0, empty if
wj = ⊥, and potentially active if wj ∈ {0, 1}.

We emphasize that the characteristic string resulting from an execution is determined by both the nonce
(and the effective leader selection process), the adaptive adversary A, and the environment Z (which, in
particular, determines the stake distribution).

49

Remark 3. A reader familiar with the treatment in [13] will notice that Definition 8 syntactically differs from
the definition of a characteristic string in [13], by assigning the symbol 0 only to slots that have a unique
alert slot leader, as opposed to a unique honest one. This is because the analysis in [13] does not consider
stalled parties, and hence an honest party is always alert. The semantics of the definition is maintained: a
slot labeled by 0 in both cases guarantees that there is will be exactly one block created for this slot, and it
will be created according to the protocol. This syntactic difference propagates also to some of the following
definitions and statements, we will refrain from pointing it out repeatedly.

The notion of a ∆-fork is the analytic tool developed by David et al. [13] to reason about the various
blockchains that can be induced by an adversary in the ∆-synchronous setting with a particular characteristic
string.

Definition 9 (∆-fork). Let w ∈ {0, 1,⊥}k and ∆ be a non-negative integer. Let A = {i |wi 6= ⊥} denote
the set of potentially active indices, and let H = {i |wi = 0} denote the set of uniquely alert indices. A
∆-fork for the string w is a rooted tree F = (V,E) with a labeling ` : V → {0} ∪A so that

(i) the root r ∈ V is given the label `(r) = 0;
(ii) the labels along any (simple) path beginning at the root are strictly increasing;

(iii) each uniquely alert index i ∈ H is the label of exactly one vertex of F ;
(iv) the function d : H → {1, . . . , k}, defined so that d(i) is the depth in F of the unique vertex v for which

`(v) = i, satisfies the following ∆-monotonicity property: if i, j ∈ H and i+∆ < j, then d(i) < d(j).

For convenience, we direct the edges of forks so that depth increases along each edge; then there is a unique
directed path from the root to each vertex and, in light of (ii), labels along such a path are strictly increasing.
As a matter of notation, we write F `∆ w to indicate that F is a ∆-fork for the string w. We typically refer
to a ∆-fork as simply a “fork”.

The relationship between executions and ∆-forks is formally described in [13]. Here we only recall the
basic intuition: With an execution of Ouroboros Genesis we may associate the collection of all blockchains
that were adopted by honest players as a result of their application of the maxvalid rule. Observe that any
two blockchains held by honest players agree on some common prefix (including, at the very least, the genesis
block); on the other hand, aside from this common prefix, the blockchains are entirely disjoint. Thus the
union of these blockchains forms a natural “tree of blocks”, which is reflected by the notion of fork above.
Indeed, the axiom (ii) reflects the fact that blocks in a valid blockchain must be associated with strictly
increasing time slots, while axiom (iii) reflects the fact that an honest, alert slot leader emits exactly one
block (associated with that slot). The axiom (iv) reflects the fact that an honest party p at time t must have
received any blocks produced by honest parties at times prior to t−∆; thus the depth of any block produced
by p must exceed the depths of those blocks produced by these earlier honest parties. Thus, while a fork is
clearly an abstraction that neglects some aspects of the execution, it does capture its salient features with
respect to common prefix violations; see Remark 4 below.

Definition 10 (Tines, length, and viability). A path in a fork F originating at the root is called a tine.
For a tine t we let length(t) denote its length, equal to the number of edges on the path. For a vertex v,
we call the length of the tine terminating at v the depth of v. For convenience, we overload the notation
`(·) so that it applies to tines by defining `(t) , `(v), where v is the terminal vertex on the tine t. We say
that a tine t is ∆-viable if length(t) ≥ maxh+∆≤`(t) d(h), this maximum extended over all uniquely alert
indices h (appearing ∆ or more slots before `(t)). Note that any tine terminating in a uniquely alert vertex
is necessarily viable by the ∆-monotonicity property.

A remark on the intuition behind viability: A viable tine is one which—at least in principle—could have
been accepted as the longest chain by an honest party. In particular, if the last block of the chain is associated
with slot t, the chain must have length at least that of all honest chains produced before time t−∆, as these
would necessarily be possessed by any honest player at time t.

50

Definition 11 (Divergence). Let F be a ∆-fork for a string w ∈ {0, 1,⊥}∗. For two ∆-viable tines t1 and
t2 of F , define their divergence to be the quantity

div(t1, t2) , min{length(t1), length(t2)} − length(t1 ∩ t2) ,

where t1 ∩ t2 denotes the common prefix of t1 and t2. We extend this notation to the fork F by maximizing
over viable tines: div∆(F) , maxt1,t2 div(t1, t2), taken over all pairs of ∆-viable tines of F . Finally, we
define the ∆-divergence of a characteristic string w to be the maximum over all ∆-forks:

div∆(w) , max
F `∆w

div∆(F) .

Remark 4. Divergence provides an immediate bound on common prefix violations. In particular, any execu-
tion of the protocol inducing a characteristic string w produces honest blockchains satisfying the div∆(w)-
common prefix property.

Given the above, we will now focus on bounding the ∆-divergence of characteristic strings arising from
protocol executions.

E.2 The Reduction Mapping

David et al. [13] provided a method for bounding ∆-divergence by establishing a direct connection between
∆-divergence and divergence in the synchronous setting (when ∆ = 0). We will rely on this machinery and
here record its basic tools.

Definition 12 (Synchronous characteristic strings and forks). A synchronous characteristic string is
an element of {0, 1}∗. A synchronous fork F for a (synchronous) characteristic string w is a 0-fork F `0 w.

Definition 13 (Reduction mapping [13]). For ∆ ∈ N, we define the function ρ∆ : {0, 1,⊥}∗ → {0, 1}∗
inductively as follows:

ρ∆(ε) = ε,

ρ∆(⊥‖w′) = ρ∆(w′),
ρ∆(1 ‖w′) = 1 ‖ ρ∆(w′),

ρ∆(0 ‖w′) =
{

0 ‖ ρ∆(w′) if w′ ∈ ⊥∆−1 ‖ {0, 1,⊥}∗,
1 ‖ ρ∆(w′) otherwise.

(9)

We call ρ∆ the reduction mapping for delay ∆. It will be convenient for us to naturally extend the definition
of ρ∆ to infinite strings over the alphabet {0, 1,⊥}.

The reduction map provides the basic connection between ∆-divergence and (synchronous) divergence.
This is reflected by the lemma below, established by David et al. [13].

Lemma 4 ([13]). Let w ∈ {0, 1,⊥}∗. Then div∆(w) ≤ div0(ρ∆(w)).

We will require also a lemma controlling the behavior of reduction for prefixes of a given string. Here we
use the notation x ≺ y to indicate the the string x is a prefix of the string y.

Lemma 5 (Implicit in [13]). If w,w′ ∈ {0, 1,⊥}∗ and w ≺ w′, then ρ∆(w)d∆ ≺ ρ∆(w′).

Proof. The proof proceeds by induction on the length of w. When |w| ≤ ∆, observe that |ρ∆(w)| ≤ |w| ≤ ∆
and hence ρ∆(w)d∆ = ε. Otherwise |w| > ∆ and we may write w = ax for a single symbol a (and a substring
x). According to the definition, ρ∆(ax) = αρ∆(x) for some α ∈ {ε, 0, 1} that is determined solely by the
first ∆ symbols of w; these agree with w′. By induction ρ(x) = ρ(x′), where w′ = ax′, which concludes the
proof. ut

51

E.3 Reduction and Divergence with Stalled Parties

With these definitions and lemmas behind us, we are prepared to bound divergence (and common prefix) in
our setting with stalled parties.

Definition 14 (The characteristic conditions). Consider a family of random variables W1, . . . ,Wn tak-
ing values in {0, 1,⊥}. We say that they satisfy the (f ; γ)-characteristic conditions if, for each k ≥ 1,

Pr[Wk = ⊥ |W1, . . . ,Wk−1] ≥ (1− f) ,
Pr[Wk = 0 |W1, . . . ,Wk−1,Wk 6= ⊥] ≥ γ , and hence
Pr[Wk = 1 |W1, . . . ,Wk−1,Wk 6= ⊥] ≤ 1− γ .

In the expressions above, conditioning on a collection of random variables indicates that the statement is
true for any conditioning on the values taken by variables. We may naturally apply the same terminology to
infinite sequences of variables taking values in {0, 1,⊥}.

Specifically, for an adversary constrained to (1 − ε)/2 stake ratio, the characteristic string w1, . . . , wR
induced for an epoch of length R roughly satisfies the (f ; (1 + ε)/2)-characteristic conditions. (We lay out
the exact details in the next section.) Our strategy for bounding div∆(w) will be to analyze the structure
of the induced distribution ρ∆(w) (assuming that w satisfies the characteristic conditions) and then directly
bound the (synchronous) divergence of the resulting (synchronous) characteristic string.

The structure of the reduced distribution ρ∆(w). As mentioned above, we begin by analyzing the
structure of the distribution given by ρ∆(w). Specifically, we will show that these random variables are
almost super-binomial, in the sense that after trimming a short suffix, they satisfy a family of martingale
conditions which guarantee that each random variable, conditioned on all prior values, takes the value 0 with
probability at least γ(1− f)∆−1. Finally, we appeal to a theorem of Kiayias et al. [21] and Russell et al. [28]
to establish that ρ∆(w) is unlikely to have large divergence.

Definition 15 (The super-binomial martingale conditions). Consider a family of random variables
X1, . . . , Xn taking values in {0, 1}n. We say that they satisfy the γ-super-binomial martingale conditions (or,
simply, the γ-martingale conditions) if

Pr[Xk = 0 |X1, . . . , Xk−1] ≥ γ , and hence
Pr[Xk = 1 |X1, . . . , Xk−1] ≤ 1− γ .

We may naturally apply the same terminology to infinite sequences of variables taking values in {0, 1}.

It is convenient to explore first the structure of an infinite sequence of these variables, as these do not
require any “trimming” in order to provide the martingale conditions.

Lemma 6 (Structure of the induced distribution without boundary conditions). Let W =
W1,W2, . . . be an infinite sequence of random variables, each taking values in {⊥, 0, 1}, which satisfy the
(f ; γ)-characteristic conditions and let

X = ρ∆(W)

be the random variables obtained by applying the reduction mapping (for delay ∆) to W . Then X = X1, . . . ,
satisfy the γ(1− f)(∆−1)-martingale conditions.

Proof. For each k ≥ 1 we wish to establish that the random variables X1, . . . , Xk satisfy the γ(1− f)(∆−1)-
super-binomial martingale conditions. We prove these conditions under further conditioning. Specifically, we
say that a finite sequence w1, . . . , w`, where each wi ∈ {0, 1,⊥}, is a t-sequence if exactly t of the wi are
elements of {0, 1}. For a (k − 1)-sequence w, let Ew denote the event that Wi = wi (for each 1 ≤ i ≤ `) and
that W`+1 6= ⊥. Observe that these events Ew, taken over all (k − 1)-sequences w of all possible lengths `,
partition the probability space over which W1,W2, . . . is defined. Furthermore, for any (k − 1)-sequence w,

52

conditioning on Ew determines the random variables X1, . . . , Xk−1; we write ρ∆(w) to denote the unique
assignment to X1, . . . , Xk−1 resulting from this (k−1)-sequence w. It follows that, for any fixed x1, . . . , xk−1,
the events Ew for which ρ∆(w) = x1, . . . , xk−1 partition the event that the random variables X1, . . . , Xk−1
take the values x1, . . . , xk−1. Finally, observe that—conditioned on any specific Ew—the (f, γ)-characteristic
conditions guarantee that (W`,W`+1, . . . ,W`+(∆−1)) = (0,⊥, . . . ,⊥) with probability at least γ(1 − f)∆−1.
In this case, Xk = 0, and we conclude that

Pr[Xk = 0 |Ew] ≥ γ(1− f)∆−1 .

It follows that for any fixed values x1, . . . , xk−1,

Pr[Xk = 0 |Xi = xi] ≥ γ(1− f)∆−1 ,

as desired. ut

We record two immediate applications of Azuma’s inequality for random variables satisfying the γ-super-
binomial martingale conditions.

Lemma 7. Let X1, . . . , Xn satisfy the γ-super-binomial martingale conditions with γ ≥ 1/2. Then, for any
δ > 0,

Pr[#0(X) ≤ (1− δ)γn] ≤ exp
(
−δ2n/2

)
(10)

and
Pr[#0(X)−#1(X) ≤ (1− δ)(2γ − 1)n] ≤ exp

(
−δ

2(2γ − 1)2n

8γ2

)
≤ exp

(
−δ2(2γ − 1)2n/8

)
,

(11)

where #0(X) = |{i |Xi = 0}| and #1(X) = |{i |Xi = 1}|.

Proof. For (10), consider the random variables Hk =
∑k
i=1((1−Xi)− γ) = #0(X1, . . . , Xk)− kγ. Observe

that E[Hk |H1, . . . Hk−1] ≥ Hk−1 and that |Hk −Hk−1| ≤ max(γ, 1− γ) = γ, as γ ≥ 1/2. Applying Azuma’s
inequality (Theorem 9 in Appendix F) to the variables Hk yields

Pr[Hn ≤ −δγn] ≤ exp(−δ2n/2) ,

equivalent to (10). As for (11), consider the random variables

Bk = 2
k∑
i=1

(1−Xi − γ) =
(
#0(X1 . . . Xk)−#1(X1 . . . Xk)

)
− k(2γ − 1) .

Then E[Bk |B1, . . . , Bk−1] ≥ Bk−1 and |Bt − Bt−1| ≤ 2γ as γ ≥ 1/2; applying Azuma’s inequality to the
random variables Bk yields (11). ut

Lemma 8 (Structure of the induced distribution). Let W = W1 · · ·Wn be a sequence of random
variables, each taking values in {⊥, 0, 1}, which satisfy the (f ; γ)-characteristic conditions and let

X = X1 · · ·X` = ρ∆(W1 · · ·Wn)

be the random variables obtained by applying the reduction mapping (for delay ∆) to W . Then there is a
sequence of random variables Z1, Z2, . . ., each taking values in {0, 1}, so that

(i) the random variables Z1, . . . , satisfy the γ(1− f)∆−1-martingale conditions;
(ii) X1, . . . , X`−∆ = ρ∆(W)d∆ is a prefix of Z1Z2 · · · .

Under the further condition that Pr[Wi = ⊥ |W1, . . . ,Wi−1] ≤ (1− a) , we also have:

53

(iii) the random variable ` satisfies, for any δ > 0,

Pr[` < (1− δ)an] ≤ exp
(
− δ2a2n

2(1− a)2

)
≤ exp

(
−δ2a2n/2

)
; (12)

(iv) finally, if γ(1− f)∆−1 ≥ (1 + ε)/2 for some ε ≥ 0 then

Pr
[
#0(X) < (1 + ε)an

4 −∆
]
≤ exp

(
−a

2n

32

)
+ exp

(
−an64

)
≤ 2 exp

(
−a

2n

64

)
(13)

and

Pr
[
#0(X)−#1(X) < εan

4 − 2∆
]
≤ exp

(
−a

2n

8

)
+ n exp

(
−ε

2an

64

)
≤ (n+ 1) exp

(
−ε

2a2n

64

)
. (14)

Proof. Treat the random variables W = W1 · · ·Wn as the first n symbols of an infinite sequence W1W2 · · ·
of random variables satisfying the (f, ε)-characteristic conditions. It is clear that such an infinite sequence of
variables exists, as the random variables appearing in the extension Wn+1, . . . can be taken to be i.i.d. with
a coordinatewise distribution that satisfies the (f ; γ)-characteristic conditions with equality. Then define

Z1Z2 · · · , ρ∆(W1W2 · · ·) ,

we wish to show that these variables satisfy the statement of the theorem.
In light of Lemma 6, the random variables Z1, Z2, . . . satisfy the γ(1 − f)∆−1-martingale conditions as

needed for (i). By Lemma 5,

ρ∆(W1 . . .Wn)d∆ ≺ ρ∆(W1W2 . . .) = Z1Z2 . . . ,

proving (ii).
The bound (12) on ` follows by considering the random variables

Ai ,

{
0 if Wi = ⊥,
1 if Wi 6= ⊥,

so that ` =
∑n
i=1 Ai. Then Pr[Ai = 1 |A1, . . . , Ai−1] ≥ a and applying Azuma’s inequality (Theorem 9) to

the random variables Bt ,
∑t
i=1(Ai − a) yields the result.

With this length bound established, we note that ` ≤ (3/4)an with probability no more than
exp(−a2n/32) and, in light of (ii), when ` ≥ (3/4)an we must have #0(X) ≥ #0(Z1, . . . , Z3an/4) − ∆.
Applying the bound of (10) to the Zi with δ = 1/4, we conclude that the probability that

#0(Z1, . . . , Z3an/4) ≤ (1 + ε)an
4 ≤ 1 + ε

2 · 3an
4 · 3

4

is no more than exp(−(3/4)an/32) ≤ exp(−an/64); taking the union bound over these two bad events
yields (13).

Finally, consider (14). As above, we note that ` ≤ an/2 with probability no more than exp(−a2n/8).
Note that

#0(X)−#1(X) ≥ #0(Ẑ)−#1(Ẑ)− 2∆ ,

where Ẑ , Z1 . . . Z`. Observe, however, that the probability that any prefix Z(t) = Z1 . . . Zt, where an/2 ≤
t ≤ n, has #0(Z(t))−#1(Z(t)) ≤ (2[(1 + ε)/2]− 1)an/4 = εan/4 is no more than

n · exp(−ε2an/64)

by (11). (This follows by taking the union bound over each of the individual n − an/2 ≤ n bad events.)
Finally, taking the union bound over these two bad events yields (14). ut

54

Divergence and forkability of ρ∆(w). We record a theorem of Russell et al. [28] which bounds the
probability that random variables satisfying the (1 + ε)/2-martingale conditions are forkable.

Theorem 4 (implicit in [28]). Let X1, . . . , Xn be random variables taking values in {0, 1} that satisfy the
(1 + ε)/2-martingale conditions. Then

Pr[X1 · · ·Xn is forkable] ≤ exp
(
− 2ε4n

1 + 35ε

)
≤ exp

(
−ε

4n

18

)
.

Note that the constant 1/18 is quite loose when ε is small; in particular, the bound is exp(−2ε4(1−O(ε))n).

In fact, the original presentation [28] stated the result for binomially distributed variables, but the proof
appearing there proceeds via a martingale analysis which can be immediately adapted to our setting where
the Xi are themselves a super-binomial martingale (e.g., satisfy the (1 + ε)/2-martingale conditions).

We record, also, the fundamental relationship between forkable strings and divergence, established by
Kiayias et al. [21].
Theorem 5 ([21]). Let w ∈ {0, 1}∗. Then there is forkable substring w̌ of w with |w̌| ≥ div0(w).

Finally, we combine these results to control div∆(W) for a string W satisfying the (f ; γ)-characteristic
conditions.

Theorem 6. Let W = W1, . . . ,WR be a family of random variables, taking values in {0, 1,⊥} and satisfying
the (f, γ)-characteristic conditions. If ∆ > 0 and ε > 0 satisfy γ(1− f)∆−1 ≥ (1 + ε)/2 then

Pr[div∆(W) ≥ k +∆] ≤ 19R
ε4

exp(−ε4k/18) .

Proof. Defining X = ρ∆(W), we have

div∆(W)
(a)
≤ div0(X)

(b)
≤ div0(Xd∆) +∆

(c)
≤ div(Z1 . . . ZR) +∆ , (15)

where Z1, Z2, . . . are the random variables satisfying the γ(1 − f)∆−1-martingale conditions promised by
Lemma 8. Above, inequality (a) follows from Lemma 4, inequality (b) from the fact that divergence satisfies
the growth bound

div0(xy) ≤ div0(x) + |y| , (16)
and inequality (c) follows from Lemma 8(ii) and (16). By Theorem 5, when div0(Z) ≥ k there is a forkable
substring of Z of length at least k; then summing the bounds provided by Theorem 4 over all lengths at
least k we find that the probability of such a substring beginning at a particular fixed index is no more than

∞∑
t=k

exp
(
−ε

4t

18

)
= exp

(
−ε

4k

18

) ∞∑
t=0

exp
(
−ε

4t

18

)
= exp

(
−ε

4k

18

)(
1

1− exp(−ε4/18)

)
≤ exp

(
−ε

4k

18

)(
1

1− (1− ε4/18 + (ε4/18)2/2)

)
≤ exp

(
−ε

4k

18

)(
18
ε4

)(
1

1− (ε4/36))

)
≤ exp

(
−ε

4k

18

)(
18
ε4

)(
36
35

)
≤ 19
ε4

exp
(
−ε

4k

18

)
.

As there are no more than R indices where such a forkable string could begin, we conclude that

Pr[div0(Z1 . . . ZR) ≥ k] ≤ 19R
ε4

exp
(
−ε

4k

18

)
.

Combining this with (15), the statement of the theorem follows immediately. ut

55

E.4 Distribution of Characteristic Strings in a Single Epoch

We now consider an execution of Ouroboros-Praos over a single epoch consisting of R slots in the setting with
static FN-MC-registration (as in Theorem 1). We assume that the randomness used for slot leader selection
throughout this epoch is perfect (i.e., unbiased by the adversary) and known to all participating stakeholders
(just as in the first epoch, where it is a part of the genesis block G provided by FINIT). In what follows, we
refer to this as the single-epoch setting.

Recall that within a single epoch, the stake distribution used for electing slot leaders is fixed. Nonethe-
less, there are still several adaptive aspects of the experiment: the adversary is allowed to adaptively corrupt
stakeholders (so the amount of corrupted stake may adaptively increase during an epoch); and the environ-
ment can adaptively stall parties by deregistering them either from Gclock or GRO (and of course, place them
back online by registering them).

As determined by the Ouroboros-Praos protocol, a party with relative stake α ∈ [0, 1] becomes a slot
leader for a given slot with probability

φf (α) = 1− (1− f)α .

We recall the motivation (from [13]) for this non-linear stake scaling convention for leader selection: the
function φf satisfies the “independent aggregation” property:

1− φ
(∑

i

αi

)
=
∏
i

(1− φ(αi)) . (17)

In particular, when leadership is determined according to φf , the probability of a stakeholder becoming
a slot leader in a particular slot is independent of whether this stakeholder acts as a single party in the
protocol, or splits its stake among several “virtual” parties. In particular, consider a party U with relative
stake α who contrives to split its stake among two virtual subordinate parties with stakes α1 and α2 (so
that α1 + α2 = α). Then the probability that one of these virtual parties is elected for a particular slot is
1− (1−φ(α1))(1−φ(α2)), as these events are independent. Property (17) guarantees that this is identical to
φ(α). Thus this selection rule is invariant under arbitrary reapportionment of a party’s stake among virtual
parties. We record some further elementary properties of this convention.

Proposition 1. The function φf (α) satisfies the following properties.

φf

(∑
i

αi

)
= 1−

∏
i

(1− φf (αi)) ≤
∑
i

φf (αi) , for any αi ≥ 0 , (18)

αf ≤ φf (α) ≤ α(− ln(1− f)) = α

(
f + f2

2 + f3

3 + . . .

)
, for any α ∈ [0, 1] . (19)

Proof. These inequalities are discussed and proven in [13] with the exception of the bound

φf (α) ≤ α(− ln(1− f)) .

This follows because
dφf
dα

(0) = − ln(1− f) and d2φf
dα2 (α) = −(1− f)α

(
ln(1− f)

)2
.

As the second derivative is everywhere negative, the linear approximation via the first derivative at zero is
an upper bound. ut

Our adversarial stake assumptions yield a characteristic string distribution W1, . . . ,WR governed by the
(evolving) stake of the active and honest (i.e., alert) participants during each slot. In preparation for a
detailed description, we recall the notation S(U) ∈ [0, 1] which denotes the relative stake of participant U ;
for convenience, we overload S so that it applies to subsets of participants: S(T) =

∑
U∈T S(U).

56

Lemma 9. The protocol Ouroboros-Praos, when executed in the single-epoch setting, induces characteristic
strings W1, . . . ,WR (with each Wt ∈ {0, 1,⊥}) satisfying

(1− f) ≤ Pr[Wt = ⊥ |W1, . . . ,Wt−1] =
∏

U∈Pactive[t]

(1− f)S(U) = 1− φf (S(Pactive[t])) , (20)

where Pactive[t] denotes the set of active participants at time t. Furthermore,

Pr[Wt = 0 |W1, . . . ,Wt−1] ≥ φf (S(Palert[t]))(1− f)S(Pactive[t]) ≥ S(Palert[t])f(1− f) , (21)
Pr[Wt 6= ⊥ |W1, . . . ,Wt−1] = φf (S(Pactive[t])) ≤ S(Pactive[t])(− ln(1− f)) , (22)

where Palert[t] denotes the set of alert participants at time t.

Proof. This follows from the definition of φf (·) and the properties (18) and (19). ut

Then it follows immediately that these random variables satisfy the characteristic conditions.

Corollary 2. The protocol Ouroboros-Praos, when executed in the single-epoch setting, induces characteristic
strings W1, . . . ,WR (with each Wt ∈ {0, 1,⊥}) satisfying the (f ; cf ·(1−f)α)-characteristic conditions, where

α = min
t

S(Palert[t])
S(Pactive[t]) , cf = f

− ln(1− f) ,

and Palert[t] and Pactive[t] denote the alert (honest) and active participants at time t. Furthermore, as noted
above, Pr[Wt = ⊥ |W1, . . . ,Wt−1] = 1− φf (S(Pactive[t])).

For convenience, we note a weaker, but simpler, conclusion: the W1, . . . ,WR satisfy the (f ; (1 − f)2α)-
characteristic conditions and, additionally,

Pr[Wt = ⊥ |W1, . . . ,Wt−1] ≤ 1− f · S(Pactive[t]) .

Proof. The first statement follows directly from Lemma 9 and Definition 14. The weaker conclusion follows
from the first one, as we have

cf = f

− ln(1− f) = f

f + f2/2 + f3/3 + · · · ≥
1

1 + f + f2 + · · · = 1− f ,

and φf (a) ≥ fa. (We remark that the inequality cf ≥ (1− f)(2 + f)/2 is an alternative polynomial approx-
imation, somewhat more cumbersome than the bound above, which is tight to first order at f ≈ 0.) ut

E.5 Common Prefix, Chain Growth, and Chain Quality for a Single Epoch

Corollary 3 (Common prefix). Let W = W1, . . . ,Wr denote the characteristic string induced by the
Ouroboros-Praos protocol in the single-epoch setting over a sequence of r slots. Assume that ε > 0 satisfies

α(1− f)∆+1 ≥ (1 + ε)/2 ,

where α is the minimum alert stake ratio: mint S(Palert[t])/S(Pactive[t]). Then

Pr[div∆(W) ≥ k +∆] ≤ 19r
ε4

exp(−ε4k/18) ,

and hence a k-common-prefix violation occurs with probability at most

ε̄CP(k; r,∆, ε) , 19r
ε4

exp(∆− ε4k/18) .

Proof. The statement is a direct consequence of combining Theorem 6 with Corollary 2. ut

57

Following [16, 13], for a fixed characteristic string w = w1, . . . , wr we say that an index (or slot) i ∈
[1, r −∆+ 1] is ∆-right-isolated if wi = 0 and wi+1 = wi+2 = · · · = wi+∆−1 = ⊥.

In preparation for establishing chain growth and chain quality, we describe two further chain properties
that will be instrumental in the arguments.

Honest-Bounded Chain Growth (HCG); with parameters τ ∈ (0, 1], s ∈ N. Consider a chain C
possessed by an alert party at the onset of a slot sl. Let sl1 and sl2 be two previous slots for which
sl1 + s ≤ sl2 ≤ sl and both C[sl1] and C[sl2] are honest blocks. Then |C[sl1 + 1 : sl2]| ≥ τ · s.

Honest-Bounded Chain Quality (HCQ); with parameters τ ∈ (0, 1], s ∈ N. Consider a chain C
possessed by an alert party at the onset of a slot sl. Let sl1 and sl2 be two previous slots for which
sl1 + s ≤ sl2 ≤ sl and both C[sl1] and C[sl2] are honest blocks. Then C[sl1 + 1 : sl2] must contain at
least τ · s honestly generated blocks.

Note that HCQ clearly implies HCG with the same parameters; however, looking ahead, we will establish
stronger bounds for HCG. These properties can be combined with existential chain quality (∃CQ, defined in
Section 4.1) to establish chain growth (CG) and chain quality (CQ), as described in the lemma below.

Lemma 10. Consider an execution of Ouroboros-Praos that satisfies ∃CQ with parameter s∃CQ. Then the
following hold:

1. If the execution satisfies HCG with parameters τHCG and sHCG, then it satisfies CG with parameters

s = 2s∃CQ + sHCG and τ = τHCG ·
(

sHCG
sHCG + 2s∃CQ

)
.

In particular, assuming sHCG ≥ 2s∃CQ, the execution satisfies CG with parameter τ ≥ τHCG/2.
2. If the execution satisfies HCQ with parameters τHCQ and sHCQ, then it satisfies CQ with parameters

k = 2s∃CQ + sHCQ and µ = τHCQ ·
(

sHCQ
sHCQ + 2s∃CQ

)
.

In particular, assuming sHCQ ≥ 2s∃CQ, the execution satisfies CQ with parameter µ = τHCQ/2.

Proof. Regarding the first statement of the lemma, consider a portion of a chain C held by an alert party
spanning ŝ ≥ s = 2s∃CQ + sHCG slots. By ∃CQ, there must be an honest block associated with the first
s∃CQ and last s∃CQ slots. Between these two honest blocks, which are separated by at least sHCG slots, HCG
guarantees that at least

τHCG · (ŝ− 2s∃CQ) = τHCG ·
(
ŝ− 2s∃CQ

ŝ

)
︸ ︷︷ ︸

(†)

ŝ ≥ τHCG ·
(

sHCG
sHCG + 2s∃CQ

)
ŝ

blocks appear. (The last inequality follows because the function fλ(x) = (x− λ)/x, for any λ > 0, is strictly
increasing for x > 0—thus (†) is minimized when ŝ = sHCG + 2s∃CQ.) The statement of the lemma follows.

Likewise, for the second statement of the lemma, consider a portion of a chain C containing k̂ ≥ k =
2s∃CQ + sHCQ blocks; of course, this portion must span at least k̂ slots. Applying ∃CQ to the s∃CQ slots on
either side of the interval (as above) and HCQ to the remaining k̂− 2s∃CQ slots, the chain C must contain at
least

τHCQ · (k̂ − 2s∃CQ) = τHCQ ·

(
k̂ − 2s∃CQ

k̂

)
k̂ ≥ τHCQ ·

(
sHCQ

sHCG + 2s∃CQ

)
k̂

honestly-generated blocks. ut

We now establish concrete bounds on HCG, HCQ, and ∃CQ for Ouroboros-Praos in the single-epoch setting.

58

Lemma 11. Let W = W1, . . . ,Wr denote the characteristic string induced by the protocol Ouroboros-Praos
in the single-epoch setting over a sequence of r slots. Let α, β ∈ [0, 1] denote lower bounds on the alert stake
ratio and the participating stake ratio as per Definition 2, i.e.,

α , min
t
S(Palert[t])/S(Pactive[t]) and β , min

t
S(Pactive[t]) , (23)

and assume that for some ε ∈ (0, 1) the parameter α satisfies

α(1− f)∆+1 ≥ (1 + ε)/2 .

Then HCG, HCQ, and ∃CQ are guaranteed with the following parameters:

HCG: For s ≥ 8∆/(βf) and τ = βf/8,

Pr[W admits a (τ, s)-HCG violation] ≤ ε̄HCG(τ, s; r) , 2r2 exp
(
−(fβ)2s/64

)
.

HCQ: For s ≥ 16∆/(εβf) and τ = εβf/8,

Pr[W admits a (τ, s)-HCQ violation] ≤ ε̄HCQ(τ, s; r, ε) , r2(s+ 1) exp
(
−(εfβ)2s/64

)
.

∃CQ: For s ≥ 12∆/(εβf),

Pr[W admits a s-∃CQ violation] ≤ ε̄∃CQ(s; r, ε) = r2(s+ 1) exp
(
−(εβf)2s/64

)
.

Proof. For convenience, let us call a slot good if it is ∆-right-isolated uniquely alert, and bad if it is neither
empty nor good. We extend this terminology to blocks by calling a block good (resp. bad) if it is associated
with a good (resp. bad) slot. For the discussion of honest-bounded properties below, consider a chain C
held by an alert party at slot sl and two prior slots sl1 and sl2 for which (i.) sl, sl1 and sl2 belong to
the sequence of r slots inducing W ; (ii.) both C[sl1] and C[sl2] are honestly generated blocks, and (iii.)
sl1 + s ≤ sl2 ≤ sl. Let T denote the interval

T , {sl1 + 1, . . . , sl2}

and let ŝl1, . . . , ŝlg be the increasing sequence of all good slots in T (here the notion of isolation refers to
this block of slots: in particular, a good slot must be at least ∆ slots from the right end of T). Let V denote
the portion of W associated with the slots in T and let X = ρ∆(V). Note that the good (resp., bad) slots
appear as 0 (resp., 1) symbols in X, and hence g = #0(X). Let also b , #1(X) denote the number of bad
slots of T .

HCG: Recall that honest-bounded chain growth demands that |C[sl1 + 1 : sl2]| ≥ τs. To argue this, first
observe that the uniquely alert slot leader associated with ŝl2 will consider the chain C[0 : sl1] in the
chain selection rule, as C[0 : sl1] was diffused by a slot leader in sl1 and ŝl2 ≥ ŝl1 + ∆ ≥ sl1 + ∆. In
particular, the chain diffused by the unique slot leader in ŝl2 (after block addition) must have length at
least |C[0 : sl1]|+1. By the same argument, the chains diffused by the uniquely alert players associated with
ŝl2, . . . , ŝlg must grow monotonically: specifically, the chain diffused by the leader at slot ŝlg must have
length at least |C[0 : sl1]| + (g − 1). Finally, note that the player generating the (honest) block C[sl2] will
have received the chain diffused by the leader of ŝlg. We conclude that

|C[0 : sl2]| ≥ |C[0 : sl1]|+ g = |C[0 : sl1]|+ #0(X) .

Observe now that for τ = (1 + ε)βf/4−∆/s,

Pr[W admits (τ, s)-HCG violation for (sl1, sl2)] ≤ Pr[#0(X) ≤ τs]
= Pr[#0(X) ≤ βf(1 + ε)s/4−∆]
≤ 2 exp

(
−(fβ)2s/64

)
,

59

where the last inequality follows from (13). By the union bound, applied over all pairs of slots, we conclude
that

Pr[W admits a (τ, s)-HCG violation] ≤ 2r2 exp(−(fβ)2s/64) .
The simpler bound appearing in the theorem statement can be obtained by assuming that s ≥ 8∆/(βf) and
taking τ ′ = βf/8. Then any (s, τ ′)-HCG violation is a (s, τ)-HCG violation, as τ ′ < τ for such s.

HCQ. Recall that honest-bounded chain quality demands that C[sl1 + 1 : sl2] contains at least τs honestly
generated blocks. Note that, as argued above, |C[sl1 + 1 : sl2]| ≥ g. On the other hand, the total number of
adversarially-generated blocks in C[sl1 + 1 : sl2] can be no more than b. It follows that at least g− b blocks
in C[sl1 + 1 : sl2] are honest. Observe then that for τ = εβf/4− 2∆/s,

Pr[W admits a (τ, s)-HCQ violation for (sl1, sl2)] ≤ Pr[#0(X)−#1(X) ≤ τs]
= Pr[#0(X)−#1(X) ≤ εβfs/4− 2∆]
≤ (s+ 1) exp

(
−(εfβ)2s/64

)
,

where the last inequality follows from (14). Applying the union bound over all pairs of slots yields

Pr[W admits a (τ, s)-HCQ violation] ≤ r2(s+ 1) exp
(
−(εfβ)2s/64

)
.

The simpler bound appearing in the theorem statement can be obtained by assuming s ≥ 16∆/(εβf) and
taking τ ′ = εβf/8. Then any (s, τ ′)-HCQ violation is a (s, τ)-violation, as τ < τ ′ for such s.

∃CQ. We now consider the probability of an s-∃CQ-violation. Recall that an s-∃CQ violation is described
by a chain C, eventually held by an alert party, and a pair of slots sl1 < sl2 for which sl1 + s ≤ sl2 and
C[sl1 : sl2] contains no honestly generated blocks. Note that in this setting we no longer assume that C[sl1]
and C[sl2] are honest.

First, observe that all blocks in C[sl1 : sl2] are bad (as they are not even honestly generated). Let G1
denote the latest honestly-generated block in C[0 : sl1 − 1] (note that at least C[0] is considered honest)
and let sl1 denote the slot associated with G1; likewise, let G2 denote the earliest honestly-generated block
appearing in C[sl2 + 1 : sl] (or the last block of C, if there is no honest one) and let sl2 denote the slot
associated with G2. Note that all blocks between G1 and G2 are bad.

Denote by S the continuous sequence of slots

S = {sl1 + 1, . . . , sl2} .

If G2 = C[sl2] is honest, note that by the same argument as above |C[0 : sl2]| ≥ |C[0 : sl1]|+ g′, where g′ is
the number of good slots in S. However, in chain C we have |C[0 : sl2]| ≤ |C[0 : sl1]|+ b′+ 1, where b′ is the
number of bad slots in the same sequence S, since by assumption C[sl1 + 1 : sl2 − 1] contains no honestly
generated blocks. These two conditions can only be satisfied at the same time if g′ ≤ b′ + 1. On the other
hand, if G2 was not generated by an honest party, we can only conclude that |C[0 : sl2]| ≥ |C[0 : sl1]|+g′−1;
specifically, note that C has been adopted by an honest player at slot sl, and so must have length at least that
of the chain diffused during the last good slot of S. However, in this case we have |C[0 : sl2]| ≤ |C[0 : sl1]|+b′,
where b′ is the number of bad slots in S, since C[sl1 + 1 : sl2] contains no honestly generated blocks. Again
we find that g′ ≤ b′ + 1.

Observe that good slots are associated with 0s in the string X ′ = ρ∆(V ′), where V ′ is the portion of W
associated with the interval S; likewise, bad slots are associated with 1s in this sequence. Specifically,

Pr[W admits an s-∃CQ violation for (sl1, sl2)] ≤ Pr[#0(X ′)−#1(X ′) ≤ 1] .

For s ≥ 12∆/(εβf), εs(βf)/4 ≥ 2∆+ 1 and hence, by (14),

Pr[W admits an s-∃CQ violation for (sl1, sl2)] ≤ Pr[#0(X ′)−#1(X ′) ≤ 1]
≤ Pr[#0(X ′)−#1(X ′) ≤ εs(βf)/4− 2∆]
≤ (s+ 1) exp

(
−(εβf)2s/64

)
.

60

The union bound, applied over all pairs of slots, then yields

Pr[W admits an s-∃CQ violation] ≤ r2(s+ 1) exp
(
−(εβf)2s/64

)
.

ut

Corollary 4 (Chain Growth). Let W = W1, . . . ,Wr denote the characteristic string induced by the pro-
tocol Ouroboros-Praos in the single-epoch setting over a sequence of r slots. Let α, β ∈ [0, 1] denote lower
bounds on the alert stake ratio and the participating stake ratio as per Definition 2, i.e.,

α , min
t
S(Palert[t])/S(Pactive[t]) and β , min

t
S(Pactive[t]) ,

and assume that for some some ε ∈ (0, 1) the parameter α satisfies

α(1− f)∆+1 ≥ (1 + ε)/2 .

Then for
s = 48∆/(εβf) and τ = βf/16 (24)

we have
Pr[W admits a (s, τ)-CG violation] ≤ ε̄CG(τ, s; r, ε) , 1

2sr
2 exp

(
−(εβf)2s/256

)
.

Proof. The corollary follows directly by combining Lemmas 10 and 11, using s∃CQ = 12∆/(εβf), sHCG =
2sECQ, and τHCG = βf/8. ut

Corollary 5 (Chain Quality). Let W = W1, . . . ,Wr denote the characteristic string induced by the pro-
tocol Ouroboros-Praos in the single-epoch setting over a sequence of r slots. Let α, β ∈ [0, 1] denote lower
bounds on the alert stake ratio and the participating stake ratio as per Definition 2, i.e.,

α , min
t
S(Palert[t])/S(Pactive[t]) and β , min

t
S(Pactive[t]) ,

and assume that for some some ε ∈ (0, 1) the parameter α satisfies

α(1− f)∆+1 ≥ (1 + ε)/2 .

Then for
k = 48∆/(εβf) and µ = εβf/16

we have
Pr[W admits a (µ, k)-CQ violation] ≤ ε̄CQ(µ, k; r, ε) , 1

2kr
2 exp

(
−(εβf)2k/256

)
.

Proof. The corollary follows directly by combining Lemmas 10 and 11, using s∃CQ = 12∆/(εβf), sHCQ =
2s∃CQ, and τHCQ = εβf/8. ut

E.6 Lifting to Multiple Epochs

The above analysis gives bounds for common prefix, chain growth, and variants of chain quality (denoted
ε̄CP, ε̄CG, ε̄CQ, and ε̄∃CQ, respectively) for a single-epoch run of the protocol with static stake distribution
and perfect randomness. We now conclude our proof of Theorem 1 by showing conditions under which these
blockchain properties hold throughout the whole lifetime of the system consisting of many epochs.

61

Theorem 7. Consider the execution of Ouroboros-Praos with adversary A and environment Z in the setting
with static FN-MC-registration. Let f be the active-slot coefficient, let ∆ be the upper bound on the network
delay. Let α, β ∈ [0, 1] denote a lower bound on the alert and participating stake ratios throughout the whole
execution, respectively. Let R and L denote the epoch length and the total lifetime of the system (in slots),
and let Q be the total number of queries issued to GRO. If for some ε ∈ (0, 1) we have

α · (1− f)∆+1 ≥ (1 + ε)/2 ,

then Ouroboros-Praos achieves the same guarantees for common prefix (resp. chain growth, chain quality,
existential chain quality) as given in Corollary 3 (resp. Corollary 4, Corollary 5, Lemma 11) except with an
additional error probability of

QL · (2ε̄CG (τ,R/3;R, ε) + 2ε̄CP (τR/3;R,∆, ε) + ε̄∃CQ (R/3;R, ε)) , (25)

where τ = βf/16. If R ≥ 36∆/εβf then this term can be upper-bounded by

εlift , QL ·
[
R3 · exp

(
− (εβf)2R

768

)
+ 38R

ε4
· exp

(
∆− ε4τR

54

)]
. (26)

Proof (sketch). This part of the analysis proceeds similarly as in Section 5 of [13] and hence we only sketch
it. When moving from the single-epoch setting to a setting with several epochs, two new aspects need to be
considered:

– Stake distribution updates. The stake distribution used for sampling slot leaders changes in every
epoch (this is why we consider epochs in the first place). In Ouroboros-Praos (and Ouroboros-Genesis), the
distribution used for sampling in epoch ep is set to be the stake distribution recorded on the blockchain
up to the last block of the epoch ep− 2.

– Randomness updates. Every epoch needs new public randomness to be used for sampling slot leaders
from the above distribution. For epoch ep, this randomness is obtained by hashing together VRF-outputs
put into blocks in epoch ep−1 by their creators. More precisely, the protocol hashes together these values
from the blocks in the first 2R/3 slots of epoch ep− 1 (out of its R slots).

To argue that the above process of updating stake distribution and public randomness does not noticeably
deviate the execution from the single-epoch analysis, we rely on the single-epoch setting bounds proven above.
In particular, we make the following three observations:

– Chain growth and common prefix imply that during the first R/3 slots of each epoch, each honest player’s
chain grows by at least τR/3 blocks (for τ as in (24)) and therefore after these slots, all honest players
agree on the stake distribution at the end of the previous epoch except with probability

ε̄CG(τ,R/3;R, ε) + ε̄CP(τR/3;R,∆, ε) .

– Existential chain quality implies that during the second R/3 slots of each epoch, each honest player’s
chain grows contains at least one honest block except with probability

ε̄∃CQ(R/3;R, ε) .

That implies that the randomness that will be derived for the next epoch will be influenced by at least
one honest VRF-output.

– Chain growth and common prefix imply that during the last R/3 slots of each epoch, each honest
player’s chain grows by at least τR/3 blocks and therefore after these slots, all honest players agree on
the randomness for the next epoch except with probability

ε̄CG(τ,R/3;R, ε) + ε̄CP(τR/3;R,∆, ε) .

62

Hence, if we assumed perfect randomness in each epoch, all the above desired properties would be satisfied
throughout the lifetime of the system L except with probability

L · (2ε̄CG (τ,R/3;R, ε) + 2ε̄CP (τR/3;R,∆, ε) + ε̄∃CQ (R/3;R, ε))

by union bound.
However, the above properties are not sufficient to infer that the public randomness used for leader

election in the next epoch will be perfect. Instead, the process of deriving it described above still allows a
limited amount of grinding by the adversary, who can decide whether to include blocks (with VRF outputs)
in slots where he is a slot leader. In [13], it is shown that this grinding effect can be crudely upper-bounded by
limiting the number of queries to the random oracle that the adversary makes (of course, more fine-grained
bounds are possible). The same argument applies here, and hence we need to introduce the quantity Q into
our bound (25). Since we model the random oracle as a global functionality GRO, the quantity Q is an upper
bound on the total number of queries to GRO that were asked during the execution, including queries from
the environment.

Finally, the bound (26 is obtained by instantiating (25) with the concrete bounds of Corollaries 3 and 4,
and Lemma 11 (where the latter requires the assumption R ≥ 36∆/εβf). ut

F Large Deviation Bounds

We apply a variety of large deviation bounds in our probabilistic arguments, which we record here for
concreteness. See, e.g., [24] for proofs and further discussion.

Theorem 8 (Chernoff bound). Let X1, . . . , XT be independent random variables with E[Xi] = pi and
Xi ∈ [0, 1]. Let X =

∑T
i=1 Xi and µ =

∑T
i=1 pi = E[X]. Then, for all Λ ≥ 0,

Pr[X ≥ (1 + Λ)µ] ≤ e−
Λ2

2+Λµ ;

Pr[X ≤ (1− Λ)µ] ≤ e−
Λ2

2+Λµ .

Theorem 9 (Azuma’s inequality (Azuma; Hoeffding). See [24, 4.16] for discussion). Let
X0, . . . , Xn be a sequence of real-valued random variables so that, for all t, |Xt+1 − Xt| ≤ c for some
constant c. If E[Xt+1 |X0, . . . , Xt] ≤ Xt for all t then for every Λ ≥ 0

Pr[Xn −X0 ≥ Λ] ≤ exp
(
− Λ2

2nc2

)
.

Alternatively, if E[Xt+1 |X0, . . . , Xt] ≥ Xt for all t then for every Λ ≥ 0

Pr[Xn −X0 ≤ −Λ] ≤ exp
(
− Λ2

2nc2

)
.

63

G List of Symbols

The communication model:
∆ maximum message delay in slots

Functionalities:
Gclock global clock
GRO global random oracle
Fbc,∆

N-MC ∆-delayed network for diffusing blockchains
F tx,∆

N-MC ∆-delayed network for diffusing transactions
FINIT init functionality providing the genesis block
FVRF verifiable random function
FKES key-evolving signature scheme
Gledger the ledger functionality

Functionality Gledger:
τL current time

~τstate sequence of time stamps of state blocks
~ITH timed honest-input sequence

SinitStake initial stakeholder set

Protocol Ouroboros-Genesis:
f active slots coefficient
φ(·) slot-leader probability function (Eq. (1))
R epoch length in slots

Sep stake distribution used to sample slot leaders in epoch ep
αep
p relative stake of party Up in Sep
ηep randomness used to sample slot leaders in epoch ep

Analysis:
α alert stake ratio (Def. 2)
β participating stake ratio (Def. 2)
L total length of the execution (in slots)
Q total number of queries to the random oracle

64

	Ouroboros Genesis: Composable Proof-of-Stake Blockchains with Dynamic Availability
	Introduction
	The Model
	The Real World Execution
	The Ideal World Execution

	Ouroboros Genesis as a UC-Protocol
	The Formal Protocol Description
	Registration and Deregistration
	Registration
	De-registration

	Interacting with the Ledger
	Party Initialization
	Fetching Information from the Network
	The Staking Procedure
	Chain Selection
	Reading the State

	Security Analysis
	Blockchain Security Properties
	Security of Ouroboros Praos with maxvalid-mc
	Adopting the New maxvalid-bg Rule
	Newly Joining Parties
	Composable Guarantees

	The Model (Cont'd)
	Functionalities With Dynamic Party Sets
	The Communication Network
	Modeling Synchrony
	The Global Random Oracle Setup.
	The Genesis Block Distribution
	Additional Functionalities/Hybrids Used in the Security Proof
	The Ouroboros Genesis Ledger
	Formal Specification of ExtendPolicy for the PoS Ledger

	Ouroboros Genesis as a UC-Protocol (Cont'd)
	The Simulator
	Proof-of-Stake Assumptions as a UC Wrapper
	Proof of Theorem 1
	Forks and Divergence in the Semi-synchronous Setting
	The Reduction Mapping
	Reduction and Divergence with Stalled Parties
	Distribution of Characteristic Strings in a Single Epoch
	Common Prefix, Chain Growth, and Chain Quality for a Single Epoch
	Lifting to Multiple Epochs

	Large Deviation Bounds
	List of Symbols

