
Fine-Grained
& Application-Ready Distance-Bounding Security

Ioana Boureanu1, David Gerault2, and Pascal Lafourcade2

1 University of Surrey, UK
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Abstract. Distance-bounding (DB) protocols are being adopted in different applications,
e.g., contactless payments, keyless entries. For DB to be application-ready, “pick-and-
choose” corruption models and clear-cut security definitions in DB are needed. Yet, this
is virtually impossible using the four existing formalisms for distance-bounding (DB),
whereby each considers around five different security properties, arguably intertwined
and hard to compare amongst each other.
In particular, terrorist-fraud resistance has been notoriously problematic to formalise

in DB. Also, achieving this property, often weakness a protocol’s general security. We
demonstrate that –in fact– terrorist-fraud resistance cannot be achieved, under standard
assumptions made for DB protocols. Our result wraps up terrorist-fraud resistance in
provable-security in DB.
As a consequence of terrorist-fraud resistance being made irrelevant, and to address

application-ready DB, we present a new, provable-security model for distance-bounding.
It formalises fine-grained corruption-modes (i.e., white-box and black-box corrupted
provers) and this allows for clearer security definitions driven by the separation in
corruption-modes. Also, our model explicitly includes a security-property generalising
key-leakage, which per se –before this– was studied only implicitly or as a by-product
of other DB-security properties. In all, our formalism only requires three, clear-cut
security definitions which can be “picked and chosen” based on the application-driven
prover-corruption modes.

1 Introduction
Relaying between two legitimate entities Alice and Bob is an attack whereby a man-in-the-
middle Charlie sends Alice’s messages to Bob and/or Bob’s messages to Alice, unbeknown
to them, so that Charlie obtains a facility meant for Alice and granted by Bob or vice-versa.
One such privilege could be that the malicious Charlie achieves to be incorrectly authenticated
by Bob, as if Charlie was Alice. Another example of a facility that could be illicitly gained
by Charlie via relaying is that of Charlie fraudulently spending the funds associated to Alice’s
bank-card at an electronic-payment terminal embodied by Bob. Certainly, the most widely used
electronic-payment protocol, namely EMV (Europay, Mastercard and Visa), in their contactless
version, is susceptible to relay attacks [13]. Moreover, last year, relays in passive keyless entry
systems (PKES) in cars leading to car-theft made international news3. Clearly, relay-attacks’
heaven is contactless communication, where due to the spontaneous initiation of the transmission
and the lack of user inputs, a relay attack is totally transparent. Meanwhile, relay attacks are
notoriously hard to detect and deter, as they subvert all cryptographic mechanisms potentially
employed in the underlying protocols.

Yet, an attacker Charlie relaying between parties Alice and Bob generally introduces delays
to the expected round-trip times of exchanges between Alice and Bob. Indeed, imposing an
upper-bound on the round-trip times (RTTs) of message-exchanges is a known, physical-layer
mechanism for effectively lowering the probability of successful relay attacks. This mechanism
is often referred to as proximity-checking: i.e., a prover tag (RFID card, smartcard, NFC-enabled
device, . . . ) should prove that they are within a short distance from a given verifier/reader. Often,

3 http://www.bbc.com/news/av/uk-42132804/relay-crime-theft-caught-on-camera



within the proximity-proof, the former also authenticate themselves to the latter. The primitive
where proximity-checking composed with a unilateral-authentication mechanism bares the name
of distance-bounding (DB) was introduced by Brands and Chaum [12] to combat relay attacks
against ATM systems.

A Recap of the DB Threats. In DB protocols, a tag (RFID card, smart card, etc.) should
prove an upper-bound on the distance between them and a reader, and authenticate themselves in
front of this reader. The authentication part is generally based on a pre-established secret, such as
a cryptographic key hard-coded on the tag and retrievable by the reader from a backend database.
In DB, the tag and the reader are often referred to as the prover and the verifier. In the vast
literature covering such protocols [1], three “classical” types of possible attacks have been distin-
guished. In a distance-fraud (DF), a dishonest prover P∗ tries to convince that he is within the
distance-bound when in fact he is not. A mafia-fraud (MF) attack involves three entities: a honest
prover P , found far-away from an honest verifier, and an adversary; the latter communicates to
make the verifier believe the prover is in the verifier’s proximity and authenticate as this prover.
Finally, in a terrorist-fraud (TF), a dishonest prover P∗ positioned out of the distance bound
from the verifier colludes with an accomplice, so that this accomplice authenticates as P . Since
hardly anything can be done if the prover is willing to give permanent access to his accomplice,
for instance by giving him his device or his credentials, only provers who do not want to leak
their credentials are considered. Hence, the attack is valid if P∗ colludes in such a way that
it does not disclose long-term secret material, such as keys, or any other information that may
facilitate later impersonations of the tag by the accomplice. In recent years, the DB threat-model
has been widened. [15] coined impersonation attacks, and [14] advanced a strengthening of
distance-frauds under the name of distance-hijacking (i.e., the dishonest, out-of-bound proverP∗
mounts his fraudulent proximity-proofs by abusing honest provers located close to the verifier).
And, [10] gives further generalisations of these all: e.g., mafia-fraud captured via more generic
and more powerful man-in-the-middle (MiM) attacks, and terrorist-fraud up-cast to collusion-
fraud (whereby if the prover colludes repeatedly he eventually leaks his long-term secret key).

The Rise of Application-Specific Distance-Bounding. As even application-specific re-
laying becomes an extremely accessible fraud (i.e., relay-kits for defeating PKES cost just
tens of dollars4 ), proximity-checking as well as distance-bounding are incorporated in various
ubiquitous applications. For a decade, we had proximity-checking available in commercial
access-control solutions e.g., via the Mifare Plus cards/readers from NXP. In the last five years,
the solutions from 3DB Technologies (www.3db-access.com) offer not just proximity-
checking, but distance-bounding, in versions of their “3DB6830 UWB IC” product to be used
in e.g., PKES. Moreover, proximity-checking is present in Mastercard’s latest specification of
the contactless version of its EMV (Europay, Mastercard and Visa) protocol called PayPass [19].
Whilst PayPass v3.1 has been augmented just with proximity-checking, the unilateral authentica-
tion of the card to the payment terminal is already present in EMV and therefore in all previous
versions of PayPass. So, one can argue that the security-threats specific to distance-bounding
apply entirely to PayPass v3.1. And, the likelihood is that with the advent of 5G (the 5th
generation of mobile network) and with it of autonomous driving, connected vehicles, smart
cities, “massive” IoT, proximity-checking and distance-bounding, as well as generalisation
thereof will be incorporated in even more applications.

Our Thesis. With this rise of application-specific DB makes, the formal DB-security should
be firstly closely revisited, and secondly re-appointed, in such a way that “pick-and-choose”
distinctions are made in the threat/corruptions’ model. These distinctions can aid an application-

4 https://www.wired.com/2017/04/just-pair-11-radio-gadgets-can-steal-car/



designer make informed decisions as to which type of threat/corruption is aligned to his/her
application and consider it therein.

Organisation & Contributions. In Section 2 we give our critical view on the main issues of
DB security (motivating this line), and in Section 2.4, we discuss related work. Our contributions
are as follows: (1) we show that, under reasonable assumptions, terrorist-fraud resistance cannot
actually be achieved (Sect.3); besides, we also introduce a new type of terrorist-fraud resistance,
which we call Real-Life Terrorist-Fraud-resistance. (2) we give a new DB model
that treats corruptions in a fine-grained manner (Section 4), yielding clear-cut DB-security
properties (Section 5); we show how to carry out proofs in our new model; (3) our model
treats key-leakage explicitly, which –despite the fact that DB is an authentication primitive and
key-leakage attacks have been exhibited– has not been explicitly treated in DB security.

2 Revisiting Formal DB Security
Now, we focus on three areas of formal DB-security: terrorist-fraud security, key-leakage,
fine-grained prover-corruptions. The first is unsettled and the last two have been shortchanged
in formal DB-security. In this paper, we also overcome these limitations.

2.1 Wrapping Up Terrorist-fraud Resistance

One can start by arguing the legitimacy of requiring that a protocol attains TF resistance in the
first place, by claiming that TF is a “too-exotic” threat to worry about, and that the assumption
that the dishonest prover wants to help while retaining his secret key is too strong. But, in
provable security, this argument per se will not hold enough weight. In provable-security models,
resistance to terrorist-fraud should encode the following: “whatever malicious, far-away prover
P∗, whatever adversaryA, if P∗ helpsA to succeed in proving that P∗ is close to a verifier
V , then there exists a future execution byA in which the said help givesA some advantage to
authenticate as P when it comesA doing it unaided”. This property is not easy to disprove, not
in the way of “standard” provable-security where to show an attack one would simply exhibit
some attacker whose execution succeeds with a probability that is not negligible. This hurdle
entails three shortcomings of DB-security, which we describe below and number (A) to (C).

(A). Firstly, to attain TF-resistance, irrespective of its formal formulation, one needs to
construct a protocol where some help by any dishonest P∗ gives some future advantage to
a MiM attack. This in itself is not trivial. It intuitively leads to either a protocol with some
backdoor [3,16] (which generally lowers MiM-resistance per se), or in designs whereby the
dishonest help will leak bits of the prover’s secret key which also tend to be more communication-
expensive than necessary (e.g., larger sizes of challenges [4]). Even so, Hancke disproved the
alleged TF-resistance of this protocol in [4] with multi-bit challenges, in cases where there is
communication noise [17]. Then, to ensure such TF-protection in provable-security setting (all
settings consider, including noise), one can end up with rather convoluted notions and designs:
e.g., see the notion go “leakage scheme” used in the protocols in [10].

(B). Secondly, there exist multiple formal definitions [10,11,15,16] of TF-resistance, which
often do not express the same security statement or they are even not fully comparable due to dif-
ferences in the adversarial communication model (e.g., simTF in [15] w.r.t. collusion-resistance
in [10]).

(C). Thirdly, these formal definitions have, to some extend, been tailored such that one proves
the security of specific designs – which is not the way in which security definitions should come
about. This seems to be the case of collussion fraud in [10] and/or (γ,γ′,m)-soundness in [11],
which are used to prove resistance to a notion slightly stronger than TF in the protocols called



SKI and DBOpt, respectively (as it appears that to achieve all-encompassing security under
those designs, these notions were needed). Moreover, since the proofs of security/(in)security
bears the “non-falsifiable” character mentioned above, security proofs and attacks in these
models are hard to follow and certainly error-prone.

Our Highlight on TF-resistance. Whilst in provable-security for DB, this TF-resistance
narrative continues both on attaining TF-resistant designs and on formalising the notion, we
cannot but wonder: is it possible to settle this matter once and for all? Better still, is it possible to
formally prove that –under reasonable assumptions– TF-resistance can simply not be ensured? In
Section 3, we show that the answer to this question is “yes”: one can do away with endeavouring
in formalising or attaining TF-resistance.

2.2 Shading Light on Key-Leakage in Formal DB-Security

Key-leakage/key-learning is an attack whereby a MiM learns (part of) the secret-key of the
authenticating party, hence being a vulnerability that traditionally concerns authentication
primitives. But, as we explained before, DB is in a composition of an authentication primitive
and a proximity-checking primitive. Indeed, active attacks resulting in key-leakage have been
shown in various DB protocols, e.g., see [7]. Yet, the way key-leakage has been treated within
DB security raises three intertwined issues, noted as (A) to (C) below.

(A). In some DB-security models/frameworks, key-leakage is sadly altogether excluded as a
threat for DB protocol. That is, distance-based attacks are considered valid only if the secret-key
does not leak (see the black-box prover-model in [2]).

(B). Yet, the aforementioned thesis is surely doubtful. This is because one can show a number
of cases where distance-frauds and/or mafia-fraud will have as a by-product the (partial) leakage
of the prover’s key. For instance, this is the case of distance-fraud attack in [8] against the DB
protocol [4] whereby as the dishonest prover mounts this valid attack, he produces a protocol-
transcript that blatantly leaks his key to any attacker who is simply observing the execution.

To this end, in the newest DB formalisms [10,16], security against key-leakage is included, al-
beit not explicitly. Still, key-leakage attacks can be found using these models as they are implicitly
covered by the notions of MiM security (e.g., see the “learning phase” in MiM-security in [10]).

However, allowing key-leakage as a possible action during distance-based frauds yields
security requirements baring a mixture of authentication and proximity-based properties which
is not easy to treat in proofs.

(C). Whilst a DF/MF can lead to the prover’s key leaking, one should also stress that distance-
based attacks, such as DF, do not necessarily imply key-compromise. For instance, a dishonest
prover can mount a DF by simply answering early if timed responses to do not depend on the
challenges.

Our Highlight on Key-Leakage in Formal DB. Given the above in conjunction with the
fact that DB is being adopted in different applications (some of which may be particularly con-
cerned if key-learning occurs), a formal DB-security model should treat key-leakage explicitly
as well as separately, i.e., as a standalone threat. And, we pursue this view in our model herein.

2.3 Finessing Formal DB-security w.r.t. Prover-Corruption

A white-box (WB) prover has full access to its algorithm and its inner data. A black-box (WB)
prover has no access to its algorithm or its inner data.

These types of dishonest provers appeared in [2]. However, [2] showed no formals means
of embedding these different corruption-modes into the larger threat-model, towards formal
security definitions: i.e., how to formalise an attacker that can manipulate several such corrupted



provers, some in WB, some in BB “mode”. Also, [2] showed no model for carrying out proofs
or security analyses using these corruption modes formally.

Moreover, [2] did not explore these notions correctly. E.g., [2] states that a DF is valid only
if the key does not leak. Yet, as aforementioned, this is wrong: [8] shows a valid distance-fraud
attack exercised by (what is in fact a white-box) prover against the DB protocol [4] whereby the
provers produces a protocol-transcript that leaks his key to any attacker who is simply observing
the execution.

In fact, the implications/separations in DB-security given by using WB vs BB provers have
not been incorporated into any (other) formal frameworks/model for DB either.

Our Highlight on Prover Corruption in Formal DB. DB security refined around WB/BB
provers would move DB-security closer towards the finesse needed for application-aware se-
curity analyses, where the corruption model varies from application to application. E.g., one
may dismantle a key-fob in the way of WB provers, but would not do so for a bankcard – in
the way of BB provers. Or one may “open up” some smartcards in an access-control application,
but not all – i.e., have WB provers coexist next to BB. ones. We will pursue these view herein.

2.4 Our DB-Revisiting Methodology. (Related Work)
First, we are inspired by the communication model and explicit time-modelling like Boureanu et
al. [10]. Second, in the resulting interactive-proof-like model, we single out the Bellare-Rogaway
notion of protocol-session, as Dürholz [15] did. But, unlike [15], we do not use sessions to
define the communications or an induced time-model; we only use sessions as inputs and
outputs to adversarial oracles. Third, the adversarial oracles we introduce can be used to set
up what we call a (particular) DB environment, i.e., a multi-party, multi-instance, concurrent
execution of a DB protocols, with instances placed at positions which can be decided by the
attacker. Moreover, these oracles allow for fine-grained corruptions, i.e., provers be controlled
in the white-box (WB) or in the black-box (BB) mode. Whilst the notions of WB/BB provers in
DB appeared in [2] and each one was explored in isolation, we use them in a formal setting, to
build a complete threat-model which can combine both in advanced ways. The particular links
between a terrorist-fraud notion we use herein and established ones is discussed in Section 3.2.
Using our oracles and the notion of DB-environment, our DB security-definitions appear natural.
We give a new security-definition for key-leakage, with active MiM attackers in mind. So, by
combining elements from existing DB frameworks [2,10,15], we yield a model that captures
DB-security via a small number of clear, security definitions, which can be “picked and chosen”
by application-designer, upon the threats that their proving devices can be exposed to.

3 Fine-Grained Provers: No TF-Resistance Needed.
We now discuss DB from the viewpoint of proving devices and their holders, and their respective
identifiability in front of verifiers. We start from the observation that the distinction between
white-box and black-box provers (which we also pursue formally in Section 5) leads us to a
systematic analysis of the (im)possibility to achieve terrorist-fraud resistance. We show that
“classical terrorist-fraud resistance” is impossible with white-box provers in most DB protocols,
i.e., all where the prover algorithms do not use PUFs. The case of white-box provers in protocols
uses PUFs is discussed in the appendix. We then show that in the case of black-box prover a
new and convenient type of terrorist-fraud resistance can always be achieved.

3.1 Fine-Grained Provers, Non-Identifiable Prover Holders & Tamper-Proof Devices
Fine-Grained Provers. We assume that the provers can either be white-box or black-box.
Provers have holders, i.e., a person operating them. The holder of a whitebox prover knows its



secret material, and can implement any algorithm of his choice on the device. Instead, black-box
provers are completely tamper proof, and only execute their predefined algorithm, without the
holder being able to modify it or to extract the secret material. Indeed, white-box (WB) provers
are typically employed in the distance-bounding literature, such as in the formal models [10,15],
and in most articles presenting new protocols/attacks [8,11]. But, in industry, for instance in the
case of the EMV protocol, the provers are assumed to be black-box (BB), i.e., tamper-proof [19].

Tamper-proof Devices: A Plausible DB Assumption. As explained above, it is common-
place in “academic DB” to consider WB provers and it is commonplace in the industrial place
to consider tamper-proof provers. As such, if one is ready to employ a threat-model where
dishonest provers can manipulate their devices at the hardware level (i.e., the white-box model),
then arguably one should be ready to accept security solutions and vulnerabilities based on
hardware setups and the use tamper-proof device. So, in this section, we make what we believe
to be a plausible assumption, that is that tamper-resistant devices can be built. We exhibit a
security impossibility result based on this assumption. In essence, what we use in our attack
is a device which holds the secret material of the dishonest prover, can run the algorithm of the
prover, but from which the secret material is physically protected, so that it cannot be extracted.

Non-identifiable Device-Holders & Non-identifiable Counterfeiting. Provers have hold-
ers, i.e., a person operating them. As in most distance-bounding literature, we consider that
verifiers are unable to recognise the legitimate holder of a proving device. A DB verifier
generally checks simply that a device performs the protocol and it does not make any assessment
on the legitimacy of the holder of such a device. For instance, in a protocol vulnerable to
mafia-fraud, a person other than the legitimate holder of the proving device is present in the
verifier’s proximity and can make the protocol succeed. Hence, if an adversary came by the
verifier with the proving device of a far-away user, this adversary would be accepted. Similarly,
the appearance of the device can be counterfeited, and is not checked by the verifier.

Any DB Formal Model with MiM Security. The descriptions, i.e., (in)security results,
below are irrespective of the formal DB-model in which they are cast, as long as it can capture
reasonable notions of MiM security, an terrorist attackerA and a colluding prover P∗. Most
DB models [10,16] respect this.

3.2 Our Notion of Classical Terrorist-Fraud (CTF) Resistance

As explained in Section 2.1, terrorist-fraud resistance is a security property that is notoriously
difficult to guarantee in a provable manner. A distance-bounding protocol is said to be terrorist-
fraud resistant if no distant prover can help an accomplice found close to the verifier pass the
protocol without giving an advantage for further access. This is usually granted by forcing the
prover to leak his secret key if he gives enough information for his accomplice to succeed.

In this section, we demonstrate that, under normal assumptions made for security of DB,
terrorist-fraud resistance –as it is usually defined– can never be achieved. To prove this, we
exhibit a generic manner of performing a terrorist fraud, using a tamper resistant device. Hence,
the so-called “classical definition”, relying on the fact the prover should not leak his key, can
never be reached, and should therefore not be considered anymore as a relevant security property.

TF-resistance, for instance, in the SimTF notion defined in [15] informally says the follow-
ing: “If the dishonest, far-away P∗ helps the attackerA to pass the protocol, thenA can pass
the protocol again without the help of P∗, with a non-zero probability that is not negligible.”
Yet, if a protocol is not man-in-the-middle resistant, thenA can pass with a probability which
is not negligible, even if the help of P∗ is void. Hence, if a protocol has MiM insecurity, it also
has SimTF -resistance by the triviality of the above implication. As explained in Section 2.1,
multiple definitions of terrorist-fraud resistance exist in the literature and they vary widely. We



therefore capture their spirit with a property we call CTF resistance, which we use to carry
our analysis. This property is rather straightforward. It only differs from existent TF-resistance
notions in that, to overcome the hurdle presented above w.r.t. SimTF , our notion does not
consider a protocol to be terrorist-fraud resistant if it is vulnerable to a man-in-the-middle attack.
Indeed, we believe that if an adversary can pass the protocol without the help of a prover, in
a mafia-fraud, then any help from the prover is irrelevant, and terrorist fraud resistance becomes
meaningless. In this case, to achieve terrorist-fraud resistance, the information from the prover
should be a hinderance, i.e., it should remove capabilities from the adversary, which is senseless.

This definition for “classical terrorist-fraud resistance” (CTF ) states that if the success
probability of a MiM adversary is negligible plus there exists a pair of arbitrary PPT algorithms
(P∗,A) such that P∗ is far-away andA can authenticate on behalf of P∗, thenA can use his
thuswise gained knowledge later to mount a MiM, which succeeds with a non-zero probability
which is not negligible.

Definition 1. Classical terrorist-fraud (CTF ) resistance. LetΠ be any DB protocol mod-
elled in DB formalism, and let s be a security parameter therein in which all asymptotic
measures below are given. Let V be a designated verifier, w.r.t. which authentication is taking
place. Let pMiM

Π denote the success probability of the best MiM attack against the protocolΠ.
Consider the following executions ofΠ.

– Phase1: In a multi-party, multi-session execution ofΠ, a dishonest prover P1 located
far-away from V running an arbitrary PPT algorithm helps and an adversaryA, who runs
an arbitrary PPT algorithm and is located close to V , pass the protocol (except for some
negligible probability).
Let helpP denote the arbitrary help given toA in Phase1.

– Phase2: Consider a multi-party, multi-session execution of Π, in which the far-away
prover P1 can now also be present but can only run the honest prover algorithm whilst
being far-away from V . In this setting, the attacker A running some PPT algorithm,
potentially using helpP , attempts to authenticate to V .

The protocolΠ attains “classical terrorist-fraud (CTF ) resistance” if it holds that:
If pMiM

Π is negligible andA authenticates on behalf of P1 during Phase1, thenA can
authenticate in Phase2 with a non-zero probability that is not negligible.

N.B. on Definition 1. This definition is encapsulating established TF-resistance definitions.
This is also the reason why we call it “classical”. By quantifying probability of passing in
Phase1 and Phase2 and by excluding the MiM-resistance requirement from our final
statement, CTF -resistance captures simTF and strSimTF in the model by Dürholz et.
al [15] and that of Fischlin et al. [16] (this requirement, as explained, needs to be included in any
simTF -like definition, to avoid trivial TF-resistance). In the same way, Definition 1 captures
the definitions of terrorist-fraud resistance given original in the models by Boureanu et al. [9].
If the Phase1 was to be repeated several times, then it can be lifted to capture resistance of
collusion-fraud (i.e., generalised TF-resistance) by Boureanu et al. [10]. Our definition does not
explicitly speak of TF-resistance by key-extraction [11], but a link between the MiM-resistance
requirement within Definition and key-extraction is discussed further below. At the same time,
our definition is not about reinventing the wheel; it is about just stating clearly the generic and
commonplace TF-resistance definition (one that can be cast in any DB formal model), for which
one can analyse the realisability in the context of WB/BB provers even though this is per se
in line with existing TF-resistance definitions.



3.3 Impossibility of Terrorist-Fraud Resistance with in Protocol with No PUFs and
WB Provers

A Generic Terrorist-Fraud Attack with WB Provers. In any DB protocol, if the prover
algorithm does not use any physically uncloneable functions (PUFs) as part of its normal
execution, then the prover device can be cloned. Moreover, a WB prover P∗ can build a
tamper-proof device that runs exactly as the proving device and exactly one time after which
it self-destructs (i.e., a WB prover builds a one-time executing clone). P∗ then gives this to this
clone accompliceA. The accomplice can then present the tamper-proof clone to the verifier and
successfully authenticate. However, the attackerA cannot learn anything from the device, since
it is tamper-proof andA cannot use it again since the clone self-destructs after one execution.
This is a generic CTF attack. It cannot be prevented in any DB protocols which does not use
PUFs on the provers’ side, if provers can be corrupted in the white-box manner.

The self-destruction mentioned above equates in fact to a program wiping all data (secret
and otherwise) and software on the device.

As reiterated by the above “note on Definition ”, whilst we exemplify our TF-attack using
CTF , the attack strategy we present above is generic and shows TF-resistance impossibility
w.r.t. most commonplace TF-resistance definitions (e.g., [9]). Indeed, the attack can also be
trivially generalised to apply to TF-resistances stronger than CTF -resistance. I.e., to make our
CTF attack into a (1,1,m)-collusion-fraud attack [10], the cloned device needs to be made
such that it would execute itselfm times.

Offline vs. Online Help in our CTF . Classical terrorist-frauds are performed online: the
prover helps his accomplice during one specific session, at a given time. In contrast, our generic
CTF permits the accomplice get the disposable device offline, and to use it at a time of his
choice. However, this limitation can overcome by including a secure, remote activation and
deactivation mechanism on the disposable clone, in order to make it unusable except at a time
chosen by the prover. By doing so, the prover could delegate his authentication rights while
keeping full control on his credentials and the actions of his accomplice.

More On CTF -resistance Requiring MiM-resistance. If a protocol Π against which we
mount our CTF were not MiM resistant, then it could happen that an adversary extracts the
secret key from a disposable device by leveraging a flaw in the protocol. For instance, consider
a dummy protocol in which at each challenges ci, the prover responds with the corresponding
bits xi his the secret key x. In this protocol, a dishonest prover attempting to use our strategy
to perform a CTF would automatically reveal his secret key to his accomplice, by the latter
eavesdropping the messages emitted by the clone. Hence, the prover would not be able to
delegate his authentication abilities without revealing his secret key and therefore the strategy
will no longer amount to a CTF However, such MiM-vulnerable protocols are ruled out by
our CTF -resistance definition, hence transferring the clone to the accomplice can safely count
towards a CTF as we explained originally.

N.B. on our TF-resistance Impossibility Results. The analysis above covered only the
case where the provers are WB and the DB protocols do not use PUFs on the prover’s side.
Section 3.4 just below treats the case of DB provers irrespective of whether the protocol uses
PUFs or not. The next section, which introduces a new DB model leveraging formally the
distinctions between WB and BB provers, also treats primary protocols where the authentication
is based on cryptographic keys (and PRFs) rather than on evaluating PUFs. Whilst these are the
great majority on the DB protocols in existence, there are two PUF-based protocols in existence,
such as the one in [18]. So, in Appendix B, we take this analysis on attaining TF-resistance
further into the case of WB provers in protocols using PUFs as well.



As Appendix B will detail, our study on TF-resistance impossibility therefore covers all types
of DB protocols we know in the literature: i.e., our TF-resistance impossibility results herein
are shown for protocols where the authentication is either based only cryptographic keys or only
PUFs [18]; moreover, we make a compelling argument on the impossibility of TF-resistance
even for those that would mix these two authentication methods, if they were ever to be proposed.
In Appendix B, we also introduce a new notion of TF-resistance which we believe to be the
suitable one for DB protocols using PUFs.

3.4 The Redundancy of Classical Terrorist-Fraud Resistance, with Black-box Provers

When the proving devices are black-box, they cannot use our strategy to mount a CTF .
However, in this setting, we show that classical terrorist fraud resistance is irrelevant. First,

note that for a BlackBox (BB) prover, its holder and an adversary have the same capabilities.
The last two can only interact with the device through the API of the protocol. From this, it
follows that whatever help the holder gives to the adversary can be obtained by the adversary on
his own, by interacting with the device in the same way the holder would. Hence, if the protocol
is vulnerable to a terrorist fraud, then it is also vulnerable to a mafia fraud. In other words, in the
setting of black-box provers, classical terrorist-fraud resistance is included in MiM-resistance,
and therefore we do not need to consider it as a separate security property.

4 DB Model with Fine-Grained Provers
We start by introducing the constituent of a DB protocol and finish by formally defining a DB
protocol in this sense.

4.1 DB Parties, Instances & Protocols
Parties, Instances & Holders. We consider two types of parties modelling devices: provers
P and verifiers V. Devices or parties have predefined, DB probabilistic polynomial-time (PPT)
algorithms implemented on them. Also, devices or parties have unique long-term cryptographic
secrets written on them; therefore, the long-term cryptographic material on it uniquely identifies
a party. We generally use small letters such as x,y,... and respectively 〈x,X〉, 〈y,Y 〉 to denote
symmetric keys vs. the pair of secret key x and public key X, written on such devices. To
this end, when we explicitly refer to one prover-party w.r.t. its unique key/key-pair, we write
the prover-party P(x,...). When it is irrelevant that there is material other than the key on the
prover-device, we simply write P(x). Some prover and verifier devices have pre-shared/agreed
keys, which we denote as follows: the prover-party P(y) and the verifier-party V(y) to stipulate
that the devices holds a long-term symmetric-key y (e.g., this may be a key-fob and a car), or
the prover-party P(x) and the verifier-party V(X) to denote that a verifier-instance can retrieve
the prover’s public key (e.g., as it the case with contactless cards and EMV readers).

One of the verifier parties is called designated verifier and we will use notations stemming
from dV to refer to it.

An instance Z of a party is one (possibly partial) execution of that party’s PPT algorithm,
together with all the inputs, outputs, internal states. If an instance is running on a prover device
P or a verifier device P, then we call it explicitly a prover-instance P or a verifier-instance
V , respectively, or generically a party-instance. Each prover-instance and verifier-instance is
uniquely identifiable via an ID. To denote a specific prover-instance or verifier-instance with
the identifier id or id′, we sometimes write Pid(...) and Vid′(...), respectively.

Prover-instances have a holder, e.g., the person manipulating them. In this case, we overload
“instances” to mean both one execution of the algorithm of a specific-party and the holder of



such a device once it is executing. When we need to make any distinction between the holder
of a prover-instance and the algorithm running on the device, we write “Pholder” for the holder
of the proving device, and “Palg” for algorithm running on the device itself.

DB Positioning. We consider a fixed integer constantB, denoting the distance-bound. Instances
are placed (and therefore executed) at a physical location. We assume that the instance and its
holder are at the same location.

The instances of the designated verifier are all run at a fixed location, and the location of
this dV party; thus, we speak of the the location of the designated verifier dV.

We define two positions pos of instances w.r.t. the location of the designated verifier dV,
close or far, denoting that the distance between the location of the said instance and dV’s
location is smaller-than-or-equal-to or larger than B, respectively. To denote the explicit position
of an instance Z, we sometimes use the notation Zpos(...) , where pos∈{close,far}.

Specific instancesPid(...) orVid′(...) are assumed to stay at one position for the whole of their
execution, even though one party can have instances at different locations in different executions.

Definition 2. DB Protocol. A distance-bounding protocol Γ is a tuple Γ = (K,P,V,B), as
follows: probabilistic polynomial-time (PPT) algorithms defining the prover party P and the
verifier party V; pairs (x,X) are correctly sampled from K such that there is a key-setup
resulting in corresponding pairs of parties P(x) and V(X) (withX=x in the symmetric-key
case); a distance-bound B.

At the end of any execution5 of the two-party probabilistic polynomial-time (PPT) algorithms
in Γ , the verifier-instance V (X) involved in the execution outputs a final message OutV . This
output denotes that V (X) accepts a prover instance P(x) (i.e., OutV =1) or rejects a prover
instance P(x) due to failed authentication on (x,X) or timing errors w.r.t. the bound B (i.e.,
OutV =0).

Honest and Adversarial Communication Models. These run close to [10]: messages are
broadcast, channels are insecure and unauthenticated, there is an explicit global-clock and the
adversary can intercept, block, modify messages with no delay inflicted, yet he cannot defeat
the laws of physics (i.e., make messages travel faster etc.). The details of these models are given
in Appendix A.

Fine-Grained Corruption Model. The adversary (possibly embodied by the Pholderas well)
can corrupt prover instances, in which case these will not necessary follow the P algorithm
anymore.

There are two types of prover-corruption à la [2]: white-box and black-box. Unlike in [2]
where they were just intuitively introduced, in Section 5.2 we formalise the interaction with
these in terms and how this plays a role in formal DB-security definitions. Now, we explain
these corruption mechanisms.

Black-box Prover-Corruption. If the Pholder has no control over the algorithm run by Palg,
then that the prover is black-box (BB).

For instance, a BB prover is that where the Palg is tamper-proof. This can be assumed to be
the case in proximity-enhanced contactless payments [13,19] whereby the card-holder cannot
normally get to the secret-key written on the bank-card.

White-box Prover-Corruption. A white-box (WB) prover Pholder is able to access any
secret key or cryptographic material written on the Palg, and also to run any algorithm of

5 Note any execution, including an unfinished/“hanging” one, can be extended to a full execution by
denoting that ones finish unsuccessfully.



Pholder’s choice on Palg. I.e., the holder/adversary can adaptively pick nonces, or send messages
at arbitrary times. In essence, the Pholder is able to build his own proving device which would
implement the algorithm of his choice, and build possibly multiple copies thereof.

Indeed, the majority formal DB models [10, 11, 15, 16], the Pholder is assumed to have
white-box access to the proving device and this was used in showing a number of DB attacks,
e.g., see [8].

4.2 DB Executions

First we define DB-protocol sessions, then their concurrent execution in adversarial settings
as per the above.

Definition 3. DB-Protocol Session. Let Γ=(K,P,V,B) be DB protocol and two party herein
be P(x) and V(X).

A DB session is defined by one of the following constructs:

– A P -(A)-V DB session is message-exchange correctly ordered as per Γ between a prover-
instance Pid′(x) of P(x) and an instance Vid(X) of V(X). The adversary can use his
ability to redirect, block, inject messages in order to replace P -V messages with his own,
all without breaking the physical limitations (i.e., bypassing time-bounds).

– AnA-V DB session is message-exchange correctly ordered as per Γ between an adver-
sarial instanceAid′ and Vid(X) as per the above.

– A P -A DB session is message-exchange correctly ordered as per Γ between a prover-
instance Pid′(x) as per the above and an adversarial instanceAid′′ .

The messages produced by the instances involved in a session (using their keys, and random
coins, etc.) uniquely define the message-exchange and identify it via a session handle, generally
denoted by π.

In other words, similar to Bellare-Rogaway models [6] but in a somewhat non-standard
ways, eithr two or three instances uniquely define a DB session: two of honest parties in a
P -(A)-V session, or two of honest parties intermediated by an adversary in a P -(A)-V session,
or otherwise one adversarial and one of an honest party. Note that, as we mentioned above,
we considered that all adversarial instancesAid implicitly communicate with one another and
therefore these instances do not underline protocol-sessions amongst themselves. As normal,
we further consider that, for each party-instance, we can determine the one session in which
it is involved, and the adversary can be involved in more than one session at once. Also, note
that there is no authentication within the notion of session: e.g., an instance Vid(X) of V(X)
may “think” that it is communicating with a prover-instance Pid′(x), when in fact Vid(X) of
V(X) is running a session with the adversaryA.

N.B. on Instances and IDs. We assume that party-instances identifiers are a priori assigned
from a unbounded list. Then, each such identifier can be launched into a session. Also, in-
stances are a priori placed at different positions (i.e., close or far) from the designated verifier.
Lastly, each party-instances can get involved in one session at one time, and –as mentioned
in Subsection 4.1– it cannot change position during that one session.

Now, we define an environment in which a DB protocol can be run in a multi-party setting
(e.g., prover, verifier running on different keys) and where each party can be executed in multiple
concurrent and sequential sessions, with instances placed at different positions.

Definition 4. Distance-bounding Environment. Let s be a security parameter, poly denote
a polynomial, and Γ=(K,P,V,B) be a DB protocol and dV be a designated verifier party.



Consider tuples of the form [IDP , pos,mode], where IDP is a prover’s ID, pos ∈
{Close,Far} and mode ∈ {white− box,black − box,honest}. This denotes that any
prover-instance IDP in can be either corrupted (i.e., the tuple [IDP ,pos,mode] hasmode∈
{white−box,black−box}) or honest (i.e., the tuple [IDP ,pos,mode] hasmode∈{honest}),
and that any prover-instance IDP can be placed at Close or Far from dV, i.e., tuple
[IDP ,Close,·] vs. tuple [IDP ,Far,·].

Consider tuples of the form [IDV ,pos], where IDV is a verifier’s ID, pos∈{Close,Far}.
A distance-bounding (DB) environment for Γ is a tuple (Γ,dV,VL,UL) modelling of

(possibly concurrent) sessions of Γ , as follows:

– VL is a list of tuples [IDV ,pos] as per the above, with all the instances IDV are honest;
the list VL can be empty and it is no larger than poly(s);

– UL is a list of tuples [IDP ,pos,mode] as per the above; the list UL cannot be empty and
it is no larger than poly(s);

– there are several instances of the adversary at different positions;
– all instances follow the communication model above.

Definition 5. Particular Environment. We say a DB environment (Γ,dV,VL,UL) is partic-
ular if we restrict that the positioning of the certain of the prover instances in UL is the case,
and/or that the positioning of the some other the prover instances in UL is certainly not the
case, and specific adversarial instances areAclose whilst certain others areAclose.

Intuitively, a DB environment is particular if it encapsulates the right setting for a distance-
fraud or a mafia-fraud, etc.

Now, we introduce some terminology and notations in order to be able to single out certain
specific sessions out of a DB environment.

Definition 6. DB Experiment. A DB experiment expid for Γ=(K,P,V,B) is number of DB
sessions which include one specific prover-instance id and (possibly several) designated-verifier
instances, executed in a particular DB environment for Γ .

The simplest denotation of a DB experiment exp is as follows:
expid=(P̆id(x)←→dV(X)),

where the prover-instance P̆id(x) is the instances of interest. The˘on top of the said instance
denotes the said “interest”.

Details of a DB experiment can be made more precise. For instance, if we write exp=

(P̆id3,close(x,...)←→dV(X)), then this means that the prover’s instance of interest, identified
by id3 is close-by to the designated verifier dV.

To denote that exp is executing in a particular DB environment, we enlarge the no-
tation to explicate these particular settings of the DB environment. For instance, exp =

(Pid′,close(y),...,P
WB
far (x),P̆(x)←→dV(X)), denotes that in this experiment exp: (a) we are

interested in whether the instance P̆(x) is accepted/rejected by an instance of the designated
verifier dV(X) (hence the˘on top of the said instance); (b) there are number of other instances
which are noted, i.e., the instance Pid′,close(y) who is honest and close-by to dV(X); the
instance PWB

far (x) who is corrupted in the WB mode and who is far from dV(X), etc.
N.B. on Experiments. When specifying experiments, recall that they happen in DB envi-

ronments hence there are implicitly other instances executing alongside, but we do not mention
them if they are not of interest to the experiment.



5 DB Security with Fine-Grained Provers
5.1 Threat Model: High-level Descriptions
5.1.1 Black-Box-driven Attacks. If we assume that a black-box prover-device (i.e., in a
tamper-proof device), then the Pholder does not have any extra advantage compared to an
arbitrary adversary. So, when the prover algorithm is implemented on a tamper-proof device,
there are actually only two threats to consider: (1) a generalised mafia fraud, which includes
man in the middle (MiM) attacks, and (2) a secret-extraction.

Our generalised mafia-fraud (Definition 11). covers both mafia-fraud and distance-fraud for
black-box provers: when the prover is black-box, the holder can only interact with it through
an API, just like a MF adversary would. Hence, a dishonest prover can be seen as an adversary
interacting with the device. It follows that a mafia fraud adversary has more resources than a
distance fraud adversary, and is more general. This argument also holds for distance hijacking,
and since terrorist fraud resistance is not considered (as per Section 3), we do not need to include
it. Stated differently, this fraud generalises all the classical attacks for black-box provers.

Secret extraction (Definition 9) did not exist previously in the distance-bounding literature
as a security property on its own. It speaks of the threat of recovering bits (one, more or all)
of secret information, such as the long-term secret key.

5.1.2 White-Box-driven Attacks. White-box provers can implement any algorithm chosen
by A, and A obtains their secret material. Adding white-box capabilities to the adversary
therefore allows him to perform more advanced attacks. In particular, in the white-box context,
distance-fraud and distance-hijacking differ from mafia fraud, since the prover can maliciously
pick nonces, possibly depending on his secret key, to gain some advantage. So, this needs to
be considered separately, in what we call generalised distance-fraud (Definition 10).

A critical point w.r.t. generalised distance-fraud in WB model is that the attackerA should
not be allowed to control any algorithm near the verifier, otherwise he could simply give it the
secret material to authenticate. Hence, in our generalised distance-fraud, we explicitly rule out
the presence of adversary or white-box prover instances near the verifier at the time of the attack,
and only allow for honest (or black-box) provers to be located close.

Note that the generalised mafia-fraud property also applies to white-box provers, since
ultimately, the prover that is targeted must be honest: otherwise, A would know its secret
material and the attack would be trivial.

Hence, for white-box provers, generalised mafia-fraud and generalised distance-fraud are
enough to cover all the usual security properties, except for terrorist fraud, which we need not
to consider (as per Section 3).

5.2 Threat Model: Formal Definitions

To update an DB environment, i.e., to (adaptively) determine and control the executions therein,
we define a series of oracles.

Definition 7. Distance-Bounding Oracles An DB environment (Γ, dV, VL, UL) can be
generated and controlled/updated via the following oracles:

– Launch(IDV )−→π. The oracle checks that IDV is in the pre-defined list VL. If so, the
oracle responds by making the reader with IDV launch a new session6 π of the protocol
Γ and the handle to this protocol-session π is returned in identifiable form toA.

6 Any protocol can be modified such that it is the verifier who starts the protocol.



– JoinBB(IDP ,pos). The oracle generates a new black-box corrupted prover PBBIDP , with
the identity IDP , at position pos, by adding a record [IDP , pos, black− box] to the
existing list UL.

– JoinWB(IDP ,pos)−→XIDP . The oracle generates a new white-box corrupted prover
PWB
IDP

, with identity IDP , at position pos, by adding a record [IDP ,pos,white−box] to
UL. It additionally responds with all the corresponding secret materialXIDP .

– Join(IDP ,pos). The oracle generates a new honest prover PIDP with identity IDP , at
position pos, by adding a record [IDP ,pos,honest] to UL.

– SendToV erifier(m,IDV ,[π])−→m′. The oracle sendsm to the verifier IDV , poten-
tially as part of the protocol session π. Ifm is accepted as correct, then the corresponding
answerm′ as per π and Γ is returned. Otherwise,⊥1 is returned.

– SendToProver(m,IDP ,[π])−→m′. If IDP ∈UL and m is accepted as correct w.r.t.
the (stage of) session π and the protocol Γ , then the corresponding message/answerm′
as per π and Γ is returned. Otherwise, the oracle responds with⊥2.
The fact that, in the last two oracle-call, π is written between brackets denotes that we also
allow a version of this oracle which does not take π as an argument, such that the attacker
can send messages to IDV which are not session-specific.

– Result(π)−→ a. When π is finished, it returns 1 or 0 if the IDV output was 1 or 0,
respectively. If π is not finished, it returns⊥3.

– Move(IDP ,pos). The oracle “moves” the prover IDP from its current position to the
position pos. If IDP is involved in a session, then this session is terminated prematurely.
The challenger modifies the corresponding entry in the user list UL.

– Identity(π)−→a. If the session π is finished in that the verifier has produced its output, it
returns the identifier IDP of the prover which was authenticated by the verifier. Otherwise,
it returns⊥.

– ChangeDestination(Id1,Id2). The oracle changes the destination of the next message
such that if the purported destination was Id1, then it becomes Id2.
Note that Id2 can be set to null, which results in the message not being sent.

N.B. on Oracles and Provers. The Join(·) and JoinBB(·) oracles essentially have the
some outcome; as such, honest provers and provers corrupted in black-box mode equate to the
same type of provers, to which we sometimes also refer as “uncorrupted”.

We now give the more formal description of the security properties of interests (as per
being the strongest attacks to counteract), as explained in Section 5.1: i.e., key extraction,
BB-generalised mafia-fraud and WB-generalised distance-fraud.
Definition 8. DB Adversaries & DB Security Games. Let (Γ, dV, VL, UL) be a DB
environment.

An adversaryA against the protocol Γ is a probabilistic polynomial-time (PPT) algorithm
following the communication and corruption model in Section 4.1, which receives as input
the designated-verifier party dV, the finite set of verifier identifiers UL and all the public
parameters of Γ .

In a DB security game G against a protocol Γ , a challenger C gives access the adversary
A access to a subset of the oracles above to transform (Γ, dV, VL, UL) into a particular
environment of his choosing, modulo the oracles thatA has been given access to. The challenger
and the adversary may have other interactions.

A winning condition, stipulating when the adversary wins the game is defined.

By using different DB security games G, we will now define different security properties for
DB, which should be considered in the different corruption model, i.e., white-box vs. black-box.



5.3 Black-box-driven Security Properties

While a mafia-fraud adversary may be able to recover at least parts of the secret-key of the
prover, we believe that key-extraction/secret-extraction resistance should also be considered as
a DB security-property on its own. That is, if the Palg is built to be tamper-proof, then not even
part of the secret material should possibly leak from the protocol. Hence, if a prover is capable
of extracting even just one bit of a secret by using the protocol, then the protocol violates the
“tamper-proofness” of the device, even if this bit is not enough for a mafia fraud adversary to
pass the protocol. We formalise this in Definition 9 below.

Definition 9. Secret-extraction. Let G be a DB security game against a protocol Γ in which
the challenger C gives the adversary A access to all the oracles. As per any DB game, the
adversaryA sets up a particular environment using these oracles and a specific experiment
expIDP .

The game G is a secret-extraction game, if the play is as follows:

– A choses a session π, inside an experiment expIDP ;
– If IDP corresponds to a black-box prover, then C defines a set Sπ containing the long-term

secrets and the ephemeral secrets linked to π and belonging to IDP . Otherwise, the
experiment is aborted;

– A then outputs a value x

The winning condition is that x∈Sπ. The advantage of the adversary A in winning G with
probability α in the secret-extraction game is defined as |α− 1

2|x|
|.

The protocol Γ is secure against secret-extraction if the advantage of an adversaryA in the
secret-extraction game is negligible in the security parameter defining Γ .

5.4 White-box-driven Security Properties

We now define the security property that is only relevant for white-box provers: generalised
distance fraud. For distance-frauds, having white-box access to a prover is a great advantage.
For instance, in some protocols, it allows the dishonest prover to adaptively choose values in
the execution to force responses be independent of the challenge (i.e., r0i =r1i ), for all rounds,
and thus successfully perform a distance-fraud. As such, we formalise WB distance-frauds, in
a generalised setting, below in Definition 10.

Definition 10. Generalised Distance-fraud.
Let G be a DB security game against a protocol Γ in which the challenger C gives the

adversaryA access to all the oracles.
As per any DB game, the adversaryA sets up a particular environment using these oracles

and a specific experiment expIDP .
The game G is a generalised distance-fraud game, if the play is in two phases, as follows:

– Learning phase
• A outputs a prover identifier ID;

– Attack phase
• A loses access to the oracleMove(·,·)
• C checks the location of ID in UL (i.e. pos, in [ID,pos,mode] in UL ): if it is close

(i.e., pos=close), the game G is aborted.
• C checks the location of all A and PWB instances: if any is close, then game G is

aborted.



The winning condition on an (unaborted) generalised distance-fraud game G is as follows: in
the attack phase, there exists a session π such that, during the whole session π, no adversarially
controlled algorithm (eitherA or PWB) was close to the verifier, Identity(π) is registered
as white−box in UL, andResult(π)=1.

The advantage in the generalised distance fraud game of an adversaryA, who succeeds with
probability α, is defined as |α− 1

2 |.
The protocol Γ is secure against generalised distance-fraud if the advantage of an adversary
A in the generalised distance-fraud game is negligible in the security parameter defining Γ .

The generalised distance-fraud game G can be graphically represented via the following
experiments:

– the learning phase: (P(y),A,PWB←→dV(X)),
– the attack phase: expID=(P(y),Afar,P̆WB

ID,far(x,...)←→dV(X)).

For this generalised distance-fraud property in the WB model, as per Definition 10 above,
no adversarially-controlled entity are allowed near to the prover. Yet, honest provers, which
could also be referred to as black-box provers, are allowed near the verifier.

Hence, Definition 10 also covers the threat of distance-hijacking (DH) [14]. If one wishes to
distinguish clearly whether an attack found against Definition 10 is a type of distance-fraud (albeit
cast in our multiparty/multisession setting) or a DH attack, then one needs to look at the type of
verifier-accepted session that π (as perResult(π)=1 in Definition 10 ) is. If this is a P -A-V
session than we are faced with a DH attack, otherwise if it isA-V it is a distance-fraud attack.
5.5 “AnyBox” Security Properties

We now define the property that is relevant in WB and BB models: generalised mafia-fraud,
in which an adversary tries to make a distant, uncorrupted prover be accepted. For generalised
mafia-fraud, we will formalise an attack phase whereby a far-away adversary, possibly holding
several provers, tries to make the verifier accept the authentication of one of them. He can
leverage the help of another adversarial instance located close to the verifier, along with other
honest provers. This follows in Definition 11 below.
Definition 11. Generalised Mafia-fraud

Let G be a DB security game against a protocol Γ in which the challenger C gives the
adversaryA access to all the oracles.

As per any DB game, the adversaryA sets up a particular environment using these oracles
and a specific experiment expIDP .

The game G is a generalised mafia-fraud game, if the play is in two phases, as follows:

– Learning phase
• A outputs a prover identifier ID;

– Attack phase
• A loses access to the oracleMove(·,·),
• C checks the characteristics of ID in UL: if it is close (i.e., pos=close), or white-box,

then the game G is aborted.

The winning condition on an (unaborted) generalised mafia-fraud game G is as follows: in the
attack phase, there exists at least one session π such thatResult(π)=1 and Identity(π)=ID.

The advantage in the generalised mafia-fraud game of an adversaryA, who succeeds with
probability α, is defined as |α− 1

2 |.
The protocol Γ is secure against generalised mafia-fraud if the advantage of an adversary
A in the generalised mafia-fraud game is negligible in the security parameter defining Γ .



The generalised mafia-fraud gameG can be graphically represented the following experiments:

– the learning phase: (P(y),A,PWB(·)←→dV(X)),
– for the attack phase: expID=(P(y),A,P̆honestID,far(x,...)←→dV(X)).

In this game’s formalisation in Definition 11, like in [10], prior to the execution of the attack
phase whereby the fraudulent authentication is attempted, the adversary is given access to a
learning phase. During this phase, he can place the target-prover close to the verifier. We mean
that this learning phase is typically used to recover some secret material, by modifying messages
during the challenge response part of the protocol, which is possible if both the prover and the
adversary are close to the verifier.

Note that we can easily and naturally enhance this model with oracles and definitions that
treat privacy and anonymity notions in DB; this is left for future-work.

In Section 6, we show how to use our new model to do cryptographic proofs of a DB protocol,
namely DB3 from [11].

6 Security Proofs in the New DB Model: A Case-study in the DB3
Protocol

In this section, we revisit the security proofs of the DB3 protocol [11]. Our proofs are designed
as sequences of games, as introduced in [20]. I.e., from the initial security game Γ0, which is
the one defined in the definition of the security property, we move step by step to a new game.
The transitions are such that the adversary can only notice them with a negligible probability.
The final game is one in which the proof is easier to carry out, as most of the complexity of
the protocol was removed.

In what follows, PR[Γi] denotes the success probability ofA in the game Γi.

6.1 Protocol description

The DB3 (q=2) protocol is depicted in Figure 1 and it self-explained as per this figure. A more
complete description can be found in [11].

Verifier Prover
secret:x secret:x

initialization phase

pickNV ∈{0,1}
`nonce

NP←−−−−−−−−−−−−−−−− pickNP ∈{0,1}
`nonce

a=fx(NP ,NV )
NV−−−−−−−−−−−−−−−−→ a=fx(NP ,NV )

distance bounding phase
for i=1 ton

pick ci∈{0,1}

start timeri
ci−−−−−−−−−−−−−−−−→ receive c′i

receive ci, stop timeri

r′i←−−−−−−−−−−−−−−−− r′i=ai⊕c
′
i

verification phase

receive c′′, check tag=fx(NP ,NV ,c
′′)

c′,tag
←−−−−−−−−−−−−−−−− tag=fx(NP ,NV ,c)

check #{i;ci=c
′′
i ,timeri correct}≥τ

OutV−−−−−−−−−−−−−−−−→

Fig. 1. The DB3 Distance-Bounding Protocol with q=2.



Pseudorandom Functions & The Pseudorandom Function Assumption. A pseudoran-
dom function (PRF) is a family of (polynomially computable) functions: a set (fk)k∈K of
functions of arbitrary-length input and arbitrary-length output indexed on a set of keysK. On
this family, a computational assumption is taken, which is denoted as the pseudorandom function
(PRF) assumption, i.e.,: for an instance sampled uniformly from the family, there exists no
polynomial algorithm that distinguishes this instance from a real random function based on a
black-box interaction with an oracle simulating them. More formally, the PRF assumption holds
if the adversary has a probability negligibly close to 1

2 to win in the following PRF-security
game. Let k be a key sampled uniformly at random from the key-domainK and let fk be the
associated PRF-instance from the PRF family (fk)k∈K. A challenger picks at random a bit b,
and depending on it, gives the adversary oracle-answersO(·), such thatO(·):=fk(·) if b=0,
andO(·):=F(·) otherwise, where F is a random function. The adversary is given a polynomial
number of queries to the oracle O, and wins if he guesses b. His advantage in this game is
|12−Pr[A wins]|, which is the absolute value of the difference the probability of guessing b
at random, and the success probability ofA.

6.2 Secret-Extraction Security for DB3

Consider the security-definition of secret-extraction in Def. 9, Section 5.2. Recall that this notion
defines security against the threat of recovering bits (one, more or all) of secret information,
such as the long-term secret key. In DB3, the set of secret information Sπ only contains x.

Theorem 1. If the PRF assumption holds, then DB3 has secret-extraction security.

Proof. Let s be the security parameter of DB3, and negl be a negligible function.
From the initial secret extraction game Γ0 (see Def 9), we build Γ1:
Γ1: This game is the initial game Γ0, where no NP value is indeed used more than once,

over all honest or black-box prover instances.
Let q be the number ofNP values issued by oracles involving honest or black box prover-

instance, during the experiment encapsulating this game. The probability that oneNP repeats
is upper bounded by q2

2n , which is negligible. Hence, Pr[Γ1]−Pr[Γ0]≤ q2

2n .
Γ2: This game is the game Γ1, where:

– each PRF-instance fx∈XBB is replaced by a random function, withXBB is the set of all secret
keys used by black-box prover instances,
– the PRF-instances fy∈XWB

are left as they are, with YWB being the set of all secret keys used
by white-box prover instances.

Intuitively, Γ2 is a now a game in which every value sent by black-box provers is independent
of their secret key, so thatA has no better choice than guessing it.

Note that this transition is possible (i.e., “programmable PRF” issues [8] that may arise in DB
and prevent this step do not apply here): the adversary does not know the key of the concerned
PRF, and its output is never combined with any other key-dependent value.

This transition is actually a hybrid argument: it implicitly assumes as many game hops as
there are honest provers, i.e Γ20...2qhp , where qhp is the number of honest provers, Γ20 is the
same as Γ1, and Γ2qhp is the same as Γ2. In each of these games, one more PRF is replaced
by a random function.

We now prove that |Pr[Γ2i]−Pr[Γ2i−1
]|≤negl(s), for i from 1 to qhp. To prove it, we use

A to build a ppt. adversaryA′, such that the success probability ofA′ in the the PRF-security



game is proportional to |Pr[Γ2i]−Pr[Γ2i−1
]|. Hence, any non negligible difference between

two games would contradict the assumption that the PRF is secure.
To buildA′, we use a slightly modified environment for the secret-extraction experiment.

We store a counter i, which is the same as in the notation Γ2i . The oracles Join and JoinBB
are modified as follows:
– Instead of generating a secret key x, the Join or JoinBB oracles start a new PRF experiment
when they are called for the ith prover, and receive the correspondingO(·) oracle, which will
be used by the corresponding prover instead of fx. For the jth call, if j<i, the prover is the
same as in the j−1th game (i.e, the PRF experiment created in Γ2j is used for the jth prover.
If j>i, then the oracle behaves as in Γ1;

The JoinWB, on the other hand, is not modified and still uses a PRF.
Hence, only one thing changes between two consecutive games: one more honest (or

black-box) prover uses the oracleO provided by a PRF challenger instead of his PRF.
Note that, from the point of view of the adversary, black-box and honest provers are indis-

tinguishable, as the single difference between them is the record in UL, which is private: hence,
the counter can be the same for both Join and JoinBB, i.e we do not need to distinguish the
case of black-box and honest provers in two separate games.

Finally, ifA wins in Γ2i , then the distinguisherA′ in the PRF-security game replies 0 (i.e.,
the PRF challenger chose a PRF). If A loses, A′ replies 1 (i.e., the PRF challenger chose a
random function).

This distinguisherA′ wins if b=0 andA wins, or if b=1 andA loses. Note that if b=0,
thenA is in the game Γ2i−1

(with a PRF), and otherwise,A is in Γ2i (with a random function).
So, the success probability of A′ in the PRF experiment is Pr[b= 0] ·Pr[Γ2i−1]+Pr[b=

1]·(1−Pr[Γ2i]) = 1
2 ·(1+Pr[Γ2i−1

]−Pr[Γ2i]). Hence, any non negligible advantage ofA
in winning in Γ2i−1

over Γ2i can be directly leveraged as an advantage in the PRF experiment,
which concludes the proof.

Hence, |Pr[Γ1]−Pr[Γ2]| is negligible.
We now prove that the success probability of A in Γ2 is negligible. In Γ2, every variable

is independent of x. Hence, there is no better strategy forA for outputting any subset y of x
than guessing, with probability 1

2|y|
.

From this, we obtain that the success probability of a secret extraction adversary against DB3
is 1

2|y|
+negl(s), where the negligible factor is a polynomial function of the advantage ofA

against the PRF.
ut

6.3 Generalised Mafia-Fraud Security for DB3

Consider the security-definition of generalised mafia-fraud in Def. 11, Section 5.2. Recall that
this notion defines security against a generalised form of mafia fraud, in which the adversary
aims at making the verifier accept a honest, far away prover.

Theorem 2. If the PRF assumption holds, then DB3 has generalised mafia-fraud security.

Proof. Let s be the security parameter of DB3, and negl(s) be a negligible function of s.
For this proof, we first eliminate the possibility of each nonce being used more than once, and

then replace each PRF fx instance for whichA does not know the key with a random function.
From the initial game Γ0 (the generalised mafia-fraud in Def. 11), we obtain a final game Γ3,
in which all the a vectors are therefore unpredictable by the adversary.



Γ1: This game is the initial game Γ0, where eachNV is indeed never used more than once.
Let q be the number of NV values issued by oracles involving verifier-instance (i.e.,

SendToV erifier andLaunch), during the experiment encapsulating this game. The probabil-
ity that oneNV repeats is upper bounded by q2

2n , which is negligible. Hence,Pr[Γ1]−Pr[Γ0]≤
q2

2n .
Γ2: This game is the game Γ1, whereNP is never used more than once by honest /black-box

prover-instances.
Let q be the number ofNP values issued by the black-box/honest provers through the oracles

during the experiment encapsulating this game. The probability that oneNP repeats is upper
bounded by q2

2n , which is negligible. Hence, Pr[Γ2]−Pr[Γ1]≤ q2

2n .
Γ3: This game is the game Γ2, in which the PRF-instances are replaced by a random function

for each uncorrupted prover-instances, but remains a PRF for the corrupted ones.
This transition is the same the one in the secret-extraction proof (for Γ2 therein), hence we

do not reexplain it, and obtain, |Pr[Γ3]−Pr[Γ2]|≤negl(s)

We are left to prove that the probability forA to win in Γ3 is negligible.
In the first step of the generalised mafia-fraud game,A picks a prover P . Since P is uncor-

rupted, he uses a random function instead of a PRF instance, and since NP and NV do not
repeat, the vector a is unpredictable forA except by guessing at random. In the second step,
A must authenticate on behalf of P . To pass the distance bounding phase with P being far,
at each round, he can either pre-ask (i.e. send a random challenge to P in advance, in order
to obtain the response in time to send it to V ), post ask (i.e. forward the challenge from V
to P and send a random response before P responds), or not ask, i.e., wait for the challenge
and send a random response. In the three cases, he needs to guess one random bit, either the
challenge or the response, which succeeds with probability 1

2 . In the two strategies where
A guesses the response, any wrong guess makes the authentication fail, so his probability is
1
2n . If he guesses the challenge, then a wrong guess changes the input used to compute tag.
Since f is a random function, tag is modified in a unpredictable way, then A only wins if
f(NP ,NV ,C)=f(NP ,NV ,C

′), for C′ 6=C, which occurs with the negligible probability 1
2n .

So, given this last statement plus the game-hops above, the probability ofA winning in this
MF security game is 1

2n + negl(s).
ut

6.4 Generalised Distance-Fraud Security for DB3

Consider the security-definition of generalised distance fraud in Def. 10, Section 5.2. Recall that
this notion defines security against a generalised form of distance fraud, in which a far away,
white-box corrupted prover is accepted by the verifier, with the condition that no adversarially
controlled algorithm is near the verifier.

Theorem 3. If the PRF assumption holds, then DB3 has generalised distance-fraud security.

Proof. Let s be the security parameter of DB3, and negl be a negligible function.
For this proof, initial game Γ0 (the generalised distance-fraud in Def. 10), we obtain a final

game. We first replace the PRF instances used by every non-adversarially controlled entity by
random functions, and then prove thatA is left with a negligible winning probability.



Γ1: This game is the game Γ0, in which the PRF-instances are replaced by a random function
for each uncorrupted prover-instances, but remains a PRF for the corrupted ones.

This transition is the same as the one in the secret-extraction proof (for Γ2 therein), hence
we do not reexplain it, and obtain, |Pr[Γ1]−Pr[Γ0]|≤negl(s)

We now prove that the success probability ofA is negligible in Γ1. The prover P∗ picked
byA during the learning phase is located far from dV, but there are other provers P located
near the designated verifier, but running with different keys.

For P∗ to pass the distance bounding phase, he needs to send the correct ai at each round
(since there is no error tolerance). He can either send his own response, or trigger the response
from a nearby honest prover. In both cases, the response is correct with probability 1

2 : In the
first case, because in order for the response to arrive on time,Amust send it before receiving
the challenge ci, and a wrong guess yields a wrong response (ai⊕ci). In the second case, the
response is correct iff ai (as picked byA) is equal to a′i (chosen by the honest prover). However,
a′ is the output of a random function, so Pr[ai=a′i] = 1

2 . The probability to succeed in all
rounds is therefore 1

2n , which is negligible.
So, the probability ofA winning in this DF security game is 1

2n + negl(s).
ut

N.B. on Proofs. Our proofs are done for a noiseless environment, where the noise resistance
factor τ is set to 1: all responses and times must be correct. However, we can adapt them to
work in noisy environments.

7 Conclusion

Firstly, we have showed that – under reasonable assumptions – one cannot achieve terrorist-fraud
resistance in the standard senses of this notion. Actually, Appendix B discusses this in more
detailed manner, considering different ways of using of PUFs in the protocols, and proposes
a new TF-resistance that can be attained by some PUF-based protocols.

Secondly, by combining elements from existing DB frameworks [2,10,15], we yielded a
new model that captures DB-security via a small number of clear security definitions, where
the prover-corruption models is fined-grained (i.e., an adversary can play at once with white-box
and black-box provers). We also showed how to carry out security proofs in this new model.
This model has a number of advantages: (1) our definitions can be “picked and chosen” by an
application-designer who wishes to integrate DB, upon the threats that their proving devices
can be exposed to; (2) we explicit model the security-notion of key-leakage, which has been
so far shortchanged in distance-bounding; (3) we believe that our oracle-style adversary model,
our notion of DB environment and our security-definitions make our model much suited to
mechanising our security proofs in a tool like Easycrypt [5]; (4) our model is easily augmented
to treat fine-grained privacy and anonymity properties in DB. The last two points constitute
our future work on this line. Another interesting future work-line would be to find a generic
terrorist-fraud attack that does not rely on tamper-proof devices.
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A Honest and Adversarial Communication Models

We herein define our DB communication model.



DB Communication Model. Exchanges of messages occur between instances, from a location
to another location. Each communication takes time, proportional to the distance between said
instances. We assume a global clock, which can measure the time-of-flight of all exchanges.

Communication is done via broadcast. An instance Sid1(...) who wants to send a message
m to an instanceRid2(...) just broadcasts the message, settingR’s ID as the “purported desti-
nation”; this “purported destination” is a virtual pointer and it is not protected cryptographically.
However, subparts ofm can well include elements that onlyRid2(...) can decipher. The message
m reaches other instances closer to Sid1(...) thanRid2(...) first and these instances can readm.

Communication channels are un-authenticated, i.e., there is no element in the channel that
identifiers the sender of a message. Also, there is no element in the algorithms of the parties
which can distinguish the holder Pholder of a prover devices from the instance of that proving
device Palg run at the location of the holder.

Communication channels are insecure, i.e., messages can be read, intercepted, blocked or
modified whilst in transit.

Adversarial Communications. We consider an adversarial partyA, described via an PPT
algorithm. It can also have several instances. We make no distinction in the font/letter used to
denote the adversary’s partyA and its instances.

Adversarial instances can run arbitrary PPT algorithms, at both locations: close, far. When it is
not clear from the context, we specifyAclose orAfar. The attackerA (and all its instances) can
modify the “purported destination” of messages, or block them, irrespective of where they come
from (i.e., irrespective if the message comes from an instance close to the designated verifier
or from one far-way from it, etc.). Adversarial modification/blocking per se is instantaneous,
i.e., adversarial modification/blocking does not introduce any extra delay. However, making
a modified message travel (e.g., from an instance Aclose to an instance Afar) is subject to
distance/locations. In essence, all communications from any instanceAclose to any instance
Afar and vice-versa is subject to time-measurement, i.e., the adversary cannot defeat the laws
of optics/mechanics and make his signal travel faster between his instances or make them appear
be at a lesser distance from one another.

To mount a MiM/mafia-fraud attack, at least two instances ofA are necessary: one instance
Afar to impersonate the verifier to the far-away prover and one instanceAclose to impersonate
the prover in the proximity of the designated verifier. Whilst the communication between an
instanceAclose to an instanceAfar is subject to time/distance (as aforementioned), in we do
not explicitly quantify the communication between these two instances: in the case of MiM/MF,
we speak of just one adversarial entity embodying these two instances and their communication
restrictions (see Section 5.2).

B (Im)possible TF Resistances in Protocols using PUFs

This is cast under the same assumptions on DB models as in Section 3.
Note that our generic attack in Section 3 cannot be mounted onto protocols using PUFs on

the provers’ side (since PUFs make cloning is impossible). As such, we believe that another
type of TF-resistance should be introduced for protocols using PUFs. It is, on the other hand,
not achievable without a PUF.



B.1 Real-Life Terrorist-Fraud-resistance: A Possible Way to TF-resistance
for PUF-based Protocols.

In some protocols, the prover can simply not provide any helpful information for an accomplice
to pass the protocol. For instance, consider a protocol with only one time critical round, in
which the response to a challenge C is PUF(C), and C is n bit long, with n depending on
the security parameter. Since we consider polynomially bounded adversaries, and the number of
possible challenge response pairs is exponential in the security parameter, the prover can simply
not give his accomplice enough data to be able to respond with a good probability. Moreover,
if the accomplice forwarded C to the far away prover, then he would not receive the response
early enough to respond within the time-bound. Additionally, if the same challenge is never
used more than once, then the protocol is generalised mafia-fraud resistant. It is also generalised
distance-fraud resistant, and trivially secret-extraction resistant, since there are no secret keys.

Hence, in such a protocol, the prover has no physical way of giving his accomplice any
non-negligible advantage to succeed. This is in fact form of terrorist-fraud resistance (by triv-
iality). We define it as RTF . A protocol is real-life terrorist-fraud-resistant
if whatever help is given by a malicious prover to an accomplice does not allow the accom-
plice to perform significantly better than if the prover was honest. In this attack model, the
prover is not forbidden to give his secret key as in a regular terrorist-fraud. More formally,
real-life terrorist-fraud-resistance is as follows.

Definition 12. Real-Life Terrorist-Fraud. Let Π be any DB protocol modelled
in DB formalism, and let s be a security parameter therein in which all asymptotic measures
below are given. Let V be a designated verifier, w.r.t. which authentication is taking place. Let
pMiM
Π denote the success probability of the best MiM attack against the protocolΠ.

A Real-Life Terrorist-Fraud adversary is a pair of any PPT algorithms P
andA, such that P is located far-away from the designated verifier, andA is at an arbitrary
position.

Let pAΠ(helpP ) denote the probability of an accompliceA to pass the protocol with the help
of a malicious prover P , where (P,A) is a Real-Life Terrorist-Fraud adversary.

A protocol MiM-resistant protocol Π is Real-Life Terrorist-Fraud resistant
if, for all PPT algorithms P andA, |pAΠ(helpP )−pMiM

Π |≤negl(s), where negl(s) denotes
the set of negligible functions over the security parameter s.

Note that protocols vulnerable to MiM attacks are excluded from this definition and cannot
be said to be Real-Life Terrorist-Fraud resistant.

B.2 Impossibility of Classical Terrorist Fraud Resistance with PUFs.

Now, we make an argument that no DB protocol “purely” based on PUF can be CTF resistant.

Definition 13. DB Protocol Purely PUF-based. A DB protocol is purely PUF-based if the
authentication mechanism of a prover P is based only on a specific PUF held by the prover P
and it is specifically not based on any cryptographic keys (shared or private-public pairs).

Lemma 1: No purely PUF-based DB protocol can be CTF resistant.

Proof. LetΠ be a purely PUF-based DB protocol. Assume by contradiction thatΠ is CTF -
resistant.

Since Π uses a PUF, P∗ cannot build a complete disposable clone of his device: the best
he can do is build an incomplete clone, that does not embed the PUF.



By our R.A. assumption,Π is CTF resistant, so the accompliceA gains a non negligible
advantage for passing the protocol after being successfully helped by the malicious prover P∗.

This help, whatever it is, is denoted h. By definition of a PUF,A cannot compute the output
of the PUF of P∗ on a new challenge. Hence, there exists a PPT algorithmA′(h) that can win
the MF game without being able to compute the PUF.

Hence, P∗ can build a disposable tamper proof device based onA′(h) and give it toA, so
thatA presents it to the verifier in order to authenticate without learning anything more than
what appears from a protocol session.

Hence, the protocol is not CTF resistant, so our assumption is false and the statement is
proven.

ut

Discussions on our TF-resistance Impossibility Results: PUFs vs cryptographic Keys.
Our TF-resistance impossibility results were shown for protocols where the authentication is
either based only cryptographic keys (Section 3) or only PUFs (as per the Lemma 1 above).
All protocols we know in the literature fall into this. (For the ones based only on PUFs, see
e.g. [18]).

But, we are left to consider the case of “hybrid” protocols, which use both a PUF and keys
for the authentication mechanisms. In this case, idea of a generic CTF attack on such protocols
would be to build a disposable clone in which all calls to the PUF are replaced by queries to P∗
over an encrypted channel7: if these calls occur during the slow phases, then there is no timing
issue and the change goes unnoticed for the verifier. If the calls are made during the online
phase, then two possibilities exist. Either the size/entropy of the challenge make it possible to
query all possible responses before the round, which the clone does, or the challenges are too
long/unpredictable, and then, the protocol isRTF resistant, sinceP∗ can simply not helpA pass.

Conclusions on our TF-resistance (Im)possibility Results. On the one hand, we show
TF-resistance impossibility results for protocols where the authentication is based only crypto-
graphic keys (Section 3), based only on PUFs (Lemma 1), and above we give a strong intuition
that classical terrorist-fraud resistance notion cannot be achieved, even when the authentication
resides both on PUFs and on cryptographic keys.

On the other hand, a stronger notion,RTF resistance, in which the prover can simply not
help the accomplice, can be attained if one uses a DB protocol purely PUF-based.

7 We make the extra assumption that encryption only introduces a negligible delay, for instance via
a one time pad.


