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Abstract. SSH is a security network protocol that uses public key cryp-
tography for client authentication. SSH connections are designed to be
run between a client and a server and therefore in enterprise networks
there is no centralized monitoring of all SSH connections. An attractive
method for enforcing such centralized control, audit or even revocation is
to require all clients to access a centralized service in order to obtain their
SSH keys. The benefits of centralized control come with new challenges
in security and availability.
In this paper we present ESKM - a distributed enterprise SSH key man-
ager. ESKM is a secure and fault-tolerant logically-centralized SSH key
manager. ESKM leverages k-out-of-n threshold security to provide a high
level of security. SSH private keys are never stored at any single node,
not even when they are used for signing. On a technical level, the sys-
tem uses k-out-of-n threshold RSA signatures, which are enforced with
new methods that refresh the shares in order to achieve proactive se-
curity and prevent many side-channel attacks. In addition, we support
password-based user authentication with security against offline dictio-
nary attacks, that is achieved using threshold oblivious pseudo-random
evaluation.
ESKM does not require modification in the server side or of the SSH
protocol. We implemented the ESKM system, and a patch for OpenSSL
libcrypto for client side services. We show that the system is scalable and
that the overhead in the client connection setup time is marginal.

1 Introduction

SSH (Secure Shell) is a cryptographic network protocol for establishing a secure
and authenticated channel between a client and a server. SSH is extensively
used for connecting to virtual machines, managing routers and virtualization
infrastructure in data centers, providing remote support and maintenance, and
also for automated machine-to-machine interactions.

This work describes a key manager for SSH. Client authentication in SSH
is typically based on RSA signatures. We designed and implemented a system
called ESKM – a distributed Enterprise SSH Key Manager, which implements
and manages client authentication using threshold proactive RSA signatures



Our work focuses on SSH but has implications beyond SSH key management.
Enterprise-level management of SSH connections is a known to be a critical prob-
lem which is hard to solve (see Sec. 1.1). The solution that we describe is based
on threshold cryptography, and must be compliant with the SSH protocol. As
such, it needs to compute RSA signatures. Unfortunately, existing construc-
tions for threshold computation of RSA signatures with proactive security, such
as [23,22,21], do not tolerate temporary unavailability of key servers (which is
a common feature). We therefore designed a new threshold RSA signature pro-
tocol with proactive security, and implemented it in our system. This protocol
should be of independent interest.

Technical contributions. In addition to designing and implementing a solution
for SSH key management, this work introduces the following novel techniques:

– Threshold proactive RSA signatures with graceful handling of non-
cooperating servers: Threshold cryptography divides a secret key between
several servers, such that a threshold number of servers is required to com-
pute cryptographic operations, and a smaller number of servers learns noth-
ing about the key. Threshold RSA signatures are well known [28]. There
are also known constructions of RSA threshold signatures with proactive
security [23,22,21]. However, these constructions require all key servers to
participate in each signature. If a key server does not participate in comput-
ing a signature then its key-share is reconstructed and exposed to all other
servers. This constraint is a major liveness problem and is unacceptable in
any large scale system.
This feature of previous protocols is due to the fact that the shares of thresh-
old RSA signatures must be refreshed modulo φ(N) (for a public modulus
N), but individual key servers cannot know φ(N) since knowledge of this
value is equivalent to learning the private signature key.
ESKM solves this problem by refreshing the shares over the integers, rather
than modulo φ(N). We show that, although secret sharing over the integers
is generally insecure, it is secure for proactive share refresh of RSA keys.

– Dynamic addition of servers: ESKM can also securely add key servers or
recover failed servers, without exposing to any key server any share except
its own. (This was known for secret sharing, but not for threshold RSA
signatures.)

– Client authentication: Clients identify themselves to the ESKM system
using low-entropy secrets such as passwords. We enable authentication based
on threshold oblivious pseudo-random function protocols [20] (as far as we
know, we are the first to implement that construction). The authentication
method is secure against offline dictionary attacks even if the attacker has
access to the memory of the clients and of less than k of the key servers.

1.1 Current SSH Situation

SSH as a security risk. Multiple security auditing companies report that many
large scale enterprises have challenges in managing the complexity of SSH keys.
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SSH communication security [7] “analyzed 500 business applications, 15,000
servers, and found three million SSH keys that granted access to live produc-
tion servers. Of those, 90% were no longer used. Root access was granted by
10% of the keys”. Ponemon Institute study [6] in 2014 “of more than 2,100 sys-
tems administrators at Global 2000 companies found that three out of the four
enterprises were vulnerable to root-level attacks against their systems because
of failure to secure SSH keys, and more than half admitted to SSH-key-related
compromises.” It has even been suggested by security analysts at Venafi [8] that
one of the ways Edward Snowden was able to access NSA files is by creating and
manipulating SSH keys. Recent analysis [34] by Tatu Ylonen, one of the authors
of the SSH protocol, based on Wikileaks reports, shows how the CIA used the
BothanSpy and Gyrfalcon hacking tools to steal SSH private keys from client
machines.

The risk of not having an enterprise level solution for managing SSH keys
is staggering. In a typical kill chain the attacker begins by compromising one
machine, from there she can start a devastating lateral movement attack. SSH
private keys are either stored in the clear or protected by a pass-phrase that is
typically no match for an offline dictionary attack. This allows an attacker to
gain new SSH keys that enable elevating the breach and reaching more machines.
Moreover, since many SSH keys provide root access, this allows the attacker to
launch other attacks and to hide its tracks by deleting auditing controls. Finally,
since SSH uses state-of-of-the-art cryptography it prevents the defender from
having visibility to the attackers actions.

Motivation. A centralized system for storing and managing SSH secret keys has
major advantages:

– A centralized security manager can observe, approve and log all SSH con-
nections. This is in contrast to the peer-to-peer nature of plain SSH, which
enables clients to connect to arbitrary servers without any control by a cen-
tralized authority. A centralized security manager can enforce policies and
identify suspicious SSH connections that are typical of intrusions.

– Clients do not need to store keys, which otherwise can be compromised if
a client is breached. Rather, in a centralized system clients store no secrets
and instead only need to authenticate themselves to the system (in ESKM
this is done using passwords and an authentication mechanism that is secure
against offline dictionary attacks).

In contrast to the advantages of a central key server, it is also a single point
of failure, in terms of both availability and security. In particular, it is obviously
insecure to store all secret keys of an organization on a single server. We therefore
deploy n servers (also known as “control cluster nodes” – CC nodes) and use k-
out-of-n threshold security techniques to ensure that a client can obtain from any
k CC nodes the information needed for computing signatures, while any subset
of fewer than k CC nodes cannot learn anything useful about the keys. Even
though computing signatures is possible with the cooperation of k CC nodes,
the private key itself is never reconstructed. Security is enhanced by proactive
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Fig. 1. General system architecture

refresh of the CC nodes: every few seconds the keys stored on the nodes are
changed, while the signature keys remain the same. An attacker who wishes to
learn a signature key needs to compromise at least k CC nodes in the short
period before a key refresh is performed.

Secret key leakage. There are many side-channel attack vectors that can be used
to steal keys from servers (e.g., [2,31,24]). Typically, side-channel attacks steal a
key by repeatedly leaking little parts of the secret information. Such attacks are
one of the main reasons for using HSMs (Hardware Secure Modules). Proactive
security reduces the vulnerability to side-channel attacks by replacing the secret
key used in each server after a very small number of invocations, or after a
short timeout. It cab therefore be used as an alternative to HSMs. We discuss
proactive security and our solutions is Sections 2.2 and 3.2. (It is also possible
to use both threshold security and HSMs, by having some CC nodes use HSMs
for their secret storage.)

Securing SSH. The focus of this work is on securing client keys that are used in
SSH connections. Sec. 2.1 describes the basics of the handshake protocol used
by SSH. We use Shamir’s secret sharing to secure the storage of keys. The secret
sharing scheme of Shamir is described in Sec. 2.2. We also ensure security in
the face of actively corrupt servers which send incorrect secret shares to other
servers. This is done using verifiable secret sharing which is described in Sec. 2.2.
The main technical difficulty is in computing signatures using shared keys, so
that no server has access to a key neither in computation nor in storage. This is
achieved by using Shoup’s threshold RSA signatures (Sect. 2.2). We also achieve
proactive security, meaning that an attacker needs to break into a large subset
of the servers in a single time frame. This is enabled by a new cryptographic
construction that is described in Sec. 3.
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1.2 ESKM

ESKM (Enterprise SSH Key Manager) is a system for secure and fault-tolerant
management of SSH private keys. ESKM provides a separation between the
security control plane, and the data plane. The logically-centralized control plane
is in charge of managing and storing private keys in a secure and fault-tolerant
manner, so that keys are never stored in any single node at any given time. The
control plane also provides centralized management services, such as auditing
and logging for network-wide usage of secrets, and key revocation.

The general architecture of ESKM is presented in Fig. 1. The control plane
is composed of a security manager (SM) and a control cluster (CC). The ESKM
CC is a set of servers that provide the actual cryptographic services to data plane
clients. These servers can be located in the same physical site (e.g., a datacenter),
in multiple sites, or even in multiple public clouds. These servers can be run in
a separate hardened machine or as VMs or a container. They do not require
any specialized hardware but can be configured to utilize secure hardware as a
secondary security layer.

Threshold cryptography. The ESKM control plane leverages k-out-of-n threshold
security techniques to provide guarantees for both a high level of security and
for strong liveliness. Secrets are split into n shares, where each share is stored on
a different control plane node. In order to retrieve a secret or to use it, at least
k shares are required (k < n). Specifically, in order to sign using a private key,
k out of n shares of the private key are used, but the private key itself is never
reconstructed, not even in memory, in cache, or in the CPU of any machine.
Instead, we use a threshold signature scheme where each node uses its share of
the private key to provide a signature fragment to the client. Any k of these
fragments are then transformed by the client to a standard RSA signature. Any
smaller number of these fragments is useless for an attacker, and in any case,
the shares, or the private key, cannot be derived from these fragments.

To protect against rogue admins, each CC node should be managed by a dif-
ferent administrator. Ideally, each CC node can have a different implementation,
to reduce the threat of system-wide zero-day exploits. As the communication pro-
tocol between ESKM instances is open, ESKM is vendor-neutral with regards to
the implementation of each entity in the system. Specifically, different CC nodes
can be implemented by different vendors. For enhanced security, some CC nodes
can be placed in public clouds, such that at least one (or less than k) of them
is required in order to use a key. This way, even if the entire internal network
is compromised, keys can be immediately revoked by the administrator of the
remote machines. As each public cloud hosts less than k CC nodes, the keys are
secured even if these remote services are compromised.

Proactive security. ESKM also provides a novel proactive security protocol that
refreshes the shares stored on each CC node, such that the shares are randomly
changed, but the secret they hide remains the same. This protects against a
mobile adversary and side-channel attacks, since keys are refreshed very fre-
quently while on the other hand any successful attack must compromise at least
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k servers before the key is refreshed. Known constructions of proactive refreshing
of threshold RSA signatures are inadequate for our application:

– In principle, proactive refreshing can be computed using generic secure multi-
party computation (MPC) protocols. However, this requires quite heavy ma-
chinery (since operations over a secret modulus need to be computed in the
MPC by a circuit).

– There are known constructions of RSA threshold signatures with proactive
security [23,22,21], but these constructions require all key servers to partic-
ipate in each signature. If a key server does not participate in computing a
signature then its key-share is reconstructed by the other servers and is ex-
posed, and therefore this key server is essentially removed from the system.
This constraint is a major liveness problem and is unacceptable in any large
scale system.

Given these constraints of the existing solutions for proactively secure thresh-
old RSA, we use a novel, simple and lightweight multi-party computation pro-
tocol for share refresh, which is based on secret sharing over the integers.

While secret sharing over the integers is generally insecure, we show that un-
der certain conditions, when the secret is a random integer in the range [0 . . . R)
and the number n of servers is small (nn � R), then such a scheme is statis-
tically hiding in the sense that it leaks very little information about the secret
key. In our application |R| is the length of an RSA key, and the number n of
servers is at most a double-digit number. We provide a proof of security for the
case where the threshold is 2, and a conjecture and a proof sketch for the general
case. Our implementation of proactive secret sharing between all or part of the
CC nodes, takes less than a second, and can be performed every few seconds.

Provisioning new servers. Using a similar mechanism, ESKM also allows dis-
tributed provisioning of new CC nodes, and recovery of failed CC nodes, without
ever reconstructing or revealing the key share of one node.

Minimal modifications to the SSH infrastructure. As with many new solutions,
there is always the tension between clean-slate and evolution. With so much
legacy systems running SSH servers, it is quite clear that a clean-slate solution
is problematic. In our solution there is no modification to the server or to the
SSH protocol. The only change is in a very small and restricted part of the client
implementation. The ESKM system can be viewed as a virtual security layer on
top of client machines (whether these are workstations, laptops, or servers). This
security layer manages secret keys on behalf of the client and releases the client
from the liability of holding, storing, and using multiple unmanaged secret keys.
In fact, even if an attacker takes full control over a client machine, it will not be
able to obtain the secret keys that are associated with this client.

Abstractly, our solution implements the concept of algorithmic virtualization:
The server believes that a common legacy single-client is signing the authenti-
cation message while in fact the RSA signature is generated via a threshold
mechanism involving the client and multiple servers.
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Cryptographic mechanisms. The cryptographic mechanisms of ESKM are based
on Shamir’s secret sharing [27], and its application for RSA threshold signatures
by Shoup [28]. In this paper we suggest a novel approach to combine the practical
RSA signature scheme of Shoup with a proactive scheme [25] that redistributes
the secret key shares every few seconds. Our scheme also redistributes the veri-
fication information needed for the non-interactive public signature verification
of Shoup.

Implementation and experiments. We fully implemented the ESKM system: a
security manager and a CC node, and a patch for the OpenSSL libcrypto for
client side services. Applying this patch makes the OpenSSH client, as well as
other software that uses it such as scp, rsync, and git, use our service where
the private key is not supplied directly but is rather shared between CC nodes.
We also implemented a sample phone application for two-factor human authen-
tication, as discussed in Sec. 4.2.

We deployed our implementation of the ESKM system in a private cloud and
on Amazon AWS. We show by experiments that the system is scalable and that
the overhead in the client connection setup time is up to 100ms. We show that
the control cluster is able to perform proactive share refresh in less than 500ms,
between the 12 nodes we tested.

Summary of contributions:

1. A system for secure and fault-tolerant management of secrets and private
keys of an organization. ESKM provides a distributed, yet logically-centralized
control plane that is in charge of managing and storing the secrets in a secure
and fault-tolerant manner using k-out-of-n threshold signatures.

2. Our main technical contribution is a lightweight proactive secret sharing
protocol for threshold RSA signatures. Our solution is based on a novel
utilization of secret sharing over the integers.

3. The system also supports password-based user authentication with security
against offline dictionary attacks, which is achieved by using threshold obliv-
ious pseudo-random evaluation (as is described in Sec. 3.4).

4. We implemented the ESKM system to manage SSH client authentication
using the standard OpenSSH client, with no modification to the SSH protocol
or the SSH server.

5. Our experiments show that ESKM has good performance and that the sys-
tem is scalable. A single ESKM CC node running on a small AWS VM in-
stance can handle up to 10K requests per second, and the latency overhead
for the SSH connection time is marginal.

2 Background

2.1 SSH Cryptography

The SSH key exchange protocol is run at the beginning of a new SSH connec-
tion, and lets the parties agree on the keys that are used in the later stages of
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the SSH protocol. The key exchange protocol is specified in [33] and analyzed
in [29,9]. The session key is decided by having the two parties run a Diffie-
Hellman key exchange. Since a plain Diffie-Hellman key exchange is insecure
against active man-in-the-middle attacks the parties must authenticate them-
selves to each other. The server confirms its identity to the client by sending
its public key, verified by a certificate authority, and using the corresponding
private key to sign and send a signature of a hash computed over all messages
sent in the key exchange, as well as over the exchanged key. This hash value is
denoted as the “session identifier”.4

Client authentication to the server is described in [32]. The methods that
are supported are password based authentication, host based authentication,
and authentication based on a public key signature. We focus on public key
authentication since it is the most secure authentication method. In this method
the client uses its private key to sign the session identifier (the same hash value
signed by the server). If the client private key is compromised, then an adversary
with knowledge of that key is able to connect to the server while impersonating
as the client. Since the client key is the only long-lived secret that the client
must keep, we focus on securing this key.

2.2 Cryptographic Background

Shamir’s Secret Sharing. The basic service provided by ESKM is a secure
storage service. This is done by applying Shamir’s polynomial secret sharing [27]
on secrets and storing each share on a different nodes. Specifically, given a secret
d in some finite field, the system chooses a random polynomial s of degree k− 1
in that field, such that s(0) = d. Each node 1 ≤ i ≤ n stores the share s(i). k
shares are sufficient and necessary in order to reconstruct the secret d.

Proactive Secret Sharing. One disadvantage of secret sharing is that the
secret values stored at each node are fixed. This creates two vulnerabilities: (1)
an attacker may, over a long period of time, compromise more than k− 1 nodes,
(2) since the same shares are used over and over, an attacker might be able to
retrieve them by exploiting even a side channel that leaks very little information
by using de-noising and signal amplification techniques.

The first vulnerability is captured by the mobile adversary model, in this
model the adversary is allowed to move from one node to another as long as
at most k − 1 nodes are compromised at any given two-round period [25]. For
example, for k = 2, the adversary can compromise any single node and in order
to move from this node to another node the adversary must have one round in
between where no node is compromised.
4 Security cannot be proved under the sole assumption that the hash function is
collision-resistant, since the input to the function contains the exchanged key. In [29]
the security of SSH is analyzed under the assumption that the hash function is a ran-
dom oracle. In [9] it was analyzed under the assumption that the function essentially
implements a PRF.
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Secret sharing solutions that are resilient to mobile adversaries are called
proactive secret sharing schemes [19,35]. The core idea is to constantly replace
the polynomial that is used for sharing a secret with a new polynomial which
shared the same secret. This way, knowing k−1 values from each of two different
polynomials does not give the mobile attacker any advantage in learning the
secret that is shared by these polynomials.

Proactive secret sharing is particularly effective against side-channel attacks:
Many side-channel attacks are based on observing multiple instances in which
the same secret key is used in order to de-noise the data from the side channel.
By employing proactive secret sharing one can limit the number of times each
single key is used, as well as limit the duration of time in which the key is used
(for example, our system is configured to refresh each key every 5 seconds or
after the key is used 10 times).

Feldman’s Verifiable Secret Sharing. Shamir’s secret sharing is not resilient
to a misbehaving dealer. Feldman [13] provides a non-interactive way for the
dealer to prove that the shares that are delivered are induced by a degree k
polynomial. In this scheme, all arithmetic is done in a group in which the discrete
logarithm problem is hard, for example in Z∗p where p is a large prime.

To share a random secret d the dealer creates a random degree k polynomial
s(x) =

∑
0≤i≤k aix

i where a0 = d is the secret. In addition, a public generator g
is provided. The dealer broadcasts the values ga0 , . . . , gak and in addition sends
to each node i the share s(i). Upon receiving s(i), ga0 , . . . , gak , node i can verify
that gs(i) =

∏
0≤j≤k(g

aj )i
j

. If this does not hold then node i publicly complains
and the dealer announces s(i). If more than k nodes complain, or if the public
shares are not verified, the dealer is disqualified.

Shoup’s Threshold RSA Signatures. The core idea of threshold RSA sig-
nature schemes is to spread the private RSA key among multiple servers [10,14].
The private key is never revealed, and instead the servers collectively sign the
requested messages, essentially implementing a secure multi-party computation
of RSA signatures.

Recall that an RSA signature scheme has a public key (N, e) and a private
key d, such that e · d = 1 mod φ(N). A signature of a message m is computed
as (H(m))d mod N , where H() is an appropriate hash function.

An n-out-of-n threshold RSA scheme can be easily implemented by giving
each server a key-share, such that the sum of all shares (over the integers) is
equal to d [10,14]. Such schemes, however, require all parties to participate in
each signature. This issue can be handled using interactive protocols [15], some
with potentially exponential worst case costs [35,26]. These protocols essentially
recover the shares of non-cooperating servers and reveal them to all other servers,
and are therefore not suitable for a system that needs to operate even if some
servers might be periodically offline.

To overcome these availability drawbacks, Shoup [28] suggested a threshold
RSA signing protocol based on secret sharing, which provides k-out-of-n recon-
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struction (and can therefore handle n− k servers being offline). Shoup’s scheme
is highly practical, does not have any exponential costs, is non-interactive, and
provides a public signature verification. (However, it does not provide proactive
security.)

We elaborate more on the details of the threshold RSA signature scheme
suggested by Shoup: The main technical difficulty in computing threshold RSA is
that polynomial interpolation is essentially done in the exponent, namely modulo
φ(N). Polynomial interpolation requires multiplying points of the polynomial by
Lagrange coefficients: given the pairs {(xi, s(xi))}i=1,...,k for a polynomial s() of
degree k − 1, there are known Lagrange coefficients λ1, . . . , λk such that s(0) =∑
i=1,...,k λis(xi). The problem is that computing these Lagrange coefficients

requires the computation of an inverse modulo φ(N). However, the value φ(N)
must be kept hidden (since knowledge of φ(N) discloses the secret key d). Shoup
overcomes this difficulty by observing that all inverses used in the computation
of the Lagrange coefficients are of integers in the range [1, n], where n is the
range from which the indexes xi are taken. Therefore, replacing each Lagrange
coefficient λi with ∆ · λi, where ∆ = n!, converts each coefficient to an integer
number, and thus no division is required.

We follow Shoup’s scheme [28] to provide a distributed non-interactive veri-
fiable RSA threshold signature scheme. Each private key d is split by the system
manager into n shares using a random polynomial s of degree k − 1, such that
s(0) = d. Each node i of the system receives s(i).

Given some client messagem to be signed (e.g., a SSH authentication string),
node i returns to the client the value

xi = H(m)2·∆·s(i) mod N,

where H is a hash function, ∆ = n!, and N is the public key modulus.
The client waits for responses from a set S of at least k servers, and performs

a Lagrange interpolation on the exponents as defined in [28], computing

w =
∏
i

x
2·λSi
i

where λSi is defined as the Lagrange interpolation coefficient applied to index i
in the set S in order to compute the free coefficient of s(), multiplied by ∆ to
keep the value an integer. Namely,

λSi = ∆ ·
∏
j∈S\{i} j∏

j∈S\{i}(j − i)
∈ Z

The multiplication by ∆ is performed in order to cancel out all items in the
denominator, so that the computation of λSi involves only multiplications and
no divisions.

The result of the interpolation is w = (H(m))4∆
2·d. Then, since e is relatively

prime to ∆, the client uses the extended Euclidean algorithm to find integers
a, b such that 4∆2a + eb = 1. The final signature (H(m))d is computed as
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y = wa ·H(m)b = (H(m)d)4∆
2a · (H(m)de)b = (H(m)d)4∆

2a+eb = (H(m))d. The
client then verifies the signature by verifying that H(m) = ye (where e is the
public key).

Share verification: Shoup’s scheme also includes an elegant non-interactive
verification algorithm for each share. This means that the client can quickly de-
tect invalid shares that might be sent by a malicious adversary which controls a
minority of the nodes, and use the remaining honest majority of shares to inter-
polate the required signature. We only describe the highlights of the verification
procedure. Recall that an honest server must return xi = H(m)2·∆·s(i), where
only s(i) is unknown to the client. The protocol requires the server to initially
publish a value vi = vs(i), where v is a publicly known value. The verification is
based on well known techniques for proving the equality of discrete logarithms:
The server proves that the discrete log of (xi)2 to the base (H(m))4∆, is equal
to the discrete log of vi to the base v. (The discrete log of (xi)2 is used due to
technicalities of the group Z∗N .) The proof is done using a known protocol of of
Chaum and Pedersen [11], see Shoup’s paper [28] for details. The important is-
sue for our system is that whenever the shares s(i) are changed by the proactive
refresh procedure, the servers’ verification values, vs(i), must be updated as well.

Using polynomial secret sharing for RSA threshold signatures gives very good
liveliness and performance guarantees that are often not obtainable using com-
parable n-out-of-n RSA threshold signatures. The main drawback of Shoup’s
scheme, as well as of all other known polynomial secret sharing schemes for
RSA, is that they do not provide an obvious way to implement proactive se-
curity, which will redistribute the servers shares such that (1) the new shares
still reconstruct the original signature (2) the old shares of the servers contain
no information that can help in recovering the secret key from the new shares.
Proactive security gives guarantees against a mobile adversary and against side
channel attacks as discussed in the introduction. We address this drawback and
provide a novel proactive scheme for Shoup’s threshold signatures in Sec. 3.

3 ESKM Cryptography

In this section we describe the cryptographic novelties behind the ESKM system,
for cryptographic signing and for storage services for secret keys. We focus on
RSA private keys as secrets, as they are the most interesting use case of ESKM.
However, the same techniques can be applied to other secrets as well. ESKM
uses Shamir’s secret sharing in order to securely split secrets, such that each
share is stored on a different CC node. Given a secret d, the ESKM manager
creates a random polynomial s over φ(N) such that s(0) = d. It then provides
each node i with the value of s(i).

Threshold signatures are computed according to Shoup’s protocol. We focus
in this section on the new cryptographic components of our construction, which
support three new features:

1. Proactive refresh of the shares of the secret key.
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2. Recovery and provisioning of new servers (this is done by the existing servers,
without the help of any trusted manager).

3. Support for password-based user authentication (with security against offline
dictionary attacks).

3.1 Security Model

The only entity in the ESKM system that is assumed to be fully trusted is
the system manager, which is the root of trust for the system. However, this
manager has no active role in the system other than initializing secrets and
providing centralized administrative features. In particular, the manager does
not store any secrets.

For the ESKM control cluster nodes (CC) we consider both the semi-honest
and malicious models and we provide algorithms for both. In the semi-honest
model, up to f = k− 1 CC nodes can be subject to offline attacks, side-channel
attacks, or to simply fail, and the system will continue to operate securely. In
the malicious model we also consider the case of malicious CC nodes that in-
tentionally lie or do not follow the protocol. Note that our semi-honest model is
also malicious-abortable. That is, a node which deviates from the protocol (i.e.,
behaves maliciously) will be detected and the refresh and recovery processes
will be aborted, so the system can continue to operate, although without share
refreshing and node recovery.

Clients are considered trusted to access the ESKM service, based on the
policy associated with their identity. Clients have to authenticate with the ESKM
CC nodes. Each authenticated client has a policy associated with its identity.
This policy defines what keys this client can use and what secrets it may access.
Policies may also include other restrictions such as specific times when a client
may or may not use a key, frequency of key usages, etc. We discuss the client
authentication issue in Sec. 3.4.

3.2 Proactive Threshold Signatures

In order to protect CC nodes against side-channel and offline attacks, we use a
proactive security approach to refresh the shares stored on each CC node. The
basic common approach to proactive security is to add, at each refresh round, a
set of random zero-polynomials. A zero-polynomial is a polynomial z of degree
k − 1 such that z(0) = 0 and all other coefficients are random. Ideally, each
CC node chooses a uniformly random zero-polynomial, and sends the shares of
this polynomial to all other participating nodes. If only a subset of the nodes
participate in the refresh protocol, the value that the zero-polynomial assigns
for the indexes of non-participating nodes must be zero. All participating nodes
verify the shares they receive and add them, along with the share they produce
for themselves, to their original shares. The secret is therefore now shared by
a new polynomial which is the sum of the original polynomial s() and the z()
polynomials that were sent by the servers. The value of this new polynomial at
0 is equal to s(0) + z(0) = s(0) + 0 = d, which is the original secret. This way,
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while the shares change randomly, the secret does not change as we always add
zero to it.

As is common in the threshold cryptography literature, a mobile adversary
which controls k − 1 nodes at a specific round and then moves to controlling
` > 0 new nodes (as well k − `− 1 of nodes that it previously controlled), must
have a transition round, between leaving the current nodes and controlling the
new nodes, where she compromises at most k − ` − 1 nodes. Even for ` = 1
this means that the adversary has at most k − 2 linear equations of the k − 1
non-zero coefficients of z. This observation is used to prove security against a
mobile adversary.

The difficulty in proactive refresh for RSA: The proactive refresh al-
gorithm is typically used with polynomials that are defined over a finite field.
The challenge in our setting is that the obvious way of defining the polynomial
z is over the secret modulus φ(N) = (p− 1)(q− 1). On the other hand, security
demands that φ(N) must not be known to the CC nodes, and therefore they
cannot create a z polynomial modulo φ(N). In order not to expose φ(N) we
take an alternative approach: Each server chooses a zero polynomial z over the
integers with very large random positive coefficients (specifically, the coefficients
are chosen in the range [0, N − 1]). We show that the result is correct, and that
the usage of polynomials over the integers does not reduce security.

With respect to correctness, recall that for all integers x, s, j it holds that
xs = xs+j·φ(N) mod N . The secret polynomial s() satisfies s(0) = d mod φ(N).
In other words, interpolation of this polynomial over the integers results in a
value s(0) = d + jφ(N) for some integer j. The polynomial z() is interpolated
over the integers to z(0) = 0. Therefore, xs(0)+z(0) = xd+j·φ(N)+0 = xd mod N .

With regards to security, while polynomial secret sharing over a finite field is
perfectly hiding, this is not the case over the integers. For example, if a polyno-
mial p() is defined over the positive integers then we know that p(0) < p(1), and
therefore if p(1) happens to be very small (smaller thanN) than we gain informa-
tion about the secret p(0). Nevertheless, since the coefficients of the polynomial
are chosen at random, we show in Appendix B that with all but negligible prob-
ability, the secret will have very high entropy. To the best of our knowledge, this
is the first such analysis for polynomial secret sharing over the integers.

The refresh protocol for proactive security. Algorithm 1 presents our share
refresh algorithm for the malicious model. This is a synchronous distributed
algorithm for n nodes, with up to f = k − 1 malicious or faulty nodes, where
n = 2f + 1. The dealer provides the initial input parameters to all nodes. Note
that verification is done over some random prime field vp and not over the RSA
modulus N (vp > N).

For the semi-honest-malicious-abortable CC nodes model, Round 3 of the
algorithm is not necessary anymore, as well as signature validation for verification
values (lines 4, 9) and the completion of missing information in line 21.

Proactive refresh of verification information: Secret sharing over the
integers allows to refresh the secret shares, but this is not enough. To obtain
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Algorithm 1 Malicious Model Share Refresh Algorithm for Node i
Input parameters:
si - current share of node i; N - public key modulus;
p - an upper bound on the coefficients of the zero polynomial(typically, p = N);
n - number of nodes; f - maximal number of faulty nodes (f = k − 1)
v - used as the base for verification of exponents; vs1 , . . . , vsn - verification values;
vp - verification field; H - hash function for message signing
(Note: computations mod N , unless noted otherwise)

Round 1:
1: Choose αi1, . . . , αik−1 ∼ U([0, p)) to create a zero-polynomial zi(x) =

∑k−1
q=1 α

i
q · xq

over the integers.
2: Compute shares zi1 = zi(1), . . . , zin = zi(n)

3: Compute vα
i
1 , . . . , vα

i
k−1 over vp

4: Compute Sigi ← H(vα
i
1 , . . . , vα

i
k−1)

5: for each node ` 6= i Send zi`, (v
αi1 , . . . , vα

i
k−1), Sigi to node `

Round 2:
6: for each received share z`i from node ` do
7: Verify that H(vα`1 , . . . , vα`k−1) = Sig`

8: Verify that vz
`
i =

∏k−1
q=1

(
vα

`
q

)iq
mod vp

9: If verification failed then Report node `
10: end for
11: if verified at least f + 1 shares then
12: Let s∗i = si +

(∑
verified shares ` z

`
i

)
. (Summation is over the integers)

13: For each j, compute vs
∗
j = vsj

∏n
`=1

∏k−1
q=1 v

α`q·j
q

= vsj
∏
` v

z`j mod vp.
14: Send OK messages to everyone with Sig` of each verified sender `,

(vs
∗
1 , . . . , vs

∗
n), and with a report of missing or invalid shares.

15: else Abort
16: end if

Round 3:
17: Compare signatures in all received OKs
18: Publicly announce everything known by node i on disputed and missing shares to

everyone (there are up to f such shares)
Round 4:

19: Complete missing information using information sent in Round 3: Update s∗i , Up-
date vs

∗
1 , . . . , vs

∗
n , Ignore OKs and shares of identified malicious nodes.

20: if received at least f + 1 valid OKs then
21: Commit new share: si ← s∗i
22: Commit vs

∗
1 , . . . , vs

∗
n

23: else Abort
24: end if

verifiable RSA threshold signatures we also need to refresh the verification in-
formation to work with the new shares, as is done in line 19 of the protocol.

Security: The security analysis of the proactive share refresh appears in
Appendix B.
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3.3 Recovery and Provisioning of CC Nodes

Using a slight variation of the refresh protocol, ESKM is also able to securely
recover CC nodes that have failed, or to provision new CC nodes that are added
to the system (and by that increase reliability). The process is done without
exposing existing shares to the new or recovered nodes, and without any existing
node knowing the share of the newly provisioned node.

The basic idea behind this mechanism is as follows: A new node r starts
without any shares in its memory. It contacts at least k existing CC nodes. Each
one of these existing nodes creates a random polynomial z() such that z(r) = 0
and sends to each node i the value z(i) (we highlight again that these polynomials
evaluate to 0 for an input r). If all nodes are honest, each node should simply
add its original share s(i) to the sum of all z(i) shares it received, and compute
s∗(i) = s(i)+

∑
z(i). The result of this computation, s∗(), is a polynomial which

is random except for the constraint s∗(r) = s(r). Node i then sends s∗(i) to the
new node r, which then interpolates the values it received and finds s∗(r) = s(r).
Since we assume that nodes may be malicious, the algorithm uses verifiable secret
sharing to verify the behavior of each node, and it is recommended that the new
or recovered node contacts more than k existing nodes.

Algorithm 2 presents the pseudo-code for each existing CC node participating
in the recovery process. Algorithm 3 presents the logic of the recovered node.

We note that if this mechanism is used to provision an additional node (as
opposed to recovery of a failed node), it changes the threshold to k-out-of-n+1.
The security implication of this should be taken into account when doing so.

3.4 Threshold-Based Client Authentication

ESKM CC nodes need to verify their clients’ identity in order to securely serve
them and associate their corresponding policies and keys. However, in order to
be authenticated clients must hold some secret that represents their identity, and
hence we have a chicken-and-egg problem: Where would this secret be stored?

The adversary model assumes that an adversary might control some CC
nodes (but less than k CC nodes), and might have access to the client machine.
The adversary must also be prevented from launching an offline dictionary attack
against the password.

Human authentication: For human-operated client machines, a two-factor au-
thentication mechanism that uses both a password (as the something-you-know
factor) and a private key (as the something-you-have factor) can be used. How-
ever, recall that small coalitions of CC nodes are not trusted, and therefore the
password may not be given as-is to each CC node separately. Another approach
could be to encrypt the private key using a password and store it at the client or
in the CC nodes, but this approach is insecure against offline dictionary attacks
on the encrypted file.

A straightforward authentication solution could be to encrypt the private
key using a password and store it at the client or in the CC nodes, but since
the password might have low entropy this approach is insecure against offline
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dictionary attacks on the encrypted file. In addition, passwords or hashes of
passwords must not be recoverable by small server coalitions.

A much preferable option for password-based authentication is to use a
threshold oblivious pseudo-random function protocol (T-OPRF), as suggested
in [20]. A T-OPRF is a threshold modification to the concept of an OPRF. An
OPRF is a two-party protocol for obliviously computing a pseudo-random func-
tion FK(x), where one party knows the key K and the second party knows x.
At the end the protocol the second party learns FK(x) and the first party learns
nothing. (At an intuitive level, one can think of the pseudo-random function
as the equivalent of AES encryption. The protocol enables to compute the en-
cryption using a key known to one party and a plaintext known to the other
party.) A T-OPRF is an OPRF where the key is distributed between multiple
servers. Namely K is shared between these servers using a polynomial p such
that p(0) = K. The client runs a secure protocol with each of the members of a
threshold subset of the servers, where it learns Fp(i)(x) from each participating
server i. The protocol enables the client to use this data to compute FK(x).
The details of the T-OPRF protocol, as well as its security proof and its usage
for password-based threshold authentication, are detailed in [20]. (In terms of
availability, the protocol enables the client to authenticate itself after success-
fully communicating with any subset of the servers whose size is equal to the
threshold.)

The T-OPRF protocol is used for secure human authentication as follows:
The T-OPRF protocol is run with the client providing a password pwd and the
CC nodes holding shares of a master key K. The client uses the protocol to
compute FK(pwd). Note that the password is not disclosed to any node, and the
client must run an online protocol, rather than an offline process, to compute
FK(pwd). The value of FK(pwd) can then be used as the private key of the client
(or for generating a private key), and support strong authentication in a standard
way. For example, the client can derive a public key from this private key and
provide it to the ESKM system (this process can be done automatically upon
initialization or password reset). Thus, using this scheme, the client does not
store any private information, and solely relies on the password, as memorized
by the human user. Any attempt to guess the password requires running an
online protocol with the CC nodes. This approach can be further combined with
a private key that is stored locally on the client machine or on a different device
such as a USB drive, in order to reduce the risk from password theft.

Machine authentication: For automated systems (e.g., scripts running on
servers), a client machine must locally store a single private key which authen-
ticates it to the ESKM system. This key can be stored either in main memory
or on secure hardware (e.g., Amazon KMS). In terms of costs, this is of course
better than storing a massive number of client-server keys in such costly services.
In addition, any usage of this single private key is fully and securely audited by
the ESKM CC nodes. In an unfortunate case of theft, the key can be immedi-
ately revoked without having to log into multiple destination server machines
and revoke the key separately on each one of them.
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Fig. 2. ESKM Security Manager Architecture

4 ESKM System Design

In this section we describe the design details of the ESKM system, which is pre-
sented in Fig. 1. The system includes a logically-centralized control plane, which
provides security services, and a data plane, which consumes these services.

4.1 ESKM Control Plane

The ESKM control plane provides security services for network users, whether
these are humans or machines. It manages identities, access policies, private keys
and secret storage. It also provides centralized auditing and logging capabilities.
The control plane is divided into two key parts: the security manager (SM) and
the control cluster (CC).

ESKM Security Manager. The ESKM security manager (SM) is a single
(possibly replicated) node that serves as the entry point for all administrative
and configuration requests from the system. It manages CC nodes with regards
to policy enforcement, storage of secrets, revocation of keys and policies, etc. It
is also a central access point for administrators for the purpose of auditing and
logging. The SM gives privileged admins the right to read audit logs, but not to
delete or prune them (this can be done at each CC node separately).

The SM provides a service for key generation.5 Upon request, given some key
specification, the SM can generate a private key for an identity, and immediately
share it with the CC nodes. It then returns the public key to the user who
requested the generation of the key, but the private key and its shares are deleted
from the SM memory. The private key is never revealed or stored on disk.

The only point where the SM actually sees secrets is when secrets are initially
stored in the system. In this case, the secret is sent over a secure channel to the
SM. The SM immediately splits the secret into shares and sends these shares to
the CC nodes. Then, the SM deletes the secret and the shares from its memory.
It is important to verify that the data is actually being deleted and overwritten
to prevent side-channel attacks on the SM.
5 The only way to prevent key generation by a single entity is by running a secure
multi-party protocol for RSA key generation. However, such protocols, e.g., [18], are
too slow to be practical, especially when run between more than two servers, and
therefore we did not implement them.

17



The architecture of the SM is shown in Fig. 2. This is essentially an appli-
cation server with web interface (REST) and secure (encrypted) storage It has
several modules for policy management, identity management, secret handling,
and administrative services. It is important to note that the secure storage is
not used for secrets. The main usage of this storage in the SM is for public keys
of other entities in the network (users, machines, CC nodes) and for the SM’s
own private keys.

ESKM Control Cluster. The ESKM control cluster (CC) is a set of servers,
referred to as “CC nodes”. These servers are not replicas. Each CC node imple-
ments the CC node specification with regards to the communication protocol.
However, each CC node stores different shares of the secrets they protect. In or-
der to add robustness, each CC node can be implemented by a different vendor,
run on a different operating system, or a different cryptography library.

A CC node provides two main services: signing, and secret storage and re-
trieval. The signing service is based on the threshold signatures discussed in
Sec. 2 and 3. The storage and retrieval service is based on secret sharing as
discussed in Sec. 2. We note that the secure storage shown in the figure is not
used for storing shares of clients’ secrets. These are only stored in memory, and
in case of a CC node failure, the recovery process described in Sec. 3.3 is used
in order to recover these shares. It is possible to use, in addition, a hardware
secure module (HSM) to store the shares, instead of in memory.

Proactive Share Refresh. The CC nodes have a module that is responsible for
executing the share refresh algorithm presented in Sec. 3.2. Specifically, once a
refresh policy is set to the SM, the SM sets the corresponding policy arguments
to the CC nodes that are included in this policy. A refresh policy has a future
start date, duration of a single refresh round, and an interval between each
two successive rounds. On the designated start date, each CC node executes
Algorithm 1. This repeats every interval as defined in the policy.

A refresh policy also specifies what to do in case of a failure on a refresh
round. A failure can be caused by a malicious or faulty node, or by some mis-
configuration such as unsynchronized clocks. The available options are to ignore
the failure as possible, report the failure and try to continue, report and abort
the ongoing round, report and abort all future refresh rounds of this policy, or
report and abort the CC node completely.

Secure Recovery and Provisioning. The CC nodes also have a module that is re-
sponsible for receiving and responding to recovery requests. Upon receiving such
a request, the CC node waits for the next round 5-seconds time in order to make
sure all other nodes are also ready, and then it executes the recovery algorithm
described in Sec. 3.3. The wait time is configurable and can be much shorter if
the network is fast enough. In addition, each CC node web server can initialize
a recovery request and send it to the active CC nodes. This is the starting point
for the recovery process for that server. It then executes Algorithm 3.
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Multi Cloud Security. Putting all of an enterprise compute resource under a
single cloud provider, or in a single private cloud, raises the risk that a systemic
vulnerability of this cloud provider can compromise the whole compute resource.
With threshold signatures it is possible to spread the keys onto multiple cloud
providers (e.g., Amazon AWS, Microsoft Azure, Google Cloud Compute). Since
each provider holds less than the threshold, then this is information theoretically
secure. Moreover, by storing keys on multiple cloud providers we can dramati-
cally decrease the probability of suffering from a systemic security vulnerability.

Auditing. One important feature of ESKM is the ability to provide fault-tolerant
network-wide auditing of private key usage. Each CC node keeps track of the
requests it handles and the signatures it produces, in a local log system. This
log does not contain sensitive information such as shares of private keys.

In order to provide fault-tolerance of up to f = k − 1 failures, the SM is
allowed to query CC nodes for log entries in order to compose audit reports
for administrators and security auditors. Deletion or pruning of CC node logs
can only be done by the administrator of a CC node. Thus, even if f nodes are
compromised, an attacker cannot wipe their traces by deleting the logs, as each
request is served by at least k CC nodes.

This centralized and robust auditing service provides two powerful features.
The first feature is the ability to have a system wide view of all SSH sessions,
and thus a centralized control and option of activating immediate system-wide
user revocation. The second feature is fault-tolerance and threshold security that
are provided by implementing the distributed auditing over the CC nodes. An
attacker which controls at most k − 1 CC servers cannot hide its tracks by
manipulating the audit logs in any way.

4.2 ESKM Data Plane

The only modification in the data plane that is required in order to incorporate
ESKM is in the SSH client. In most cases, clients use the OpenSSH implementa-
tion [4], which uses OpenSSL [5], and specifically its libcrypto library, for RSA
signatures. As part of our implementation, discussed in Appendix A, we present
a patch for this library that enables ESKM in the client.

Authentication to ESKM CC Nodes. In order to connect to a CC node,
a client creates a secure channel on top of which both client and CC node au-
thenticate to each other. The CC node authenticates itself using a certificate,
or a private key, whose corresponding public key is known to the client. Client
authentication depends on the type of the client: a human or an automated
machine.

Client edge machines are operated by humans, while client core machines are
automated. When using ESKM, a human infiltrator must authenticate to ESKM
from an edge machine in order to log into a core machine, and by that to perform
a lateral movement to other machines. Thus, by hardening the authentication for
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edge machines we protect the entire network, allowing core machines to continue
operating automatically using public key authentication.

Machine-to-Machine Authentication. Automated clients (core machines) use
SSH client private key authentication in order to authenticate with CC nodes.
Client certificates are generated by an administrator using an administrative
request to the SM. This process can also be automated. These certificates are
stored locally in the file system of each client (core machine).

Human Authentication. We employ two-factor authentication for human clients
to authenticate with CC nodes. We use password authentication as something-
you-know, and a private key as something-you-have. There are several ways to
implement this authentication mechanism and we list the most practical ones
here as the decision is based on the pros and cons of each way.

Something You Know. We allow password authentication using the following
methods:
• SSH/HTTPS password Authorization: Considered less secure as it requires

CC nodes to handle password hashing and storage. An attacker can steal pass-
words by only infiltrating a single CC node.
• Encrypted Private Key: The client SSH private key is password-protected

so a human user should enter a password or a passphrase in order to load it. This
method is also weak as the certificate file can be subject to an offline attack, and
it does not allow easy user mobility.
• Authentication using threshold OPRF: As discussed in Sec. 3.4, threshold

OPRF, as suggested in [20], is a powerful tool for achieving password authenti-
cation without exposing the password to the CC nodes. However, since this is
a more complex and non-standard authentication protocol, we decided to also
support the previous two methods, and give users the ability to configure their
installation of ESKM with their preferred method.

Something You Have. For the second factor of authentication, we use RSA
private keys. The private key can be installed on the client machine or on a
secure USB. Another option is to keep the key on the user’s smartphone. When
a request from a user arrives, the phone is notified and the user is asked to
enter a password, or use their thumbprint, in order to enable the smartphone to
perform the RSA signing. The signature is tunneled through a special CC node
back to the client machine to complete the authentication. Finally, we have the
option to do multi-device authentication. We use our threshold mechanism for
various k-out-of-n schemes. For example, one share of the key is stored at the
client machine and the other is stored at the client smartphone and both devices
are needed in order to enable this second factor authentication.

5 Experimental Results

The implementation of the ESKM system is described in Appendix A .
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We evaluated our implementation of the ESKM system by deploying it in
VMs in a private cloud. Our setup includes 14 VMs: One VM runs the ESKM
security manager, twelve VMs serve as ESKM CC nodes, and one VM serves as
a local client. Each VM on the private cloud is allocated a single CPU core of
type Intel Xeon E5-2680, with clock speed of 2.70 GHz. Most VMs do not share
their physical host. We also deploy one CC node on an AWS t2.micro VM.

The client agent performance experiment tests the latency overhead intro-
duced by our client agent, for the execution of the RSA_sign function in libcrypto,
compared to a standard execution of this function using a locally stored private
key. Another measurement we provide is the throughput of the client agent.

ESKM client performance in a private cloud We first use the twelve
CC nodes that are deployed in our private cloud. We measure client agent per-
formance as a function of k - the minimal number of CC nodes replies required
to construct the signed authentication message. Figure 3 shows the results of
this experiment. Even when k is high, the latency overhead does not exceed
100 ms, and the throughput of the client agent does not drop below 19 requests
per second. We note that the throughput can be greatly improved using batching
techniques, when request frequency is high.

Client performance with a public cloud CC node As mentioned in
Sec. 4.1, for enhanced security, CC nodes may also be placed in a public cloud,
and one share from these remote CC nodes must be used in order to make a
progress. We repeated the previous experiments with a CC node deployed in
AWS (t2.micro instance). The additional latency was 103 ms on average.

Client performance with failing CC nodes Figure 4 shows the through-
put and latency of the client agent every second over time, when during this time
more and more CC nodes fail. After each failure there is a slight degradation
in performance. However, these changes are insignificant and the performance
remains similar even when most CC nodes fail.

ESKM CC node performance We evaluated the performance of an AWS
CC node by measuring the CPU utilization and memory usage of the process,
as a function of the number of sign requests it processed per second. Figure 5
presents the results of these measurements: our CC node is deployed on a single-
core low-end VM, and is able to handle thousands of sign requests per second
without saturating the CPU.

Proactive share refresh We tested our proactive share refresh algorithm
implementation to find how fast all 12 CC nodes can be refreshed. Usually, the
algorithm requires less than 500 ms to complete successfully. However, in some
rare cases this is not enough due to message delays. We set the refresh to be
done at least every two seconds, and to limit the length of a single refresh round
to at least one second.

CC node recovery We also tested our node recovery algorithm implemen-
tation and found that it provides similar performance as the refresh algorithm
(this is not surprising as they are very similar). In all our tests, the recovery
process required less than 500 ms in order to complete successfully. As for the
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refresh algorithm, we recommend to use a duration of at least one second to
avoid failures that may occur due to message delays.

6 Related Work

Polynomial secret sharing was first suggested by Shamir [27]. Linear k-out-of-k
sharing of RSA signatures was suggested by Boyd [10], Frankel [14]. Desmedt
and Frankel [12] observed that RSA k-out-of-n threshold signatures is challenging
because the interpolation of the shares is over φ(n). Frankel et al. [15] provided
methods to move from polynomial to linear sharing and back. This technique is
interactive and not practical.

Rabin [26] provided a simpler proactive RSA signature scheme, using a two
layer approach (top is linear, bottom uses secret sharing). This protocol is used
in Zhou et al. [35] use in COCA. The scheme leaks information publicly when
there is a failure and hence does not seem suitable against a mobile adversary.
It also can incur exponential costs in the worst case.

Wu et al. [30] proposed a library for threshold security that provides encryp-
tion, decryption, signing, and key generation services. Their scheme is based on
additive RSA signatures, and in order to provide threshold properties they use
exponential number of shares as in previous additive schemes.

Shoup [28] suggested a scheme that overcomes the interpolation problem, and
provides non-interactive verification, that is resilient to an adversary controlling a
minority. Gennaro et al. [16] improve Shoup’s scheme to deal with large dynamic
groups. Gennaro et al. [17] provide constructions for verifiable RSA signatures
that are secure in standard models, but require interaction.

Centralized management of SSH keys has recently been the focus of several
open source projects: BLESS by Netflix [3], and Vault by Hashicorp [1]. They
do not provide threshold signature functionality, but instead resort to the more
traditional single node approach.

7 Conclusion

We presented ESKM : an Enterprise SSH Key Manager. ESKM advocates a
logically-centralized and software-defined security plane that is decoupled from
the data plane. By separating the security functionality we can incorporate
cutting-edge cryptography in a software defined manner. In particular, the ESKM
control plane employs k-out-of-n RSA threshold signatures, verifiable secret shar-
ing against malicious adversaries, and a novel proactive secret sharing method
against mobile adversaries and side channel attacks.

Our implementation shows that with minimal changes to the OpenSSL li-
brary in the client, one can significantly increase the security of enterprise SSH
key management without making any changes to the server SSH deployment.
In this sense, ESKM provides a virtual layer of security on top of any existing
legacy SSH server implementation. Our experiments show that ESKM incurs
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a modest performance overhead on the client side. Our implementation of the
ESKM control plane is scalable and fault-tolerant, and is able to proactively
refresh the shares of CC nodes in a distributed way every few seconds.
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A Implementation

We implemented the ESKM system. In this section we describe the different
components of our implementation.
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Fig. 4. Client performance with k = 4, n = 12. CC node failures are marked at
the black vertical lines. Numbers in () are the total number of failed CC nodes.

ESKM Library The ESKM library is a Java library that provides the core
cryptographic mechanisms discussed in this paper, such as secret sharing, veri-
fiable secret sharing, threshold signatures, and proactive refresh of shares. The
core logic of the security manager, CC nodes, and clients, is implemented in this
library, as well as unit tests for the cryptography logic. The library consists of
about 5100 lines of code.

ESKM CC Node Our CC nodes are implemented using the ESKM library
for the core logic. The CC node implementation is mainly a web server and stor-
age (using Java KeyStore). The web server exposes a REST API over HTTPS.
Our CC node code implements signing and storage services, as well as proactive
refresh of the shares in the semi-honest malicious-abortable model, and dynamic
provisioning and recovery of nodes. This code is about 600 code lines on top of
the ESKM library code.

ESKM Security Manager The Security Manager is a relatively thin server
with KeyStore storage and a web server for REST API. The SM is about 420
lines of code on top of the ESKM library code.

ESKM Client Agent The client agent is a daemon process running in
the background on client machines, maintains persistent HTTPS connections
to CC nodes and listens to requests from local processes. The agent distributes
requests to CC nodes, then integrates their responses and returns the results to
requesting process over the TLS channel. We evaluate the performance of this
agent in Sec. 5. The code is about 800 lines long.

ESKM Patch for OpenSSL libcrypto We introduce a patch of about
40 lines of code for the OpenSSL libcrypto library that provides RSA signing
logic to various applications, among them OpenSSH. This patch identifies the
case where an application tries to sign using a private key, but the private key is
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Fig. 5. CC node utilization under increasing load.

Fig. 6. Client side architecture of ESKM: We provide a patch to OpenSSL’s
libcrypto that outsources the RSA signature process to our client agent, which
communicates with ESKM CC.

not present (for SSH, we create an identity file with only the public information
in it). In this case the code calls our client agent (using a TLS/TCP socket),
providing it with the message to sign and information about the session. Then
it receives back the RSA signature and continues as before.

ESKM Smartphone Application for Two-Factor Authentication We
implemented a sample web-based smartphone application for human two-factor
authentication. The server-side of this application is provided by an extension
to our CC node implementation. This designated CC node has the same API as
before, as well as some additional methods for the phone to retrieve a private
key, retrieve updates on authentication requests, and send responses to such
requests. API calls that require the private key (e.g., sign), hang until the user
approves them on her phone.

The phone application is initialized with a private key. It periodically polls
the designated CC node for any pending request. If a request exists, its details
are displayed on the phone screen, and the user is asked for approval. If the user
approves, the application sends to the CC node a response for the corresponding
request. This response is returned to the client, which then uses it in order to
authenticate to other CC nodes.
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Smartphone authentication can also be applied on the threshold signature
process. To do that, the SM randomly selects d1 such that d2 = d−d1. d1 is shared
and distributed to the regular CC nodes. d2 is sent to the designated CC node.
Each request for signature is now also sent to that CC node, which delegates
it to the corresponding user’s phone. The client agent constructs H(m)d1 as it
does already and then multiply this value by H(m)d2 , which is returned from
the phone, to obtain H(m)d.

In the future, we plan to create a standalone application where the private key
is stored in the phone’s secure storage (e.g., iOS KeyChain) and users approve
requests using their thumbprint.

B Security of Secret Sharing Over the Integers

The proactive share refresh is implemented using polynomial-based secret shar-
ing over the integers. Unlike secret sharing over a finite field, secret sharing over
the integers does not provide perfect security. Yet, since in our application the
shares are used to hide long keys (at least 4096 bits long), then revealing a small
number of bits about the key might be harmless.

The effect of leaking a small number of bits: It is unknown how to
efficiently use the knowledge of a small number of bits of an RSA private key in
order to break RSA. However, even in the worst case, leaking σ bits about the
secret key can only speed up attacks on the system by a factor of 2σ: Namely,
any algorithm A that breaks the system in time T given σ bits about the secret
key can be replaced by an algorithm A′ that breaks the system in time 2σ · T
given only the public information about the system and no information about
the key. The new algorithm A′ simply goes over all options for the leaked bits
and runs A for each option.

The degradation of security that is caused by leaking σ bits can therefore be
mitigated by replacing the key length (|N |) that was used in the original system
(with no leakage), by a slightly longer key length which is sufficiently long so
that the best known attacks against the new key length are at least 2σ times
slower than the attacks against the original shorter key length. (Therefore, the
effect of the leakage, which is at most speeding up the new attack time by 2σ, is
equivalent to using the original key length.)

Analyzing the amount of information that is leaked: In the rest of this
section we state a theorem about the amount of information that is leaked about
the secret key with proactive sharing of 2-out-of-n proactive secret sharing, and
also state a conjecture about the case of k-out-of-n proactive secret sharing, for
k > 2. (The exact analysis of the latter case seems rather technical, and we leave
it as an open question.)

B.1 Leakage in 2-out-of-n Proactive Secret Sharing

We consider the case of 2-out-of-n sharing. The dealer picks two integer coeffi-
cients A,B ∈ [0, R − 1], where R is a parameter which defines the size of the
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range of possible coefficients. Party i receives the share Q(i) = Bi+A, and the
arithmetic operations are done over the integers. The secret is the value of A.

Obviously, the share Q(i) might leak some information. For example, if
Q(1) = 10 then the secret can only be in the range [0, 10]. We will show that,
except with negligible probability, very little is leaked about the secret.

Theorem 1. Let Q be a linear polynomial with coefficients that are randomly
chosen integers from the range [0, R). Party i receives the value Q(i), where
the polynomial is computed over the integers. Let δ be a parameter (e.g., δ =
40). It holds, except with probability 2−δ, that for all a ∈ [0, R) the a-posteriori
probability of Q(0) = a given the share known to any specific party, is at most
2δ/2
√
i

R ≤ 2δ/2
√
n

R (where n is the number of parties).

The theorem is proved below. Keeping in mind that R ≈ 24096, this probability
is very close to the a-priori event of choosing Q(0) with probability 1

R .
Implication for typical parameter setups for RSA: A reasonable set-

ting is where the number of servers is, say, n = 16, and we wish to ensure that
the theorem holds with probability of at least 1 − 2−δ = 1 − 2−40. (This cor-
responds to setting a statistical security parameter to 40, as is common in the
cryptographic literature.) In this case no secret a ∈ [0, R) is chosen with proba-
bility greater than 220·4

R = 222

R . This means that an adversary learns at most 22
bits about the value of the secret. In the context of RSA, this means that the
adversary is given at most 22 bits of knowledge about the secret key (which we
set to be at least 4096 bits long).

Implication to learning the key refresh information in ESKM: The
ESKM system uses proactive sharing of a polynomial z for which z(0) = 0. We
are therefore not worried about hiding z(0), but rather about the information
that is leaked by the refresh information z(i) received by one CC node the refresh
information z(j) of other nodes. Namely, the attack scenario is that an adversary
which controls a corrupt CC node i might use the refresh value that it receives
to learn about the refresh value of CC node j. In the future the adversary might
move to control node j and learn its new share. It can then use its knowledge
of the refresh information of node j to recover the previous share of that node.
Now, since it also knows the share of node i from the earlier epoch, it is able to
recover the secret.

We note that our analysis in Theorem 1 is directly applicable to limiting the
information that is learned from the refresh received by node i, about the refresh
received by node j: For every integer j it is possible to define Q(x) = z(x+ j),
in which case Q(0) = z(j). Define ∆ = i − j. The analysis of Theorem 1, of
the leakage about Q(0) from knowledge of a share Q(∆), applies also to the
information that party j +∆ (= i) learns from the refresh share z(i) about the
share z(j) of party j.

Implication to hiding the RSA secret key: Let st() be the polynomial
that hides the RSA secret key in time t, namely st(0) = d. Let zt() be the
polynomial that is used for the proactive share refresh in time t. Therefore for
all i it holds that st+1(i) = st(i) + zt(i).
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We consider the case where the polynomials st() are linear. In this case an
adversary that learns any two values of any polynomial st() can recover the
secret key. We are interested in the power of an adversary that can control
at most a single server at each time. Denote the server that is compromised
by the adversary at time t as c(t). The adversary therefore knows the set of
values 〈s1(c(1)), z1(c(1))〉, 〈s2(c(2)), z2(c(2))〉, . . . = {〈st(c(t)), zt(c(t))〉}t=1,2,....
We would like to claim that the adversary cannot learn st(0) is any time t.

Consider first the simpler case where the adversary controls the same server
i in all times. Therefore the adversary only knows {〈st(i), zt(i)〉}t=1,2,..., and the
secret key st(0) is independent of the information that the adversary has.

Suppose now that the adversary controls (over time) more than one server,
and focus on a time t such that the adversary controls two different servers in
times t and t+ 1. The adversary therefore knows 〈st(i), zt(i)〉, 〈st+1(j), zt+1(j)〉
for i 6= j. If the adversary knows st(0) it can interpolate st(), compute st(j), and
then compute zt(j) = st+1(j) − st(j). But this contradicts Theorem 1. (More
accurately, the contradiction to the theorem occurs even if the adversary learns
more than 2δ/2

√
n

R bits of information about the secret st(0), except with prob-
ability 2−δ.) The same argument holds with respect to the adversary knowing
st+1(0).

Linear polynomials and i = 1

To start arguing about the proof of the theorem it is instructive to examine the
simplest case, of a linear polynomial and User 1. This user receives the share
Q(1) = A+B. It is required to analyze what can be learned about A given the
valueQ(1). Namely, analyze the conditional probability Pr(A = a|A+B = Q(1)).

Pr(A = a | A+B = Q(1)) =
Pr(A+B = Q(1) | A = a) Pr(A = a)

Pr(A+B = Q(1))

It is easy to observe that

1. Pr(A+B = Q(1) | A = a) equals 1
R if Q(1)− a ∈ [0, R− 1], and is equal to

0 otherwise.
2. Pr(A = a) = 1

R always.
3. Regarding Pr(A+B = Q(1)),

(a) If 0 ≤ Q(1) < R then a can be any value in the range [0, Q(1)], and
therefore Pr(A+B = Q(1)) = (Q(1) + 1)/R2.

(b) If R ≤ Q(1) ≤ 2R− 2 then a can be any value in the range [Q(1)−R+
1, R), and therefore Pr(A+B = Q(1)) = (R− (Q(1)−R+ 1))/R2.

Combining these two cases, we get that Pr(A + B = Q(1)) = (R − |Q(1) −
R+ 1|)/R2 for all values of a.

Therefore, for each a such that Q(1)− a ∈ [0, R− 1], it holds that

Pr(A = a | A+B = Q(1)) =
1/R · 1/R

R−|Q(1)−R+1|
R2

=
1

R− |Q(1)−R+ 1|
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In other words, given Q(1) there are exactly R− |Q(1)−R+ 1| values of A for
which Q(1) − a ∈ [0, R − 1], and they all have the same probability of being
chosen by the dealer. (Note that the range of possible values for A becomes
greater as the value of Q(1) becomes closer to R.)

We would like to show that |Q(1)−R+1| is typically small. Based on Item 3
above, it holds that

Pr(|Q(1)−R| < R−∆) = Pr(∆ < Q(1) < 2R−∆)

=

2R−∆∑
s=∆

R− |s−R+ 1|
R

· 1
R

= 2

R∑
s=∆

s+ 1

R
· 1
R

=
2

R2

(R+∆)(R−∆)

2
=
R2 −∆2

R2

= 1− ∆2

R2

Therefore this event happens with probability 1− ∆2

R2 . In this case, |Q(1)−R| <
R−∆ and therefore

Pr(A = a | A+B = Q(1)) =
1

R− |Q(1)−R|
<

1

∆

For example, when working with a 4096 bit RSA moduli, and setting R =
24096, then for ∆ = 24000 we get that, given Q(1), it holds, except with proba-
bility ∆2

R2 = 2−192, that there are at least 24000 possible values of the secret A,
and each of these values is chosen with probability of at most 1/∆ = 2−4000.

Note that the ESKM application uses proactive sharing of a polynomial z for
which z(0) = 0. We are therefore not worried about hiding z(0), but rather about
the information that is leaked by one share about other shares. Note that for
any integer e it is possible to define Q(x) = z(x+ e), in which case Q(0) = z(e).
Therefore, the analysis given here, for the leakage about Q(0) from knowledge
of Q(1), applies to the information that User e+1 learns about the share of user
e.

The general case of linear polynomials

Party i receives the share Q(i) = A + iB, and we are interested in the value of
Pr(A = a|A+Bi = Q(i)).

Note that Q(i) is the range [0, (i + 1)(R − 1)] which has almost (i + 1)R
elements, but it can only be equal to values which are equal to A modulo i.
Obviously, Q(i) reveals the value of A modulo i. In addition, it holds that

Pr(A = a | A+ iB = Q(i)) =
Pr(A+ iB = Q(i) | A = a) Pr(A = a)

Pr(A+ iB = Q(i))

The easy parts of this expression are Pr(A = a) = 1
R , and Pr(A + iB =

Q(i) | A = a) which is equal to 1
R when a is equal to Q(i) modulo i and

(Q(i)− a)/i ∈ [0, R− 1], and is equal to 0 otherwise.
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A careful analysis shows that when R ≤ Q(i) ≤ iR it holds that Pr(A+ iB =

Q(i)) = R/i
R

1
R = 1

iR . This holds since a can be any value in [0, R) which is equal
to Q(i) modulo i, and given the choice of a there is only one option for a b value
resulting in the right value of Q(i).

For values of Q(i) in the external areas of the possible range, namely in [0, R)
or [iR, (i + 1)R − i), Pr(A + iB = Q(i)) decreases linearly with the distance
of Q(i) from the boundary of the range. For example, when Q(i) < R then
Pr(A + iB = Q(i)) = Q(i)/i

R
1
R = Q(i)

iR2 . (When i = 1 these probabilities match
our previous special case analysis for Q(1).)

Therefore, when R ≤ Q(i) ≤ iR it holds for all a such that a = Q(i) mod i,
that Pr(A = a|A+iB = Q(i)) = i/R. In other words, the value of A is uniformly
distributed among all values that are equal to Q(i) modulo i. Beyond this range,
when we know that Q(i) is in the range [∆, (i+ 1)R−∆], it holds for all a that
Pr(A = a|A+ iB = Q(i)) < i/∆.

As before, the value of Q(i) is very unlikely to be close to the boundaries of
its possible range, i.e. to 0 or to (i+ 1)R. Therefore, it is likely that ∆ is large.
For example,

Pr(Q(i) ≤ ∆) =

∆∑
s=0

s

iR2
=
∆(∆+ 1)

2iR2
≈ ∆2

2iR2

The overall behavior is that the range of possible values of Q(i) is of size
(i + 1)R (compared to 2R in the case of i = 1); getting to a distance smaller
than ∆ from the boundaries of this range happens with probability smaller than
∆2/iR2 (compared to ∆2/R2 in the case of i = 1); if this event does not happen,
and ∆ ≤ Q(i) ≤ (i+ 1)R−∆, then Pr(A = a|A+ iB = Q(i)) < i/∆.

The theorem follows by setting δ = − log(∆2/iR2) (in this case Q(i) is in the
required range with probability 1− 2−δ, and Pr(A = a|A+ iB = Q(i)) < i/∆ =
2δ/2
√
i

R ).

B.2 Secret Sharing with a Threshold Greater than 2

We do not know how to prove a bound on the leakage for the case of polynomial
secret sharing with a degree greater than 2. We conjecture that this is a technical
issue of bounding the relevant probabilities, and state a conjecture about the
probability bound.

Conjetcture 1 Let Q be a polynomial of degree k with integer coefficients that
are randomly chosen in the range [0, R). Party i receives the value Q(i), where
the polynomial is computed over the integers. Then it holds, except with small
probability, that for all a ∈ [0, R) the a-posteriori probability of Q(0) = a given

any k shares is at most 2c·k
2

R for some constant c.

(Note that R = 24096 and k is small, e.g., k = 8. We also expect the constant c
to be very small. The resulting bound is thus very small.)
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We describe here a sketch of the proof for the general case of k-out-of-n secret
sharing. To simplify the notation, consider a polynomial Q(x) =

∑k−1
j=0 Ajx

j ,
with coefficients chosen randomly in [0, R), and parties with identities 1, . . . , k−1.
In this case we are interested in

Pr(A0 = a | Q(1), . . . , Q(k − 1)) =

Pr(Q(1), . . . , Q(k − 1) | A0 = a) Pr(A0 = a)

Pr(Q(1), . . . , Q(k − 1))

The probability that Q(1), . . . , Q(k−1) attain specific values given that A0 =
a, namely Pr(Q(1), . . . , Q(k − 1) | A0 = a), is equal to 1/Rk−1 for some choices
of the values of Q(1), . . . , Q(k − 1), and is equal to 0 otherwise. (This depends
on whether the resulting set of linear equations has a solution in the range or
not.) Also, Pr(A0 = a) = 1/R always.

As for Pr(Q(1), . . . , Q(k−1)), each value Q(i) is distributed almost uniformly
over values with are far from the boundaries of the range of possible values for
Q(i), and the probability of each possible value in that range is about 1

ik−1R
. The

likely case is that the Q(i) values are far from the boundaries of their respective
ranges. In this case it holds that Pr(Q(1), . . . , Q(k − 1)) < 1

((k−1)!)k−1Rk−1 (we
ignore here the fact that some values in the range [1, k − 1] are not co-prime to
each other, and use this more conservative bound).

Plugging in these values, we get that Pr(A = a | Q(1), . . . , Q(k − 1)) <
((k− 1)!)k−1/R. Since k is at most the number of servers n, n is typically small
and R is large, then the resulting bound is very small. For example, for n = 8
and R = 24096 the bound is ((n− 1)!)n−1/R ≈ 2−4010.
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Algorithm 2 Malicious Model Share Recovery Algorithm for Existing Node i,
Recovering Node r

Input parameters:
si - current share of node i
p - helper polynomial coefficient limit
n - number of nodes
f - maximal number of faulty nodes (f = k − 1)
v - used as the base for verification of exponents
vs1 , . . . , vsn - verification values
vp - verification field

Round 1:
1: Choose αi0, . . . , αik−1 ∼ U([0, p)) to create a random polynomial pi(x) =

∑k−1
q=0 α

i
q ·

xq over the integers.
2: Let ci = pi(r)
3: Define the polynomial zi(x) = pi(x)− ci
4: Compute shares zi1 = zi(1), . . . , zin = zi(n)

5: Compute vα
i
0 , . . . , vα

i
k−1 , vc

i

over vp
6: Compute Sigi ← H(vα

i
0 , . . . , vα

i
k−1 , vc

i

)
7: for each existing node ` 6= i do
8: Send zi`, (v

αi0 , . . . , vα
i
k−1 , vc

i

), Sigi to node `
9: end for

Round 2:
10: for each received share z`i from node ` do
11: Verify that H(vα`0 , . . . , vα`k−1 , vc

`

) = Sig`

12: Verify that vz
`
i =

∏k−1
q=0

(
vα

`
q

)iq
·
(
vc
`
)−1

mod vp

13: if verification failed then Report node `
14: end for
15: if verified at least f + 1 shares then
16: Let s∗i = si +

(∑
verified shares ` z

`
i

)
. (Summation is over the integers)

17: Send OK messages to everyone with Sig` of each verified sender `, report
missing or invalid shares.

18: else Abort
19: end if

Round 3:
20: Compare signatures in all received OKs
21: Publicly announce everything known by node i on disputed and missing shares to

everyone (there are up to f such shares)

Round 4:
22: Complete missing information using information sent in Round 3: Update s∗i , Ignore

OKs and shares of identified malicious nodes.
23: if received at least f + 1 valid OKs then
24: Let validi be a bitmap where validi(j) = 1 if zji is valid and 0 otherwise.
25: Send the following values to node r: s∗(i), validi, (vs1 , . . . , vsn) ,

(
vα

i
1 , . . . , vα

i
k−1 , vc

i
)
, (Sig1, . . . , Sign)

26: else Abort
27: end if
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Algorithm 3 Malicious Model Share Recovery Algorithm for Recovered Node
r

λpi,j - Lagrange interpolation coefficient for p(i) when interpolating p(j)

1: Send request to nodes 1, . . . , n
2: for each received response from node ` do
3: Verify that (vs1 , . . . , vsn) , (Sig1, . . . , Sign) are the same as previously received

responses
4: Verify that Sig` = H

(
vα

i
0 , . . . , vα

i
k−1 , vc

i
)

5: Verify that valid` is equal to previous valid received. If not, restart the process
with the result of applying AND on all valid bitmaps from verified senders.

6: end for
7: if received at least f + 1 verified responses then

8: Verify that vs
∗
` = vs` ·∏j∈valid`

∏k−1
q=0

(
vα

j
q

)`q
·
(
vc
j
)−1

mod vp

9: Let s∗(r) =
∑

verified responses ` s
∗(`) · λs∗`,r

10: Send a notification to all nodes
11: end if
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