
Cryptanalyses of Branching Program
Obfuscations over GGH13 Multilinear Map

from NTRU Attack

Jung Hee Cheon, Minki Hhan, Jiseung Kim, Changmin Lee

Seoul National University

Abstract. In this paper, we propose cryptanalyses of all existing indis-
tinguishability obfuscation (iO) candidates based on branching programs
(BP) over GGH13 multilinear map. To achieve this, we introduce two
novel techniques, program converting and matrix zeroizing, which can be
applied to a wide range of obfuscation structures and BPs. We then prove
that the existing general-purpose BP obfuscations over GGH13 multilin-
ear map with the current parameters cannot achieve indistinguishability.
More precisely, the recent BP obfuscation suggested by Garg et al. which
is still secure against all known attack, and the first candidate indistin-
guishability obfuscation with input-unpartitionable branching programs
is not secure against our attack. Previously, there has been no known
probabilistic polynomial time attack for these two cases.
Keywords: Obfuscation, multilinear maps, graded encoding schemes.

1 Introduction

Program obfuscation allows programs to keep its own secrets while preserving
the functionality. Constructing a general-purpose program obfuscation has been
a long standing coveted open problem [8,9] in spite of their fruitful applications.
In FOCS 2013, Garg et al. suggested the first plausible candidate general-purpose
indistinguishability obfuscation (GGHRSW) [26]. This first candidate of iO has
ignited the various subsequent studies [3, 5–7, 15, 27, 33, 35, 37] on obfuscations,
all of which stand on the cryptographic multilinear maps.

Some of the early works [3, 7, 15, 33, 37] claim the security of their construc-
tions under the idealized security model of multilinear map, so-called the generic
multilinear map model. In practice, there are three plausible candidates of multi-
linear map; the first due to Garg, Gentry, and Halevi [25] (GGH13), the second
due to Coron, Lepoint, and Tibouchi [22], the last due to Gentry, Gorbunov,
and Halevi [28]. Unfortunately, the securities of three candidate cryptographic
multilinear maps are not well understood. It is proven that the schemes do not
achieve the idealized security, especially fail to initiate secure one-round key ex-
change [17,20,29]. Recent works try to overcome this gap between the idealized
model and the constructions: Badrinarayanan et al. claim that their obfusca-
tion construction for evasive functions [6] is secure against all known attack.1 In
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particular, in the case of GGH13 multilinear map, Garg et al. prove the secu-
rity of the slightly modified first candidate of general-purpose iO construction
(GMMSSZ) under the weak multilinear map model, which captures all existing
attacks on BP obfuscation over GGH13 multilinear map [27].

Direct attack to GGH13. As a direct method of analyzing obfuscators over
GGH13, we may consider attacks on the GGH13 encoding scheme. It is known
that GGH13 can be broken by algorithms to solve the NTRU problem and the
short generator of principal ideal generator problem (SPIP). The most notable
algorithms to solve the NTRU problem are the subfield attack proposed by
Albrecht et al. and Cheon et al. independently [1,19]. On the other hand, in the
case of the SPIP problem, Biasse and Song provide an algorithm to solve the
SPIP problem in quantum polynomial time [14]. In addition, there are algorithms
to solve the SPIP problems in classical subexponential time [12,13,23].

Combining the previous results, the authors of [1] showed that the hardness
problem of GGH13-based obfuscation is solved in the quantum polynomial time
when the multilinearity level κ is larger than the security parameter λ. Alterna-
tively, GGH13 can be broken in the classical subexponential time with respect
to the dimension of the number field.

Attacks on BP Obfuscations over GGH13. For obfuscations over GGH13
multilinear map, several cryptanalyses have also been suggested. The annihila-
tion attack introduced by Miles et al. [34] showed that the single/dual input BP
obfuscations [3,6,7,33] does not have indistinguishability when they are used for
general-purpose and implemented with GGH13. The authors presented a very
simple example of BPs which are threatened by annihilation attacks. Soon after,
Apon et al. [4] extended the range of annihilation attacks to BPs generated by
Barrington’s theorem [10] which is the fundamental method to transform NC1
circuits into bounded width BPs.

Chen et al. [16] presented another attack on BP obfuscation over GGH13
multilinear map. They showed that there exist two functionally equivalent pro-
grams with a special property called input-partitionable, and their obfuscated
programs by GGHRSW can be efficiently distinguished.

Limitation of Previous Works. Despite diverse attacks on BP obfuscations
over GGH13 multilinear map, GGHRSW remains secure against all known PPT
attack when it only takes input-unpartitionable BPs as input, such as BPs gen-
erated by Barrington’s theorem. In the case of GMMSSZ, there is no known
PPT attack even for input-partitionable BPs. We also remark that the direct
approach [1] has the classical exponential running time with respect to security
parameter λ when the dimension n of the base number field satisfies n = Ω(λ2)
for the current best algorithm to solve SPIP [13,23].

Our Contribution. In this paper, we present distinguishing attacks on candi-
dates BP iO over GGH13 multilinear map. With the novel two techniques, called
program converting and matrix zeroizing, we show that all existing candidates
of indistinguishability BP obfuscator over GGH13 cannot achieve the indistin-
guishability obfuscation. In other words, we show that there are two function-
ally equivalent BPs with same length such that their obfuscations obtained by
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an existing BP obfuscator over GGH13 multilienar map can be distinguished in
polynomial time.

In particular, we show that the candidate BP indistinguishability obfuscation
GMMSSZ16 over GGH13 multilinear map [27] is not an iO. Further, we show
that the first candidate indistinguishability obfuscation GGHRSW over GGH13
multilinear map also fails to achieve the indistinguishability even if it is initiated
only by input-unpartitionable BPs such as branching programs generated by
Barrington’s theorem.

Althogh our attack exploits another property of BPs so-called linear relation-
ally inequivalence instead of input-partitionability, we show that various pairs of
BPs satisfy the linear relationally inequivalence. Moreover, our attack is applica-
ble to BP obfuscations with multi-input BPs as well as single-input. Hence, our
attack can cover a wide range of the structures of BP obfuscations and targeted
BPs.

In summary, we show that the following propositions for obfuscator O within
the range of our attack for the security parameter λ of GGH13 multilinear map:

– There exist two functionally equivalent branching programs P0, P1 with
length ` ≥ Θ(λ) such that O(P0) and O(P1) can be distinguished in polyno-
mial time for parameters of GGH13 multilinear map suggested in [2,25,31].

– When the dimension n of underlying space of GGH13 multilinear map grows
as n = Θ(λδ) for some δ ≥ 1, the above proposition holds except the length
of branching programs satisfying ` ≥ Θ(λδ).

1.1 Technical Overview

To explain the idea of our attack, we present how to attack the candidate for
indistinguishability obfuscation introduced in [26].

Simplified GGHRSW Obfuscation. First of all, we briefly describe the sim-
plified2 GGHRSW obfuscator. Let P = {M i,b ∈ Zd×d}b∈{0,1},1≤i≤` be a set of
matrices corresponding to a single input BP such that

P (x) :=

{
0 if

∏`
i=1M i,xi = Id

1 if
∏`
i=1M i,xi 6= Id,

where xi is the i-th bit of x. Let R = Z[X]/〈Xn+1〉 be the underlying polynomial
ring of GGH13 multilinear map. Then the obfuscator randomizes this given BP
over several steps.

1. Sample random and independent scalars {αi,b, α′i,b}b∈{0,1},1≤i≤`.
2. Sample bookend vectors {s, t, s′, t′} such that s · t = s′ · t′.
2 We omitted the input function, higher dimension embeddings, level sets of GGH13

multilinear map.
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3. Sample invertible matrices {Ki,K
′
i ∈ Zd×d}0≤i≤` and set

R0 = s ·K−10 , R′0 = s′ ·K ′−10

Ri,b = αi,b ·Ki−1 ·M i,b ·K−1i , R′i,b = α′i,b ·K ′i−1 · Id ·K ′−1i

R`+1 = K` · t, R′`+1 = K ′` · t′.

For the sake of simplicity, we define R0,b, R`+1,b, R
′
0,b, and R′`+1,b as R0, R`+1,

R′0, and R′`+1, respectively. The randomized BP can then maintain the same
functionality as the following evaluation, where x0, x`+1 are 0.

P (x) =

{
0 if

∏`+1
i=0 Ri,xi −

∏`+1
i=0 R

′
i,xi

= 0

1 if
∏`+1
i=0 Ri,xi −

∏`+1
i=0 R

′
i,xi
6= 0.

As a final step, each entry of the Ri and R′i is encoded through the GGH13
multilinear map. The plaintext space and encoding space of GGH13 multilinear
map is specified by Rg = R/〈g〉 with some small element g ∈ R and Rq = R/〈q〉
with some large integer q ∈ Z, respectively. In GGH13 multilinear map, a random
and invertible element z ∈ Rq is sampled. Then the encoding of m is of the form
enc(m) = [(r · g +m)/z]q for some small random element r ∈ R. We note
that the size of the numerator is quite smaller than q. For encoded matrices
entrywisely, we denote enc(Ri,b) and enc(R′i,b). Then, in the case of BP (x) = 0,
evaluation of the encoded BP over input bit x can be computed as follows:

`+1∏
i=0

enc(Ri,xi)−
`+1∏
i=0

enc(R′i,xi) =
[ e · g
z`+1

]
q

where the term e is the small noise element of R. If it is evaluated for another
input x, the numerator of the evaluated value cannot be a multiple of g.

In order to check whether the numerator of the evaluation value of the en-
coded BP is a zero or not, the GGH13 multilinear map provide a zerotesting
parameter pzt = [(h · z`+1)/g]q for some element h ∈ R of size ≈ √q. More
precisely, when the pzt is multiplied by the evaluated value, if the numerator is
a multiple of g, it is of the form h ·r′ and its size is much smaller than q. Other-
wise it is a large value. Hence, one can publicly test that whether the plaintext
of the encoding is zero or not and an encoded BP give the same functionality
with the original BP by employing the zerotesting parameter pzt.

In summary, the GGHRSW obfuscator outputs the following set as an ob-
fuscated BP;

{enc(Ri,b), enc(R
′
i,b),pzt}.

Goal of Cryptanalysis on Simplified GGHRSW Obfuscation. Now, in
order to analyze the security of GGHRSW obfuscator, suppose that two BP P 0 =
{M0

i,b}, and P 1 = {M1
i,b}, are given with the same functionality. When the ob-

fuscated program of P c for randomly chosen c ∈ {0, 1}, {enc(Rc
i,b), enc(R

′c
i,b),pzt},

is given, the security of obfuscation is to distinguish whether c is 0 or 1.
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Matrix Zeroizing Attack. To achieve the goal, we introduce the matrix ze-
roizing attack. For simplicity, we first assume that the random scalars αi,b and
the random element [1/z]q in the randomization process are all 1’s. We denote

EvalM0(x) and Evalenc(R)(x) as
∏`
i=1M

0
i,xi

and
∏`+1
i=0 enc(Ri,xi), respectively.

Then, for several EvalM0(xj) 6= Id for 1 ≤ j ≤ τ , we find a vector c =
(c1, · · · , cj) such that

∑τ
i=1 cj · EvalM0(xj) = 0d, where 0d is a zero matrix. If

the obfuscated BP is derived from P 0 the following equation also holds for some
element e ∈ R.

τ∑
i=1

cj · Evalenc(R)(xj) = e · g

Otherwise, it would not be a multiple of g. Therefore if we know the plaintext
g, we can reach our result by checking whether the evaluation is multiples of g.

In the main body of this paper, [1/z]q and αi,b would be replaced by small
elements. Therefore, as a preliminary step for a matrix zeroizing attack, we have
three steps. The first step is to replace the random value [1/z]q with some small
value β to eliminate the effect of GGH13, next the second step is to recover an
ideal generated by g, and in the last step, we replace the random scalars αi,b
with a value that does not depend on the index, or remove these scalars. The
detailed procedure for simplified GGHRSW obfuscation is as follows.

Program Converting Technique In the first step, the (1, 1) and (1, 2) compo-
nents of the enc(R1,1) are of the form [(r1,1·g+m1,1)/z]q and [(r1,2·g+m1,2)/z]q,
respectively. The ratio [(r1,1 · g +m1,1)/(r1,2 · g +m1,2)]q of two encodings can
be understood as an instance of the NTRU problem.

By solving the NTRU problem, we can obtain multiples of the denominator
and numerator

β · (r1,1 · g +m1,1, r1,2 · g +m1,2)

for some small element β ∈ R. Further, dividing β · (r1,1 · g + m1,1) by a
[(r1,1 · g + m1,1)/z]q, we can recover [β · z]q. By multiplying this value by all
entries of enc(Ri,b) and enc(R′i,b), we replace 1/z with a small element β. This
quantity can be understood as an element defined in R, not Rq due to its small
size. We denote these new BP matrices {Di,b} and {D′i,b}, respectively.

Next we consider an input x such that P (x) = 0. The evaluation of the new
BP over input bit x can then be computed as follows.

`+1∏
i=0

Di,xi −
`+1∏
i=0

D′i,xi = e · g · β`+1.

Hence, the term is a multiple of g. With the other NTRU solutions which induce
a different β, and several different inputs x′ such that P (x) = 0, we can recover
the ideal generated by g.
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Removing Scalars. For the last step, we denote EvalD(x) and Eval′D(x) as∏`+1
i=0Di,xi and

∏`+1
i=0D

′
i,xi , respectively. With the given settings, EvalD(x)

and Eval′D(x) satisfy the following properties.

EvalD(x) =

`+1∏
i=0

αi,xi · s ·
∏̀
i=1

M c
i,xi · t (mod g)

Eval′D(x) =

`+1∏
i=0

αi,xi · s′ ·
∏̀
i=1

Id · t′ (mod g)

Thus, by computing EvalD(x)/Eval′D(x) (mod g), all the scalar values multi-
plied are fixed to 1/(s′ · t′) (mod g). Now, applying a matrix zeroizing attack on
EvalD(x)/Eval′D(x) (mod g), we can get the desired result. In other words, it
is possible to distinguish whether an obfuscated BP is generated from a normal
P 0 or P 1.

As a result, we can distinguish two obfuscated program efficiently when we
know corresponding branching programs. We remark that the matrix zeorizing
attack and removing scalars step are slightly different for the other BP obfusca-
tions.

Organization. In Section 2, we introduce the indistinguishability obfuscation,
matrix branching program and GGH13 multilinear map. In Section 3, we show
main results and overview our cryptanalyses on BP obfuscations over GGH13
multilinear map. We describe the attackable BP obfuscation Model over GGH13
throughout the Section 4. In addition, we present the algorithm called program
converting technique in Section 5. We then propose the matrix zeroizing attack
in Section 6 Finally, conclusion of this work is presented in Section 7.

2 Preliminaries

Notations. The set {1, · · · , n} is denoted by [n] for a positive integer n. The set
of integers modulo p is denoted by Zp := Z/pZ. All elements in Zp are considered
as integers in (−p/2, p/2]. We use the bold letters to denote matrices, vectors
and elements of ring. For a = a0 + · · ·+ an−1 ·Xn−1 ∈ R = Z[X]/〈Xn + 1〉, the
size of a means the Euclidean norm of the coefficient vector (a0, · · · , an−1). We
denote (j, k)-th entry of matrix M by M [j, k].

2.1 Matrix Branching Program

A branching program consists of several matrix chains and input functions with
indices of input bit. To evaluate a matrix branching program, we multiply all
matrices and output 0 or 1 depending on whether the product of the matrices is
the same as a given matrix or not. We briefly review matrix branching programs.
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Definition 1 (w-ary Matrix Branching Programs). Let A0 be a d1× d`+1

matrix and w, `, d, and N be natural numbers. A w-ary matrix branching
program BP with length ` over N -bit inputs consists of the following data;
a set of input functions {inpµ : [`] → [N ]}µ∈[w], a set of matrices {M i,b ∈
Zdi×di+1}i∈[`],b∈{0,1}w . It has a domain for evaluations {0, 1}N , and evaluation
of BP at x = (xv)v∈[w] is computed by

BP (x) = BP(inpµ)µ∈[w],M (x) =

0 if
∏`
i=1M i,(xµ

inpµ(i)
)µ∈[w]

= A0

1 if
∏`
i=1M i,(xµ

inpµ(i)
)µ∈[w]

6= A0

.

When w is set to 1 and ≥ 2, the matrix branching program is called a single-
input and a multi-input matrix branching program, respectively. Throughout
this paper, a matrix A0 is used as the zero matrix 0 or the identity matrix Id if
di = d for all i. Moreover, we simplify the notation (xµ)µ∈[w] as xinp(i).

Barrington proved all boolean functions can be expressed in the form of
matrix branching program with bounded width [10]. The first candidate for
iO [26] and following obfuscations [7, 15, 33,35] exploit Barrington’s theorem to
transform circuits into BPs.

We also note that there are other methods to convert circuits into branching
programs. Ben-Or and Cleve proved that the similar result to Barrington’s the-
orem for arithmetic circuits [11]. Follow-up studies such as [3, 6] suggest more
efficient methods for transformation. Their methods bypass the Barrington’s the-
orem and make a circuit into a branching program directly. However, they still
preserve the length of program, in other words, the length of branching program
is equal to or larger than the size of circuit (number of gates).

We assume a mild condition on the branching programs: The length of
branching program is Ω(N) for the number of input bits N . This is plausible
since all input bits may affect the program, and the existing methods give much
longer lengths. On the other hand, we do not restrict that the width/properties
of the matrices in branching programs and the input function (such as single or
dual input).

2.2 Indistinguishability Obfuscation

Definition 2 (Indistinguishability Obfuscator(iO)). A PPT algorithm iO
is an indistinguishability obfuscator for a circuit class C if the following condi-
tions are satisfied:

– For all security parameters λ ∈ N, for all circuits C ∈ C, for all inputs x,
the following probability holds:

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– For any PPT distinguisher D, there exists a negligible function α satisfying
the following statement: For all security parameters λ ∈ N and all pairs of
circuits C0, C1 ∈ C, C0(x) = C1(x) for all inputs x implies

|Pr [D(iO(λ,C0)) = 1]− Pr [D(iO(λ,C1)) = 1] | ≤ α(λ).
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For an obfuscator O, we say that O does not have indistinguishability, or fails to
achieve indistinguishability if there exist a PPT algorithm to correctly guess b
with high probability, for given a pair of branching programs (P0, P1) and iO(Pb)
with b ∈ {0, 1}.

Hereafter, we denote iO(P ) by an obfuscated program or obfuscation of a
program, or a branching program P .

2.3 GGH13 Multilinear Map

Garg et al. suggest a candidate of multilinear map based on ideal lattice [25]. It
is used to realize the indistinguishable obfuscator [26]. In this section, we briefly
describe the GGH13 multilinear map. For more details, we recommend readers to
refer [25]. Any parameters of multilinear maps are induced by the multilinearity
parameter κ and the security parameters λ. For the sake of simplicity, we denote
the multilinear maps which has the previous mentioned parameter as (κ, λ)-GGH
multilinear map.

The multilinear map is sometimes called the graded encoding scheme. i.e.,
All encodings of message have corresponding levels. Let g be a secret element in
R = Z[X]/〈Xn+1〉 and q a large integer. Then, the message space and encoding
space are set byM = R/〈g〉 and Rq = R/〈q〉, respectively. In order to represent
a level of encodings, the set of secret invertible elements L = {zi}1≤i≤κ ⊂ Rq is
chosen. We call a subset of L level set and elements in L level parameters.

For a small message m ∈M, level-L(⊂ L) encoding of m is:

encL(m) =

[
r · g +m∏

i∈L zi

]
q

,

where r ∈ R is a random element with small enough. We call encL(m) a top-level
encoding of m. In addition, for a matrix M , we denote encL(M) by a matrix
whose each entry is a level-L encoding of entry of M .

The arithmetic operations between encodings are defined as follows:

encL(m1) + encL(m2) = encL(m1 +m2)

encL1
(m1) · encL2

(m2) = encL1∪L2
(m1 ·m2).

Additionally, the (κ, λ)-GGH scheme provides a zerotesting parameter which
can be used to determine whether a hidden message of a top-level encoding is
zero or not. The zerotesting parameter pzt is of the form:

pzt =

[
h ·
∏
i∈L zi

g

]
q

,

where h is an O(
√
q)-size element of R. Given a top-level encoding of zero

encL(0) = [r · g/
∏
i∈L zi]q, a zerotesting value is:

[pzt · encL(0)]q =

[
h ·
∏
i∈L zi

g
· r · g∏

i∈L zi

]
q

= [h · r]q = h · rR.
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We remark that a zerotesting value for a top-level encoding of nonzero gives an
element of the form, [h · (r +m · g−1)]q. By Lemma 4 in [25], this size cannot
be small, so one can decide whether a message is zero or not by computing the
zerotesting value.

Several papers [2,25,31] proposed the parameters of (κ, λ)-GGH13 multilinear
map. Our algorithm does not depend on known parameter selections. Here we
introduce the minimum conditions that satisfy the three works.

– log q = Θ̃(κ · log n).
– n = Θ(λδ · log q) with δ ≥ 1.
– σ = Õ(nΘ(1)),

where σ is the size of a numerator of the level-{zi} encoding. We note that the
suggested parameters in [2, 31] choose δ = 1, which enables the subexponential
attack with respect to λ [1]. When δ ≥ 2, all known direct attacks on GGH13
multilinear map require the exponential time.

3 Main Theorem

In this section, we present our main theorem and summarize our cryptanalyses.
We denote the obfuscation within our attack range as the attackable obfuscation,
which is formally defined in the next section. Our attack algorithm consists of
two techniques: program converting technique and matrix zeroizing attack.

In the program converting technique, we apply the algorithm to solve NTRU,
and we replace the given obfuscated program O(P ) with a new program R(P )
with the same functionality. The most significant feature is that the base ring
of the new program is R, whereas in the case of O(P ), the base ring is Rq.
Additionally, we also recover an ideal lattice generated by g, which is kept to be
secret in the GGH13 multilinear map.

In the matrix zeroizing attack, we find the coefficient cj such that the linear
sum

∑
b cb ·

∏
iM i,bi becomes a zero matrix 0 for the BP matrices {M i,b} as the

first step. Then we proceed to eliminate the scalar bundling that is multiplied in
matrices ofR(P ). If the new program without scalar bundlingR(P ) = {M ′

i,b} is
originated from the BP matrices {M i,b}, a linear sum

∑
b cb·

∏
iM

′
i,bi

becomes a
multiple of g. In other cases, it may not be a multiple of g, thus we can distinguish
what the origin of the program is by checking the linear sum is included in ideal
lattice 〈g〉. Detailed steps for each of the techniques are introduced in Section 5
and Section 6.

As a result, we obtain the following main theorem.

Theorem 1. An attackable obfuscator O(·) over (κ, λ)-GGH13 multilinear map
which takes w-ary branching programs as inputs fails to achieve indistinguisha-
bility. More precisely, the following propositions hold:

1. For parameters suggested in [2,25,31], there exist two functionally equivalent
branching programs with Ω(λ)-length such that their obfuscated programs by
the attackable obfuscator O can be distinguished in polynomial time with
respect to λ.
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2. Moreover, for new parameter constrains n = Θ(λδ ·log q), log q = Θ(κ·log n),
and σ = nΘ(1), there exist two functionally equivalent branching programs
with Ω(λδ)-length such that their obfuscated programs by the attackable ob-
fuscator O can be distinguished in polynomial time with respect to λ.

The main theorem is proven by combining Section 5, 6. The bottleneck of
our algorithm is the NTRU problem; the other process can be done in polyno-
mial time, while the time complexity to solve the NTRU problem relies on the
parameters. The detailed analysis for the time complexity will be discussed in
Section 5.3

We remark the impacts of the main theorem. The range of attackable obfus-
cations and BPs is quite wide with respect to the previous works. In the case
of BPs, we do not need input partitonable properties of BPs whereas previous
works of Chen et al. exploits this properties. The obfuscation with higher di-
mension embeddings is also threatened by our attack, which is out of range of
annihilation attacks [4,34]. On the other hand, compared to the result of [1], we
do not require quantum computing or (sub-)exponential time for λ.

When we apply the algorithm to two existing iO candidates [26, 27] over
GGH13 multilinear map, we achieve two attacks for concrete constructions which
are known to be secure against all previous attacks. More precisely, we prove that

– the recent obfuscation GMMSSZ [27] is not an indistinguishability obfusca-
tion.

– the first BP obfsucator GGHRSW suggested in [26] fails to achieve indistin-
guishability obfuscation even if the obfuscator takes only input-unpartitionable
BPs as inputs.

4 Attackable BP Obfuscations

In this section, we present a new BP obfuscation model which is attackable by
our attack, the attackable model. We note that our model is quite general, that
is, all existing BP obfuscations are included in our attackable model.

Proposition 1 (Universality of the Attackable Model) BP obfuscations
[3, 6, 7, 26, 27, 33, 35] satisfy all the constraints of the attackable model.3

We call a BP obfuscation captured by our model an attackable BP obfuscation.
The attackable model is composed of two steps; for a given BP, randomize

BP, and encode randomized BPs by GGH13 multilinear map. More precisely,
for a given branching program BP of the form

P =
{
M i,b ∈ Zdi×di+1

}
i∈[`],b∈{0,1}w ,

3 We deal with easier model in the paper for simplicity, but we can extend the at-
tackable model to capture the construction in [15]. This extended model is placed in
Appendix A.
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we randomize P by several methods satisfying Definition 3 which will be de-
scribed later. And then we encode each entries of randomized matrices and
outputs the obfuscated program as the set

O(P ) =
{
S̃, S̃

′
∈ Rd0×(d1+e1)q

}
∪
{
{M̃ i,b,M̃

′
i,b ∈ R(di+ei)×(di+1+ei+1)

q }i∈[`],b∈{0,1}w ,
}

∪
{
T̃ , T̃

′
∈ R(d`+1+e`+1)×d`+2

q

}
and the public parameters of GGH13 multilinear map. S,T denote bookend
matrices, and matrices with apostrophe mean the matrices of dummy program.
In the attackable model, we specify the following property instead of establishing
how to evaluate the program exactly. To evaluate the input value, a new function

Eval
M̃

: {0, 1}N → Rd0×d`+2
q is computed as follows:

Eval
M̃

(x) = S̃ ·
∏̀
i=1

M̃ i,xinp(i)
· T̃ − S̃

′
·
∏̀
i=1

M̃
′
i,xinp(i)

· T̃
′
∈ Rd0×d`+2

q .

Proposition 2 (Evaluation of Obfuscation) For a program P and program
OP obfuscated by the attackable model, the evaluation of O(P ) at a root x of
P yields a top-level GGH13 encoding of zero in specific entry of the matrix
Eval

M̃
(x). In other words, there are two integers u, v such that Eval

M̃
(x)[u, v]

is an encoding of zero at level L for every input x satisfying P (x) = 0.

In the rest of this section, we explain specified descriptions of the attackable
model in Section 4.1 and 4.2, and present a constraint of BPs to execute our
attack in Section 4.3.

4.1 Randomization for Attackable Obfuscation Model

We introduce the conditions for BP randomization of attackable obfuscation
model. These conditions for randomization covers all of the BP randomization
methods suggested in the first candidate iO [26] and its subsequent works [3,6,7,
27,33,35]. In other words, higher dimension embedding, scalar bundling, Kilian
randomization, bookend matrices (vectors), and dummy programs are captured
by the attackable conditions.

Definition 3 (Attackable Conditions for Randomization). For a branch-
ing program P =

{
M i,b ∈ Zdi×di+1

}
i∈[`],b∈{0,1}w , the attackable randomized

branching program is the set

Rand(P ) =
{
RS ,R

′
S ∈ Zd0×(d1+e1)

}
∪
{
{Ri,b,R

′
i,b ∈ Z(di+ei)×(di+1+ei+1)}i∈[`],b∈{0,1}w ,

}
∪
{
RT ,R

′
T ∈ Z(d`+1+e`+1)×d`+2

}
11



satisfying the following properties, where d0, d`+2, ei’s are integers.
1. There exist matrices S0,S

′
0 ∈ Zd0×d1 ,T 0,T

′
0 ∈ Zd`×d`+1 and scalars αS ,α

′
S,

αT ,α
′
T , {αi,b,α′i,b}i∈[`],b∈{0,1}w such that the following equations hold for all

{bi ∈ {0, 1}w}i∈[`]:

RS ·
∏̀
i=1

Ri,bi ·RT = αS ·
∏̀
i=1

αi,bi ·αT ·

(
S0 ·

∏̀
i=1

M i,bi · T 0

)
,

R′S ·
∏̀
i=1

R′i,bi ·R
′
T = α′S ·

∏̀
i=1

α′i,bi ·α
′
T ·

(
S′0 ·

∏̀
i=1

M ′
i,bi · T

′
0

)
.

2. The evaluation of randomized program is done by checking whether the fixed
entries of RP (x) := RS ·

∏`
i=1Ri,xinp(i)

·RT −R′S ·
∏`
i=1R

′
i,xinp(i)

·R′T is zero or

not. Especially, there are two integer u, v such that P (x) = 0⇒ RP (x)[u, v] = 0.

Matrices with apostrophe are called dummy matrices, RS ,R
′
S ,RT ,R

′
T bookend

matrices (vectors), and α’s bundling scalars. When some elements of Rand(P )
(or bundling scalars) are trivial elements, we say that there is no such element.

4.2 Encoding by Multilinear Map

After the randomization, we encode the randomized matrix branching program
by GGH13 multilinear map. We stress that we do not encode dummy/bookend
matrices if there are no dummy/bookends, respectively.

For each randomized matrices, Ri,b,R
′
i,b and randomized bookend matrices

RS ,R
′
S ,RT ,R

′
T , we encode the matrices entrywisely in (i, b)-th set Li,b (and

LS , LT , respectively.) For encoded matrices, we denote encLi,b(Ri,b) by M̃ i,b.

The other matrices M̃
′
i,b, S̃, S̃

′
, T̃ , T̃

′
are defined in similar way.

Two conditions should hold in the attackable model: 1) the evaluation of valid
input is top-level, in other words, for all input x,

(
∪`i=1Li,xinp(i)

)
∪LS ∪LT = L

where L denotes top-level set, 2) and the sizes of set Li,b are all similar. Using
the condition 1 and Definition 3, we can verify Proposition 2 easily. In practice,
the level Li,b is determined by considering the straddling set system suggested
by [7, 33], and these constructions satisfy our conditions.

4.3 Linear Relationally Inequivalent Branching Programs

At last, we explain the condition, linear relationally inequivalence, for branching
programs of attackable BP obfuscation. This condition is used at the last section,
but we note that there are several linear relationally inequivalence BPs as stated
in Proposition 3.

To define the linear relationally inequivalence, we consider evaluations of
invalid inputs of branching program and denote

∏`
i=1M i,bi by M(b) for b =

(b1, · · · , b`). We define linear relations of two BPs and the linear relationally
inequivalence of BPs as

12



Definition 4 (Linear Relations of Branching Program). For a given branch-
ing program

PM =
{
M i,b ∈ Zdi×di+1

}
i∈[`],b∈{0,1}w ,

the set of linear relations of PM is

LM :=

(zb)b∈{0,1}w×` :
∑

b∈{0,1}w×`
zb ·M(b) = 0d1×d`+1


Definition 5 (Linear Relationally Inequivalence). We say that two branch-
ing programs PM and PN with the same length are linear relationally inequiva-
lent if LM 6= LN .

Note that the set of linear relations of a given BP is easily computed by
computing the kernel, considering BP matrices as vectors. It is clear that LM is
a linear space over Z (or lattice).

We conclude this section by presenting a proposition, which states that there
are various type of linear relationally inequivalent BPs, which are placed in
Appendix C.

Proposition 3 There are two functionally equivalent, but linear relationally in-
equivalent branching programs. Especially, There are examples satisfying the lin-
ear relationally inequivalence which are
1) generated by Barrington’s theorem or
2) input-unpartitionable or
3) from non-deterministic finite automata or
4) read-once, in other words, inp is a bijection.

Further, one can observe that if PM , PN are linear relationally inequivalent
BPs, then so do two extended BPs P ′M , P ′N which are obtained by concatenating
some other (functionally equivalent) BPs on the right (or left) of PM , PN . There-
fore we can show that there exist arbitrary large two functionally equivalent BPs
which are linear relationally inequivalent.

At last, we assume that a given BP is not an evasive function, which means
that the BP outputs 0 with non-negligible probability.

5 Program Converting Technique

In this section, we describe the program converting technique, which remove the
hindrance of modulus q and g. Recently, Chen et al. proposed a cryptanalysis
of an obfuscation over GGH13 multilinear map. They use the special property
‘input partitionable’ to recover the ideal 〈g〉. However, we propose a novel tech-
nique to restore 〈g〉 without any assumption.

Now, we define new notion ‘Y program (of P )’ if all entries of branching
program matrices corresponding a program P are in a space Y . For example, the
obfuscated program O(P ) is Rq program. Suppose that the obfuscated program

13



O(P ) of program P is given. We will convert given obfuscated program O(P )
into R and R/〈g〉 program.

Converting to R program is started with the NTRU problem; we will make
the NTRU instances and solve the problem, and then convert to R program by
some computations on obfuscated matrices. We will replace the level parameter
zi with a small element ci. Moreover, the R program preserves same function-
ality with the Rq program. Subsequently, we convert this R program to R/〈g〉
program by recovering the ideal 〈g〉. We call this two transformation program
convertings.

5.1 Converting to R Program

In order to remove the modulus q, we employ the algorithm for solving NTRU

problem. Let M̃ i,b be the obfuscated matrix of Ri,b. Then, each (j, k)-th entries

of obfuscated matrix M̃ i,b is of the form.

dj,k,b =

[
rj,k,b · g + aj,k,b

zi

]
q

,

where aj,k,b is the (j, k)-th entry of the matrix Ri,b and rj,k,b ∈ R is a random
element with small enough. Consider an element v = [d1,1,0/d1,2,0]q = [(r1,1,0 ·
g + a1,1,0)/(r1,2,0 · g + a1,2,0)]q. Then, v is the instance of the NTRU problem
since the size of denominator and numerator of v is much smaller than q in the
parameter setup of GGH13 multilinear map. According to the following theorem,
one can recover a small multiple of the denominator and numerator, which are
in R.

Theorem 2 ( [1,18,19,30]). For a given [f1/f2]q ∈ Rq = R/〈q〉 = Z[X]/〈Xn+
1〉 for power of two n and f1,f2 ∈ R with size smaller than M , there is an al-
gorithm to compute (c ·f2, c ·f1) ∈ R2 such that sizes of c, c ·f1 and c ·f2 are
much smaller than q in time 2O(β) · poly(n) when β/ log β = Θ(n logM/ log2 q).

Applying the above theorem to an instance v, one can find a pair (ci · (r1,1,0 ·
g + a1,1,0), ci · (r1,2,0 · g + a1,2,0)) ∈ R2 with relatively small ci ∈ R.

Moreover, for any element dj,k,b ∈ M̃ i,b, we can remove the modulus q
because of the small size ci as

ci · (r1,1,0 · g + a1,1,0) · [dj,k,b/d1,1,0]q = ci · (rj,k,0 · g + aj,k,0) ∈ R.

Consequently, one can obtain a new matrix Di,b over R whose (j, k)-th entry is
ci · (rj,k,0 · g + aj,k,0).

Similarly, a new dummy matrix D′i,b over R can be obtained because M̃
′
i,b

shares the level parameter zi with M̃ i,b by multiplying ci · (rj,k,0 · g + aj,k,0)

to [d′j,k,b/d1,1,0]q where d′j,k,b is a (j, k)-th entry of S̃
′
i,b. We easily observe that

2 · 2w matrices Di,b and D′i,b share the parameter ci.

14



For all matrices M̃ i,b and M̃
′
i,b with i ∈ [`] and b ∈ {0, 1}w, we can obtain

new matrices Di,b and D′i,b over R. In the case of bookend matrices S̃ and

T̃ , they are converted into matrices over R with small constants cS and cT ,
respectively. Note that this step runs in polynomial time if κ is large [1,18,19,30].
Detailed analysis of this part is discussed in Section 5.3.

Therefore, we can convert Rq-program O(P ) into a new program, R-program
of P :

R(P ) = {DS ,DT ,D
′
S ,D

′
T , {Di,b,D

′
i,b}i∈[`],b∈{0,1}w}.

Note that the matrix Di,b of R(P ) is of the form ci ·Ri,b (mod 〈g〉) in R/〈g〉.
Dummy and bookend matrices satisfies similar relations. We denote ci ·αi,b

and ci · α′i,b by ρi,b, ρ′i,b for simplicity. The properties of Definition 3 is natu-
rally extended to the following. The proposition 4 means an evaluation of R(P )
preserves the functionality up to constant on the valid input x.

Proposition 4 (Evaluation of R and R/〈g〉 Branching Program) For a R
program given in this section, the following propositions holds:
1. The higher dimension embedding matrices U ’s are eliminated in the product
of randomized matrix branching program, that is, there are matrices S0,S

′
0 ∈

Zd0×d1 ,T 0,T
′
0 ∈ Zd`+1×d`+2 such that the following equations hold for all input

x:

DS ·
∏̀
i=1

Di,bi ·DT = ρS ·
∏̀
i=1

ρi,bi · ρT ·

(
S0 ·

∏̀
i=1

M i,bi · T 0

)
(mod 〈g〉),

D′S ·
∏̀
i=1

D′i,bi ·D
′
T = ρ′S ·

∏̀
i=1

ρ′i,bi · ρ
′
T ·

(
S′0 ·

∏̀
i=1

M ′
i,bi · T

′
0

)
(mod 〈g〉).

2. The evaluation of R program is done by checking whether the fixed entries
of EvalD(x) := DS ·

∏`
i=1Di,xinp(i)

·DT −D′S ·
∏`
i=1D

′
i,xinp(i)

·D′T is mul-
tiple of g or not. Especially, there are two integer u, v such that P (x) = 0 ⇒
EvalD(x)[u, v] = 0 (mod 〈g〉)

5.2 Recovering 〈g〉 and Converting to R/〈g〉 Program

Next, we will compute a basis of the plaintext space 〈g〉 to transform R program
into R/〈g〉-program. Unlike other attacks, we do not use the assumption ‘input
partitionability’. We exploits the fact that R program which comes from Rq
program has the same functionality up to constant. However, existing attacks
with input partitionable assumption and our cryptanalysis cannot be applied to
a BP program for an ‘evasive function’ since it does not output multiples of g.
It consists of following two steps:

Finding a multiple of g. This step is done by computing EvalD at the zeros
of program P . We compute EvalD(x) for R program R(P ) at x satisfying
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P (x) = 0. Then, Proposition 4 implies that EvalD(x)[u, v] is a multiple of g.
More precisely, EvalD(x)[u, v] is of the form

cS · cT ·
∏̀
i=1

ci · a · g

when pzt ·EvalM̃ (x)[u, v] = a ·h (mod q) for some a ∈ R such that ‖a ·h‖2 is

less than q3/4.
This procedure outputs the value which is not only multiple of g but also

ci’s. However, we can generate several different R program from O(P ) for differ-
ent solutions of Theorem 2. We assume that the multiples of g from different R
program are independent multiples of g, with the randomized lattice reduction
algorithm as in [24].

Computing Hermite Normal Form of 〈g〉. For given several random multi-
ples f i·g of g, we can recover a basis of 〈g〉 by computing sum of sufficiently many
ideal 〈f · g〉 represented by a lattice with basis {f · g,f · g ·X, · · · ,f · g ·Xn−1}
or computing the Hermite Normal Form of union of their generating sets by
applying the lemma [1, Lem. 1].

Both computations are done in polynomial time in λ and κ, since the evalua-
tions and computing the Hermite normal form has a polynomial time complexity.
Eventually, we recover the basis of ideal lattice 〈g〉 and we can efficiently compute
the arithmetics in R/〈g〉. In other words, we get a R/〈g〉 program correspond-
ing to O(P ) (or P ), whose properties are characterized by Proposition 4. For
convenience, we abuse the notation; from now, R(P ) is the R/〈g〉 program and
DS ,DT and Di,b for all i ∈ [`], b ∈ {0, 1}w are matrices over R/〈g〉.

5.3 Analysis of the Converting Technique

We discuss the time complexity of our program converting technique. The pro-
gram converting consists of converting to R program, evaluating of R program,
computing a Hermite Normal Form of an ideal lattice 〈g〉. The last two steps
take polynomial time complexity, so the total cost is dominated by the first
step. More precisely, solving the NTRU problem for each encoded matrix is the
dominant part of the program converting.

To estimate the cost of solving the NTRU problem, we assume that each
component of branching program is encoded by GGH13 multilinear map in level-
1. The general cases are similar but more complex when we assume that the size
of level sets are not too different.

Suppose that an obfuscated branching program O(P ) over (κ, λ)-GGH13
multilinear map is given. As we write in Section 2.3, in the paper, n, M , and
log q are set to be Θ(λδ · log q), nΘ(1), and Θ̃(κ · log n) for δ ≥ 1. Therefore,
Theorem 2 implies that one can convert the program in 2O(β) time for β

log β =

Θ(n logM
log2 q

) = Θ
(
λδ

κ

)
. Therefore, the program converting technique is done in

polynomial time for κ = Ω(λδ)
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We conclude this section by noting the result for general cases. In general
cases, the length ` of BP serves as a role of κ. In other words, the program
converting technique is done in polynomial time for ` = Ω(λδ), when we assume
that the size of level sets Li,b corresponding BP matrices are all same.

6 Matrix Zeroizing Attack

In this section, we present a distinguishing attack onR programs to complete our
cryptanalysis of attackable BP obfuscation model. We note that we can evaluate
the R program at invalid inputs, or mixed input, since the multilinearity level
which was the obstacle of mixed inputs is removed in the previous step. We
recall that M(b) denotes

∏`
i=1M i,bi for b = (b1, · · · , b`) and definitions in

Section 4.3.
For two functionally equivalent but linear relationally inequivalent BPs PM

and PN , we will zeroize the R program corresponding to PM by exploiting the
linear relation, whereas R program corresponding to PN would not be a zero
matrix. The result of the matrix zeroizing attack is as follows:

Theorem 3 (Matrix Zeroizing Attack). There are two functionally equiv-
alent branching programs PM , PN such that there exists a PPT adversary A
which can distinguish between two R program R(PM ) and R(PN ) obtained by
the method in Section 5 with non-negligible probability. Particularly, two func-
tionally equivalent branching program PM , PN that are linear relationally in-
equivalent satisfy the above proposition.

Now we explain how to distinguish two R programs using linear relationally
inequivalence. Suppose that two BPs PM , PN and an R program

R(PX) = {DS ,DT ,DS′ ,DT ′ , {Di,b,D
′
i,b}i∈[`],b∈{0,1}w}

are given. Our goal is to determine X = N or X = M . We can compute a linear
relation (zb) which is an element of LM \LN in polynomial time4 by computing
a basis of kernel, and solve the membership problems of lattice for each vector
in the basis. Then, if the bundling scalars are all trivial elements,

∑
b∈{0,1}w×`

(
zb ·DS ·

∏̀
i=1

Di,bi ·DT

)
=

∑
b∈{0,1}w×`

(
zb · S0 ·

∏̀
i=1

M i,bi · T 0

)

= S0 ·
∑

b∈{0,1}w×`

(
zb ·

∏̀
i=1

M i,bi

)
· T 0 =S0 · 0d1×d`+1 · T 0 = 0d0×d`+2 (mod 〈g〉)

holds when X = M , and does not hold when X = N . Therefore, the matrix
zeroizing attack works when the scalar bundlings are all trivial.

4 We note that the dimension of (zb)b∈{0,1}w×` is 2w×`, which is exponentially large.
We can reduce this exponential part by considering a polynomial number of b so
that there are linear relations.
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When the scalar bundlings are existent, we can do the similar computation
by recovering ratios of bundling scalars. Assume that we know ρi,u/ρi,v for
every 1 ≤ i ≤ ` and u,v ∈ {0, 1}w. Consequently, for r(b) :=

∏
i∈[`] ρi,bi where

b = (b1, · · · , b`), we can compute r(b)/r(c) for b, c ∈ {0, 1}w×` by producting
ratios of bundling scalars. Then, we can calculate

∑
b∈{0,1}w×`

(
zb ·

r(0)

r(b)
·DS ·

∏̀
i=1

Di,bi ·DT

)

=
∑

b∈{0,1}w×`

(
zb · ρS · r(0) · ρT · S0 ·

∏̀
i=1

M i,bi · T 0

)

= ρS · r(0) · ρT · S0 ·
∑

b∈{0,1}w×`

(
zb ·

∏̀
i=1

M i,bi

)
· T 0 (mod 〈g〉),

which is a zero matrix if and only if X = M .
Accordingly, we should remove the scalar bundlings or recover ratios of scalar

bundlings to execute the matrix zeroizing attack. In the rest of this section, we
show how to recover or remove (ratios of) scalar bundlings in several cases. In
Section 6.2, we explain how to recover all ratios in general cases by complicated
techniques. The other cases show easier methods for matrix zeroizing attack.

6.1 Existing BP Obfuscations

In this section, we show how to apply the matrix zeroizing attack on two re-
markable obfuscations, GGHRSW and GMMSSZ. The other examples on obfus-
cations [6, 35] are placed in Appendix B.

GGHRSW. As the first case, we consider the first BP obfuscation, GGHRSW,
which has the identity dummy program. We note that the attack for this case
works for the attackable BP obfuscations with fixed dummy program as well.
For this case, a constraint on the bundling scalars αx = α′x for every input x is

given where αx = αS ·
∏`
i=1αi,xinp(i)

·αT , α
′
x = α′S ·

∏`
i=1α

′
i,xinp(i)

·α′T . Suppose

R program of P is given by

R(P ) = {DS ,DT ,DS′ ,DT ′ , {Di,b,D
′
i,b}i∈[`],b∈{0,1}w}.

By Proposition 4, the following equations hold

DS ·
∏̀
i=1

Di,xinp(i)
·DT = ρS ·

∏̀
i=1

ρi,xinp(i)
· ρT ·

(
S0 ·

∏̀
i=1

M i,xinp(i)
· T 0

)
mod 〈g〉,

D′S ·
∏̀
i=1

D′i,xinp(i)
·D′T = ρ′S ·

∏̀
i=1

ρ′i,xinp(i)
· ρ′T ·

(
S′0 ·

∏̀
i=1

M ′
i,xinp(i)

· T ′0

)
mod 〈g〉.
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Here we assume that each M ′
i,xinp(i)

are identity matrices. Now we consider

the two quantity of evaluations PlainD(x) := DS ·
∏`
i=1Di,xinp(i)

· DT and

DummyD(x) := D′S ·
∏`
i=1D

′
i,xinp(i)

·D′T .

According to the condition of scalar bundlings, ρS ·
∏`
i=1 ρi,xinp(i)

· ρT =

ρ′S ·
∏`
i=1 ρ

′
i,xinp(i)

·ρ′T since the value c’s are shared for plain and dummy program.

It is possible to remove scalar bundlings by dividing PlainD(x) byDummyD(x).

In other words, we can get d ·S0 ·
∏`
i=1M i,xinp(i)

· T 0 for some fixed d from the
above division. Since we know all M ’s, the matrix zeroizing attack works well
for the computed quantities.

We remark that the previous analysis [16] analyzed the first candidate iO [26].
Whereas the work in [16] heavily relies on the input partitionable property of
the single input branching program, our algorithm do not need this property.
Moreover, our algorithm can be applied to dual input branching program, so
this attack can be applied to wider range of branching programs.

GMMSSZ. Most notable result for BP obfuscation, GMMSSZ, is suggested by
Garg et al. in TCC 2016 [27]. The authors claim the security of their construc-
tion against all known attack. Nevertheless, the matrix zeroizing attack can be
applied to their obfuscation.

GMMSSZ obfuscates low-rank matrix branching program, which is evalu-
ated by checking whether the product M0 ·

∏
i∈[`]M i,bi · M `+1 is zero or

not. There are two distinctive property of the obfuscation; the uniform ran-
dom higher dimension embedding and given bookend vectors as inputs. Let
M0 = (β1, · · · , βd1),M `+1 = (γ1, · · · , γd`+1

)T are the given bookend vectors.
The bookend vectors are also extended asH0 = (M0||0),H`+1 = (M `+1||U `+1)T

for randomly chosen U `+1 in the higher dimension embedding step to remove
the higher dimension embedding matrices. Note that the branching programs
of this obfuscation are square, we do not restrict the shape of matrices in this
section.

For the evaluation, one compute M̃0 ·
∏
i∈[`] M̃ i,bi · M̃ `+1, which is corre-

sponding to

DS ·
∏̀
i=1

Di,bi ·DT = ρS ·
∏̀
i=1

ρi,bi · ρT ·

(
M0 ·

∏̀
i=1

M i,bi ·M `+!

)
(mod 〈g〉)

in R program by Proposition 4. Since we know all M ’s, we can compute the
ratios of scalar bundlings by

ρj,bj/ρj,b′j =
DS ·

∏
i∈[`]Di,bi ·DT /M0

∏
i∈[`]M i,bi ·M `+1

DS ·
∏
i∈[`]Di,b′i

·DT /M0

∏
i∈[`]M i,b′i

·M `+1

for b, b′ which are same at all but j-th bit. Therefore, the matrix zeroizing attack
well works for the construction of [27]. We remark that this method works for
unknown bookend matrices with more complicated technique, see Section 6.2.
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6.2 Attackable BP Obfuscation, General Case

Now we consider the attackable BP obfuscations in general. We note that an
attackable obfuscation without bookends can be considered as the obfuscation
with bookends by re-naming the matrices. For example, if we name DS :=
D1,0 = ρ1,0 ·D1, then we can regard that DS is a left bookend matrix and ρ1,0
the corresponding scalar bundling.

The case of obfuscation with bookend matrices is most complex, and requires
complicated technique. We will recover the bookend matrices up to constant
multiplication, and proceed the algorithm similar to the case of [27].

Recovering the Bookends For the sake of simplicity, we only consider the
case of bookend vectors. To tackle constructions using bookend matrices, it is
suffice to consider a fixed (u, v)-entry of output matrix given in Proposition 2.

If the obfuscation has bookend vectors, then the evaluation of R program is
computed by

DS ·
∏̀
i=1

Di,bi ·DT = ρS ·
∏̀
i=1

ρi,bi · ρT ·

(
S0 ·

∏̀
i=1

M i,bi · T 0

)
(mod 〈g〉)

for some vectors S0 ∈ (R/〈g〉)1×d1 and T 0 ∈ (R/〈g〉)d`+1×1. Let S0 = (β1, · · · ,
βd1), T 0 = (γ1, · · · ,γd`+1

) and the evaluation DS ·
∏`
i=1Di,bi ·DT is denoted

by EvalD(b1, · · · , b`).
Our idea is removing ρ’s to make equations over S0,T 0. Let bi,t ∈ {0, 1}w

for 1 ≤ i ≤ ` and t ∈ {0, 1} and t = (t1, · · · , t`) ∈ {0, 1}w. Then the following
two values share the same ρ’s, precisely (ρSρT )2 ·

∏
i∈[`] ρi,bi,0ρi,bi,1 :

EvalD(b1,0, · · · , b`,0)·EvalD(b1,1, · · · , b`,1),

EvalD(b1,t1 , · · · , b`,t`)·EvalD(b1,1−t1 , · · · , b`,1−t`).

We denote S0 ·
∏`
i=1M i,bi · T 0 by EqnM (b1, · · · , b`). Then, by the above

relations, we get a equation for β1, · · · ,βd1 ,γ1, · · · ,γd`+1
:

EqnM (b1,0, · · · , b`,0) · EqnM (b1,1, · · · , b`,1)

EvalD(b1,0, · · · , b`,0) · EvalD(b1,1, · · · , b`,1)

=
EqnM (b1,t1 , · · · , b`,t`) · EqnM (b1,1−t1 , · · · , b`,1−t`)
EvalD(b1,t1 , · · · , b`,t`) · EvalD(b1,1−t1 , · · · , b`,1−t`)

.

Both side of the equation is homogeneous polynomial of degree 4. If we sub-
stitute each degree 4 monomials by another variables, this equation become a
homogeneous linear equation of new variables. The number of new variable is
O(d21d

2
`+1).

Now we assume that we can obtain sufficient number of linearly independent
equations generated by the explained way. Then, since the system of linear equa-
tions can be solved in O(M3) time by Gaussian elimination for the number of
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variable M , we can find all ratios of degree 4 monomials. 5 In other words, we
can compute δβ1, · · · , δβd1 , δγ1, · · · , δγd`+1

for some constant δ.

Matrix Zeroizing Attack The remainded part of the attack is exactly same
with the attack of [27]. Precisely, we can recover the ratios of scalar bundlings
by computing

ρj,bj/ρj,b′j =
DS ·

∏
i∈[`]Di,bi ·DT /S0

∏
i∈[`]M i,bi · T 0

DS ·
∏
i∈[`]Di,b′i

·DT /S0

∏
i∈[`]M i,b′i

· T 0

for b, b′ which are same at all but j-th bits. We note that we do not know exact
values of S0,T 0, but we recovered δS0, δT 0 in the above step. Thus we can
compute ρj,bj/ρj,b′j by

DS ·
∏
i∈[`]Di,bi ·DT /(δS0)

∏
i∈[`]M i,bi · (δT 0)

DS ·
∏
i∈[`]Di,b′i

·DT /(δS0)
∏
i∈[`]M i,b′i

· (δT 0)
.

Therefore the matrix zeroizing attack can be applied to the attackable BP ob-
fuscations, which include all existing BP obfuscations over GGH13.

7 Conclusion

We introduced an algorithm to cryptanalyze the branching program obfuscations
over GGH13 multilinear map, which can be applied to wide range of branching
program obfuscations. As a consequence, we show that all existing BP obfus-
cations cannot achieve the indistinguishability with the current parameters of
GGH13 multilinear map.

Our algorithm is only applicable to the linear relationally inequivalent branch-
ing programs. However, we verified that various pairs of functionally equivalent
branching programs are linear relationally inequivalent. Hence, constructing a
compiler that only make linear relationally equivalent programs is an interesting
problem. We also leave a question on indistinguishability of the special purpose
branching program obfuscations initiated by GGH13. Indeed, obfuscations for
evasive functions which are objective functions of [6] is out of our attack range.
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A Extended Attackable BP Obfuscation Model

In this section we introduce an extended model of attackable BP obfuscation
by our attack. The extended attackable BP obfuscation is modified in the ran-
domization step to embraces the obfuscation in [15]. The definition of extended
attackable conditions for randomization is as follows, which is similar to 3:

Definition 6 (Extended Attackable Conditions for Randomization).
For a branching program P =

{
M i,b ∈ Zdi×di+1

}
i∈[`],b∈{0,1}w , the extended at-

tackable randomized branching program is the set

Rand(P ) =
{
Ri,b,R

′
i,b ∈ Zdi×di+1

}
i∈[`],b∈{0,1}w

∪
{
RS ,R

′
S ∈ Zd0×d1 ,RT ,R

′
T ∈ Zd`+1×d`+2

}
∪
{
auxJ,b, aux

′
J,b

}
J⊂[N ],b∈{0,1}w×|J|

satisfying the following properties, where d0, d`+2, ei’s are integers.
1. There exist matrices S0,S

′
0 ∈ Zd0×d1 ,T 0,T

′
0 ∈ Zd`×d`+1 and scalars αS ,α

′
S,

αT ,α
′
T , {αi,b,α′i,b}i∈[`],b∈{0,1}w such that the following equations hold for all

{bi ∈ {0, 1}w}i∈[`]:

RS ·
∏̀
i=1

Ri,bi ·RT = αS ·
∏̀
i=1

αi,bi ·αT ·

(
S0 ·

∏̀
i=1

M i,bi · T 0

)
,

R′S ·
∏̀
i=1

R′i,bi ·R
′
T = α′S ·

∏̀
i=1

α′i,bi ·α
′
T ·

(
S′0 ·

∏̀
i=1

M ′
i,bi · T

′
0

)
.

2. The evaluation of randomized program is done by checking whether the fixed
entries of

RP (x) =
∏
J⊂[N ]

auxJ,x|J ·RS ·
∏̀
i=1

Ri,xinp(i)
·RT−

∏
J⊂[N ]

aux′J,x|J ·R
′
S ·
∏̀
i=1

R′i,xinp(i)
·R′T

is zero or not. Especially, there are two integer u, v such that P (x) = 0 ⇒
RP (x)[u, v] = 0.
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After randomizing matrices, we encode every entries and scalars of Rand(P )
separately by GGH13 multilinear map with respect to the level corresponding
to the first index of elements. We denote enc(auxJ,a) by ãuxJ,a for each J ⊂ [N ]
and a ∈ {0, 1}w×|J|.

We note that aux’s were not discussed in the main body of our paper. How-
ever, our program converting technique is applied with small modification for
auxiliary scalars as well. More precisely, for each ãuxJ,a, ãuxJ,b, we compute
h = ãuxJ,a/ãuxJ,b and solve the NTRU problem for the instance h. Then we ob-
tain cJ ·(auxJ,a+ra ·g) for small cJ . For an auxiliary scalar ãuxJ,c corresponding
to J , we compute cJ · (auxJ,c + rc · g) = cJ · (auxJ,a + ra · g) · ãuxJ,c/ãuxJ,a. We
can recover dummy auxiliaries as well.

From this calculation, R program is obtained for extended model. the other
step such as recovering the ideal 〈g〉 and the matrix zeroizing attack work cor-
rectly as well.

B Examples of Matrix Zeroizing Attack

Obfuscation in [35]. In this section, we prove that obfuscation in [35] can-
not be iO for general-purpose. This scheme is characterized by several special
randomizations; converting to merged branching program which consists of per-
mutation matrices, and choose the right bookend vector T = e1 and no left
bookend vector, and then choose identity Kilian matrix K0 = I at the first left
position. It implies that, by Proposition 4, the evaluation of the program is of
the form:

∏̀
i=1

Di,bi ·DT = ρT ·
∏̀
i=1

ρi,bi ·
∏̀
i=1

M i,bi · e1 = ρT ·
∏̀
i=1

ρi,bi · ek (mod〈g〉),

where k is an integer computed byM ’s. Therefore, we can compute ρT ·
∏`
i=1 ρi,bi

from the computed value. As a next step, we recover ratios of scalar bundlings
ρj,bj/ρj,b′j for b, b′ which satisfies bi = b′i for all i ∈ [`] except j by computing

the ratio ρT ·
∏`
i=1 ρi,bi/ρT ·

∏`
i=1 ρi,b′i . Finally, we can run the matrix zeroizing

attack.

Obfuscation in [6]. Badrinarayanan et al. suggest a construction for obfusca-
tion based on branching program, especially for evasive functions [6].6. In this
section, we prove that obfuscation of Badrinarayanan et al. cannot be a general-
purpose iO. This construction is for low-rank branching program, thus it do not
have dummy matrices and also does not apply higher dimension embeddings.

The original method for their construction is in the bookend; the authors use
no bookend matrices and use special form of Kilian randomization at the first

6 We remark that the construction of [6] is similar to the construction of [36], which
is used as a foundation of recent implementation 5Gen [32] and our attack is also
applied to [36] in the same manner.
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and last matrices. The first and last Kilian matrices are given as follows:

K0 = diag(β1, · · · , βd1),K−1`+1 = diag(γ1, · · · , γd`+1
),

where βu, γv are randomly chosen scalars.

To evaluate the obfuscated program, we see
(∏`

i=1 M̃i,bi

)
[u, v] for some u, v.

This is corresponding to the following value, which is computed by Proposition 4,∏
i∈[`]

Di,bi

 [u, v] = βu · γv ·
∏
i∈[`]

ρi,bi ·

∏
i∈[`]

M i,bi

 [u, v] (mod 〈g〉)

since S0,T 0 are exactly K0,K
−1
`+1. We then can recover the ratio of scalar

bundlings by computing
∏
i∈[`]Di,bi [u, v]/

∏
i∈[`]Di,b′i

[u, v] for b, b′ which satis-

fies bi = b′i for all i ∈ [`] except j. Since we computed ratios of scalar bundlings
ρj,bj/ρj,b′j , we can run the matrix zeroizing attack.

C Examples of Linear Relationally Inequivalent BPs

We exhibit two examples of two functionally equivalent but linear relationally
inequivalent branching programs here. This examples also certify Proposition 3.
The first simple example from nondeterministic finite automata is read-once
BPs, and the second example comes from Barrington’s theorem and thus input-
unpartitionable.

C.1 Read-once BPs from NFA

Two read-once BPs in Table 1 are from non-deterministic finite automata and
linear relationally inequivalent.

These two BPs are the point function which output 1 only for input 01, but
they are linear relationally inequivalent. For example,

M0,1 ·M1,0 −M0,1 ·M1,1 6= 0,

N0,1 ·N1,0 −N0,1 ·N1,1 = 0.

We note that the matrix M i,b is the adjacent matrix between {Ai,c}c∈{0,1} and
{Ai+1,c}c∈{0,1}, and N ’s are defined similarly.

C.2 Input-unpartionable BPs from Barrington’s Theorem

In the case of Barrington’s theorem, the linear relationally inequivalent matrix
BPs are more complex. We consider the following two functionally equivalent
circuits:

C0 = (X1 ∧X2) ∧ (¬X1 ∧X3),

C1 = (¬X1 ∧X2) ∧ (X1 ∧X3).
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A0,0

A0,1

A1,0

A1,1

A2,0

A2,1

0

0,1

1

0

1

B0,0

B0,1

B1,0

B1,1

B2,0

B2,1

0

1

0

1

0

0,1

0,1

M0,0 =

(
1 0

1 0

)
, M1,0 =

(
1 0

0 0

)
, N0,0 =

(
1 0

1 0

)
, N1,0 =

(
1 0

1 1

)
,

M0,1 =

(
0 0

1 1

)
, M1,1 =

(
0 0

0 1

)
. N0,1 =

(
0 1

0 1

)
, N1,1 =

(
0 0

1 1

)
.

Table 1. BPs from NFA

We transform two circuits into the following BPs by Barrington theorem as
follow7:

PC0
= 0: αρ βρ α−1ρ β−1ρ e βδ e β−1δ · · ·

1: e e e e αδ e α−1δ e · · ·
PC1 = 0: e βρ e β−1ρ αδ βδ α−1δ β−1δ · · ·

1: αρ e α−1ρ e e e e e · · ·
input bits 1 2 1 2 1 3 1 3 · · ·

where τσ denotes στσ−1 for permutations τ, σ ∈ S5. In the matrix representation,
the permutations α, β, γ, ρ, δ are of the form

α =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

 , β =


0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0

 , γ =


0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

 , ρ =


1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

 , δ =


1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

 .

We note that two functionally equivalent branching programs PC0 and PC1

are clearly input-unpartitionable. Now if we consider two (invalid) inputs x =

7 Barrington theorem can be implemented in various ways, but we only consider the
first description in [10]. This description also can be found in [4].
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0110110111111111 and y = 1111101011111111. These yield, for example, PC0
(x) =

αρ · e · e · β−1ρ ·αδ · e · e · e · · · · = αρ · β−1ρ ·αδ = β. The terms in the right · · · are
canceled. Then the equation

PC0
(x)− PC0

(y) = 0,

PC1
(x)− PC1

(y) 6= 0

hold. Thus two branching programs PC0
and PC1

are functionally equivalent but
linear relationally inequivalent.
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