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Abstract. This work describes a fast fully homomorphic encryption
scheme over the torus (TFHE), that revisits, generalizes and improves the
fully homomorphic encryption (FHE) based on GSW and its ring vari-
ants. The simplest FHE schemes consist in bootstrapped binary gates.
In this gate bootstrapping mode, we show that the scheme FHEW of [24]
can be expressed only in terms of external product between a GSW and
a LWE ciphertext. As a consequence of this result and of other optimiza-
tions, we decrease the running time of their bootstrapping from 690ms
to 13ms single core, using 16MB bootstrapping key instead of 1GB, and
preserving the security parameter. In leveled homomorphic mode, we
propose two methods to manipulate packed data, in order to decrease
the ciphertext expansion and to optimize the evaluation of look-up tables
and arbitrary functions in RingGSW based homomorphic schemes. We
also extend the automata logic, introduced in [26], to the efficient lev-
eled evaluation of weighted automata, and present a new homomorphic
counter called TBSR, that supports all the elementary operations that
occur in a multiplication. These improvements speed-up the evaluation
of most arithmetic functions in a packed leveled mode, with a noise over-
head that remains additive. We finally present a new circuit bootstrap-
ping that converts LWE ciphertexts into low-noise RingGSW ciphertexts
in just 137ms, which makes the leveled mode of TFHE composable, and
which is fast enough to speed-up arithmetic functions, compared to the
gate bootstrapping approach.
Finally, we provide an alternative practical analysis of LWE based
schemes, which directly relates the security parameter to the error rate
of LWE and the entropy of the LWE secret key, and we propose concrete
parameter sets and timing comparison for all our constructions
Keywords: Fully Homomorphic Encryption, Bootstrapping, Lattices,
LWE, GSW, boolean circuit, deterministic automata

1 Introduction

This paper is the complete and extended version of the two papers [17] and [19]
published by the same authors at Asiacrypt 2016 and Asiacrypt 2017, respec-
tively. It unifies the work presented in these papers, completes the proofs and
adds some further results.



Since Gentry introduced in 2009 [28] the concept of bootstrapping, and
proved that fully homomorphic encryption was achievable in polynomial time,
many constructions have appeared, involving new mathematical and algorith-
mic concepts, improving efficiency and memory requirements. Nowadays, the
most promising constructions [41, 8, 29] rely on two lattice-based problems:
approximate-GCD, presented by Howgrave-Graham in 2001 [33], and Learning
With Errors (LWE), presented by Regev in 2005 [40] and its ring variants [37].

The literature distinguishes two families of homomorphic encryption schemes:
leveved (LHE) and fully (FHE) homomorphic encryption. Informally, in LHE,
for each function, there exist parameters that can homomorphically evaluate
it. In FHE, a single parameter set allows to evaluate any function. With this
(generalized) definition, FHE can be viewed as a particular case of LHE.
For a given security parameter, and also a class of functions to evaluate in
the LHE case, the quality of a homomorphic scheme is measured in terms of
expressivity of its elementary operations, key size, running time per elementary
operation, and ciphertext overhead. In this work, we improve them all, both
from a theoretical point of view, by abstracting the GSW construction, and
by extending homomorphic operations to new computational models, coming
from weighted automata theory, and also from a practical point of view, by
providing complete algorithms and concrete parameters, as well as an open-
source implementation.

Most naive homomorphic schemes use Gaussian noise to mask the plaintext,
and the noise variance grows after each operation, until it reaches critical levels.
As per [28], bootstrapping a ciphertext consists in homomorphically decrypting
it, using a homomorphic encryption of its own secret key. In the end, we get an
encryption of the same plaintext, but which noise only depends on the decryp-
tion circuit. The output noise is independent from the input noise, which confers
to bootstrapping the unique ability to reduce the noise of a ciphertext. The sim-
plest FHE schemes contain a single elementary operation: a NAND gate followed
by a bootstrapping. Any polynomial time function can indeed be systematically
written as a polynomial number of NAND gates, which can be evaluated ho-
momorphically one by one using this bootstrapped NAND operation. Between
2009 and 2015, the running time and memory requirements to achieve this boot-
strapped NAND gate has decreased across multiple generations of constructions,
for instance a BGV-based [8] bootstrapping in the Helib library[31] and a GSW-
based [29] bootstrapping in the FHEW library [24]. The last one obtains one
bootstrapped NAND gate in 0.69ms single core, using a 1GB bootstrapping key,
and with a ciphertext overhead of 10000 for at least 100 bits of security.

In this work, we present a gate bootstrapping algorithm, implemented in the
TFHE library[20], that decreases these requirements to 13ms single core, using
a 16MB bootstrapping key, with the same ciphertext overhead and a higher
security parameter.

Despite these optimizations, bootstrapped bit operations are still about one
billion times slower than their plaintext equivalents. Other trade-offs have been
proposed, where elementary homomorphic operations consist in vectorial arith-
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metic, which covers a large number of real life applications, in statistics or
physics. The possibility to batch these operations in a SIMD manner compen-
sates for the slow homomorphic operations, and provides a consequent apparent
speed-up per element. Also, packing multiple plaintext bits on the same cipher-
text asymptotically reduces the ciphertext expansion to a constant. The effi-
ciency of these schemes crucially relies on the fact that plaintext computations
are expressed on a ring structure, where addition is invertible, and also that it
has enough parallelism to fill all the computation slots. This model doesn’t ap-
ply for highly non-linear computations involving comparisons, tropical algebra,
optimization on graphs, etc...

To this end, we propose new packed elementary LHE operations that are
more generic: like for instance, arbitrary multibit lookup tables, or arbitrary de-
terministic classical or weighted automata. We show how to use the computation
slots at their maximal capacity, even if the function itself is not SIMD, or has
very few bits of output. In FHE mode, we also provide a circuit bootstrapping
procedure, that takes a LWE ciphertext as input, reduces its noise, and converts
it back to an GSW ciphertext suitable for subsequent packed operations. This
allows us for instance to evaluate an arbitrary function from {0, 1}10 → {0, 1} in
340µs and to bootstrap the output 137ms, thus improving upon all alternatives
that output a bootstrapped GSW ciphertext.

Finally, we give a abstract view of our constructions (by simply changing a
fundamental building block called the phase, we can obtain FHE cryptosystems
based not only on LWE, RingLWE, Module-LWE, but also scale-invariant versions
based on the approx-GCD, or on the NTRU function. We show how to instantiate
a canonical version, based on RingLWE, directly from the two user parameters:
security parameters, and depth of circuit in the case of LHE. We reduced the
number of parameters to avoid dependency loops between them, and we keep
the remaining ones as intrinsic as possible, to ease their setup: for example,
scale invariant versions of lattice problems are expressed on the torus, Gaussian
noises are represented by their standard deviation or their variance, the size of
the key is measured in bits. In the last sections, we explain how to calculate
the parameters using bounds coming from state-of-the-art cryptanalysis, and
we provide the concrete values that we implemented in the open source library
TFHE [20]. We provide the results and experimental running time at the end
on the paper.

2 Background

In this section, we introduce some fundamental concepts that are used in the
rest of the paper. In particular, we describe and revisit the LWE problem [40]
before giving its generalization in section 3. We start by fixing some notations.

Notations. In the rest of the paper, we denote the security parameter as λ. We
denote as B the set {0, 1} without any structure and by T the real Torus R/Z,
the set of real numbers modulo 1. We denote by ZN [X] the ring of polynomials
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Z[X]/(XN + 1). TN [X] denotes R[X]/(XN + 1) mod 1 and BN [X] denotes the
polynomials in ZN [X] with binary coefficients. We denote by Ep the set of vectors
of size p with entries in E and by Mp,q(E) the set of p × q-size matrices with
elements in E.

Definition 2.1 (R-module). Let (R,+,×) be a commutative ring. We say that
a set M is a R-module when (M,+) is an abelian group, and when there exists an
external operation · (product) which is bi-distributive and homogeneous. Namely,
∀r, s ∈ R and x, y ∈M , 1R ·x = x, (r+s) ·x = r ·x+s ·x, r ·(x+y) = r ·x+r ·y,
and (r × s) · x = r · (s · x).

Remark 1. A R-module M shares many arithmetic operations and constructions
with vector spaces: vectors Mp or matrices Mp,q(M) are also R-modules, and
their left dot product with a vector in Rp or left matrix product inMk,p(R) are
both well defined.

By construction, any abelian group is a Z-module by iteration of its own law.
In this paper we largely use the torus T, which is a Z-module. It is not a ring
since the mod 1 projection is not compatible with the real product. As instance,
the product 0 × 1

2 , where 0 and 1
2 are seen as elements of T, is undefined in T.

Instead, the external product · between an element of Z and an element in T is
correctly defined (0 · 1

2 , where 0 ∈ Z and 1
2 ∈ T, is equal to 0 ∈ T).

More importantly, we recall that for all positive integers N and k,
(TN [X]k,+, ·) is a ZN [X]-module.

2.1 Probability distributions

Most FHE schemes hide the plaintext with Gaussian noise. In this paper, we al-
ways quantify this noise via its standard deviation or its variance. The variance
of a Gaussian distribution is equal to its average square norm divided by the di-
mension, so working with it leads to propagation formula that are natural. Most
importantly, it avoids the additional

√
2π factors (related to the noise parame-

ter), which have often been a source of confusion in concrete implementations.

Gaussian Distributions Let k ≥ 1 and σ ∈ R+. For all x, c ∈ Rk, we denote by
ρ
σ,c(x) = exp(−‖x− c‖2 /2σ2) the Gaussian function of center c and standard

deviation σ. If c is omitted, then it is implicitly set to 0. Let S be a subset of
Rk, then ρσ,c(S) denotes

∑
x∈S

ρσ,c(x), if S discrete, or
∫
x∈S

ρσ,c(x) · dx, if S
is continuous.

For all closed (continuous or discrete) additive subgroup M ⊆ Rk, ρσ,c(M)
is finite, and defines a (restricted) Gaussian Distribution DM,σ,c of standard
deviation σ and center c over M , with the density function DM,σ,c(x) =
ρ
σ,c(x)/ρσ,c(M). Let L be a discrete subgroup of M , then the Modular Gaus-

sian distribution DM/L,σ,c over M/L exists and is defined by the density
DM/L,σ,c(x) = DM,σ,c(x+ L).
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Subgaussian Distributions A distribution X over R is σ-subgaussian if and
only if it satisfies the Laplace-transformation bound. Namely ∀t ∈ R, the expec-
tation verifies E(exp(tX)) ≤ exp(σ2t2/2). By Markov’s inequality, this implies
that the tails of X are bounded by the Gaussian function of standard deviation
σ: ∀x > 0,P(|X| ≥ x) ≤ 2 exp(−x2/2σ2). As an example, the Gaussian distri-
bution of standard deviation σ (i.e. parameter

√
2πσ), the equi-distribution on

{−σ, σ}, and the uniform distribution over [−
√

3σ,
√

3σ], which all have stan-
dard deviation σ, are σ-subgaussian5. If X and X ′ are two independent σ and
σ′-subgaussian variables, then for all α, β ∈ R, αX + βX ′ is

√
α2σ2 + β2σ′2-

subgaussian.

Concentrated distribution on the Torus In general, distributions over the
torus don’t have expectation nor variance: for instance, it would be impossible
to define the expectation of the uniform distribution over T. However, when the
support of the distribution is concentrated on a small interval, it is still possible
to uniquely define these notions. A distribution X on the torus is concentrated if
and only if its support is included in a ball of radius 1

4 of T, except for negligible
probability. In this case, we define the variance Var(X ) and the expectation
E(X ) of X as respectively Var(X ) = minx̄∈T

∑
p(x)|x − x̄|2 and E(X ) as the

position x̄ ∈ T which minimizes this expression. This definition of expectation
by an optimization formula yields the same result as if we lift the distribution
over any real interval of length < 1

2 , and compute its real expectation modulo 1.
By extension, we say that a distribution X ′ over Tn or TN [X]k is concentrated
if and only if each coefficient has an independent concentrated distribu-
tion on the torus. Then the expectation E(X ′) is the vector of expectations of
each coefficient, and Var(X ′) denotes the maximum of each coefficient’s variance.

These expectation and variance over T follow the same linearity rules than
their classical equivalent over the reals.

Fact 2.2. Let X1,X2 be two independent concentrated distributions on either
T,Tn or TN [X]k, and e1, e2 ∈ Z such that X = e1 · X1 + e2 · X2 remains concen-
trated, then E(X ) = e1 ·E(X1)+e2 ·E(X2) and Var(X ) ≤ e2

1 ·Var(X1)+e2
2 ·Var(X2).

Also, subgaussian distributions with small enough parameters are necessarily
concentrated:

Fact 2.3. Every distribution X on either T,Tn or TN [X]k where each coefficient
is σ-subgaussian where σ ≤ 1/

√
32 ln(2)(λ+ 1) is a concentrated distribution: a

fraction 1− 2−λ of its mass is in the interval [− 1
4 ,

1
4 ].

2.2 Distance and Norms

We denote as ‖·‖p and ‖·‖∞ the standard norms for scalars and vectors over the
real field or over the integers. By extension, the norms ‖P (X)‖p and ‖P (X)‖∞
5 For the first two distributions, it is tight, but the uniform distribution over

[−
√

3σ,
√

3σ] is even 0.78σ-subgaussian
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of a real or integer polynomial P are the norms of its coefficient vector. If P is
a polynomial mod XN − 1, we take the norm of its unique representative of
degree ≤ N − 1.

If x is an vector in Tk, we note ‖x‖p = minu∈x+Zk(‖u‖p) is the p-norm of the

representative of x with all coefficients in ]− 1
2 ,

1
2 ]. It satisfies the separation and

the triangular inequalities, but it is not a norm because it lacks homogeneity6,
and Tk is not a vector space either. Instead, it is sub-homogeneous, i.e. it satisfies
the property ‖m · x‖p ≤ |m| ‖x‖p, ∀m ∈ Z. By extension, we define ‖P‖p for
a polynomial P ∈ TN [X] as the p-norm of its unique representative in R[X] of
degree ≤ N − 1 and with coefficients in ]− 1

2 ,
1
2 ].

Definition 2.4 (Infinity norm over Mp,q(TN [X])). Let A ∈ Mp,q(TN [X]).
We define the infinity norm of A as

‖A‖∞ = max
i∈[[1,p]]
j∈[[1,q]]

‖ai,j‖∞ .

2.3 Learning With Errors problem revisited

The Learning With Errors (LWE) problem was introduced by Regev in 2005 [40].
The Ring variant of the same problem, called RingLWE, was introduced by
Lyubashevsky, Peikert and Regev in 2010 [37]. Both variants are nowadays ex-
tensively used for the constructions of lattice-based Homomorphic Encryption
schemes. In the original definition [40], a LWE sample has its right hand side
on the torus and it is defined using continuous Gaussian distributions. Here, we
work entirely on the real torus, employing the same formalism as the Scale In-
variant LWE scheme in [16], or LWE scale-invariant normal form in [18]. Without
loss of generality, we refer to it as LWE.

Definition 2.5 ((Scale-Invariant) LWE (adapted from [16]). Let n ≥ 1
be an integer, s be in Zn and ξ a distribution over R. We define LWEs,ξ as the
distribution over Tn×T obtained by sampling a pair (a, b), where the left member
a ∈ Tn is chosen uniformly random and the right member b = a · s + e. The
error e is a sample from the distribution ξ. Let S be a distribution over Zn. We
can define the two following problems.

– Search problem: given arbitrarily many independent LWE samples, find s←
S.

– Decision problem: distinguish, given arbitrarily many independent samples,
between LWEs,ξ samples and uniformly random samples from Tn × T, for a
fixed s← S.

Both the LWE search or decision problems are reducible to each other, and
their average case is asymptotically as hard as worst-case lattice problems [40].

6 Mathematically speaking, a more accurate notion would be distp(x,y) = ‖x− y‖p,
which is a distance. However, the norm symbol is clearer for almost all practical
purposes.
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In practice, both problems are also intractable, and their hardness increases
with the the entropy of the key set S (i.e. n if keys are binary) and α ∈]0, ηε(Z)[.

Let s ∈ S be a fixed secret, we call phase the secret linear function ϕs from
Tn×T to T defined as ϕs(a, b) = b− s ·a. In this case, if we compute the phase
of a sample from the LWEs,ξ distribution, the result is the error e, which is very
small. In other words, the distribution LWEs,ξ samples approximations of the
kernel of the phase. We also remark that with this definition of phase, for all
µ ∈ T, the trivial element (0, µ) is a preimage of µ by ϕs.

This allows to reconstruct Regev’s encryption scheme [40]. Given a discrete
message space M ∈ T (for instance {0, 1

2}), a message µ ∈ M is encrypted
as an approximation of a random preimage ϕ−1

s (µ). Concretely, we sum the
trivial element (0, µ) to a LWEs,ξ sample. The semantic security of the scheme
is by definition equivalent to the LWE decisional problem. To decrypt a sample
c = (a, b), we compute the phase ϕs(c), which gives µ plus the error, and we
round it to the nearest element in M. Decryption is correct with overwhelming
probability 1− 2−p provided that the Gaussian parameter α is O(R/

√
p) where

R is the packing radius of M.
Regev’s encryption scheme has also an asymmetric variant, where the public

key is a list of random LWEs,ξ samples. Then, to encrypt a message µ ∈M, one
chooses a small random subset of the elements of the public key, and sums it to
the trivial LWE sample (0, µ) of µ.

3 Homomorphic arithmetic on the torus

In this section we describe the generalizations of the LWE problem and of the
GSW construction over the real torus T.

3.1 TLWE

In this section, we present a generalization of the LWE problem, following the
footprint of [8] (that defined the General LWE problem) and [29]. We call this
generalization TLWE.

In the previous example, the phase was derived from the settings of the
LWE cryptosystem. In TLWE, the phase becomes the central building block. All
other notions are deduced from the algebraic properties of this linear function:
message space, ciphertext space, encryption, decryption. In particular, this ab-
straction allows to unify every scale-invariant FHE scheme, based not only on
LWE, RingLWE, Module-LWE [34], but also on other problems like Approx-GCD
or NTRU.

Definition 3.1 (Abstract TLWE problems). Let I be an ideal of Z[X], we call
R = Z[X]/I and TI [X] = T[X]/I. A phase function is a lipschitzian morphism
( i.e. linear map) from a R-module M to TI [X]. The general TLWE problem is
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parametrized by an error distribution ξ on M , and a family (ϕs)s∈S of phase
functions, indexed by a secret s. The homogeneous TLWE distribution for the
secret s is Uker(ϕs)+ξ (sum of the uniform distribution over ker(ϕs) and an error
from ξ). TLWE is λ-secure if the following two problems cannot be solved in less
than 2λ bit operations, or with advantage 2−λ by any PPT7 adversary:

– TLWE decision problem: distinguish the uniform distribution on M from
Uker(ϕs)+ξ for a particular but unknown secret phase ϕs.

– TLWE search problem: given arbitrarily many samples from Uker(ϕs) +ξ for
a particular secret phase ϕs, find s.

If we instanciate this definition with I = (X + 1), then we get R = Z and
TI [X] = T, and obtain scalar schemes. Setting M = Tn+1 and the phase as
ϕs(a, b) = b − sa, we retrieve the previous scale-invariant LWE. By choosing
instead M = (Z/qZ)n+1 with phase ϕs(a, b) = (b − sa)/q and discrete Gaus-
sian error, we retrieve the well known LWE mod q. If we set M = T and take
ϕs(x) = p.x where p is a secret integer, then the TLWE problem consists in
recognizing approximations of multiples of 1/p, so the TLWE abstraction can
express cryptosystems based on the (dual) approx-GCD problem. Now, if we
take a different ideal, for instance I = (XN + 1), then the canonical choice for a
phase: ϕs(a, b) = b−sa expresses RingLWE and Module-LWE [34], depending on
the dimension of a. But again, other choices of phases are possible, for instance
ϕ(f,g) : TN [X]2 → TN [X], (x, y) 7→ fx − gy for small secret polynomials f, g,
would allow to build FHE over scale invariant version of NTRU.

Definition 3.2 (Canonical TLWE problem). Let k ≥ 1 be an integer, N
be a power of 2 and α ∈ R≥0 be a standard deviation. The canonical TLWE
instantiation is the following: the secret key space S is composed by the binary
vectors s ∈ BN [X]k that we assume to be uniformly chosen with n ≈ kN bits
of entropy. The phase ϕs is defined over M = TN [X]k × TN [X] by ϕs((a, b)) =
b−s·a. It is by definition n-lipschitzian. The error distribution ξ is (0,DTN [X],α)
where DTN [X],α is the modular Gaussian distribution of standard deviation α
over TN [X]. By definition, a homogeneous TLWE sample can be constructed as
(a, s · a + e) where a is uniformly drawn in TN [X]k (or in a sufficiently dense
submodule8) and e← DTN [X],α.

Furthermore, we define as trivial the samples having the mask a = 0 and
noiseless the samples having the standard deviation α = 0.

Definition 3.2 can be viewed as the analogue of the Gereral-LWE problem
of [8] over the torus. It considers a continuum among anticyclic Module-LWE
instances, between LWE (forN = 1) and RingLWE (for k−1). However, we restrict

7 Probabilistic Polynomial Time.
8 A submodule G is sufficiently dense if there exists an intermediate submodule H

such that G ⊆ H ⊆ Tn, the relative smoothing parameter ηH,ε(G) is ≤ α, and
H is the orthogonal in Tn of at most n − 1 vectors of Zn. This definition allows
to convert any (Ring)-LWE with non-binary secret to a TLWE instance via binary
decomposition.
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the definition of canonical TLWE problem to only these particular cyclotomic
instances, because they are the most efficient to implement with fast fourier
transform. Also, the Gaussian error distribution can be sampled directly on the
coefficients of the polynomials, rather than the general definition on the Lagrange
basis.

If for all secret s, the distributions Ukerϕs + ξ is concentrated, Regev’s cryp-
tosystem can be abstracted as follow:

– The message space is the image TI [X] of ϕs,
– The ciphertext space is the domain M of ϕs.
– The encryption of µ is an approximation of a random preimage ϕ−1

s (µ).
Abstractly, a sample from Uϕ−1

s (µ)+ξ, and in the canonical form, the sum of

the trivial sample (0, µ) plus a homogeneous sample from Uker(ϕs)+ξ.
– The (approximate) decryption of a ciphertext c is its image ϕs(c).

From a practical point of view, the fact that the phase is lipschitzian makes
this decryption resilient to numerical errors, and allows to work with approxi-
mations. This cryptosystem is also additively homomorphic, by linearity of the
phase. However, this cryptosystem is noisy, in a sense that after encrypting and
decrypting a message µ, the result is not exactly µ, but a close approximation
µ+ e where e← ξ is a small error.

There are use-cases, like floating point computations [15] or in general dif-
ferential privacy, where these approximations of the plaintext are considered
valid. However, if we need an exact result, we have two options. The first one
is the historical choice in Regev cryptosystem: restrict the message space to a
discrete subset, whose packing radius is larger than the amplitude of ξ, and
retrieve the exact plaintext by rounding the phase. If rounding is easy to set-
up in practice, its non-linearity complicates the correctness analysis, especially
when the current sample is not fresh, but rather a linear combination of pre-
vious samples. Also, restricting the message space prevents some floating point
applications and bounds plaintext operations to just small abelian groups. The
second option, consists in taking E(ξ) = 0, and thus, the plaintext becomes the
expectation of the phase. This option does not require to restrict the message
space and works with infinite precision over the continuous one. Furthermore,
the continuity and linearity of the expectation ease the analysis of morphism
properties and of the noise propagation, but it requires to properly define the
probability space Ω, which we do now.

Definition 3.3 (The Ω-probability space). Since samples are either inde-
pendent (random, noiseless, or trivial) fresh c ← TLWETN [X],s,α(µ), or linear
combination c̃ =

∑p
i=1 ei ·ci of other samples, the probability space Ω is the prod-

uct of the probability spaces of each individual fresh samples c with the TLWE
distributions defined in definitions 3.2, and of the probability spaces of all the
coefficients (e1, . . . , ep) ∈ ZN [X]p or Zp that are obtained with randomized algo-
rithm.

In other words, instead of viewing a TLWE sample as a fixed value which is
the result of one particular event in Ω, we will consider all the possible values
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at once, and make statistics on them.

We now define some important functions on TLWE samples: message, error,
noise variance, and noise norm. These functions are well defined mathematically,
and can be used in the analysis of various algorithms. However, they cannot be
directly computed or approximated in practice.

Definition 3.4. Let c be a random variable ∈ TN [X]k+1, which we’ll interpret
as a TLWE sample. All probabilities are on the Ω-space. We say that c is a
valid TLWE sample if and only if there exists a key s ∈ BN [X]k such that the
distribution of the phase ϕs(c) is concentrated. If c is trivial, all keys s are
equivalent, else the mask of c is uniformly random, so s is unique. We then
define:

– the message of c, denoted as msg(c) ∈ TN [X] is the expectation of ϕs(c);
– the error, denoted Err(c), is equal to ϕs(c)−msg(c);
– Var(Err(c)) denotes the variance of Err(c), which is by definition also equal

to the variance of ϕs(c);
– finally, ‖Err(c)‖∞ denotes the maximum amplitude of Err(c) (possibly with

overwhelming probability).

Unlike the classical decryption algorithm, the message function can be viewed
as an ideal black box decryption function, which works with infinite precision
even if the message space is continuous. Provided that the noise amplitude re-
mains smaller than 1

4 , the message function is perfectly linear. Using these intu-
itive and intrinsic functions will considerably ease the analysis of all algorithms
in this paper. In particular, we have the following fact concerning linear combi-
nations of TLWE samples.

Fact 3.5. Given p valid and independent TLWE samples c1, . . . , cp under the
same key s, and p integer polynomials e1, . . . , ep ∈ R, if the linear combination
c =

∑p
i=1 ei • ci is a valid TLWE sample, it satisfies: msg(c) =

∑p
i=1 ei •msg(ci),

with variance Var(Err(c)) ≤
∑p
i=1 ‖ei‖22 · Var(Err(ci)) and noise amplitude

‖Err(c)‖∞ ≤
∑p
i=1 ‖ei‖1 · ‖Err(ci)‖∞. If the last bound is < 1

4 , then c is neces-
sarily a valid TLWE sample (under the same key s).

3.2 TGSW

As presented in previous section, TLWE samples can be linearly combined to ob-
tain a new sample encrypting the linear combination of the messages. But when
it comes to non linear operations on the samples, TLWE seems to miss some
properties. In order to repair this lack, several schemes based on the different
variants of LWE have been proposed. Between them, the most known solutions
are the BGV constructions [8] and the GSW constructions [29]. We focus on this
latter and on the improvements proposed in [5]. The security of GSW is based
on the LWE problem and the construction is fully homomorphic. In this section
we present a generalized scale invariant version of the FHE scheme GSW [29],
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that we call TGSW (in the same line as TLWE). The scheme relies on a gadget
decomposition function, which we also extend to polynomials. But most impor-
tantly, the novelty is that our function is an approximate decomposition, up to
some precision parameter. This allows to improve running time and memory
requirements for a small amount of additional noise.

Definition 3.6 (Abstract Gadget Decomposition). Let M be a R-module,
(as in Definition 3.1). We say that an efficient algorithm DecH,β,ε(v) is a valid

decomposition on the gadget H ∈ M `′ with quality β ∈ R>0 and precision ε ∈
R>0 if and only if, for any TLWE sample v ∈ TN [X]k+1, it efficiently and publicly
outputs a small vector u ∈ R`′ such that ‖u‖∞ ≤ β and ‖u ·H − v‖∞ ≤ ε.
Furthermore, the expectation of u · H − v must to be equal to 0 when v is
uniformly distributed in M .

To fix the ideas, we give an efficient canonical example of gadget decom-
position, whose purpose is to decompose canonical TLWE ciphertexts. Overall,
the canonical gadget is a block diagonal matrix, each column block containing a
geometric decreasing sequence of constant polynomials in T ⊆ TN [X], and the
corresponding decomposition function is the greedy algorithm.

In theory, decomposition algorithms should be randomized to ensure that
the distribution of all error coefficients remain independent. In practice, our
average case theorems already rely on an independence Heuristic 3.11 that we
describe later in this section, which explains why we use a deterministic canonical
decomposition.

Lemma 3.7 (Canonical Gadget Decomposition). Let M = TN [X]k+1

be the domain of the canonical TLWE, and ` and Bg be two positive inte-
gers, the canonical gadget are the `′ = (k + 1)` rows of the matrix H ∈
M(k+1)`,k+1(TN [X]) as in (1).

H =



1/Bg . . . 0
...

. . .
...

1/B`g . . . 0
...

. . .
...

0 . . . 1/Bg
...

. . .
...

0 . . . 1/B`g


∈M(k+1)`,k+1(TN [X]). (1)

Then for β = Bg/2 and ε = 1/2B`g, Algorithm 1 is a valid DecH,β,ε.

Proof. Let v = (a, b) = (a1, . . . , ak, b = ak+1) ∈ TN [X]k+1 be a TLWE sample,
given as input to Algorithm 1. Let u = [u1,1, . . . , uk+1,`] ∈ R(k+1)` be the
corresponding output by construction ‖u‖∞ ≤ Bg/2 = β.

11



Algorithm 1 Gadget Decomposition of a TLWE sample

Input: A TLWE sample (a, b) = (a1, . . . , ak, b = ak+1) ∈ TN [X]k × TN [X]
Output: A combination [u1,1, . . . , uk+1,`] ∈ R(k+1)`

1: For each ai choose the unique representative
∑N−1
j=0 ai,jX

j , with ai,j ∈ T, and set

āi,j the closest multiple of 1
B`g

to ai,j

2: Decompose each āi,j uniquely as
∑`
p=1 āi,j,p

1
B
p
g

where each āi,j,p ∈ [[−Bg/2, Bg/2[[

3: for i = 1 to k + 1
4: for p = 1 to `
5: ui,p =

∑N−1
j=0 āi,j,pX

j ∈ R
6: Return (ui,p)i,p

Let εdec = u ·H − v. For all i ∈ [[1, k + 1]] and j ∈ [[0, N − 1]], we have by
construction

εdeci,j =
∑̀
p=1

ui,p •
1

Bpg
− ai,j = āi,j − ai,j .

Since āi,j is defined as the nearest multiple of 1
B`g

on the torus, we have |āi,j −
ai,j | ≤ 1/2B`g = ε.
εdec has therefore a concentrated distribution when v is uniform. We now

verify that it is zero-centered. If we call f the function from T to T which rounds
an element x to its closest multiple of 1

B`g
and the function g the symmetry

defined by g(x) = 2f(x) − x on the torus; we easily verify that the E(εdeci,j)
is equal to E(ai,j − f(ai,j)) when ai,j has uniform distribution, which is equal
to E(g(ai,j) − f(g(ai,j))) when g(ai,j) has uniform distribution, also equal to
E(f(ai,j)− ai,j) = −E(εdeci,j). Thus, the expectation of εdec is 0. ut

We are now ready to define TGSW samples, and to extend the notions of
phase of valid sample, message and error of the samples.

Definition 3.8 (Abstract TGSW samples). Consider the TLWE cryptosys-
tem of error distribution ξ and of secret phase ϕs on the R-module M , and its
associated gadget decomposition DecH,β,ε over H ∈ M `′ . We say that C ∈ M `′

is a fresh TGSW sample of µ ∈ R if and only if C = Z+µ •H where each element
of Z ∈ M `′ is an Homogeneous TLWE sample (of 0) and error ξ. Reciprocally,
we say that an element C ∈ M `′ is a valid TGSW sample for the key s if and
only if there exists a unique polynomial µ ∈ R (modulo H ·R) such that row of
C − µ • H is a valid TLWE sample of 0 for the key s. We call the polynomial
µ the message of C, and we denote it by msg(C). By extension, the phase of C

denoted as ϕs(C) ∈ TI [X]
`′

is the vector of the `′ TLWE phases of each line of
C. In the same way, we define the error of C, denoted Err(C), as the list of the
`′ TLWE errors of each line of C.

If one instantiate the previous definition with the canonical TLWE (Defini-
tion 3.2) and the canonical decomposition algorithm (Lemma 3.7), one obtains
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the canonical TGSW samples over TN [X](k+1)`, of binary key s ∈ BN [X]k, and
Gaussian error of standard deviation α. Fresh canonical TGSW samples of a mes-
sage µ ∈ ZN [X] are denoted TGSWs,α(µ). Since TGSW samples are essentially
vectors of TLWE samples, they are naturally compatible with linear combina-
tions. And both phase and message functions remain linear.

Fact 3.9. Given p valid TGSW samples C1, . . . , Cp of messages µ1, . . . , µp un-
der the same key, and with independent error coefficients, and given p integer
polynomials e1, . . . , ep ∈ fR, the linear combination C =

∑p
i=1 ei •Ci is a sample

of µ =
∑p
i=1 ei · µi, with variance

Var(C) =

(
p∑
i=1

‖ei‖22 · Var(Ci)

)1/2

and noise infinity norm

‖Err(C)‖∞ =

p∑
i=1

‖ei‖1 · ‖Err(Ci)‖∞ .

Also, the phase is still (1 + kN)-lipschitzian for the infinity norm.

Fact 3.10. For all A ∈Mp,k+1(TN [X]), ‖ϕs(A)‖∞ ≤ (1 + kN) ‖A‖∞.

Heuristic In order to characterize the average case behaviour of our homo-
morphic operations, we shall rely on the heuristic assumption of independence
below. This heuristic will only be used for practical average-case bounds. Our
worst-case theorems and lemma based on the infinite norm do not use it at all.

Assumption 3.11 (Independence Heuristic). All the coefficients of the er-
rors of TLWE or TGSW samples that occur in all the linear combinations we con-
sider are independent and concentrated. More precisely, they are σ-subgaussian
where σ is the square-root of their variance.

This assumption allows us to bound the variance of the noise instead of
its norm, and to provide realistic average-case bounds which often correspond
to the square root of the worst-case ones. The error can easily be proved sub-
gaussian, since each coefficients are always obtained by convolving Gaussians or
zero-centered bounded uniform distributions. What remains heuristic is the inde-
pendence between all the coefficients. Indeed, dependencies between coefficients
may affect the variance of their combinations in both directions. The indepen-
dence of coefficients can be proved if we add enough entropy in the decomposition
algorithm (and if we increase all the other parameters to compensate), but as
noticed in [24], this work-around seems just to be a proof artifact, and is ex-
perimentally not needed. Since average case corollaries should reflect practical
results, we leave the independence of subgaussian samples as a heuristic as-
sumption. In Figure 11 we show an experimental validation of our independence
assumption.
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3.3 Products

Linear operations are not sufficient to achieve Fully Homomorphic Encryption.
The original definition of GSW in [29] proposed a construction to achieve a homo-
morphic internal product between the integer messages of two GSW ciphertexts
(which live in the ring R). Due to an asymetry in the noise propagation, it was
noticed in [30] and [5] that GSW ciphertext are particularly suited to evaluate
long chains of products, or branching programs. In [10], the authors noticed that
for these circuits, a large part of the computations in the GSW internal prod-
uct was subsequently unused, if the final goal was just to decrypt the message.
Not performing these computations yields a huge polynomial speed-up. In this
section, we provide an intrinsic explanation for the correctness of these partial
computations, by defining an external product between a TGSW ciphertext and
a TLWE samples, and prove that it is homomorphic to the external R-module
product between the two plaintexts. A direct comparison between the exter-
nal and internal product algorithms retroactively explains the speed-up of [10].
It also emphasis on the asymetric nature of TGSW products: the reason why
branching algorithms or long chains of fresh multiplications are much more effi-
cient to evaluate with GSW than balanced binary trees, is not only the asymetry
in the noise propagation, but also because only the first ones can be mapped to
the simple plaintext external product.

Definition 3.12 (External product). We define the product � as

� : TGSW × TLWE −→ TLWE

(A, b) 7−→ A� b = DecH,β,ε(b) ·A,

where DecH,β,ε is the gadget decomposition described in Algorithm 1.

The formula is almost identical to the classical product defined in the original
GSW scheme in [29], except that only one vector needs to be decomposed. For
this reason, the following theorem shows that we get almost the same noise prop-
agation formula, with an additional term that comes from the approximations
in the decomposition.

Theorem 3.13 (Worst-case External Product). Let A be a valid TGSW
sample of message µA and let b be a valid TLWE sample of message µb. Then
A� b is a TLWE sample of message µA · µb and

‖Err(A� b)‖∞ ≤ (k + 1)`Nβ ‖Err(A)‖∞ + ‖µA‖1 (1 + kN)ε+ ‖µA‖1 ‖Err(b)‖∞

in the worst case, where β and ε are the parameters used in the decomposition
Dech,β,ε(b). If ‖Err(A� b)‖∞ ≤ 1/4 we are guaranteed that A � b is a valid
TLWE sample.

Proof. As A = TGSW(µA), then by definition it is equal to A = ZA + µA ·H,
where ZA is a TGSW encryption of 0 and H is the gadget matrix. In the same
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way, as b = TLWE(µb), then by definition it is equal to b = zb + (0, µb), where
zb is a TLWE encryption of 0. Let{

‖Err(A)‖∞ = ‖ϕs(ZA)‖∞ = ηA

‖Err(b)‖∞ = ‖ϕs(zb)‖∞ = ηb.

Let u = DecH,β,ε(b) ∈ R(k+1)`. By definition A� b is equal to

A� b = u ·A
= u · ZA + µA · (u ·H).

From definition 3.6, we have that u · H = b + εdec, where ‖εdec‖∞ =
‖u ·H − b‖∞ ≤ ε. So

A� b = u · ZA + µA · (b+ εdec)

= u · ZA + µA · εdec + µA · zb + (0, µA · µb).

Then the phase (linear function) of A� b is

ϕs(A� b) = u · Err(A) + µA · ϕs(εdec) + µA · Err(b) + µAµb.

Taking the expectation, we get that msg(A � b) = 0 + 0 + 0 + µAµb, and so
Err(A� b) = ϕs(A� b)− µAµb. Then thanks to Fact 3.10, we have

‖Err(A� b)‖∞ ≤ ‖u · Err(A)‖∞ + ‖µA · ϕ(εdec)‖∞ + ‖µA · Err(b)‖∞
≤ (k + 1)`NβηA + ‖µA‖1 (1 + kN) ‖εdec‖∞ + ‖µA‖1 ηb.

The result follows. ut

We similarly obtain the more realistic average-case noise propagation, based
on the independence heuristic 3.11, by bounding the Gaussian variance instead
of the amplitude.

Corollary 3.14 (Average-case External Product). Under the same condi-
tions of theorem 3.13 and by assuming the heuristic 3.11, we have that

Var(Err(A�b)) ≤ (k+1)`Nβ2Var(Err(A))+(1+kN) ‖µA‖22 ε
2+‖µA‖22 Var(Err(b)).

Proof. Let ϑA = Var(Err(A)) = Var(ϕs(ZA)) and ϑb = Var(Err(b)) =
Var(ϕs(zb)). By using the same notations as in the proof of theorem 3.13 we
have that the error of A�b is Err(A�b) = u ·Err(A)+µA ·ϕs(εdec)+µA ·Err(b)
and thanks to assumption 3.11 and lemma 3.10, we have :

Var(Err(A� b)) ≤ Var(u · Err(A))) + Var(µA · ϕ(εdec)) + Var(µA · Err(b))

≤ (k + 1)`Nβ2ϑA + (1 + kN) ‖µA‖22 ε
2 + ‖µA‖22 ϑb.

ut
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The last corollary describes exactly the classical internal product between
two TGSW samples, already presented in [29, 5, 26, 24] with adapted notations.
As we mentioned before, it consists in (k+ 1)` independent computations of the
� product. As for the external product, we analyze the noise growth in both
worst and average case.

Corollary 3.15 (Internal Product). Let the product

� : TGSW × TGSW −→ TGSW

(A,B) 7−→ A�B =

 A� b1
...

A� b(k+1)`

 =

 DecH,β,ε(b1) ·A
...

DecH,β,ε(b(k+1)`) ·A

 ,
with A and B two valid TGSW samples of messages µA and µB respectively and
bi corresponding to the i-th line of B. Then A�B is a TGSW sample of message
µA · µB and

‖Err(A�B)‖∞ ≤ (k+ 1)`Nβ ‖Err(A)‖∞+ ‖µA‖1 (1 + kN)ε+ ‖µA‖1 ‖Err(B)‖∞

in the worst case. If ‖Err(A�B)‖∞ ≤ 1/4 we are guaranteed that A � B is a
valid TGSW sample.
Furthermore, by assuming the heuristic 3.11, we have that

Var(Err(A�B)) ≤ (k+1)`Nβ2Var(Err(A))+(1+kN) ‖µA‖22 ε
2+‖µA‖22 Var(Err(b))

in the average case.

Proof. Let A and B be two TGSW samples, and µA and µB their message. Let
hi denote the i-th row of the gadget matrix H. By definition, the i-th row of
B encodes µB • hi, so the i-th row of A � B encodes (µAµB) • hi. This proves
that A�B encodes µAµB . Since the internal product A�B consists in (k+ 1)`
independent runs of the external products A�bi, the noise propagation formula
directly follows from Theorem 3.13 and Corollary 3.14. ut

3.4 CMux gate

With the homomorphic operations described until now it is possible to construct
small circuits. To ease this construction, we now define the controlled selector
gate (or CMux gate where C stands for controlled), which can be considered as
the bridge between the external product arithmetic, and high level circuits.

The CMux gate has three input slots and one output slot: one control input
slot represented by a TGSW sample on the integer message space (here restricted
to {0, 1}), two data input slots carrying a TLWE sample on the continuous mes-
sage space TN [X], and one data output slot, also of type TLWE. The controlled
MUX gate CMux(C,d1,d0) homomorphically outputs either the message of d1 or
d0 depending on the boolean value in C, without decrypting any of the three
cipertexts. In practice, it returns C � (d1 − d0) + d0.
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In leveled circuits, the rule to build valid circuits using CMux gates is that all
control wires (TGSW) are freshly generated by the user, and the data input ports
of our gates can be either freshly generated or connected to a data output or to
another gate. In Section 6.2, we propose an efficient way to transform a TLWE
sample in a TGSW sample, in order to make the circuits entirely composable
(and so relax the condition requiring freshly generated control wires).

TGSW
µC

ηC , ϑC

TLWE
µd0

ηd0 , ϑd0

TLWE
µd1

ηd1 , ϑd1

0

1

TLWE
µ = µC · (µd1 − µd0) + µd0

η = max(ηd0 , ηd1) +O(ηC)

ϑ = max(ϑd0 , ϑd1) +O(ϑC)

Fig. 1. CMux gate - The CMux gate takes in input a TGSW sample C with message
µC , a TLWE sample d0 with message µd0 and a TLWE sample d1 with message µd1 .
It outputs a TLWE sample with message µ = µC · (µd1 − µd0) + µd0 . The η’s and ϑ’s
represent respectively the noise in the worst and average case, for both the inputs and
the output.

Lemma 3.16 (CMux gate). Let d0,d1 ∈ TLWEs(TN [X]) and C ∈
TGSWs({0, 1}). Then msg(CMux(C,d1,d0)) = msg(C)?msg(d1):msg(d0). Fur-
thermore

– ‖Err(CMux(C,d1,d0))‖∞ ≤ max(‖Err(d0)‖∞ , ‖Err(d1)‖∞) + η(C),
– Var(Err(CMux(C,d1,d0))) ≤ max(Var(Err(d0)),Var(Err(d1))) + ϑ(C), in the

conditions of Assumption 3.11,

where η(C) = (k + 1)`Nβ ‖Err(C)‖∞ + (kN + 1)ε and ϑ(C) = (k +
1)`Nβ2Var(Err(C)) + (kN + 1)ε2.

Proof. The formulas for the noise in the worst and average cases are a conse-
quence of Theorem 3.13 and Corollary 3.14. However, we need to explain why
there is a max instead of the sum we would obtain by blindly applying these
results. Let d = d1−d0, recall that in the proof of Theorem 3.13, the expression
of C�d is DecH,β,ε(d) •ZC+µCεdec +µCzd+(0, µC ·µd), where C = ZC+µC ·H
and d = zd + (0, µd), ZC and zd are respectively TGSW and TLWE samples of
0, and ‖εdec‖∞ ≤ ε. Thus, CMux(C,d1,d0) is the sum of four terms:

– DecH,β,ε(d) • ZC of norm ≤ (k + 1)`NβηC ;
– µCεdec of norm ≤ (kN + 1)ε;
– zd0 +µC(zd1 − zd0), which is either zd1 or zd0 , depending on the value of µC ;
– (0, µd0

+µC · (µd1
−µd0

)), which is the trivial sample of the output message
µC?µd1

:µd0
, and is not part of the noise.
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Thus, summing the three terms concludes the proof. For the average case, the
formula is proven in the same way by using the results of Corollary 3.14 and
replacing all norm inequalities by variance inequalities. ut

Notations In the rest of the paper, the notation TLWE is used to denote the
(canonical scalar) binary TLWE problem (i.e. the LWE problem described in
Section 2). To distinguish it from the Ring mode, we introduce the notation
TRLWE. The TGSW samples are only used in ring mode, but we use the notation
TRGSW to keep uniformity with the TRLWE notation.

Furthermore, we distinguish the TLWE keys from the TRLWE keys by using
the respective notations K and K, instead of the generic s used until now. We
also use the following convention in the rest of the paper: for all n = kN , a
binary vector K ∈ Bn can be interpreted as a TLWE key, or alternatively as a
TRLWE key K ∈ BN [X]k having the same sequence of coefficients. Namely, Ki is

the polynomial
∑N−1
j=0 KN(i−1)+j+1X

j . In this case, we say that K is the TRLWE
interpretation of K, and K is the TLWE interpretation of K.

4 Building blocks for TFHE

TLWE and TRLWE samples are largely used in the rest of the paper, and the
schemes we describe switch from a type to another constantly. To do that, three
basic tools are used: the key switching, the sample extraction and the blind
rotation. Each one of them is described in detail in next sections.

4.1 Key Switching revisited

We revisit the well known key switching procedure, largely described in the
literature. The principal interest of key switching, as the name suggests, is to
switch between keys in different parameter sets.

We show that this procedure as a larger potential. It allows to switch between
the scalar and polynomial message spaces T and TN [X], and more generally, it
has the ability to homomorphically evaluate linear morphisms f from any Z-
module Tp to TN [X]. We define two key switching flavors, one for a publicly
known f , and one for a secret f encoded in the key switching key.

In the following, we denote PubKS(f,KS, c) and PrivKS(KS(f), c) the output
of Algorithm 2 and Algorithm 3, taking in input the functional key switching
keys KS and KS(f) respectively and a TLWE ciphertext c.

As the inputs and the outputs are instantiated with different parameter sets
and we want to keep the same name for the variables n,N, α, `, Bg, . . . , we add
an under bar to the output parameters to distinguish them from the input pa-
rameters.

Theorem 4.1. (Public Key Switching) Given p TLWE ciphertexts c(z) ∈
TLWEK(µz), a public R-lipschitzian morphism f : Tp → TN [X] of Z-modules,

and KSi,j ∈ T(R)LWEK,γ(Ki
2j ) with standard deviation γ, Algorithm 2 outputs a

T(R)LWE sample c ∈ T(R)LWEK(f(µ1, . . . , µp)) such that:

18



Algorithm 2 TLWE-to-T(R)LWE Public Functional Key Switching

Input: p TLWE ciphertexts c(z) = (a(z), b(z)) ∈ TLWEK(µz) for z = 1, . . . , p, a public
R-lipschitzian morphism f : Tp → TN [X], and KSi,j ∈ T(R)LWEK(Ki

2j
).

Output: A T(R)LWE sample c ∈ T(R)LWEK(f(µ1, . . . , µp))
1: for i ∈ [[1, n]] do

2: Let ai = f(a
(1)
i , . . . , a

(p)
i )

3: let ãi be the closest multiple of 1
2t

to ai, thus ‖ãi − ai‖∞ < 2−(t+1)

4: Binary decompose each ãi =
∑t
j=1 ãi,j · 2

−j where ãi,j ∈ BN [X]
5: end for
6: return (0, f(b(1), . . . , b(p)))−

∑n
i=1

∑t
j=1 ãi,j · KSi,j

– ‖Err(c)‖∞ ≤ R ‖Err(c)‖∞ + ntNAKS + n2−(t+1) (worst case),

– Var(Err(c)) ≤ R2Var(Err(c)) + ntNϑKS + n2−2(t+1) (average case),

where AKS and ϑKS = γ2 are respectively the amplitude and the variance of the
error of KS.

Proof. Let c be the output of Algorithm 2 and b = f(b(1), . . . , b(p)) then

ϕK(c) = b−
n∑
i=1

t∑
j=1

ãi,j · ϕK(KSi,j)

= b−
n∑
i=1

t∑
j=1

ãi,j(
Ki
2j
− Err(KSi,j))

= b−
n∑
i=1

Kiãi −
n∑
i=1

t∑
j=1

ãi,jErr(KSi,j)

= b−
n∑
i=1

Kiai −
n∑
i=1

t∑
j=1

ãi,jErr(KSi,j) +

n∑
i=1

Ki · (ai − ãi)

= f(b(1), . . . , b(p))−
n∑
i=1

f(a
(1)
i , . . . , a

(p)
i )Ki

−
n∑
i=1

t∑
j=1

ãi,jErr(KSi,j) +

n∑
i=1

Ki · (ai − ãi)

= f

(
(b(1), . . . , b(p))−

n∑
i=1

Ki(a
(1)
i , . . . , a

(p)
i )

)

−
n∑
i=1

t∑
j=1

ãi,jErr(KSi,j) +

n∑
i=1

Ki · (ai − ãi)

= f(ϕK(c(1))), . . . , ϕK(c(p)))−
n∑
i=1

t∑
j=1

ãi,jErr(KSi,j) +

n∑
i=1

Ki · (ai − ãi)

Applying the expectation on each side, we obtain msg(c) on the left, and
f(µ1, . . . , µp) on the right, since all the error terms have expectation 0 and
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f is linear. For the worst-case bound, we obtain that:

‖Err(c)‖∞ =
∥∥ϕK(c)−msg(c)

∥∥
∞

≤
∥∥∥f(Err(c(1)), . . . ,Err(c(p)))

∥∥∥
∞

+ ntNAKS +Nn2−(t+1)

≤ R ‖Err(c)‖∞ + ntNAKS +Nn2−(t+1)

since f is R-lipschitzian. For the average-case, we have a similar proof:

Var(Err(c)) = Var(ϕK(c)−msg(c))

≤ Var(f(Err(c(1)), . . . ,Err(c(p)))) + ntNϑKS +Nn2−2(t+1)

≤ R2Var(Err(c)) + ntNϑKS +Nn2−2(t+1).

Remark 2. The TLWE-to-T(R)LWE public key switching procedure we described,
allow to switch between the scalar message space T and the polynomial message
space TN [X]. The same procedure can be used to perform a TLWE-to-TLWE
public key switching and switch between scalar message spaces. Here is why we
put parenthesis around the R of T(R)LWE. In practice, the key switching key
is composed by TLWE encryptions of the old secret key, and the noise growth
formulas still the same, with the factor N equal to 1. We use the TLWE-to-TLWE
public key switching in Section 5.3.

We have a similar result when the function is private. In this algorithm, we
extend the input secret key K by adding a (n+ 1)-th coefficient equal to −1, so
that ϕK(c) = −K · c.

Algorithm 3 TLWE-to-T(R)LWE Private Functional Key Switching

Input: p TLWE ciphertexts c(z) ∈ TLWEK(µz), a key switching key KS
(f)
z,i,j ∈

T(R)LWEK(f(0, . . . , 0, Ki
2j
, 0, . . . , 0)) where f : Tp → TN [X] is a secret R-

lipschitzian morphism and Ki
2j

is at position z (also, Kn+1 = −1 by convention).
Output: A T(R)LWE sample c ∈ T(R)LWEK(f(µ1, . . . , µp)).
1: for i ∈ [[1, n+ 1]], z ∈ [[1, p]] do

2: Let c̃
(z)
i be the closest multiple of 1

2t
to c

(z)
i , thus |c̃(z)i − c

(z)
i | < 2−(t+1)

3: Binary decompose each c̃
(z)
i =

∑t
j=1 c̃

(z)
i,j · 2

−j where c̃
(z)
i,j ∈ {0, 1}

4: end for
5: return −

∑p
z=1

∑n+1
i=1

∑t
j=1 c̃

(z)
i,j · KS

(f)
z,i,j

Theorem 4.2. (Private Key Switching) Given p TLWE ciphertexts c(z) ∈
TLWEK(µz), and KS

(f)
i,j ∈ T(R)LWEK,γ(f(0, . . . , Ki2j , . . . , 0)) where f : Tp →

TN [X] is a private R-lipschitzian morphism of Z-modules, Algorithm 3 outputs
a T(R)LWE sample c ∈ T(R)LWEK(f(µ1, . . . , µp)) such that:

– ‖Err(c)‖∞ ≤ R ‖Err(c)‖∞ + (n+ 1)R2−(t+1) + pt(n+ 1)AKS (worst-case),
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– Var(Err(c)) ≤ R2Var(Err(c)) + (n + 1)R22−2(t+1) + pt(n + 1)ϑKS (average
case),

where AKS and ϑKS = γ2 are respectively the amplitude and the variance of the

error of KS(f).

Proof. Let c be the output of Algorithm 3 and b = f(b(1), . . . , b(p)) then:

ϕK(c) = −
p∑
z=1

n+1∑
i=1

t∑
j=1

c̃
(z)
i,j · ϕK(KS

(f)
z,i,j)

= −
p∑
z=1

n+1∑
i=1

t∑
j=1

c̃
(z)
i,j

(
f(0, . . . ,

Ki
2j
, . . . , 0) + Err(KS

(f)
i,j )

)

= −
p∑
z=1

n+1∑
i=1

t∑
j=1

c̃
(z)
i,j f(0, . . . ,

Ki
2j
, . . . , 0)−

p∑
z=1

n+1∑
i=1

t∑
j=1

c̃
(z)
i,j Err(KS

(f)
z,i,j)

We set εKS =
∑p
z=1

∑n+1
i=1

∑t
j=1 c̃

(z)
i,j Err(KS

(f)
z,i,j). Then:

= −
n+1∑
i=1

p∑
z=1

f(0, . . . ,

t∑
j=1

c̃
(z)
i,j

Ki
2j
, . . . , 0)− εKS

= −
n+1∑
i=1

p∑
z=1

f(0, . . . ,Ki · c̃(z)i , . . . , 0)

−
n+1∑
i=1

p∑
z=1

f(0, . . . ,Ki · (c̃(z)i − c
(z)
i ), . . . , 0)− εKS

= −
n+1∑
i=1

Kif(c
(1)
i , . . . , c

(z)
i , . . . , c

(p)
i )−

n+1∑
i=1

Kif(c̃
(1)
i − c

(1)
i , . . . , c̃

(p)
i − c

(p)
i )− εKS

= f(−
n+1∑
i=1

Kic
(1)
i , . . . ,−

n+1∑
i=1

Kic
(p)
i )−

n+1∑
i=1

Kif(c̃
(1)
i − c

(1)
i , . . . , c̃

(p)
i − c

(p)
i )− εKS

= f(ϕK(c(1)), . . . , ϕK(c(p)))−
n+1∑
i=1

Kif(c̃
(1)
i − c

(1)
i , . . . , c̃

(p)
i − c

(p)
i )− εKS

= f(µ1 + Err(c(1)), . . . , µp + Err(c(p)))

−
n+1∑
i=1

Kif(c̃
(1)
i − c

(1)
i , . . . , c̃

(p)
i − c

(p)
i )− εKS

By linearity of f and since the expectation of the error terms are 0, the message
of the right side is equal to f(µ1, . . . , µp). For the worst-case bound on the noise,
as f is R-lipschitzian, we obtain:

‖Err(c)‖∞ =
∥∥ϕK(c)−msg(c)

∥∥
∞

≤ R ‖Err(c)‖∞ + (n+ 1)R2−(t+1) + pt(n+ 1)AKS
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The proof for the variance is similar.

4.2 Sample Packing and Sample Extraction.

A TRLWE message is a polynomial with N coefficients, which can be viewed as
N slots over T. It is easy to homomorphically extract a coefficient as a scalar
TLWE sample with the same key. We recall that a binary TLWE key K ∈ Bn
can be interpreted as a TRLWE key K ∈ BN [X]k having the same sequence of
coefficients, and vice-versa.

Given a TRLWE sample c = (a, b) ∈ TRLWEK(µ) and a position p ∈
[0, N − 1], we call SampleExtractp(c) the TLWE sample (a, b) where b = bp and
aN(i−1)+j+1 is the (p− j)-th coefficient of ai (using the N -antiperiodic indexes).
This extracted sample encodes the p-th coefficient µp with at most the same
noise variance or amplitude as c. In the rest of the paper, we will simply write
SampleExtract(c) when p = 0.

In Section 5, we show how the KeySwitching and the SampleExtract procedures
are used to efficiently pack data, unpack and move data across the slots, and
how it differs from usual packing techniques.

4.3 Blind Rotate

The BlindRotate algorithm multiplies the polynomial encrypted in the input
TRLWE ciphertext by an encrypted power of X. The effect produced is a rotation
of the coefficients. The algorithm consists in two parts. The first one (line 3) is
the rotation by a known power of X The second one (loop at line 4) is the
rotation by a secret power of X, which is performed by using the CMux gate,
described in Section 3.4.

Algorithm 4 BlindRotate

Input: A TRLWE sample c of v ∈ TN [X] with key K.
1: p+ 1 int. coefficients a1, . . . , ap, b ∈ Z/2NZ
2: p TRGSW samples C1, . . . , Cp of s1, . . . , sp ∈ B with key K

Output: A TRLWE sample of X−ρ · v where ρ = b−
∑p
i=1 si.ai mod 2N with key K

3: ACC← X−b • c
4: for i = 1 to p
5: ACC← CMux(Ci, X

ai · ACC,ACC)
6: return ACC

Theorem 4.3. Let H ∈ M(k+1)`,k+1(TN [X]) the gadget matrix and DecH,β,ε
its efficient approximate gadget decomposition algorithm with quality β and pre-
cision ε defining TRLWE and TRGSW parameters. Let α ∈ R≥0 be a noise
parameter, K ∈ Bn be a TLWE secret key and K ∈ BN [X]k be its TRLWE
interpretation. Given one sample c ∈ TRLWEK(v) with v ∈ TN [X], p + 1
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integers a1, . . . , ap and b ∈ Z/2NZ, and p TRGSW ciphertexts C1, . . . , Cp,
where each Ci ∈ TRGSWK,α(si) for si ∈ B. Algorithm 4 outputs a sample
ACC ∈ TRLWEK(X−ρ · v) where ρ = b−

∑p
i=1 siai, such that:

– ‖Err(ACC)‖∞ ≤ ‖Err(c)‖∞ + p(k + 1)`NβAC + p(1 + kN)ε (worst case),

– Var(Err(ACC)) ≤ Var(Err(c))+p(k+1)`Nβ2ϑC+p(1+kN)ε2 (average case),

where ϑC = α2

2π and AC are the variance and amplitudes of Err(Ci).

Proof. Theorem 4.3 follows from the fact that algorithm 4 calls p times the CMux
evaluation.

We define BlindRotate(c, (a1, . . . , ap, b), (C1, . . . , Cp)), the procedure de-
scribed in Algorithm 4 that outputs the TRLWE sample ACC as in Theorem 4.3.

5 Leveled Homomorphic Encryption

The main goal of Homomorphic Encryption is to perform computations on en-
crypted data. In previous sections we described all the different tools to ma-
nipulate the ciphertexts. In this section we show how to use them to construct
homomorphic circuits. In particular, we describe the evaluation of a random
function via its look-up table and we propose two packing techniques that can
be used to accelerate the evaluation.

Various packing techniques have already been proposed for homomorphic
encryption: the Lagrange embedding in Helib [32, 31], the diagonal matrices en-
coding in [39] or the CRT encoding in [6]. The message space is often a finite
ring (e.g. Z/pZ), and the packing function is in general chosen as a ring isomor-
phism that preserves the structure of Z/pZN . This way, elementary additions
or products can be performed simultaneously on N independent slots, and thus,
packing is in general associated to the concept of batching a single operation on
multiple datasets. These techniques can have some limitations, especially if in
the whole program, each function is only run on a single dataset, and most of
the slots are unused. This is particularly true in the context of GSW evaluations,
where functions are split into many branching algorithms or automata, that are
each executed only once.

In the rest of the paper, packing refers to the canonical coefficients em-
bedding function, that maps N TLWE messages µ0, . . . , µN−1 ∈ T into a single

TRLWE message µ(X) =
∑N−1
i=0 µiX

i. This function is a Z-module isomorphism.
Messages can be homomorphically unpacked from any slot using the (noiseless)
SampleExtract procedure, described in Section 4.2. Reciprocally, we can repack,
move data across the slots, or clear some slots by using our public functional
key switching from Algorithm 2 to evaluate respectively the canonical coefficient
embedding function (i.e. the identity), a permutation, or a projection. Since
these functions are 1-lipschitzian, by theorem 4.1, these keyswitch operations
only induce a linear noise overhead. It is arguably more straightforward than
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the permutation network technique used in Helib. But as in [6, 14, 21], our tech-
nique relies on a circular security assumption, even in the leveled mode since our
keyswitching key encrypts its own key bits9.

We now analyze how packing can speed-up TRGSW leveled computations,
first for look-up tables or random functions, and then for most arithmetic func-
tions.

5.1 Arbitrary functions and Look-Up Tables

The first class of functions we analyze are arbitrary functions f : Bd → Ts. Such
functions can be expressed via a Look-Up Table (LUT), containing the list of 2d

input values (each one composed by d bits) and corresponding LUT values for
the s sub-functions (1 element in T per sub-function fj). We note the LUT values
with σj,h ∈ T, where j ∈ [[0, s− 1]] is the sub-function index, and h ∈ [[0, 2d − 1]]
is the input index.

In order to compute f(x) = (f0(x), f1(x), . . . , fs−1(x)), where x =
∑d−1
i=0 xi2

i

is a d-bit integer, the classical evaluation of such function, as proposed in [11,
17], consists in evaluating the s sub-functions f0, f1, . . . , fs−1 separately. Each of
them consists in a binary decision tree composed by 2d−1 CMux gates. The total
complexity of the classical evaluation requires therefore to execute about s · 2d
CMux gates. Let’s call oj = fj(x) ∈ T the j-th output of f(x), for j = 0, . . . , s−1.
Figure 2 summarizes the idea of the computation of oj .

In this section we present two techniques, that we call horizontal and vertical
packing, that can be used to improve the evaluation of a LUT. The packing
technique is the same in both cases: the idea is to pack N TLWE messages inside
the polynomial coefficients of a single TRLWE ciphertext. The names horizontal
and vertical refer to the two different ways to use such packing. Intuitively, they
describe in which sense the data of the LUT are packed and manipulated in
order to evaluate the function f .

Horizontal packing corresponds exactly to batching. In fact, it exploits the
fact that the s sub-functions evaluate the same CMux tree, with the same inputs
but with the different LUT values corresponding to the s truth tables. For each
of the 2d possible input values, we pack the LUT values of the s sub-functions
in the first s slots (i.e. in the first s coefficients of the polynomial) of a single
TRLWE ciphertext (the remaining N − s are unused). By using a single 2d size
CMux tree to select the right ciphertext, we obtain the s slots all at once, which
is overall s times faster than the classical evaluation.

On the other hand, our vertical packing is very different from the batching
techniques. The basic idea is to pack several LUT values of a single sub-function
in the same ciphertext, and to use both CMux and blind rotations to extract the
desired value. Unlike batching, this can also speed up functions that have only
a single bit of output.

In the following we detail these two techniques. They can be used both sep-
arately or combined, depending on the application.

9 Circular security assumption could still be avoided in leveled mode if we accept to
work with many keys.
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x0 . . . xd−1 f0 . . . fs−1

0 . . . 0 σ0,0 . . . σs−1,0 σj,0

1 . . . 0 σ0,1 . . . σs−1,1 σj,1

0 . . . 0 σ0,2 . . . σs−1,2 σj,2

1 . . . 0 σ0,3 . . . σs−1,3 σj,3

...
. . . ...

...
...

...
...

0 . . . 1 σ0,2d−4 . . . σs−1,2d−4 σj,2d−4

1 . . . 1 σ0,2d−3 . . . σs−1,2d−3 σj,2d−3

0 . . . 1 σ0,2d−2 . . . σs−1,2d−2 σj,2d−2

1 . . . 1 σ0,2d−1 . . . σs−1,2d−1 σj,2d−1

0

1

0

1

0

1

0

1

0

1

0

1

. . . 0

1
oj

fj x0 x1 . . . xd−1

Fig. 2. LUT with CMux tree - Intuitively, the horizontal rectangle encircles the bits
packed in the horizontal packing, while the vertical rectangle encircles the bits packed
in the the vertical packing. The dashed square represents the packing in the case where
the two techniques are mixed. The right part of the figure represents the evaluation of
the sub-function fj on x =

∑d−1
i=0 xi2

i via a CMux binary decision tree.

Remark 3. In order to evaluate f(x), the total amount of homomorphic CMux

gates to be evaluated is s(2d − 1). If the function f is public, trivial samples
of the LUT values σj,0, . . . , σj,N−1 are used as inputs in the CMux gates. If f is
private, the LUT values σj,0, . . . , σj,N−1 are given encrypted. An analysis of the
noise propagation in the binary decision CMux tree has already been given in [26]
and [17].

Horizontal Packing (or Batching) The idea of the horizontal packing is
to evaluate all the outputs of the function f together, instead of evaluating all
the fj separately. This is possible by using TRLWE samples, as the message
space is TN [X]. In fact, we could encrypt up to N LUT values σj,h (for a fixed
h ∈ [[0, 2d − 1]]) per TRLWE sample and evaluate the binary decision tree as
described before. The number of CMux gates to evaluate is d sN e(2

d − 1). This
technique is optimal if the size s of the output is a multiple of N . Unfortunately,
s is in general ≤ N and the number of gates to evaluate remains 2d − 1. The
evaluation of the function f is then only s times faster than the non-packed
approach. As not all the slots are used, this technique it is not optimal if s is
small. The elementary Lemma 5.1 specifies the noise propagation and it follows
immediately from Lemma 3.16 and from the construction of the binary decision
CMux tree, which has depth d.
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Lemma 5.1 (Horizontal Packing - Batching). Let d0, . . . ,d2d−1 be TRLWE
samples10 such that dh ∈ TRLWEK(

∑s
j=0 σj,hX

j) for h ∈ [[0, 2d − 1]]. Here the

σj,h are the LUT values relative to an arbitrary function f : Bd → Ts. Let
C0, . . . , Cd−1 be TRGSW samples, such that Ci ∈ TRGSWK(xi) with xi ∈ B (for

i ∈ [[0, d− 1]]), and x =
∑d−1
i=0 xi2

i. Let d be the TRLWE sample output by the f
evaluation of the binary decision CMux tree for the LUT (described in figure 2).
Then, using the same notations as in lemma 3.16 and setting msg(d) = f(x):

– ‖Err(d)‖∞ ≤ ATRLWE + d · ((k + 1)`NβATRGSW + (kN + 1)ε) (worst case),
– Var(Err(d)) ≤ ϑTRLWE +d · ((k+1)`Nβ2ϑTRGSW +(kN+1)ε2) (average case),

where ATRLWE and ATRGSW are upper bounds of the infinite norm of the errors
of the TRLWE samples ant the TRGSW samples respectively and ϑTRLWE and
ϑTRGSW are upper bounds of their variances.

Vertical Packing In order to improve the evaluation of the LUT, we propose
a second optimization called Vertical Packing. As for the horizontal packing we
use the TRLWE encryption to encode N values at the same time. But now,
instead of packing the LUT values σj,h with respect to a fixed h ∈ [[0, 2d − 1]]
i.e. “horizontally”, we pack N values σj,h “vertically”, with respect to a fixed
j ∈ [[0, s−1]]. Then, instead of just evaluating a full CMux tree, we use a different
approach.

If the LUT values are packed in “boxes”, our technique first uses a packed
CMux tree to select the right box, and then, a blind rotation (Algorithm 4) to
find the right element inside the selected box. Figure 3 sums up the schematized
idea of the entire procedure.

Now, suppose that one wants to evaluate the function f , or just one of its
sub-functions fj , on a fixed input x =

∑d−1
i=0 xi2

i. We assume we know the LUT
associated to fj as in figure 2. The output of fj(x) is just the LUT value σj,x at
position x.

Let δ = log2(N). We analyse the general case where 2d is a multiple of
N = 2δ. The LUT of fj , which is a column of 2d values, is now packed as 2d/N
TRLWE ciphertexts d0, . . . ,d2d−δ−1, where each dk encodes N consecutive LUT
values σj,kN , . . . , σj,(k+1)N−1. To retrieve fj(x), we first need to select the block
that contains σj,x. This block has index p = bx/Nc, whose bits are the d − δ
most significant bits of x. Since the TRGSW encryptions of these bits are among
our inputs, one can use a CMux tree to select this block dp. Then, σj,x is the

ρ-th coefficient of the message of dp where ρ = x mod N =
∑δ−1
i=0 xi2

i. The
bits of ρ are the δ least significant bits of x, which are also available as TRGSW
ciphertexts in our inputs. We can therefore use a blind rotation (Algorithm 4)
to homomorphically multiply dp by X−ρ, which brings the coefficient σj,x in
position 0, and finally, we extract it with a SampleExtract. Algorithm 5 details
the evaluation of fj(x).

10 The TRLWE samples can be trivial samples, in the case where the function f and
its LUT are public.
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x0 . . . xd−1 fj(x0, . . . , xd−1)

0 . . . 0 σj,0

1 . . . 0 σj,1

0 . . . 0 σj,2

1 . . . 0 σj,3

...
. . . ...

...

0 . . . 1 σj,2d−4

1 . . . 1 σj,2d−3

0 . . . 1 σj,2d−2

1 . . . 1 σj,2d−1
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Fig. 3. Vertical packing for the evaluation of the fj LUT - As described in
algorithm 5, the image represents the idea of evaluation of the sub-function fj on
x =

∑d−1
i=0 xi2

i via vertical packing technique. After “vertically” packing the LUT
values σj,h (for h ∈ [[0, 2d−1]]) in groups of size N , inside TRLWE samples, a CMux tree,
a blind rotation and a sample extract are evaluated. The CMux tree is initially used to
select the TRLWE sample containing the output value. Then the output value is moved
in the place of the constant coefficient of the TRLWE message by using the blind rotation
(Algorithm 4) and extracted by using the sample extraction (Section 4.2). The bits of
x are given as TRGSW samples and the final result oj = fj(x) is extracted as a TLWE
sample. In our example, we fixed 2d = 4N .

The entire cost of the evaluation of fj(x) with Algorithm 5 consists in 2d

N −
1 CMux gates and a single blind rotation, which corresponds to δ CMux gates.
Overall, we get a speed-up by a factor N on the evaluation of each partial
function, so a factor N in total.

Lemma 5.2 (Vertical Packing LUT of fj). Let fj : Bd → T be
a sub-function of the arbitrary function f : Bd → Ts, with LUT val-
ues σj,0, . . . , σj,2d−1. Let d0, . . . ,d 2d

N −1
be TRLWE samples, such that dp ∈

TRLWEK(
∑N−1
i=0 σj,pN+iX

i) for p ∈ [[0, 2d

N − 1]]11. Let C0, . . . , Cd−1 be TRGSW
samples, such that Ci ∈ TRGSWK(xi), with xi ∈ B and i ∈ [[0, d− 1]].

11 If the sub-function fj and its LUT are public, the LUT values σj,0, . . . , σj,2d−1 can

be given in clear. This means that the TRLWE samples dp, for p ∈ [[0, 2d

N
− 1]] are

given as trivial TRLWE samples dp ← (0,
∑N−1
i=0 σj,pN+iX

i) in input to algorithm 5.
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Algorithm 5 Vertical Packing LUT of fj : Bd → T (calling algorithm 4)

Input: A list of 2d

N
TRLWE samples dp ∈ TRLWEK(

∑N−1
i=0 σj,pN+iX

i) for p ∈ [[0, 2d

N
−

1]], a list of d TRGSW samples Ci ∈ TRGSWK(xi), with xi ∈ B and i ∈ [[0, d− 1]],
Output: A TLWE sample c ∈ TLWEK(oj = fj(x)), with x =

∑d−1
i=0 xi2

i

1: Evaluate the binary decision CMux tree of depth d − δ, with TRLWE inputs
d0, . . . ,d 2d

N
−1

and TRGSW inputs Cδ, . . . , Cd−1, and output a TRLWE sample d

2: d← BlindRotate(d, (20, . . . , 2δ−1, 0), (C0, . . . , Cδ−1))
3: Return c = SampleExtract(d)

Then algorithm 5 outputs a TLWE sample c such that msg(c) = fj(x) = oj
where x =

∑d−1
i=0 xi2

i and using the same notations as in Lemma 3.16 and
Theorem 4.3, we have:

– ‖Err(d)‖∞ ≤ ATRLWE + d · ((k + 1)`NβATRGSW + (1 + kN)ε) (worst case),
– Var(Err(d)) ≤ ϑTRLWE +d · ((k+1)`Nβ2ϑTRGSW +(1+kN)ε2) (average case),

where ATRLWE and ATRGSW are upper bounds of the infinite norm of the errors
in the TRLWE samples ant the TRGSW samples respectively, while ϑTRLWE and
ϑTRGSW are upper bounds of the variances.

Proof. The proof follows immediately from the results of lemma 3.16 and theo-
rem 4.3, and from the construction of the binary decision CMux tree. In particular,
the first CMux tree has depth (d−δ) and the blind rotation evaluates δ CMux gates,
which brings a total factor d in the depth. As the CMux depth is the same as in
horizontal packing, the noise propagation matches too.

Remark 4. As previously mentioned, the horizontal and vertical packing tech-
niques can be mixed together to improve the evaluation of f . This combination
is optimal in the case where s and d are both small or if 2d ·s > N . In particular,
if we pack x = s coefficients horizontally and y = N/x coefficients vertically,
we need d2d/ye − 1 CMux gates plus one vertical packing LUT evaluation in or-
der to evaluate f , which is equivalent to log2(y) CMux evaluations. The result
is composed of the first x TLWE samples extracted. A practical example of the
combination of the two techniques is given in Section 5.3.

5.2 Deterministic automata

It is folklore that every deterministic program which reads its input bit-by-bit
in a pre-determined order, uses less than B bits of memory, and produces a
boolean answer, is equivalent to a deterministic automata of at most 2B states
(independently of the time complexity). This is in particular the case for every
boolean function of p variables, that can be trivially executed with p − 1 bits
of internal memory by reading and storing its input bit-by-bit before returning
the final answer. It is of particular interest for most arithmetic functions, like
addition, multiplication, or CRT operations, whose naive evaluation only requires
O(log(p)) bits of internal memory.
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But when message space is not binary, and several bits are packed together
as we show in previous sections, a more powerful tool is needed to manage the
evaluations in an efficient way.

In this section we present deterministic Weighted Finite Automata (det-
WFA), a generalization of deterministic Finite Automata (det-FA) obtained by
adding a weight in each transition. We detail the use of det-WFA to evaluate
some arithmetic functions largely used in applications, such as addition (and
multi-addition), multiplication, squaring, comparison and max, etc. We refer to
[12] and [23] for further details.

Definition 5.3 (Deterministic weighted finite automata (det-WFA)).
A deterministic weighted finite automata (det-WFA) over a group (S,⊕) is a
tuple A = (Q, i,Σ, T ), where Q is a finite set of states, i is the initial state, Σ
is the alphabet, T ⊆ Q × Σ × S × Q is the set of transitions. Every transition

itself is a tuple t = q
σ,ν−→ q′ from the state q to the state q′ by reading the letter

σ with weight w(t) equal to ν, and there is at most one transition per every pair
(q, σ).

Let P = (t1, . . . , td) be a path, with tj = qj−1
σj ,νj−→ qj . The word σ =

σ1 . . . σd ∈ Σd induced by P has weight w(σ) equal to
⊕d

j=1 w(tj), where the
w(tj) are all the weights of the transitions in P : σ is called the label of P .
Because the automata is deterministic, every label induces a single path (i.e.
there is only one possible path per word).

Remark 5. In our applications, we fix the alphabet Σ = B. Definition 5.3 re-
straints the WFA to the deterministic complete accessible (the non-deterministic
case is not supported), and universally accepting case (i.e all the words are ac-
cepted). In the general (non-deterministic) case, the additive group would be re-
placed by the second law of a semi-ring (S, •,⊕), and we would sum the weights,
using the first law, of all accepting paths. However, since non-determinism is not
supported, we want to keep the definition as simple as possible. In the rest of
the paper we set (S,⊕) as (TN [X],+).

Theorem 5.4 (Evaluation of det-WFA). Let A = (Q, i,B, T ) be a det-WFA
with weights in (TN [X],+), and let |Q| denote the total number of states. Let
C0, . . . , Cd−1 be d valid TRGSWK samples of the bits of a word σ = σ0 . . . σd−1.
By evaluating at most d · |Q| CMux gates, Algorithm 6 outputs a TRLWE sample d
that encrypts the weight w(σ), such that (using the same notations as in lemma
3.16)

– ‖Err(d)‖∞ ≤ d · ((k + 1)`NβATRGSW + (kN + 1)ε) (worst case),
– Var(Err(d)) ≤ d · ((k + 1)`Nβ2ϑTRGSW + (kN + 1)ε2) (average case),

where ATRGSW is an upper bound on the infinite norm of the error in the TRGSW
samples and ϑTRGSW is an upper bound of their variance. Moreover, if all the
words connecting the initial state to a fixed state q ∈ Q have the same length,
then the upper bound on the number of CMux evaluated by Algorithm 6 decreases
to |Q|.
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Algorithm 6 Evaluation of a det-WFA

Input: A det-WFA A = (Q, i,B, T ). T0(q) and T1(q) denote the states that are reached
when reading a binary letter from the state q, and w0(q) and w1(q) the weight of
these transitions. d valid TRGSWK samples C0, . . . , Cd−1 of the bits of a word
σ = σ0 . . . σd−1.

Output: A TRLWE encryption of w(σ)
1: for each q ∈ Q accessible at depth d do
2: set cd,q := 0
3: end for
4: for j = d− 1 down to 0 do
5: for each q ∈ Q accessible at depth j do
6: set cj,q := CMux

(
Cj , cj+1,T1(q) + (0, w1(q)), cj+1,T0(q) + (0, w0(q))

)
.

7: end for
8: end for
9: return c0,i

Proof. Let q ∈ Q be a state, and σ a binary word, there exists a unique path
starting from q and labelled by σ. We note w(q,σ) the weight of this path.
Algorithm 6 evaluates the weights backwards from the last letter σd−1 of the word
to the first one. The invariant of the the main loop is that for all j in [0, d] and
q ∈ Q, if q is accessible at depth j, cj,q is a TRLWE sample of w(q, (σj , . . . , σd−1)).
Its error amplitude satisfies

‖Err(cj,q)‖∞ ≤ (d− j)(k + 1)`NβATRGSW + (d− j)(kN + 1)ε,

and its error variance satisfies

Var(Err(cj,q)) ≤ (d− j)(k + 1)`Nβ2ϑTRGSW + (d− j)(kN + 1)ε2.

For j = d, the invariant is true, because step 2 initializes the TRLWE samples
to zero. It is the weight of the empty word, and the error is null. Assuming by
induction that the invariant holds at depth j + 1, we analyze what happens at
line 6 on iteration j on state q. Consider the two transitions

T1(q) denote the states that are reached when reading a binary letter from
the state q, and w0(q)

q
0,w0(q)−→ T0(q) and q

1,w1(q)−→ T1(q). If q is accessible at depth j, then
T0(q) and T1(q) are both accessible at depth j + 1, and encode respectively
w(T0(q), σj+1 . . . σd−1) and w(T1(q), σj+1 . . . σd−1). Therefore, after applying the
CMux, the message of cj,q is w(q, σj . . . σd−1). By applying the noise propagation
inequalities of Lemma 3.16, we have that

‖Err(cj,q)‖∞ ≤
∥∥Err(CMux(Cj , cj+1,T1(q) + (0, w1(q)), cj+1,T0(q) + (0, w0(q))))

∥∥
∞

≤ max(
∥∥Err(cj+1,T1(q))

∥∥
∞ ,
∥∥Err(cj+1,T0(q))

∥∥
∞)

+ (k + 1)`Nβ ‖Err(Cj)‖∞ + (kN + 1)ε
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in the worst case, and

Var(Err(cj,q)) ≤ Var(Err(CMux(Cj , cj+1,T1(q) + (0, w1(q)), cj+1,T0(q) + (0, w0(q)))))

≤ max(Var(Err(cj+1,T1(q))),Var(Err(cj+1,T0(q))))

+ (k + 1)`Nβ2Var(Err(Cj)) + (kN + 1)ε2

in the average case, which prove that the invariant holds at depth j, and thus,
for all j ∈ [0, d]. Since the initial state i is accessible at depth j = 0, this proves
that the final result is c0,i encodes w(i,σ) = w(σ), with the bounds announced
in the theorem.

For the complexity, in the worst case, the main for-each loops over all states
q ∈ Q and all depths j ∈ [0, d−1], which represents d|Q| CMux evaluations. If, by
the last condition of the theorem, each state is accessible only at a single depth,
then all for-each ranges are disjoint subsets of Q, so the total number of CMux
evaluated is ≤ |Q|. ut
Remark 6. This algorithm can also evaluate regular Deterministic Finite Au-
tomata (det-FA): in this case the weight of all transitions at depth d − 1 that
reach a final state is 0.5, and all other weights are 0.

In the following sections we explain in detail how to use det-WFA to evaluate
efficiently the functions computing the maximal value and the multiplication
between two d-bits integers.

Max In order to evaluate the Max function of two d-bit integers x =
∑d−1
i=0 xi2

i

and y =
∑d−1
i=0 yi2

i, with xi, yi ∈ B for i ∈ [[0, d−1]], we construct a det-WFA that
takes in input all the bits of x and y, and outputs the maximal value between
them. The idea is to enumerate the xi and yi, starting from the most significant
bits down to the least significant ones. The det-WFA described in Figure 4 has
3 principal states (noted A, B, E) and 4 intermediary states (noted (A), (B),
(E, 1), (E, 0)), that keep track of which number is the maximum, and in case
of equality what is the last value of xi. A weight + 1

2X
i is added on all the

transitions that reads the digit 1 from the maximum.

Remark 7. In practice, to evaluate the MAX function, we convert the det-WFA
in a circuit that counts 5d CMux gates. Roughly speaking, we have to read the
automata in the reverse. We initialize 5 states A,B,E0, E1, E as null TRLWE
samples. Then, for i from d− 1 to 0, we update the states as follows:

E0 := CMux(Cyi , A+ (0, 1
2X

i), E);

E1 := CMux(Cyi , E,B);

A := CMux(Cyi , A+ (0, 1
2X

i), A);

E := CMux(Cxi , E1 + (0, 1
2X

i), E0);

B := CMux(Cxi , B + (0, 1
2X

i), B).

Here the Cxi and Cyi are TRGSW encryptions of the bits xi and yi respectively,
and they are the inputs. The output of the evaluation is the TRLWE sample E,
which contains the maximal value.
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Fig. 4. Max: det-WFA - The states A and (A) mean that y is the maximal value, the
states B and (B) mean that x is the maximal value, and finally, the states E, (E, 1)
and (E, 0) mean that x and y are equals on the most significant bits. If the current
state is A or B, the following state remains the same. The initial state is E. If the
current state is E, after reading xi there are two possible intermediate states: (E, 1) if
xi = 1 and (E, 0) if xi = 0. After reading the value of yi, the 3 possible states A, B
and E are possible. The det-WFA is repeated as many times as the bit length of the
integers evaluated and the weights are given in clear.

Overall, the next lemma, which is a direct consequence of Theorem 5.4, shows
that the Max can be computed by evaluating only 5d CMux gates, instead of Θ(d2)
with classical deterministic automata.

Lemma 5.5 (Evaluation of Max det-WFA). Let A be the det-WFA of the
Max, described in Figure 4. Let Cx0 , . . . , C

x
d−1, C

y
0 , . . . , C

y
d−1 be TRGSWK samples

of the bits of x and y respectively. By evaluating 5d CMux gates (depth 2d), the
Max det-WFA outputs a TRLWE sample d encrypting the maximal value between
x and y and (with same notations as in lemma 3.16)

– ‖Err(d)‖∞ ≤ 2d · ((k + 1)`NβATRGSW + (kN + 1)ε) (worst case),
– Var(Err(d)) ≤ 2d · ((k + 1)`Nβ2ϑTRGSW + (kN + 1)ε2) (average case).

Here ATRGSW and ϑTRGSW are upper bounds of the amplitude and of the variance
of the errors in the TRGSW samples.

In a similar way, it is possible to construct a det-WFA for the comparison
between two integers x and y, answering is x > y or not. The result is computed
by evaluating 4d CMux gates (and just 3d gates in the case of gate bootstrapping).

Multiplication For the multiplication we use the same approach and we con-
struct a det-WFA which maps the schoolbook multiplication. We illustrate the
construction on the example of the multiplication between two 2-bits integers
x = x1x0 and y = y1y0. As shown in the top part of Figure 5, after an initial
step of bit by bit multiplication, a multi-addition (shifted of one place on the
left for every line) is performed. The bits of the final result m = m3m2m1m0

are computed as the sum of each column with carry.
The det-WFA computes the multiplication by keeping track of the partial sum
of each column in the states, and by using the transitions to update these sums.
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For the multiplication of 2-bits integers, the automaton (described in the bottom
part of Figure 5) has 6 main states (i, c0, c10, c11, c20, c21), plus 14 intermediary
states (noted with capital letters and parenthesis) that store the last bit read.
The value of the j-th (for j ∈ [[0, 3]]) output bit is put in a weight on the last
transition of each column. The final weight is the result of the multiplication.

y1 y0

× x1 x0

x0y1
2

x0y0
1

+ x1y1
4

x1y0
3

m3 m2 m1 m0

i

(A1)

(A0) c0
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1
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1
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2 X 2

0
1
0

x0 y0 x0 y1 x1 y0 x1 y1

Fig. 5. Schoolbook 2-bits multiplication and corresponding det-WFA

For the generic multiplication of two d-bits integers, we can upper bound
the number of states by 4d3, instead of Θ(d4) with one classical automata per
output bit. For a more precise number of states we wrote a C++ program to
eliminate unreachable states and refine the leading coefficient. The depth is 2d2

and the noise evaluation can be easily deducted by previous results. The same
principle can be used to construct the multi-addition, and its det-WFA is
slightly simpler (one transition per bit in the sum instead of two).

5.3 Bit Sequence Representation

We now present another design which is specific to the multi-addition (or its
derivatives), but which is faster than the generic construction with det-WFA.
The idea is to build an homomorphic scheme that can represent small integers,
say between 0 and N = 2p, and which is dedicated to only the three elementary
operations used in the multi-addition algorithm, namely:

1. Extract any of the bits of the value as a TLWE sample;

2. Increment the value by 1;

3. Integer division of the value by 2.
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We now explain the basic idea, and then, we show how to implement it efficiently
on TRLWE ciphertexts.

We represent integers modulo 2N , with N = 2p, by using their Bit Sequence

Representation (BSR). For j ∈ [[0, p]] and k, l ∈ Z, we call B
(l)
j,k the j-th bit of

l + k in the little endian signed binary representation.

For each integer k ∈ Z, (B
(l)
0,k, B

(l)
1,k, ..., B

(l)
p,k) is the (little endian signed)

binary representation of l + k mod 2N . When k isn’t specified, B
(l)
j represents

the binary sequence of all the j-th bits of integers l, l + 1, l + 2, . . ..

Let l = 0, observe that B
(0)
0 = (0, 1, 0, 1, ...) is 2-periodic, B

(0)
1 =

(0, 0, 1, 1, 0, 0, 1, 1...) is 4-periodic and, more generally, for all j ∈ [[0, p]] and l ∈ Z,

B
(l)
j is 2j-antiperiodic and it is the left shift of B

(0)
j by l positions. Therefore, it

suffices to have 2j ≤ N consecutive values of the sequence to (blindly) deduce
all the remaining bits.

We now suppose that an integer l ∈ [[0, N − 1]] is represented by its BSR,

defined as BSR(l) = [B
(l)
0 , . . . , B

(l)
p ].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ← k

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ← B
(l)
0

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 ← B
(l)
1

2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 ← B
(l)
2

3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 ← B
(l)
3

↑ j l

Fig. 6. BSR - The figure represents the BSR(l). Here l = 0, N = 23. The first column
corresponding to k = 0 contains the bits of l in the little endian representation.

We now explain how to compute BSR(l + 1) (increment) and BSR(bl/2c)
(divide by 2) using only copy and negations operations on bits at a fixed position
which does not depend on l (blind computation). Then, we show how to represent
these operations homomorphically on TRLWE ciphertexts.

Increment. Let BSR(l) = [B
(l)
0 , . . . , B

(l)
p ] be the BSR of some unknown num-

ber l ∈ [[0, N − 1]]. Our goal is to compute the BSR of l + 1, BSR(l + 1) =

[B
(l+1)
0 , . . . , B

(l+1)
p ]. If we know at lest N consecutive values of B

(l)
j (for j ∈

[[0, p]]), it suffices to define the sequence B
(l+1)
j on N consecutive values, the rest

is deduced by periodicity. To map the increment operation, all we need to do is
shifting the sequences by 1 position

B
(l+1)
j,k = B

(l)
j,k+1 for all k ∈ Z.

More generally, we can increment the BSR by any integer in [[0, N − 1]], as in
Figure 7.
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r0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

r3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

r0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

r1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

r2 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1

r3 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0

↓ ·X−5 ↓ πdiv2

r′0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

r′1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

r′2 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1

r′3 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0

r′0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

r′1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

r′2 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

r′3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

Fig. 7. TBSR - example of addition +5 and division by 2.

Integer division by two. Let BSR(l) = [B
(l)
0 , . . . , B

(l)
p ] be the BSR of some

unknown number l ∈ [[0, N − 1]]. Our goal is to compute the BSR of b l2c,
BSR(b l2c) = [B

(b l2 c)
0 , . . . , B

(b l2 c)
p ].

As the BSR is the representation of integers in base 2, when we want to
perform the division by 2, it corresponds to eliminate the first line and keep just
the odd columns of the BSR (see Figure 6). Thus we can set

B
(b l2 c)
j,k = B

(l)
j+1,2k for j ∈ [[0, p− 1]] and ∀k ∈ Z.

The only exception is the last line of the BSR, that has to be regenerated.

Indeed, B
(l)
j+1,2k is the j+1-th bit of l+2k and it is the j-th bit of its half bl/2c+k,

which is our desired B
(bl/2c)
j,k . This is unfortunately not enough to reconstruct

the last sequence B
(bl/2c)
p , since we have no information on the p + 1-th bits in

BSR(l). However, in our case, we can reconstruct this last sequence directly.
First, the numbers b l2c+k for k ∈ [0, N/2−1] are all < N , so we can blindly set

the corresponding B
(b l2 c)
p,k = 0. Then, we just need to note that (B

(l)
p,0, . . . , B

(l)
p,N−1)

is N − l times 0 followed by l times 1, and our target (B
(b l2 c)
p,N/2, . . . , B

(b l2 c)
p,N−1) must

consist N/2 − l times 0 followed by bl/2c times 1. Therefore, our target can

be filled with the even positions (B
(l)
p,0, B

(l)
p,2, . . . , B

(l)
p,N−2). To summarize, the

last line of the BSR in the division by 2 corresponds to the following blind
transformation: B

(b l2 c)
p,k = 0 for k ∈ [[0, N2 − 1]]

B
(b l2 c)
p,N/2+k = B

(l)
p,2k for k ∈ [[0, N2 − 1]]

TBSR We now explain how we can encode these BSR sequences on TRLWE
ciphertexts, considering that all the coefficients need to be in the torus rather
than in B, and that we need to encode sequences that are either N -periodic or
N -antiperiodic. We note the encoded BSR by TBSR.
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Therefore, this is our basic encoding of the BSR sequences: let BSR(l) =

[B
(l)
0 , . . . , B

(l)
p ] be the BSR of some unknown number l ∈ [[0, N − 1]]. For j ∈

[[0, p− 1]], we represent B
(l)
j with the polynomial

µj =

N−1∑
k=0

1

2
B

(l)
j,k ·X

k

and we represent the last B
(l)
p with the polynomial

µp =

N−1∑
k=0

(
1

2
B

(l)
p,k −

1

4

)
·Xk.

This simple rescaling between the bit representation BSR(l) and the torus rep-
resentation M = [µ0, . . . , µp] is bijective.

The increment operation described in previous section for the BSR consists
in a cyclic shift of coefficients. It correspond to the multiplication by X (or to a
power of X) in the TBSR encoding, which has a similar behaviour on coefficients
of torus polynomials.

The integer division by two immediately rewrites into an affine
function thanks to the TBSR enccoding. It transforms the coefficients
(µj,k)j∈[[1,p]],k∈{0,2,...,2N−2} ∈ TpN into (µ′0, . . . , µ

′
p) as follow:

πdiv2 :


µ′j,k = µj+1,2k for j ∈ [0, p− 2], k ∈ [0, N − 1]

µ′p−1,k = µp,2k + 1
4 for k ∈ [0, N − 1]

µ′p,k = − 1
4 for k ∈ [0, N2 − 1]

µ′p,N/2+k = µp,2k for k ∈ [0, N2 − 1]

Finally, we call TBSR ciphertext of an unknown integer l ∈ [0, N−1] a vector
C = [c0, ..., cp] of TRLWE ciphertexts of message [µ0, . . . , µp].

Definition 5.6 (TBSR encryption). We define the TBSR encryption as fol-
lows.

– Parameters and keys: TRLWE parameter N with secret key K ∈ BN [X], and
a circular-secure keyswitching key KSK→K,γ from K to itself, noted just KS.

– TBSRSet(l): return a vector of trivial TRLWE ciphertexts encoding the torus

representation of [B
(l)
0 , . . . , B

(l)
p ].

– TBSREncrypt(l): return a vector of non-trivial TRLWE ciphertexts encoding

the torus representation of [B
(l)
0 , . . . , B

(l)
p ].

– TBSRBitExtractj(C): Return SampleExtract(cj) (Section 4.2) when j < p. 12

– TBSRIncrement(C): Return X−1 · C.

12 For the p-th bit, one would return SampleExtract(cp) + (0, 1
4
), but it is always 0 if

l ∈ [0, N − 1].
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– TBSRDiv2(C): Use KS to evaluate πdiv2 homomorphically on C. Since it is a
1-lipschitzian affine function, this consists in applying the public functional
KeySwitch to KS, the linear part of πdiv2 and C, and then, translate the result
by the constant part of πdiv2.

The following theorem is a direct consequence of Theorem 4.1 (with n = N).
The correctness of the result has already been discussed.

Theorem 5.7 (TBSR operations). Let N , K and KS be TBSR parameters
and keys as defined before, and let C be a TBSR ciphertext of l ∈ [[0, N −
1]] with noise amplitude η (and noise variance ϑ). Then for j ∈ [[0, p − 1]],
TBSRBitExtractj(C) is a TLWEK ciphertext of the j-th bit of l, over the message
space {0, 1

2}, with noise amplitude (resp. variance) ≤ η (resp. ≤ ϑ). If l ≤
N − 2 (if l = N − 1 the result is not determined), TBSRIncrement(C) is a
TBSR ciphertext of l+ 1 with noise amplitude (resp. variance) ≤ η (resp. ≤ ϑ).
C ′ = TBSRDiv2(C) is a TBSR ciphertext of bl/2c such that:

– ‖Err(C ′)‖∞ ≤ ‖Err(C)‖∞ +N2tAKS +N2−(t+1) (worst-case),
– Var(Err(C ′)) ≤ Var(Err(C)) +N2tϑKS +N2−2(t+1) (average case),

where AKS and ϑKS are the amplitude and variance of the key-switching key KS,
respectively.

Using the TBSR counter for a multi-addition or a multiplication. The
TBSR counter allows to perform a multi-addition or multiplication using the
school-book elementary algorithms (see Algorithm 7 and Algorithm 8). This
leads to a leveled multiplication circuit (with KeySwitching) which is quadratic
instead of cubic with weighted automata.

The following lemma analyzes the case of the multiplication and the result
described is a consequence of Theorem 4.1. The correctness of the result can be
deducted from the construction, presented in the Algorithm 8.

The formulas for the multi-addition can be easily found, and the correctness
comes from the construction (Algorithm 7).

Lemma 5.8. Let N ,Bg,` and KS be TBSR and TRGSW parameters with the
same key K. We suppose that each TBSR ciphertext has p ≤ 1+log(N) TRLWE
ciphertexts. Let (Ai) and (Bi) for i ∈ [0, d − 1] be TRGSW-encryptions of the
bits of two d-bits integers (little endian), with the same noise amplitude A (resp.
variance ϑ).

Then, Algorithm 8 computes all the bits of the product within 2d2p CMux and
(2d− 2)p public key-switching, and the output ciphertexts satisfy:

– ‖Err(Out)‖∞ ≤ 2d2((k+1)`NβA+(kN+1)ε)+(2d−2)(N2tAKS+N2−(t+1)),
– Var(Err(Out)) ≤ 2d2((k + 1)`Nβ2ϑ + (kN + 1)ε2) + (2d − 2)(N2tϑKS +
N2−2(t+1)),

where AKS and ϑKS are the amplitude and variance of the key-switching key KS,
respectively.
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Algorithm 7 TBSR multi-addition

Input: The bitwise TRGSW-encryption (Ai,j)i∈[0,m−1],j∈[0,d−1] of m integers
a0, . . . , am−1 of d-bits each

Output: bitwise LWE encryptions of the sum Out0, . . . ,Outd + log2(d).
1: C ← TBSRSet(0)
2: for j = 0 to d− 2 do
3: for i = 0 to m− 1 do . Sum the j-th column
4: C ← CMux(Aj,i,TBSRIncr(C), C);
5: end for
6: Outi ← TBSRBitExtract0(C); . Extract Outi = the lsb
7: C ← TBSRDiv2(C); . and compute the carry
8: end for
9: for i = 0 to m− 1 do . Sum the last column

10: C ← CMux(Ad,i,TBSRIncr(C), C);
11: end for
12: Outd−1+k ← TBSRBitExtractk(C) for each k ∈ [0, log2(2d)];
13: return Out . and output all the bits

Improving TBSR with horizontal packing.

First improvement: If the domain of the integers is [0, y − 1] where xy = N ,
we can use Horizontal packing to pack x different polynomials mod Xy + 1 in a
single TRLWE ciphertext mod XN + 1. We just replace the shift by X−1 by a
multiplication by X−x. This allows to store the p = log2(y)+1 sequences in only
dp/xe TRLWE ciphertexts, and this provides a factor x speedup compared to the
basic scheme. For instance, if N = 1024 and the domain of the BSR integers is
[0, 127], which is enough to perform a multiplication with a 64 bit number, the
8 sequences can be packed in a single TRLWE ciphertext (x = 8,y = 128).

Second improvement: Even if the domain is as large as [0, N − 1], the first
bit sequences have a small period. It is therefore possible to use the previous
improvement to encode many of the first sequences as a single ciphertext, and
leave the last N -antiperiodic one alone on its ciphertext. For instance, if N =

1024, the first 8 sequences B
(l)
0 , . . . , B

(l)
7 are 128-periodic or 128-antiperiodic.

They can be packed on a single TRLWE ciphertext. The next two sequences

B
(l)
8 , B

(l)
9 are 512-periodic/antiperiodic, and can be packed on a single TRLWE

ciphertext. Finally, the lase sequence B
(l)
1 0 is 1024-antiperiodic, and stays alone.

As long as periodic sequences use the {0, 1
2} message space, and anti-periodic

sequences use {− 1
4 ,

1
4} (and the constant terms of fdiv2 are updated accordingly),

all TBSR computations over [0, 1023] can be done in only 3 TRLWE ciphertexts
instead of 11, which gives a time-speedup of a factor 11/3 = 3.66 compared to
the basic scheme.
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Algorithm 8 TBSR multiplication

Input: The bitwise TRGSW-encryptions (Aj)j∈[0,d−1],(Bj)j∈[0,d−1] of two integers a, b
of d-bits each

Output: bitwise LWE encryptions of the sum Out0, . . . ,Outd + log2(d).
1: C ← TBSRSet(0)
2: for j = 0 to d− 1 do
3: for i = 0 to j do
4: C ← CMux(Ai,CMux(Bj−i,TBSRIncr(C), C), C);
5: end for
6: Outj ← TBSRBitExtract0(C);
7: C ← TBSRDiv2(C);
8: end for
9: for j = d to 2d− 3 do

10: for i = j − d+ 1 to d− 1 do
11: C ← CMux(Ai,CMux(Bj−i,TBSRIncr(C), C), C);
12: end for
13: Outj ← TBSRBitExtract0(C);
14: C ← TBSRDiv2(C);
15: end for
16: C ← CMux(Ad−1,CMux(Bd−1,TBSRIncr(C), C), C);
17: Out2d−2 ← TBSRBitExtract0(C);
18: Out2d−1 ← TBSRBitExtract1(C);
19: return Out

6 Bootstrapping

The schemes and the techniques described in the previous sections can be used
in a leveled context, where the depth of the circuit to be evaluated is known
in advance. We now present two bootstrappings. The fastest one, in the lineage
of [28] and [24] must be performed after each gate in a circuit, and is therefore
denoted as gate-bootstrapping. The second one, which we describe in Subsec-
tion 6.2, allows to execute a larger leveled circuit between each bootstrapping,
and is is therefore denoted circuit bootstrapping.

6.1 Gate bootstrapping (TLWE-to-TLWE)

Given a TLWE sample TLWEK(µ) = (a, b), the gate bootstrapping procedure
constructs an encryption of µ under the same key K but with a fixed amount
of noise. As in [24], we use TRLWE as an intermediate encryption scheme to
homomorphically evaluate the phase, but we use the external product from the-
orem 3.13 with a TRGSW encryption of the key K.

Definition 6.1 (Bootstrapping key). Let K ∈ Bn, K′ ∈ BN [X]n
′

and α be a
standard deviation. We define the bootstrapping key BKK→K′,α as the sequence
of n TGSW samples where BKi ∈ TRGSWK′,α(Ki).
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Algorithm 9 Bootstrapping TLWE-to-TLWE (calling algorithm 4)

Input: A constant µ1 ∈ T, a TLWE sample c = (a, b) ∈ TLWEK,η(x · 1
2
), with x ∈ B a

bootstrapping key BKK→K̄,ᾱ = (BKi)i∈[[1,n]],
Output: A TLWE sample c̄ = (ā, b̄) ∈ TLWEK̄,η̄(x · µ1)
1: Let µ = 1

2
µ1 ∈ T (Pick one of the two possible values)

2: Let b̃ = b2N̄be and ãi = b2N̄aie ∈ Z for each i ∈ [[1, n]]

3: Let v := (1+X+ . . .+XN̄−1) ·X
N̄
2 · µ ∈ TN̄ [X]

4: ACC← BlindRotate((0, v), (ã1, . . . , ãn, b̃), (BK1, . . . ,BKn))
5: Return (0, µ) + SampleExtract(ACC)

Theorem 6.2 (Bootstrapping TLWE-to-TLWE). Let H̄ be the gadget matrix
in M(k̄+1)¯̀,k̄+1(TN̄ [X]) and DecH̄,β̄,ε̄ its efficient approximate gadget decompo-

sition algorithm, with quality β̄ and precision ε̄ defining TRLWE and TRGSW
parameters. Let K ∈ Bn and K̄ ∈ Bn̄ be two TLWE secret keys, and K̄ ∈ BN̄ [X]k̄

be the TRLWE interpretation of the key K̄, and let ᾱ ∈ R≥0 be a standard devi-
ation. Let BKK→K̄,ᾱ be a bootstrapping key, composed by the n TRGSW encryp-
tions BKi ∈ TRGSWK̄,ᾱ(Ki) for i ∈ [[1, n]]. Given one constant µ1 ∈ T, and one

sample c ∈ Tn+1 whose coefficients are all multiples of 1
2N̄

, Algorithm 9 outputs

a TLWE sample c̄ ∈ TLWEK̄(µ) where µ = 0 iff. |ϕK(c)| < 1
4 , µ = µ1 otherwise

and such that:

– ‖Err(c̄)‖∞ ≤ n(k̄ + 1)¯̀N̄ β̄ĀBK + n(1 + k̄N̄)ε̄ (worst case),
– Var(Err(c̄)) ≤ n(k̄ + 1)¯̀N̄ β̄2ϑ̄BK + n(1 + k̄N̄)ε̄2 (average case),

where ĀBK is the amplitude of BK and ϑ̄BK its variance s.t.
Var(Err(BKK→K̄,ᾱ)) = ᾱ2.

Proof. By using the definitions of b̃ and ã given at line 2 of the Algorithm 9, we

define ϕ̃
def
= b̃−

∑n
i=1 ãisi mod 2N . We have

∣∣∣ϕ− ϕ̃

2N

∣∣∣ = b−b2Nbe
2N

+

n∑
i=1

(
ai−
b2Naie

2N

)
Ki ≤

1

4N
+

n∑
i=1

1

4N
≤ n+ 1

4N
= δ. (2)

And if the coefficients ã1, . . . , ãn, b̃ ∈ 1
2NZ/Z, then ϕ = ϕ̃

2N . In all cases, |ϕ −
ϕ̃

2N | < δ.

At line 3, the test vector v := (1+X+ . . .+XN̄−1) · X N̄
2 · µ is defined such

that for all p ∈ [0, 2N ], the constant term of Xp •v is either µ if p ∈]] N̄2 ,
3N̄
2 ]], and

−µ otherwise.
At line 4, a blind rotation (Algorithm 4) is applied to the test vector. The

result is msg(ACC) = X−ϕ̃ • v and the error (from the results shown in The-
orem 4.3 and as the TRLWE encryption of the test vector is noiseless trivial)
is:

– ‖Err(ACC)‖∞ ≤ n(k̄ + 1)¯̀N̄ β̄ĀBK + n(1 + k̄N̄)ε̄, in the worst case,

40



– Var(Err(ACC)) ≤ n(k̄ + 1)¯̀N̄ β̄2ϑ̄BK + n(1 + k̄N̄)ε̄2, in the average case.

The SampleExtract at line 5 doesn’t add any noise, so the error after bootstrap-
ping remains the same as after the blind rotation.

After the blind rotation, the message in the accumulator is msg(ACC) =
X−ϕ̃ • v. After SampleExtract, the message is equal to the constant term of
msg(ACC), i.e. −µ if ϕ̃ ∈]] N̄2 ,

3N̄
2 ]], and µ otherwise. The addition with (0, µ)

makes the message equal to 0 if ϕ̃ ∈]] N̄2 ,
3N̄
2 ]], and equal to µ1 otherwise.

In other words, |ϕK(a, b)| < 1/4 − δ, then −1/4 + δ ≤ ϕK(a, b) < 1/4 − δ,
and thus using Equation (2), we obtain that ϕ̃ ∈]]− N

2 ,
N
2 [[ and thus, the message

is equal to µ1. And if |ϕK(a, b)| > 1/4 + δ then ϕK(a, b) > 1/4 + δ or ϕK(a, b) <
−1/4− δ and using Equation (2), we obtain that the message is equal to 0. ut

We first provide a comparison between the bootstrapping of Algorithm 9,
the Algorithm 1, 2 in [24] and the Algorithm 3 in [17].

– Like [24] and [17], we rescale the computation of the phase of the input
TLWE sample so that it is modulo 2N (line 2) and we map all the corre-
sponding operations in the multiplicative cyclic group {1, X, . . . ,X2N−1}.
Since our TLWE samples are described over the real torus, the rescaling is
done explicitly. This rescaling may induce a cumulated rounding error of
amplitude at most δ ≈

√
n/4N in the average case and δ ≤ (n + 1)/4N in

the worst case. In the best case, this amplitude can even be zero (δ = 0) if in
the actual representation of TLWE samples, all the coefficients are restricted
to multiple of 1

2N .
– As in [24] and [17], messages are encoded as roots of unity in R. Our ac-

cumulator is a TRLWE sample (as in [17]) instead of a TRGSW sample (as
in [24]). Also accumulator operations use the external product from The-
orem 3.13 instead of the slower classical internal product. The test vector
(1+X+ . . .+XN−1) is embedded in the accumulator from the very start,
when the accumulator is still noiseless while in [24], it is added at the very
end. This removes a factor

√
N to the final noise overhead.

– Instead of the explicit loop proposed in [24] and in [17], we directly use the
blind rotation Algorithm 4. As in [17], all the TRGSW ciphertexts of X−ãiKi

required to update the accumulator internal value are computed dynami-
cally as a very small polynomial combination of BKi in the for loop of the
Algorithm 4. This completely removes the need to decompose each ãi on an
additional base Br, and to precompute all possibilities in the bootstrapping
key. In other words, this makes our bootstrapping key 46 times smaller than
in [24], for the exact same noise overhead. Besides, due to this squashing
technique, two accumulator operations were performed per iteration instead
of one in our case. This gives us an additional 2× speed up. Also, a small
difference in the way we associate CMux operations in Algorithm 4 removes a
factor 2 in the noise compared to the previous gate bootstrapping procedure
in [17], and it is also faster.

The Algorithm 9 takes in input a TLWE ciphertext, and depending on its
phase, it outputs either a ciphertext of 0 or of µ with a noise amplitude that
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Algorithm 10 Gate Bootstrapping (calling algorithms 9 and 2)

Input: A constant µ1 ∈ T, a TLWE sample c = (a, b) ∈ TLWEK,η(x · 1
2
), with x ∈ B

a bootstrapping key BKK→K̄,ᾱ = (BKi)i∈[[1,n]], a key-switching key KSK̄→K,γ,t =(
KS

(id)
i,j

)
i∈[[1,n̄]],j∈[[1,t]]

Output: A TLWE sample c′ = (a′, b′) ∈ TLWEK,η(x · µ1)
1: c̄← BootstrappingTLWEtoTLWE(µ1, c,BKK→K̄,ᾱ)
2: Return c′ ← PublicKeySwitchingTLWEtoTLWE(̄c, Identity,KSK̄→K,γ,t)

is independent on the input. However, the input and output ciphertexts are
not encrypted with the same key, since both keys K and K have not the same
parameters. The next elementary theorem fixes this by applying a key-switching
(Theorem 4.1) at the end of the bootstrapping.

Theorem 6.3 (Gate Bootstrapping TLWE-to-TLWE). Let H̄ be the gad-
get matrix in M(k̄+1)¯̀,k̄+1(TN̄ [X]) and DecH̄,β̄,ε̄ its efficient approximate gad-

get decomposition algorithm, with quality β̄ and precision ε̄ defining TRLWE
and TRGSW parameters. Let K ∈ Bn and K̄ ∈ Bn̄ be two TLWE secret
keys, and K̄ ∈ BN̄ [X]k̄ be the TRLWE interpretation of the key K̄, and let
ᾱ ∈ R≥0 be a standard deviation. Let BKK→K̄,ᾱ be a bootstrapping key, com-
posed by the n TRGSW encryptions BKi ∈ TRGSWK̄,ᾱ(Ki) for i ∈ [[1, n]]. Let

KS = KSK̄→K,γ,t =
(
KS

(id)
i,j

)
i,j

, with KS
(id)
i,j ∈ TRLWEK′,γ(Ki

2j ) be a key-switching

key defined as in Theorem 4.2 (with the function f equal to the identity func-
tion id : T → T). Given one constant µ1 ∈ T, and one sample c ∈ Tn+1

whose coefficients are all multiples of 1
2N̄

, Algorithm 10 outputs a TLWE sample

c′ ∈ TLWEK(µ) where µ = 0 iff. |ϕK(c)| < 1
4 , µ = µ1 otherwise and such that:

– ‖Err(c′)‖∞ ≤ n(k̄ + 1)¯̀N̄ β̄ĀBK + n(1 + k̄N̄)ε̄ + n̄2−(t+1) + tn̄AKS (worst
case),

– Var(Err(c′)) ≤ n(k̄+1)¯̀N̄ β̄2ϑ̄BK +n(1+ k̄N̄)ε̄2 + n̄2−2(t+1) + tn̄ϑKS (average
case),

where ĀBK and ϑ̄BK = ᾱ2 are respectively the amplitude and the variance of
the error of BK, and AKS and ϑKS = γ2 are respectively the amplitude and the
variance of the error of KS.

Fully Homomorphic Boolean Gates. In [24], the homomorphic evaluation
of a NAND gate between LWE samples is achieved with 2 additions (one with a
noiseless trivial sample) and a gate bootstrapping (Algorithm 10).

We chose the parameters such that Var(Err(c′)) < 1
16 and we denote as c′ =

Bootstrap (c) the output of the gate bootstrapping (Algorithm 9, with µ1 = 1
4 )

plus key-switching (Algorithm 3) procedures applied to c.
Let consider two TLWE samples c1 and c2, with message space {0, 1/4} and

‖Err(c1)‖∞ , ‖Err(c2)‖∞ ≤
1
16 . The result of the bootstrapped NAND gate is ob-

tained by computing c = (0, 5
8 )-c1-c2, plus a bootstrapping (gate bootstrapping
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and key-switching). Indeed the possible values for the messages of c are 5
8 ,

3
8

if either c1 or c2 encode 0, and 1
8 if both encode 1

4 . Since the noise amplitude
‖Err(c)‖∞ is < 1

8 , then |ϕK(c)| > 1
4 iff. NAND(msg(c1),msg(c)) = 1. This ex-

plains why it suffices to bootstrap c with parameters µ1 = 1
4 to get the answer.

By using a similar approach, it is possible to directly evaluate with a single
bootstrapping all the basic gates:

– HomNOT(c) = (0, 1
4 )-c (no bootstrapping is needed);

– HomAND(c1, c2) = Bootstrap
(
(0,− 1

8 )+c1+c2

)
;

– HomNAND(c1, c2) = Bootstrap
(
(0, 5

8 )-c1-c2

)
;

– HomOR(c1, c2) = Bootstrap
(
(0, 1

8 )+c1+c2

)
;

– HomXOR(c1, c2) = Bootstrap (2 · (c1-c2)).

The HomXOR(c1, c2) gate can be achieved also by performing
Bootstrap (2 · (c1+c2)).

Remark 8. The term gate bootstrapping refers to the fact that this fast boot-
strapping is performed after every gate evaluation, but it can be used even if
we do not need to evaluate a specific gate and we just want to refresh noisy
ciphertexts.

The ternary MUX gate (MUX(c, d0, d1) = c?d1 : d0 = (c∧d1)⊕ ((1− c)∧d0), for
c, d0, d1 ∈ B) is generally expressed as a combination of 3 binary gates. As already
mentioned in [24], we can improve the MUX evaluation by performing the middle
⊕ as a regular addition before the final KeySwitching. Indeed, this xor has at most
one operand which is true, and at this location, it only affects a negligible amount
of the final noise. Overall, the ternary MUX gate can be evaluated in FHE mode by
evaluating only two gate bootstrappings and one public key-switching. We call
this procedure native MUX, and we note it HomMUX as the other bootstrapped
homomorphic gates, which computes:

– c ∧ d1 via a gate bootstrapping (Algorithm 9) of (0,− 1
8 ) + c + d1;

– (1− c) ∧ d0 via a gate bootstrapping (Algorithm 9) of (0, 1
8 )− c + d0;

– a final public key-switching (Algorithm 2) on the sum, which dominates the
noise.

This HomMUX is therefore bootstrappable with the same parameters for the
other binary gates. In the rest of the paper, when we compare different homo-
morphic techniques, we refer to the gate bootstrapping mode as the technique
consisting in evaluating small circuits expressed by using this bootstrapped gates.

6.2 Circuit bootstrapping (TLWE-to-TRGSW)

In the previous sections, we presented efficient leveled algorithms for some
arithmetic operations, but the input and output have different types (e.g.
TLWE/TRGSW) and we can’t compose these operations, like in a usual algo-
rithm. In fully homomorphic mode, connecting the two becomes possible if we
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have an efficient bootstrapping between TLWE and TRGSW ciphertexts. Fast
bootstrapping procedures have been proposed in [24, 17], and the external prod-
uct 3.13 from [17, 10] has contributed to accelerate leveled operations. Unfortu-
nately, these bootstrapping cannot output GSW ciphertexts. Previous solutions
proposed in [29, 5, 26] based on the internal product are not practical. In this
section, we propose an efficient technique to convert back TLWE ciphertexts to
TRGSW, that runs in 137ms. We call it circuit bootstrapping.

Our goal is to convert a TLWE sample with large noise amplitude over some
binary message space (e.g amplitude 1

4 over {0, 1
2}), into a TRGSW sample with

a low noise amplitude < 2−20 over the integer message space {0, 1}.
In all previous constructions, the TLWE decryption consists in a circuit,

which is then evaluated using the internal addition and multiplication laws
over TRGSW ciphertexts. The target TRGSW ciphertext is thus the result of
an arithmetic expression over TRGSW ciphertexts. Instead, we propose a more
efficient technique, which reconstructs the target directly from its very sparse
internal structure. Namely, a TRGSW ciphertext of a message µ ∈ {0, 1} is
a vector of (k + 1)` TRLWE ciphertexts. Each of these TRLWE ciphertexts
encrypts the same message as µ · hi, where hi is the corresponding line of the
gadget matrix H. Depending on the position of the row (which can be indexed
by u ∈ [1, k + 1] and j ∈ [1, `]), this message is µ −Ku · Bg−j where Ku is the
u-th polynomial of the secret key and Kk+1 = −1. So we can use ` times the
TLWE-to-TLWE bootstrapping of [17] to obtain a TLWE sample of each message
in {µBg−1, . . . , µB−`g }. Then we use the private key-switching technique to
”multiply” these ciphertexts by the secret −Ku, to reconstruct the correct
message.

Ring Scalar

Level 2̄ key: K̄

Level 1 key: K key: K

Level 0 key: K

PrivK
S

KSK̄→K
,γ

SampleExtract

K → K

pre-PubKS
K→ K

Bootstrapping

BKK→K̄,ᾱ

Eval
Circuit

Fig. 8. The figure represents the three levels of encryption on which our construction
shifts. The arrows show the operations that can be performed inside each level or how
to move from a level to another. In order to distinguish the objects with respect to
their level, we adopted the intuitive notations “superior bar” for level 2, “no bar” for
level 1 and “under bar” for level 0. We highlight in blue the different stages of the
circuit bootstrapping (whose detailed description is given below).
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Our circuit bootstrapping, detailed in Algorithm 11, crosses 3 levels of noise
and encryption. Each level has its own key and parameters set. In order to
distinguish the different levels, we use an intuitive notation with bars. The upper
bar will be used for level 2 variables, the under bar for the level 0 variables
and level 1 variables will remain without any bar. The main difference between
the three levels of encryption is the amount of noise supported. Indeed, the
higher the level is, the smaller is the noise. Level 0 corresponds to ciphertexts
with very large noise (typically, α ≈ 2−11). Level 0 parameters are very small,
computations are almost instantaneous, but only a very limited amount of linear
operations are tolerated. Level 1 corresponds to medium noise (typically, α ≈
2−30). Ciphertexts in level 1 have medium size parameters, which allows for
relatively fast operations, and for instance a leveled homomorphic evaluation
of a relatively large automata, with transition timings described in Section 5
of [17]. Level 2 corresponds to ciphertexts with small noise (typically, ᾱ ≈ 2−50).
This level corresponds to the limit of what can be mapped over native 64-bit
operations. Practical values and details are given in Section 8.

Our circuit bootstrapping consists in three parts:

1. TLWE-to-TLWE Pre-keyswitch: The input of the algorithm is a TLWE
sample with a large noise amplitude over the message space {0, 1

2}. Without
loss of generality, it can be keyswitched to a level 0 TLWE ciphertext c =
(a, b) ∈ TLWEK,η(µ · 1

2 ), of a message µ ∈ B with respect to the small secret

key K ∈ Bn and a large standard deviation η ∈ R (typically, η ≤ 2−5 to
guaranty correct decryption with overwhelming probability). This step is
standard.

2. TLWE-to-TLWE Bootstrapping (Algorithm 9): Given a level 2 bootstrap-
ping key BKK→K̄,ᾱ = (BKi)i∈[[1,n]] where BKi ∈ TRGSWK̄,ᾱ(Ki)), we use
` times the TLWE-to-TLWE Bootstrapping algorithm (algorithm 9) on c, to
obtain ` TLWE ciphertexts c̄(1), . . . , c̄(`) where c̄(w) ∈ TLWEK̄,η̄(µ· 1

B̄g
w ), with

respect to the same level 2 secret key K̄ ∈ Bn̄, and with a fixed noise param-
eter η̄ ∈ R which does not depend on the input noise. If the bootstrapping
key has a level 2 noise ᾱ, we expect the output noise η̄ to remain smaller
than level 1 value.

3. TLWE-to-TRLWE private key-switching (Algorithm 3): Finally, to recon-
struct the final TRGSW ciphertext of µ, we simply need to craft a TRLWE
ciphertext which has the same phase as µ · hi, for each row of the gadget
matrix H. Since hi contains only a single non-zero constant polynomial in
position u ∈ [1, k + 1] whose value is 1

Bwg
where w ∈ [1, `], the phase of

µ · hi is µKu · 1
Bwg

where Ku is the u-th term of the key K. If we call fu

the (secret) morphism from T to TN [X] defined by fu(x) = Ku · x, we just
need to apply fu homomorphically to the TLWE sample c̄(w) to get the de-
sired TRLWE sample. Since fu is 1-lipschitzian (for the infinity norm), this
operation be done with additive noise overhead via the private functional
keyswitch (Algorithm 3).
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Algorithm 11 Circuit Bootstrapping (calling algorithms 9 and 3)

Input: A level 0 TLWE sample c = (a, b) ∈ TLWEK,η(µ · 1
2
), with µ ∈ B , a boot-

strapping key BKK→K̄,ᾱ = (BKi ∈ TRGSWK̄,ᾱ(Ki))i∈[[1,n]], k + 1 private keyswitch

keys KS
(fu)

K̄→K,γ corresponding to the functions fu(x) = −Ku · x when u ≤ k, and

fk+1(x) = 1 · x.
Output: A level 1 TRGSW sample C ∈ TRGSWK,η(µ)
1: for w = 1 to `
2: c̄(w) ← BootstrappingBK, 1

Bwg

(c)

3: for u = 1 to k + 1
4: c(u,w) = PrivKS(KS(fu), c̄(w))
5: Return C = (c(u,w))1≤u≤k+1,1≤w≤`

Theorem 6.4 (Circuit Bootstrapping Theorem). Let n, α,N, k,Bg, `,H, ε
denote TRLWE/TRGSW level 1 parameters, and the same variables names with
underbars/upperbars for level 0 and 2 parameters. Let K ∈ Bn, K ∈ Bn and K̄ ∈
Bn̄, be a level 0, 1 and 2 TLWE secret keys, and K,K, K̄ their respective TRLWE
interpretation. Let BKK→K̄,ᾱ be a bootstrapping key, composed by the n TRGSW
encryptions BKi ∈ TRGSWK̄,ᾱ(Ki) for i ∈ [[1, n]]. For each u ∈ [[1, k + 1]], let fu

be the morphism from T to TN [X] defined by fu(x) = Ku · x, and KSfu
K̄→K,γ =

(KS
(u)
i,j ∈ TRLWEK,γ((K̄iKu ·2−j)))i∈[[1,n̄]],j∈[[1,t]] be the corresponding private-key-

switching key. Given a level 0 TLWE sample c = (a, b) ∈ TLWEK(µ · 1
2 ), with

µ ∈ B, the algorithm 11 outputs a level 1 TRGSW sample C ∈ TRGSWK(µ) such
that

– ‖Err(C)‖∞ ≤ n(k̄ + 1)¯̀N̄ β̄ABK + n(1 + k̄N̄)ε̄+ n̄2−(t+1) + n̄tAKS (worst);
– Var(Err(C)) ≤ n(k̄+1)¯̀N̄ β̄2ϑ̄BK+n(1+k̄N̄)ε̄2+n̄2−2(t+1)+n̄tϑKS (average).

Here ϑ̄BK = ᾱ2 and ABK is the variance and amplitude of Err(BKK→K̄,ᾱ), and

ϑKS = γ2 and AKS are the variance and amplitude of Err(KSK̄→K,γ).

Proof. The output TRGSW ciphertext is correct, because by construction, the
i-th TRLWE component c(u,w) has the correct message msg(µ · hi) = µKu/B

w
g .

c(u,w) is obtained by chaining one TLWE-to-TLWE bootstrapping (Algorithm 9)
with one private key-switchings, as in Algorithm 3. The values of maximal am-
plitude and variance of Err(C) are directly obtained from the partial results of
Theorem 6.2 and Theorem 4.2. In total, Algorithm 11 performs exactly ` boot-
strappings (Algorithm 9), and `(k+1) private key switchings (Algorithm 3). ut

Comparison with previous bootstrappings for TGSW. The circuit boot-
strapping we just described evaluates a quasilinear number of level-2 external
products, and a quasilinear number of level 1 products in the private keyswitch-
ings. With the parameters proposed in the next section, it runs in 0.137 seconds
for a 110-bit security parameter, level 2 operations take 70% of the running time,
and the private keyswitch the remaining 30%.
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Our circuit bootstrapping is not the first bootstrapping algorithm that out-
puts a TRGSW ciphertext. Many constructions have previously been proposed
and achieve valid asymptotical complexities, but very few concrete parameters
are proposed. Most of these constructions are recalled in the last section of [26].
In all of them, the bootstrapped ciphertext is obtained as an arithmetic expres-
sion on TRGSW ciphertexts involving linear combinations and internal products.
First, all the schemes based on scalar variants of TRGSW suffer from a slowdown
of a factor at least quadratic in the security parameter, because the products of
small matrices with polynomial coefficients (via FFT) are replaced with large
dense matrix products. Thus, bootstrapping on TGSW variants would require
days of computations, instead of the 0.137 seconds we propose. Now, assum-
ing that all the bootstrapping uses (Ring) instantiations of TRGSW, the design
in [11] based on the expansion of the decryption circuit via Barrington theo-
rem, as well as the expression as a minimal deterministic automata of the same
function in [26] require a quadratic number of internal level 2 TRGSW products,
which is much slower than what we propose. Finally, the CRT variant in [5]
and [26] uses only a quasi-linear number of products, but since it uses composi-
tion between automata, these products need to run in level 3 instead of level 2,
which induces a huge slowdown (a factor 240 in our benchs), because elements
cannot be represented on 64-bits native numbers.

Sum-up of elementary Homomorphic Operations Table 1 summarizes
the possible operations on plaintexts that we can perform with TFHE, and their
correspondence over the ciphertexts. All these operations are expressed on the
continuous message space T for TLWE and TN [X] for TRLWE. As previously
mentioned, all samples contain noise: if an exact decryption is required, the
message space must be chosen accordingly.

Observe that the operations involving keyswitching or bootstrapping can also
be used to change the encryption key. If we assume the circular security, we can
keep the same key after these operations. Otherwise, the keys are given as a
chain, where every secret key is encrypted with the following one, and the each
bootstrapping or keyswitching moves from the current key to the next one.

7 Security analysis

On the asymptotical side, TLWE samples can be equivalently rescaled and
rounded to their closest binLWE representative, which in turn can be reduced
to standard LWE with full secret using the modulus-dimension reduction [9]
or group-switching techniques [26]. Therefore, the semantic security of TFHE
is asymptotically equivalent to worst case lattice problems. Similarily, the ring
and module variants of TRLWE can be mapped to their closest bin-RingLWE
instances, whose semantic security is known to be equivalent to worst-case ideal
lattice problems [34], and also [3] for an asymptotical equivalence between ring
and module LWE problems for large modulus.

47



Operation Plaintext Ciphertext Variance

Translation µ+ w c+ (0, w) ϑ

Rotation Xuiµ Xuic ϑ

Z[X]-linear
∑
viµi

∑
vici

∑
‖vi‖22ϑi

SampleExtract
∑
µiX

i → µp SampleExtract (Sect. 2.2) ϑ

Z-linear f(m1, . . . ,mp) PubKSKS(f, c1, . . . , cp)(Alg.2) R2ϑ+ n log
(

1
α

)
CstKS

R-lipschitzian PrivKSKS(f)(c1, . . . , cp)(Alg.3) R2ϑ+ np log
(

1
α

)
CstKS

Ext. product b1 · µ2 C1 � c2 (Thm.3.13) b1ϑ2 + CstTRGSWϑ1

CMux b1?µ2 : µ3 CMux(C1, c2, c3) (Lem.3.16) max(ϑ2, ϑ3) + CstTRGSWϑ1

T-non-linear X−ϕ(c1)µ2 BlindRotate (Alg.4) ϑ+ nCstTRGSW
Bootstrapping decrypt(c)?m : 0 Gate Bootstrapping (Alg.9) Cst

Circuit Bootstrapping (Alg.11)

Table 1. TFHE elementary operations - In this table, all µi’s denote plaintexts in
TN [X] and ci the corresponding TRLWE ciphertext. The mi’s are plaintexts in T and
c their TLWE ciphertext. The bi’s are bit messages and Ci their TRGSW ciphertext.
The ϑi’s are the noise variances of the respective ciphertexts. In the translation, w is in
TN [X]. In the rotation, the ui’s are integer coefficients. In the Z[X]-linear combination,
the vi’s are integer polynomials in Z[X].

In this section, we will rather focus on the practical hardness of TFHE, and
express its effective security parameter λ directly as a function of the entropy of
the secret n and the error standard deviation α.

Our analysis is based on the methodology of [4] and [1]. In their work, they re-
view many classes of attacks against LWE, ranging from a direct BDD approach
with standard lattice reduction, sieving algorithms, a variant of BKW [7], and
resolution of LWE via man in the middle attacks. In general, they found out
that there is no single-best attack against all possible parameters, however, ac-
cording to their results table [4, Section8, Tables 7,8] for the range of dimensions
and noise used for FHE, it appears that the SIS-distinguisher attack is often the
most efficient attack (related to the Lindner-Peikert [35] model, and also used in
the parameter estimation of [24]). Since q is not a parameter in our definition of
TLWE, we need to adapt their results. This section relies on the following heuris-
tics concerning the experimental behaviour of lattice reduction algorithms. They
have been extensively verified and used in practice.

1. The fastest lattice reduction algorithms in practice are blockwise lattice al-
gorithms (like BKZ-2.0[13], D-BKZ [38], or the slide reduction with large
blocksize [27, 38]).

2. Practical blockwise lattice reduction algorithms have an intrinsic quality
δ > 1 (which depends on the blocksize), and given a m-dimensional real
basis B of volume V , they compute short vectors of norm δmV 1/m.

3. The running time of BKZ-2.0 (expressed in bit operations) as a function of
the quality parameter is: log2(tBKZ)(δ) = 0.009

log2(δ)2 − 27 (According to the

extrapolation by Albrecht et al [2] of Liu-Nguyen datasets [36]).
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4. The coordinates of vectors produced by lattice reduction algorithms are bal-
anced. Namely, if the algorithm produces vectors of norm ‖v‖2, each coeffi-
cient has a marginal Gaussian distribution of standard deviation ‖v‖2 /

√
n.

Provided that the geometry of the lattice is not too skewed in particular
directions, this fact can sometimes be proved, especially if the reduction al-
gorithm samples vectors with Gaussian distribution over the input lattice.
This simple fact is at the heart of many attacks based on Coppersmith tech-
niques with lattices.

5. For mid-range dimensions and polynomially small noise, the SIS-
distinguisher plus lattice reduction algorithms combined with the search-
to-decision is the best attack against LWE; (but this point is less clear,
according to the analysis of [2], at least, this attack model tends to over-
estimate the power of the attacker, so it should produce more conservative
parameters).

6. Except for small polynomial speedups in the dimension, we don’t know better
algorithms to find short vectors in random anti-circulant lattices than generic
algorithms. This folklore assumption seems still up to date at the time of
writing. The most recent asymptotic attacks [22] against ideal lattice do not
reach polynomial noise rates, and they are not practical.

The SIS-based distinguisher attack against the LWE problem consists in find-
ing a small integer combination that cancels the left hand side of homogeneous
LWE samples. If applying the same combination to the right hand side does not
make it small, we deduce that our inputs are not LWE samples, but rather uni-
formly random samples. Such SIS-distinguisher has in general a small advantage
ε. To recover the full key, we use the well known search to decision reduction,
which is particularly tight for TLWE: guess that the first key bit is zero, ran-
domize the first coordinates of each sample, and use the distinguisher about
1/ε2 times to amplify its advantage to Θ(1), and to confirm whether the result
are still TLWE samples, i.e. if our guess of the first key bit is correct. Once a
key bit is found, getting the other bits involves solving lower-dimensional TLWE
problems, and are significantly easier, therefore we consider that the complexity
of the attack is the time needed to find the first key bit. We also extend the
analysis of [4] to handle the continuous torus.

Let (a1, b1), . . . , (am, bm) be either m TLWE samples of error stabdard de-
viation α or m uniformly random samples of Tn+1, we need to find a small com-
bination v1, . . . , vm of samples such that

∑
viai is small. Most previous models,

that work on a discrete group, would require that this term is exactly zero. By
allowing approximations, we may find valid solutions in smaller dimension m
than the usual bound n log n. In particular, even m < n would make sense. Now,
consider the (m+n)-dimensional lattice, generated by the rows of the following
basis B ∈Mn+m,n+m(R):
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B =



1 0

. . . 0
0 1

a1,1 · · · a1,n 1 0
...

. . .
...

. . .

am,1 · · · am,n 0 1


.

Our goal is to find a short vector w = [x1, . . . , xn, v1, . . . , vm] in the lattice
of B, whose first n coordinates (x1, . . . , xn) =

∑m
i=1 viai mod 1 are shorter

than the second part (v1, . . . , vm). To take this skewness into account, we choose
a real parameter q > 1 (that will be optimized later), and apply the unitary
transformation fq to the lattice, which multiplies the first n coordinates by q
and the last m coordinates by 1/qn/m. Although this new basis now looks like a
classical LWE matrix, the variable q is a real parameter, rather than an integer.
It then suffices to find a regular short vector with balanced coordinates in the
transformed lattice, defined by this basis:

fq(B) =



q 0

. . . 0
0 q

qa1,1 · · · qa1,n
1

qn/m
0

...
. . .

...
. . .

qam,1 · · · qam,n 0 1

qn/m


, with q ∈ R > 1.

To that end, we apply the fastest algorithm (BKZ-2.0 or slide reduc-
tion) directly to fq(B), which outputs a vector fq(w) of standard deviation
δn+m/

√
n+m where δ ∈]1, 1.1] is the quality of the reduction.

Once we obtain a such vector w, all we need is to analyse the term∑m
i=1 vibi =

∑m
i=1 vi(ais+ ei) = s ·

∑m
i=1(viai) +

∑m
i=1 viei = s · x+ v · e.

It has Gaussian distribution of variance σ2 = δ2(m+n)

q2 · nS2

m+n +

q2n/mδ2(m+n)α2m
m+n = δ2(m+n)

(
S2

q2 · n
m+n + q2n/mα2 m

m+n

)
. Here S = ‖s‖√

n
≈ 1√

2
.

This distribution may be distinguished from the uniform distribution with ad-
vantage ε when σ2 is equal to the smoothing variance 1

2πη
2
ε(Z). To summarize,

the security parameter of LWE is (bounded by) the solution of the following
system of equations

λ(n, α) = log2(tattack) = min
0<ε<1

log2

(
1

ε2
tBKZ(n, α, ε)

)
(3)

log2(tBKZ)(n, α, ε) =
0.009

log2(δ)2
− 27 (4)

ln(δ)(n, α, ε) = max
m>1
q>1

1

2(m+n)

(
ln

(
1

2π
η2
ε(Z)

)
− ln

(
S2

q2

n

m+n
+ q

2n
m α2 m

m+n

))
(5)
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1

2π
η2
ε(Z) ≈ 1

2π2
ln

(
2

ε

)
. (6)

Here, Eq. (3) means that we need to run the distinguisher 1
ε2 times (by Cher-

noff’s bound), and we need to optimize the advantage ε accordingly. 13 Eq.(4) is
the heuristic prediction of the running time of lattice reduction. In Eq.(5) q and
m need to be chosen in order to maximize the targeted approximation factor of
the lattice reduction step.

Differentiating Equation (5) in q, we find that its maximal value is

qbest =

(
S2

α2

) m
2(m+n)

.

Replacing this value and setting t = n
m+n , Equation (5) becomes:

ln(δ)(n, α, ε) = max
t>0

1

2n

(
t2`2 + t(1− t)`1

)
where

`1 = ln
(
η2
ε(Z)

2πα2

)
`2 = ln

(
η2
ε(Z)

2πS2

)
.

Finally, by differentiating this new expression in t, the maximum of δ is
reached for tbest = `1

2(`1−`2) , because `1 > `2, which gives the best choices of m

and q and δ. Finally, we optimize ε numerically in Eq.(3).
All previous results are summarized in Figure 9, which displays the security

parameter λ as a function of n, log2(α).

8 Applications, practical parameters and running time
estimates

Concrete Parameters

Gate bootstrapping Parameters. From a theoretical point of view, our scale in-
variant scheme is defined over the real torus T, where all the operations are mod-
ulo 1. In practice, since we can work with approximations, we chose to rescale
the elements over T by a factor 232, and to map them to 32-bit integers. Thus,
we take advantage of the native and automatic mod 232 operations, including for
the external multiplication with integers. Except for some FFT operations, this
seems more stable and efficient than working with floating point numbers and
reducing modulo 1 regularly. Polynomials mod XN + 1 are either represented
as the classical list of the N coefficients, or using the Lagrange half-complex
representation, which consists in the complex (2 ·64bits) evaluations of the poly-
nomial over the roots of unity exp(i(2j + 1)π/N) for j ∈ [[0, N2 [[. Indeed, the

13 Amplifying a distinguishing advantage from ε to Ω(1) requires at least O(1/ε) and
at most (1/ε2) trials, depending on the shape of the symmetric difference between
the two distributions. Here, the difference between a modular Gaussian with large
parameter and the uniform distribution is uniformly small, so we have to apply the
upper-bound.
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Fig. 9. Security parameter λ as a function of n and α for LWE samples
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This curve shows the security parameter levels λ (black levels) as a function of n = kN
(along the x-axis) and log2(1/α) (along the y-axis) for TLWE (also holds for bin-LWE),
considering both the attack of this section and the collision attack in time 2n/2.

N
2 other evaluations are the conjugates of the first ones, and do not need to be
stored. The conversion between both representations is done using a dedicated
assembly implementation of the Fast Fourier Transform (FFT) for the anticyclic
ring (twice as using the generic library FFTW [25] used in by [24]). Note that the
direct FFT transform is

√
2N lipschitzian, so the lagrange half-complex repre-

sentation tolerates approximations, and 53bits of precision is indeed more than
enough, provided that the real representative remains small. However, the mod-
ulo 1 reduction, as well as the gadget decomposition in base h, are not compatible
with the Lagrange representation: we therefore need to regularly transform the
polynomials to and from their classical representation.

In the TFHE library [20], the gate bootstrapping uses the following param-
eters.

– TLWE samples use n = 500, and standard deviation α = 2−7, so their
amplitude is < 1

16 . A TLWE sample has 32 · (n+ 1) bits ≈ 2 KBytes.
– TRLWE samples use N = 1024, k = 1. This corresponds to (k + 1) · N · 32

bits ≈ 8 KBytes.
– TRGSW samples use ` = 2,Bg = 1024. This defines the gadget H and its

decomposition Dech,β,ε where β = 512 and ε = 2−21. A TRGSW sample has
(k + 1) · ` TLWE samples ≈ 32 KBytes.

– The Bootstrapping Key has n TGSW samples ≈ 15.6 MBytes. Its noise
standard deviation is α = 3.73 · 10−9. Since we have a lower noise overhead,

52



this is higher than the standard deviation ≈ 2.59 · 10−10 of [24], (i.e. ours is
more secure), but in counterpart, our TLWE key is binary. Section 7 predicts
198 bits of security for this key.

– We chose t = 16 bits for the key switching: the decomposition has precision
2−17, and the KS has k ·N · t LWE samples ≈ 32 MBytes. We set the noise
stdev to γ = 2.16 · 10−5, which is estimated to λ = 159-bits of security by
Section 7.

– Correctness: The final error variance after bootstrapping is 1.63 · 10−5, by
Theorem 6.3. It corresponds to a standard deviation of σ = 4.05 · 10−3.
In [24], the final standard deviation is larger 1.08 · 10−2. In other words, the
noise amplitude after our bootstrapping is < 1

16 with very high probability

erf(1/16
√

2σ) ≥ 1− 2−150 (better than ≥ 1− 2−32 in [24]).

Note that the size of the key switching key can be reduced by a factor
n + 1 = 501 if all the masks are the output of a pseudo random function;
we may for instance just give the seed. The same technique can be applied to
the bootstrapping key, on which the size is only reduced by a factor k + 1 = 2.

The source code of our implementation is available on github https://

github.com/tfhe/tfhe. We implemented the FHE scheme in C/C++, and run
the bootstrapping algorithm on a 64-bit single core (i7-4910MQ) at 2.90GHz.
This seems to correspond to the machine used in [24]. We measured a running
time of 13ms per bootstrapping, and of 34µs per external product, both using
the Lagrange half-complex representation. Profiling the execution shows that
the FFTs and complex multiplications are taking 66% of the total time. The
remaining time is mostly taken by the keyswitch operation, and the decomposi-
tion in base h. As a consequence, all binary gates are executed in 13ms, and the
native bootstrapped MUX (also described in Section 6.1) gate takes 26ms single
core time.

Fig. 10. Parameters and security of the Gate bootstrapping

n α λ εbest mbest qbest δbest

Switch key 500 2.43 · 10−5 159 2−14 497 178.7 1.0052
Boot. key 1024 3.73 · 10−9 198 2−10 1037 14696. 1.0046

Boot.key, [24] 1024 2.59 · 10−10 149 2−7 1051 60351 1.0052
This table precises the parameters for the keyswitching key and the bootstrapping

key for our implementation and for the one in [24].

Table 10 shows that the strength of the lattice reduction is compatible with
the values announced in [24]. Our model predicts that the lattice reduction
phase is harder (δ = 1.0052 in our analysis and δ = 1.0064 in [24]), but the
value of ε is bigger in our case. Overall, the security of their parameters-set
is evaluated by our model to 149-bits of security, which is larger than the
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≥ 100-bits of security announced in [24]. The main reason is that we take into
account the number of times we need to run the SIS-distinguisher to obtain
a non negligible advantage. Since our scheme has a smaller noise propagation
overhead, we were able to raise the input noise levels in order to strengthen
the system, so with the parameters we chose in our implementation, our model
predicts 198-bits of security for the bootstrapping key and 163-bits for the
keyswitching key (which becomes the bottleneck).
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Fig. 11. Accuracy of the average case theorems, and experimental valida-
tion of the independence assumption - We generated several random Boolean
circuits of depth larger than 10000, composed by a million of bootstrapped homomor-
phic gates. We executed them and measured the actual noise of the ciphertexts. The
(light blue) histogram is the measured error distribution after every bootstrapped gate,
the (purple) plain line represents the Gaussian distribution whose variance is predicted
by Theorem 6.3 using the parameters of Section 8, and the (red) dashed line represents
the critical Gaussian distribution for an amplitude of 1

16
. The experimental results con-

firms that our average case theorem predicts the output variance accurately, and that
the noise distribution after bootstrapping is Gaussian. This experimentally validates
our independence heuristic assumption 3.11, even when ciphertexts are re-used in a
very large depth homomorphic circuit.

Gate bootstrapping mode
Gate bootstrapping (1 bit) tGB = 13ms
Time per any binary gate (HomAND, HomOR, HomXOR, ...) tGB = 13ms
Time per HomMUX 2tGB = 26ms

Circuit Bootstrapping Starting from all these considerations, we implemented
our circuit bootstrapping as a proof of concept. The code is available in the
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experimental repository of TFHE [20]. We perform a Circuit Bootstrapping in
0.137 seconds. One of the main constraints to obtain this performance is to ensure
that all the computations are feasible and correct under 53 bits of floating point
precision, in order to use the fast FFT. This requires to refine the parameters
of the scheme. We verified the accuracy of the FFT with a slower but exact
Karatsuba implementation of the polynomial product.

In our three levels, we used the following TRLWE and TRGSW parameter
sets, which have at least 152-bits of security, according to the security analysis
from Section 7.

Level Minimal noise stdev α n Bg ` λ
0 α = 6.10 · 10−5 n = 500 N.A. N.A. 194
1 α = 3.29 · 10−10 n = 1024 Bg = 28 ` = 2 152
2 ᾱ = 1.42 · 10−14 n̄ = 2048 B̄g = 29 ¯̀= 4 289

Since we assume circular security, we will use only one key per level, and
the following keyswitch parameters (in the leveled setting, the reader is free to
increase the number of keys if he does not wish to assume circularity).

Level t KS noise stdev γ Usage
1→ 0 t = 12 γ = 6.10 · 10−5 Circuit Bootstap, Pre-KS
2→ 1 t̄ = 30 γ̄ = 3.29 · 10−10 Circuit Bootstap, Step 4 in Alg. 11
1→ 1 t = 24 γ = 2.38 · 10−8 TBSR

Thus, we get these noise variances in input or in output

Output TLWE Fresh TRGSW in LHE TRGSW Output of CB Bootst. key
ϑ ≤ 2−10 ϑ = 2−60 ϑ ≤ 2−48.2 ϑBK = 2−92

And finally, this table summarizes the timings (Core i7-4910MQ laptop),
noises overhead, and maximal depth of all our primitives.

CPU Time Var Noise add max depth
Circuit bootstrap tCB = 137ms N.A. N.A
Fresh CMux tXP = 34µs 2−23.99 16384
CB CMux tXP = 34µs 2−20.17 1017
PubKSTBSR tKS = 180ms 2−23.42 16384

Time Comparison With these parameters, we analyse the (single-core) exe-
cution timings for the evaluation of the LUT, MAX and Multiplication in LHE
and FHE mode.

In the LHE mode (left hand side of Fig. 12), all inputs are fresh ciphertexts
(either TRLWE or TRGSW) and we compare the previous versions [17] (without
packing/batching or gate bootstapping) with the new optimizations i.e. horizon-
tal/vertical packing; with weighted automata or with TBSR techniques. In the
FHE mode (right hand side of Fig. 12), all inputs and outputs are TLWE samples
on the {0, 1

2} message space with noise amplitude 1
4 . Each operation starts by
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bootstrapping its inputs. We compare the gate-by-gate bootstapping strategy
with the mixed version where we use leveled encryption with circuit bootsrap-
ping. Our goal is to identify which method is better for each of the 6 cases. We
observe that compared to the gate bootstrapping, we obtain a huge speed-up for
the homomorphic evaluation of arbitrary function in both LHE and FHE mode,
in particular, we can evaluate a 8 bits to 1 bit lookup table and bootstrap the
output in just 137ms, or evaluate an arbitrary 8 bits to 8 bits function in 1.096s,
and an arbitrary 16 bits to 8 bits function in 2.192s in FHE mode. For the mul-
tiplication in LHE mode, it is better to use the weighted automata technique
when the number is less than 128 bits, and the TBSR counter after that. In
the FHE mode, the weighted automata becomes faster than gate-bootstrapping
after 4 bits of inputs, then the TBSR optimization becomes faster for > 64 bits
inputs.

9 Conclusion

In this paper we presented a complete overview of the TFHE construction, from
an abstract LWE and GSW point of view, to a concrete and efficient instantiation.
We presented many improvements to the leveled and fully homomorphic modes:
several ways to work over packed ciphertexts, new computation models that use
TBSR counters and deterministic weighted automata techniques, as well as two
efficient bootstrappings that operate in gate or circuit mode. We also provided a
dedicated security analysis explaining how to chose the parameters depending on
the desired security level, and we presented implementation details with practical
timings for several applications using the techniques previously described.
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(a.) Leveled LUT (d-bits input and s = 8-bits output)

- No packing: s(2d − 1)tXP

- Gate bootst.: s(2d − 1)tGB

- Horizontal Packing (HP): (2d − 1)tXP

- Vertical Packing (VP): s(2d/N − 1 + logN)tXP .

(b.) LUT (d-bits input and s = 8-bits output)

- Gate bootst.: (d + s(2d − 1))tGB

- Circuit bootst. with HP: dtCB + (2d − 1)tXP

- Circuit bootst. with VP: dtCB+s(2d/N−1+logN)tXP .
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(e.) Leveled Multiplication (2 inputs of d-bits each)
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Fig. 12. The y coordinate represents the running time in seconds (in logscale) , the x
coordinate represents the number of bits in the input (in logscale for c,d,e,f).
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16. J. H. Cheon and D. Stehlé. Fully homomophic encryption over the integers revis-

ited. In EUROCRYPT 2015, pages 513–536. Springer, 2015.
17. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomorphic

encryption: Bootstrapping in less than 0.1 seconds. In Advances in Cryptology -
ASIACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, pages 3–33. Springer, 2016.

18. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. A homomorphic lwe
based e-voting scheme. In PQ Cryptography, pages 245–265. Springer, 2016.

19. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster packed homo-
morphic operations and efficient circuit bootstrapping for TFHE. In Advances in
Cryptology - ASIACRYPT 2017. Springer, 2017.

20. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast fully homo-
morphic encryption library. https://tfhe.github.io/tfhe/, August 2016.

21. J. Coron, T. Lepoint, and M. Tibouchi. Scale-invariant fully homomorphic encryp-
tion over the integers. In PKC 2014, pages 311–328, 2014.

22. R. Cramer, L. Ducas, and B. Wesolowski. Short stickelberger class relations and
application to ideal-svp. In Eurocrypt 2017, 2016.

23. M. Droste and P. Gastin. Weighted automata and weighted logics. In Handbook
of weighted automata, pages 175–211. Springer, 2009.

24. L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic encryption in
less than a second. In Eurocrypt, pages 617–640, 2015.

25. M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Pro-
ceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

26. N. Gama, M. Izabachène, P. Q. Nguyen, and X. Xie. Structural lattice reduction:
Generalized worst-case to average-case reductions. ePrint Archive, 2014/283, 2014.

27. N. Gama and P. Q. Nguyen. Predicting Lattice Reduction. In Eurocrypt, 2008.
28. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.
29. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with

errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Crypto’13,
2013.

30. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for
circuits. Journal of the ACM (JACM), 62(6):45, 2015.

31. S. Halevi and I. V. Shoup. Helib - an implementation of homomorphic encryption.
https://github.com/shaih/HElib/, September 2014.

58



32. S. Halevi and V. Shoup. Algorithms in helib. In Crypto’2014, pages 554–571, 2014.
33. N. Howgrave-Graham. Approximate integer common divisors. In CaLC, volume 1,

pages 51–66. Springer, 2001.
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