
Learning with Errors on RSA Co-Processors

Martin R. Albrecht1, Christian Hanser2, Andrea Hoeller2, Thomas
Pöppelmann3, Fernando Virdia1, Andreas Wallner2?

1 Information Security Group, Royal Holloway, University of London, UK
2 Infineon Technologies Austria AG

3 Infineon Technologies AG, Germany
martin.albrecht@royalholloway.ac.uk,

Christian.Hanser@infineon.com,
Andrea.Hoeller@infineon.com,

Thomas.Poeppelmann@infineon.com,
Fernando.Virdia.2016@rhul.ac.uk,

Andreas.Wallner@infineon.com

Abstract. We repurpose existing RSA/ECC co-processors for (ideal)
lattice-based cryptography by exploiting the availability of fast long
integer multiplication. Such co-processors are deployed in smart cards
in passports and identity cards, secured microcontrollers and hardware
security modules (HSM). In particular, we demonstrate an implementa-
tion of a variant of the Module-LWE-based Kyber Key Encapsulation
Mechanism (KEM) that is tailored for optimal performance on a commer-
cially available smart card chip (SLE 78). To benefit from the RSA/ECC
co-processor we use Kronecker substitution in combination with school-
book and Karatsuba polynomial multiplication. Moreover, we speed-up
symmetric operations in our Kyber variant using the AES co-processor to
implement a PRNG and a SHA-256 co-processor to realise hash functions.
This allows us to execute CCA-secure Kyber768 key generation in 79.6
ms, encapsulation in 102.4 ms and decapsulation in 132.7 ms.

1 Introduction

The development of an efficient quantum order-finding algorithm by Shor [Sho97]
invalidated the quantum hardness of factoring and discrete logarithms in Abelian
groups. Since then, there has been a growing effort to develop new public-key
? The research of Albrecht was supported by EPSRC grant “Bit Security of Learning
with Errors for Post-Quantum Cryptography and Fully Homomorphic Encryption”
(EP/P009417/1) and by the European Union PROMETHEUS project (Horizon
2020 Research and Innovation Program, grant 780701). The research of Virdia was
supported by the EPSRC and the UK government as part of the Centre for Doctoral
Training in Cyber Security at Royal Holloway, University of London (EP/P009301/1).
The research of Hanser, Hoeller, Pöppelmann and Wallner was supported by European
Union’s Horizon 2020 research and innovation programme under grant agreement
No. 779391 (FutureTPM).

encryption and signature algorithms that can resist cryptanalysis using large-
scale general quantum computers. The resulting constructions are referred to as
“quantum safe” or “post-quantum”. Popular families are code-based, multivariate,
isogeny-based and lattice-based cryptography.

In 2016 the US National Institute of Standards and Technology (NIST)
started a several year long process to standardise post-quantum cryptographic
schemes [Nat16]. Furthermore, the European Telecommunications Standards
Institute (ETSI) created a quantum-safe cryptography working group [CCD+15]
and Google recently conducted its first post-quantum cryptography at-scale
test [Lan16]. Whatever we may think of the timeline or even plausibility of the
arrival of general quantum computers, quantum-safe cryptography is gaining
momentum.

From a practical perspective, two crucial requirements are efficiency and ease
of deployment of newly proposed schemes. Indeed, submissions to the NIST
process are encouraged to provide optimised software implementations aimed
at general purpose microprocessors. However, implementations of quantum-safe
schemes are also required in constrained (often embedded) environments such as
microcontrollers or smart cards.

In the smart-card setting, low-power general purpose 16 or 32-bit CPUs
are commonly augmented by cryptographic co-processors capable of executing
Diffie-Hellman key exchanges, encryptions or signatures based on RSA or elliptic
curves. As such, these cryptographic co-processors come equipped with an integer
multiplier capable of handling multiplication (and addition) in ZN for log2 N ≈
2048. If these existing facilities can be re-purposed to implement quantum-safe
schemes then this would permit an easier and more cost-efficient transition
towards a post-quantum era.

Contribution. In this work, we repurpose existing cryptographic co-processors
to accelerate lattice-based cryptography. For this we make use of variants of
Kronecker substitution combined with low-degree polynomial arithmetic. Using
this strategy, we manage to implement the Kyber Key Encapsulation Mechanism
(KEM) [SAB+17] using the Kyber768 parameter set promising 161 bits of secu-
rity. Our various implementations target a commercially available smart card
(SLE 78 with 16 Kbyte RAM) and its RSA, AES, and SHA-256 co-processor. To
evaluate Kronecker substitution we implement standard Kronecker substitution
(KS1) together with Karatsuba-based polynomial multiplication and Kronecker
with negated evaluation points (KS2) [Har09] using schoolbook-based polyno-
mial multiplication. We compare our results with an implementation of Kyber
and NewHope on the same target device that are not utilising large integer
multiplication on the co-processor, implementations of RSA as well as related
work. In summary, our work provides evidence that lattice-based post-quantum
cryptography can be competitive with RSA on contactless high-security 16-bit
smart cards with only limited RAM when RSA, AES and SHA-2 co-processors
are used.

2

Approach & outline. The key computational task in {Ring, Module}-LWE en-
cryption/decryption is to evaluate

MulAdd
(
a(x), b(x), c(x), f(x), q

)
:= a(x) · b(x) + c(x) mod (f(x), q)

for polynomials a(x), b(x), c(x) ∈ Zq[x]/(f(x)). In this work, we realise the Mu-
lAdd gadget using a combination of a variant of Kronecker substitution [VZGG13,
p. 245] and low-degree polynomial arithmetic in the spirit of Schönhage’s
trick [Sch77]. Kronecker substitution is a well-known and well-utilised technique
in computer algebra to reduce polynomial multiplication to integer multipli-
cation. Briefly, we start from standard Kronecker substitution by considering
a(2`) · b(2`) + c(2`) mod f(2`) where e.g. a(2`) represents the integer obtained
by evaluating a(x) at 2` for some sufficiently big integer `. However, for typical
parameter choices, e.g. those of Kyber or NewHope [ADPS16], this strategy pro-
duces integers too large for our hardware multiplier to handle. Thus, in Section 3
we apply a variant of Harvey [Har09] to our use-case. Harvey proposed Kronecker
variants which permit to half the required bitsize of the integers being multiplied
at the cost of doubling the number of multiplications. This provides a worthwhile
trade-off for medium-sized integers where quasi-linear integer multiplication algo-
rithms are not yet competitive. However, in our context Harvey’s technique on its
own still does not suffice to reduce the integer operands to match our hardware
multiplier. Thus, we utilise (low-degree) polynomial arithmetic on top. Overall, we
obtain an implementation which computes the IND-CCA Kyber768 decapsulation
in 8 · (32 + 3 + 3) = 120 modular multiplications of 2049-bit numbers. In contrast,
decrypting 2048-bit RSA requires roughly 2 · 1.5 · 1024 = 3072 multiplications
of 1024-bit numbers in Chinese Remainder Theorem (CRT) representation.4
We then apply these techniques to Kyber in Section 5, discuss performance in
Section 6 and finish with a discussion in Section 7.

Large modulus LWE. In lattice-based cryptography, noisy variants of Kro-
necker substitution have been used to show various polynomial-time equiva-
lences. In [BLP+13] a reduction from n-dimensional LWE with modulus q to
1-dimensional LWE with modulus qn is provided using

A :=
n−1∑
i=0

aiq
i, S :=

n−1∑
i=0

siq
n−i−1, A · S mod qn ≈ 〈a, s〉 · qn−1. (1)

This reduction is extended to the Approximate-GCD problem in [CS15]. In [CLT13],
a variant of the Approximate-GCD problem is defined for realising fully homo-
morphic encryption which permits to pack several plaintext bits into one big
4 Of course, this metric does not account for the cost of embedding of polynomials
into integers as well as additional operations required in lattice-based cryptography,
like randomness sampling or expensive CCA transformations. Moreover, the data
structures in RSA are much smaller than in lattice-based cryptography so that
transfers between CPU and co-processors with internal memory appropriate to hold
RSA-2048 base, exponent, modulus and result have much less impact on performance.

3

integer using the CRT. The reduction from [BLP+13] is extended in [AD17] to
a reduction from Module-LWE to large modulus Ring-LWE and a dimension-
halving, modulus squaring self-reduction of Ring-LWE. In [Chu17], it is noted
that given A :=

∑n−1
i=0 aiq

i, S :=
∑n−1
i=0 siq

i and c(x) = a(x) · s(x) mod xn + 1,
we have

A · S mod (qn + 1) ≈s
n−1∑
i

ciq
i

where ≈s means ≈ in each “slot” defined by multiples of q. This observation then
gives rise to the I-RLWE problem, which also permits packing several plaintext
bits into one large integer. In [Chu17], a reduction from Ring-LWE to I-RLWE
is given, but this reduction does not consider the noise distribution, only its
size.5 In [Ham17], a variant of I-RLWE over a pseudo-Mersenne field is given to
instantiate an MLWE KEM. Similarly, [AJPS17] can be considered as an integer
variant of NTRU.

Post-quantum cryptography on microcontrollers. Microcontrollers and embedded
processors usually have only very limited amount of available RAM, space to
store program code and operate with relatively simple 8-, 16-, or 32-bit processor
architectures. They are sometimes also referred to as constrained devices and are
mostly used in embedded applications where low energy consumption, reduced
costs, and other aspects like real-time capabilities are required. Such requirements
are commonly not fulfilled by computer systems or powerful System-on-Chips
(SoC) with external non-volatile memory or RAM. A special class of constrained
devices are smart cards or chip cards which are used in electronic banking, secured
identification (e.g. passports or national ID cards), authentication, or transport
and ticketing applications. Smart cards are usually equipped with protection
mechanisms against a wide range of invasive or non-invasive attacks and they
often feature dedicated accelerators to speed-up and to protect cryptographic
operations (e.g. AES, ECC, or RSA). Most commercial chip cards are certified
according to Common Criteria6 and evaluated in a laboratory.

The implementation of post-quantum cryptography on constrained devices is
an active research area. Most works in the literature focus on performance but
from a practical standpoint RAM consumption, code footprint and maintainability
of the code-base are also important metrics. Examples of PQC implementations
are works that deal with multivariate signatures [CHT12], code-based encryp-
tion [vMOG15] and hash-based signatures [HRS16]. In the area of lattice-based
cryptography, examples are an implementation of NTRU [BSJ15], an implemen-
tation of BLISS signatures on 32-bit ARM [OPG14], an implementation of CPA-
secure public-key encryption based on Ring-LWE on an 8-bit AVR [LPO+17a]
and 32-bit ARM [dCRVV15]. An implementation of the NewHope key exchange
protocol which is similar to Ring-LWE encryption is given in [AJS16].
5 We note, though, that according to all known cryptanalysis results for public-key

encryption based on LWE, the noise distribution does not play a significant role if it
provides enough entropy.

6 See http://www.commoncriteriaportal.org/products/#IC.

4

http://www.commoncriteriaportal.org/products/#IC

Similarly, the protection of lattice-based cryptography against side-channel
attacks has already been explored. An implementation of a masked decryption
of Ring-LWE CPA-secure PKE is described in [RdCR+16] and an implemen-
tation of a CCA-secure and masked variant is given in [OSPG18]. What has
received comparably less attention in the literature so far are flexible crypto-
graphic co-processors for lattice-based cryptography in the spirit of RSA or
ECC co-processors (cf. [SBPV07]) and instruction set extensions (cf. a multiply-
accumulate instruction [Wen13]).

2 Preliminaries

For x ∈ R, we write dxc to mean the closest integer to x (where dy + 1
2c := y + 1

for y ∈ Z). For a, b ∈ Z, we write a mod(+) b for the unique integer â ≡ a mod b
such that 0 ≤ â < b. We write a mod(−) b for the unique integer â ≡ a mod b
such that −b/2 ≤ â < b/2. We extend this definition to tuples, vectors, matrices
and polynomials a over Z component-wise. We also write [a]b for a mod(+) b. We
often write {a, . . . , b} to mean the set [a, b] ∩ Z.

We write

JconditionK :=
{

1 if condition is true,
0 if condition is false.

.

Unless stated otherwise, we let R = Z[x]/(xn + 1) where n is a power of 2,
and let Rq = R/(q) for some positive integer q. We let Rk (resp. Rkq) be a ring
module of dimension k over R (resp. Rq). Throughout we identify polynomials
in Rq with their lifted versions in R and in Z[x] with coefficients mod(−) q.

Given a set S and a probability distribution D over S we write s r←− D to
mean s ∈ S sampled according to D using coins r, and s r←− S to mean s ∈ S
sampled uniformly random from S with coins r. We may omit coins, in which
case we write $←−. We denote by v tuples in Sk, and use capital letters for matrices
M ∈ Sk×k. We write t ← v to assign value v to variable t inside algorithms.
Inside algorithms, we refer to the ith entry in an array a as a(i). If a variable v
gets overwritten as part of a loop (e.g. v ← v/2), we may refer to the variable v
after step i of the loop as v[i] (e.g. v[i] ← v[i−1]/2).

2.1 Hard problems

All schemes considered in this work relate to the Learning with Errors prob-
lem [Reg09].

Definition 1 (LWE [Reg09]). Let n, q be positive integers, χ be a probability
distribution on Z and s be a secret vector in Znq . We denote by Ls,χ the probability
distribution on Znq × Zq obtained by choosing a ∈ Znq uniformly at random,
choosing e ∈ Z according to χ and considering it in Zq, and returning (a, c) =
(a, 〈a, s〉+ e) ∈ Znq × Zq.
Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Znq × Zq are

5

sampled according to Ls,χ or the uniform distribution on Znq × Zq.
Search-LWE is the problem of recovering s from (a, c) = (a, 〈a, s〉+ e) ∈ Znq ×Zq
sampled according to Ls,χ.

Decision- and Search-LWE are polynomial-time equivalent [Reg09]. Since
LWE leads to public-key sizes at least quadratic in the security parameter, many
schemes are based on its ring variant, aptly called Ring-LWE [LPR10] or “RLWE”
in short. Below, we give the definition of Polynomial-LWE [SSTX09] (or “PLWE”)
which is equivalent to the RLWE definition for power-of-two cyclotomic rings.
For e.g. prime cyclotomic ring these two definitions are not equivalent, i.e. the
geometry of the error distribution changes somewhat. However, as is common in
the literature, we will abuse notation and refer to PLWE as RLWE.

Definition 2 (RLWE [SSTX09,LPR10]). Let n, q be positive integers, χ be
a probability distribution on Z and s be a secret polynomial in Rq. We denote by
Ls,χ the probability distribution on Rq×Rq obtained by choosing a ∈ Rq uniformly
at random, choosing e ∈ R by sampling each of its coefficients according to χ and
considering it in Rq, and returning (a, c) = (a, a · s+ e) ∈ Rq ×Rq.
Decision-RLWE is the problem of deciding whether pairs (a, c) ∈ Rq × Rq are
sampled according to Ls,χ or the uniform distribution on Rq ×Rq.
Search-RLWE is the problem of recovering s from (a, c) = (a, a · s+ e) ∈ Rq ×Rq
sampled according to Ls,χ.

The decision and search variants are polynomial-time equivalent for cyclotomic
rings [LPR10]. The increased efficiency of RLWE compared to LWE is achieved
by adding algebraic structure. Informally, each RLWE sample can be viewed
as n correlated LWE samples. While, so far, no algorithm is known which
exploits this additional structure, some designs hedge against such attacks by
considering instances which require the attacker to find short vectors in a lattice of
larger module rank [CDW17,SAB+17]. In particular, Module-LWE (or “MLWE”)
interpolates between the plain and the ring variants of LWE.

Definition 3 (MLWE [LS15]). Let n, q, k be positive integers, χ be a probabil-
ity distribution on Z and s be a secret module element in Rkq . We denote by Ls,χ
the probability distribution on Rkq ×Rq obtained by choosing a ∈ Rkq uniformly at
random, choosing e ∈ R by sampling each of its coefficients according to χ and
considering it in Rq, and returning (a, c) = (a, 〈a, s〉+ e) ∈ Rkq ×Rq.
Decision-MLWE is the problem of deciding whether pairs (a, c) ∈ Rkq × Rq are
sampled according to Ls,χ or the uniform distribution on Rkq ×Rq.
Search-MLWE is the problem of recovering s from (a, c) = (a, 〈a, s〉+e) ∈ Rkq×Rq
sampled according to Ls,χ.

Again, the search and the decision variants of this problem are polynomial-time
equivalent [LS15, Thm. 4.7].

6

2.2 Kyber

A recent construction relying on MLWE is the Kyber Key Encapsulation Mecha-
nism. Kyber has been submitted to the NIST PQC standardization process [SAB+17]
and a variant is also published as an academic paper [BDK+17]. It is defined
by an intermediate IND-CPA secure Public-Key Encryption (PKE) scheme
which is then transformed to an IND-CCA secure KEM using a generic trans-
form [HHK17].7 We note that Kyber unambiguously refers to the IND-CCA
secure KEM, i.e. [SAB+17] does not formally propose a public-key encryption
scheme nor a KEM which only claims IND-CPA security.

Definition 4 (Simplified Kyber.CPA following [BDK+17]; c.f. [SAB+17]).
Let k, n, q, η, dt, du, dv be positive integers, where n = 256. LetM = {0, 1}n be
the plaintext space, where each message m ∈M can be seen as a polynomial in
R with coefficients in {0, 1}. Define the functions

Compressq(x, d) := d(2d/q) · xc mod(+) 2d ,
Decompressq(x, d) := d(q/2d) · xc,

let χ a centered binomial distribution with support {−η, . . . , η}, and let χn be the
distribution of polynomials of degree n with entries independently sampled from
χ. Define the public-key encryption scheme Kyber.CPA = (Kyber.CPA.Gen,
Kyber.CPA.Enc, Kyber.CPA.Dec) as follows:

1 (ρ, σ) $←− {0, 1}256 × {0, 1}256 ;
2 A

ρ←− Rk×kq ;
3 (s, e) σ←− χkn × χkn ;
4 t← Compressq(As + e, dt) ;
5 return pkCPA := (t, ρ), skCPA := s ;

Algorithm 1: Kyber.CPA.Gen.

In Kyber, the parameters that define the base ring Rq are fixed at n = 256
and q = 7681. The parameters that define key and ciphertext compression are
also fixed and set to du = 11, dv = 3 and dt = 11. The three different security
levels are obtained by different choices of k and η. All relevant Kyber parameters
are summarized in Table 1.

The performance of an implementation of Kyber depends highly on the
speed of the polynomial multiplication algorithm and the performance of the
PRNG instantiations as a large number of pseudo random data is required when
generating A

ρ←− Rk×kq or when sampling noise from χkn. Regarding operation
in Rq, Kyber.CPA.Gen needs k2 multiplications and (k − 1)k additions. For
encryption as defined in Kyber.CPA.Enc, k2 multiplications and (k − 1)k
7 We note that [SAB+17] does not include the Targhi-Unruh tag.

7

Input: pkCPA = (t, ρ)
Input: m ∈M
Input: r $←− {0, 1}256

1 t← Decompressq(t, dt) ;
2 A

ρ←− Rk×kq ;
3 (r, e1, e2) r←− χkn × χkn × χn ;
4 u← Compressq(AT r + e1, du) ;
5 v ← Compressq(〈t, r〉+ e2 + d q2c ·m, dv) ;
6 return c := (u, v) ;

Algorithm 2: Kyber.CPA.Enc.

Input: skCPA = s
Input: c = (u, v)

1 u← Decompressq(u, du) ;
2 v ← Decompressq(v, dv) ;
3 return Compressq(v − 〈s,u〉 , 1) ;

Algorithm 3: Kyber.CPA.Dec.

additions as well as k multiplications and k − 1 additions are needed. The
decryption routine Kyber.CPA.Dec can be implemented with k multiplications
and k − 1 additions. Note that Kyber specifies a Number Theoretic Transform
(NTT). The NTT allows to implement a fast polynomial multiplication by
computing c = NTT−1(NTT(a) ◦ NTT(b)) for a, b, c ∈ Rq, where ◦ denotes
coefficient-wise multiplication. Kyber exploits that the NTT is a one-to-one
map and assumes that randomly sampled polynomials in A are already in the
transformed domain. Thus, an implementation using a different multiplication
algorithm than the NTT would have to apply an inverse transformation first and
then use the polynomial multiplication algorithm of its choice to stay compatible
with the original specification.

Given G : {0, 1}∗ → {0, 1}2×256 and H : {0, 1}∗ → {0, 1}256 two hash func-
tions, Kyber is obtained from Kyber.CPA using a Fujisaki-Okamoto style trans-
form from [HHK17] as shown in Algorithms 4, 5, 6. Withing Kyber.Decaps a
re-encryption has to computed whose result is compared to the received cipher-
text. Thus Kyber specifies exactly how to generate the uniformly random matrix
A as well as polynomials from the error distribution χn from a seed. For this
the authors of Kyber have chosen different instantiations from the SHA3 family
(SHAKE-128, SHAKE-256, SHA3-256 and SHA3-512).

1 ((t, ρ), s)← Kyber.CPA.Gen() ;
2 z

$←− {0, 1}256 ;
3 h← H((t, ρ)) ;
4 return pk := (t, ρ), sk := (s, t, ρ, h, z) ;

Algorithm 4: Kyber.Gen.

8

Parameter Set n q k η q. bit-sec. NIST level failure |pk| |sk| |ctxt|

Kyber512 256 7681 2 5 102 1 2−145 736 1632 800
Kyber768 256 7681 3 4 161 3 2−142 1088 2400 1152
Kyber1024 256 7681 4 3 218 5 2−169 1440 3168 1504

Table 1. Parameters proposed to NIST for instantiating Kyber KEM.

Input: pk = (t, ρ)
1 m

$←− {0, 1}256;
2 m← H(m);
3 (K̂, r)← G(m,H(pk)) ;
4 (u, v)← Kyber.CPA.Enc(pk,m; r);
5 c← (u, v) ;
6 K ← H(K̂,H(c));
7 return (c,K) ;

Algorithm 5: Kyber.Encaps.

Input: sk = (s, t, ρ, h, z)
Input: c = (u, v)

1 m′ ← Kyber.CPA.Dec(s, (u, v));
2 (K̂′, r′)← G(m′, h) ;
3 (u′, v′)← Kyber.CPA.Enc(pk,m′; r′);
4 if (u′, v′) = (u, v) then
5 K ← H(K̂′, H(c));
6 else
7 K ← H(z,H(c));
8 end
9 return K ;

Algorithm 6: Kyber.Decaps.

2.3 Target platform

We use an Infineon SLE78CLUFX50008 with 16 Kbyte RAM and 500 Kbyte
NVM that features a 16-bit CPU running at 50 MHz. The target chip is equipped
with common peripherals (watchdog, timers), internal security functions and
encryption procedures, a True Random Number Generator (TRNG), as well as a
symmetric co-processor to accelerate AES, a co-processor to compute SHA-256
8 We refer to https://www.infineon.com/cms/de/product/security-smart-card-

solutions/security-controllers/sle-78/ for more information on the SLE 78
family.

9

https://www.infineon.com/cms/de/product/security-smart-card-solutions/security-controllers/sle-78/
https://www.infineon.com/cms/de/product/security-smart-card-solutions/security-controllers/sle-78/

and an asymmetric co-processor for RSA and ECC accelleration. The chip allows
contact-based as well as contactless operation where it is powered by a field
generated by a common smart card reader. It is intended for use in applications
that require contactless or contact-based connectivity, like passports, identity
cards, access control or payment cards (e.g. banking, value, or credit cards).
A similar target device from the SLE 78 family has previously been used to
implement hash-based XMSS signatures [HBB13] or eta pairings [GK15].

The asymmetric co-processor on the SLE78CLUFX5000 allows fast basic
long number calculations on integers slightly larger than 2048 bits (addition,
subtraction, integer multiplication, modular multiplication). In practice it is
mainly used by cryptographic libraries for RSA and ECC.

As there is no standard for RSA/ECC co-processors our low-level implemen-
tation is certainly vendor specific. However, the general approach described in
Section 3 and Section 4 should be transferable to a large number of devices as
most other smart card vendors appear to use similar approaches. Additional
devices that could profit from our work could be server systems like the IBM
PCIe Cryptographic Coprocessor9 or existing FPGA-based RSA/ECC accelerator
cards or RSA/ECC accelerator IP.

3 Kronecker

Kronecker substitution is a classical technique in computer algebra for reduc-
ing polynomial arithmetic to large integer arithmetic, cf. [VZGG13, p. 245]
and [Har09]. The fundamental idea behind this technique is that univariate
polynomial and integer arithmetic are identical except for carry propagation
in the latter. Thus, coefficients are simply packed into an integer in such a
way as to terminate any possible carry chain. For example, say, we want to
multiply two polynomials f(x) := x + 2 with g(x) := 3x + 4 in Z[x]. We may
write f(100) = 100 + 2 = 102 and g(100) = 300 + 4 = 304. Multiplying gives
102 · 304 = 31008 or 3x2 + 10x+ 8. In implementations, we use powers of two as
evaluation points since this permits efficient “packing” (polynomial to integer)
and “unpacking” (integer to polynomial) using only cheap bit shifts.

In this work, we employ Kronecker substitution for computing

MulAdd
(
a(x), b(x), c(x), f(x)

)
:= a(x) · b(x) + c(x) mod f(x)

with all polynomials having signed coefficients from different ranges.
In more detail, we first pack the polynomials into integers A,B,C, F using Al-

gorithm 7 (Snort). We then compute D := A ·B+C mod F . Finally, we unpack
D to d(x) using Algorithm 8 (Sneeze). We note that our packing/unpacking algo-
rithms are straight-forward adaptations of standard Kronecker packing/unpacking
to the signed case, cf. [Har09]. We give highlevel, proof-of-concept Sage [S+17]
implementations for the algorithms in this section in Appendix B.
9 See http://www-304.ibm.com/jct01003c/common/ssi/ShowDoc.wss?docURL=

/common/ssi/rep_sm/1/649/ENUS4767-_h01/index.html.

10

http://www-304.ibm.com/jct01003c/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_sm/1/649/ENUS4767-_h01/index.html
http://www-304.ibm.com/jct01003c/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_sm/1/649/ENUS4767-_h01/index.html

Lemma 1 establishes the correctness of this procedure. While correctness
of Kronecker substitution is well-established and signed coefficients are usually
easily covered by bit shifts [Har09], we give a complete proof of correctness and
in particular the required precision in order to maintain the same error as in
Kyber, since faithful re-encryption is required for standard IND-CCA transforms
such as the one in [HHK17] utilised by Kyber. On the other hand, loosening this
requirement, permits to decrease precision (the parameter ` below) and hence to
improve performance.

Input: g ∈ Z[x]
Input: f ∈ Z[x]
Input: bitlength `

1 return g(2`) mod(+) f(2`) ;
Algorithm 7: Snort(g, f, `).

Input: G ∈ {0, . . . , f(2`)− 1}
Input: f ∈ Z[x], monic
Input: bitlength `

1 n← deg(f) ;
2 G[−1] ← G ;
3 for i = 0, 1, . . . , n− 1 do // step i

4 e(i) ← G[i−1] mod(+) 2` ;
5 G[i] ←

(
G[i−1] − e(i)) /2` ;

6 if e(i) > 2`−1 then // negative coefficient
7 e(i) ← e(i) − 2` ;
8 G[i] ← G[i] + 1 ;
9 end

10 r(i) ← e(i) ;
11 end
12 for i = 0, 1, . . . , n− 1 do r(i) ← r(i) − fiG[n−1] ; // subtract b · f(x)
13 return {r(i)}n−1

i=0 ;
Algorithm 8: Sneeze(G, f, `).

Lemma 1. Let a, b, c ∈ Z[x] such that a =
∑n−1
i=0 aix

i, b =
∑n−1
i=0 bix

i, c =∑n−1
i=0 cix

i with ai ∈ {−α, . . . , α}, bi ∈ {−β, . . . , β}, and ci ∈ {−γ, . . . , γ}. Let

d :=
n−1∑
i=0

di x
i ≡ a · b+ c mod f

11

with di ∈ {−δ, . . . , δ}, where δ > 0 depends on α, β, γ, n, f and f is monic of
degree n such that f(2`) > 2n`−1. Let ϕ := maxi<n |fi|, and let ` > log2(δ+ϕ)+1
be an integer (e.g. ` = dlog2(δ + ϕ+ 1)e+ 1).

If

A := Snort(a, f, `),
B := Snort(b, f, `),
C := Snort(c, f, `),

and
D := A ·B + C mod(+) f(2`),

then Sneeze (D, f, `) returns {r(i)}n−1
i=0 where r(i) = di for i ∈ {0, . . . , n− 1}.

Corollary 1 (Power of two cyclotomic). Let α, β, γ be as above, let n be a
power of 2, and let f(x) = xn + 1. Let δ := nαβ + γ. Then Lemma 1 holds.

Proof. See Appendix A. ut

Corollary 2 (Prime cyclotomic). Let α, β, γ be as above, let n = p− 1 where
p is prime, and let f =

∑n
i=0 x

i. Let δ := (2n− 1)αβ + γ. Then Lemma 1 holds.

Proof. See Appendix A. ut

Proof (Proof of Lemma 1). We need to uniquely encode any possible d as an
integer modulo f(2`). Since the coefficients di are ` bits long, and we need to
store n of them, this means that we require f(2`) > 2n` − 1.

When Sneeze is called, we set

G[−1] := D = A ·B + C mod(+) f(2`).

Since d ≡ a · b+ c mod f , it follows by explicit computation that

G[−1] = D =
n−1∑
i=0

di 2`i + b f(2`)

where the last equality is over the integers, for some b ∈ Z. Given that∣∣∣∣∣
n−1∑
i=0

di 2`i
∣∣∣∣∣ ≤ δ 2n` − 1

2` − 1 ≤ (2`−1 − 1) 2n` − 1
2` − 1 < 2n`−1,

the assumption that f(2`) > 2n` − 1 > 2n`−1 implies that b ∈ {0, 1}.
The main computation in Sneeze is done between lines 3 and 11, hence

we define some conditions on the output of that loop and prove they hold by
induction.

12

Claim. After step i ∈ {0, . . . , n− 1}, we have

r(i) = di + b fi (2)

and

G[i] =
n−1∑
j=i+1

dj 2`(j−i−1) + b
n∑

j=i+1
fj 2(j−i−1)` (3)

Assume Conditions 2, 3 hold for step i− 1 ≥ 0. We start by assigning

e(i) = G[i−1] mod(+) 2`

=
n−1∑
r=i

dr 2`(r−i) + b
n∑
j=i

fj 2(j−i)` mod(+) 2`

= di + b fi + ti 2`

for some ti ∈ Z such that e(i) ∈ {0, . . . , 2` − 1}. Similar to before, by definition
of ` and the fact that b ∈ {0, 1}, we have

|di + b fi| ≤ δ + ϕ < 2`−1 for all i ∈ {0, . . . , n− 1} (4)

Hence ti ∈ {0, 1} for i < n. We then set

G[i] = G[i−1] − e(i)

2`

=
n−1∑
r=i+1

dr 2`(r−i−1) + b
n∑

j=i+1
fj 2(j−i−1)` − ti

and balance e(i) (mod 2`). By the size consideration made in Inequality 4, this
amounts to subtracting ti2` from e(i). We keep account of this subtraction by
adding back ti to x(i). Finally, we assign r(i) ← e(i). Hence Conditions 2, 3 hold
for step i ≥ 1. Similarly, we can see that Conditions 2, 3 also hold for step i = 0,
proving the claim.

By Condition 3, after step i = n− 1 we have G[n−1] = b < 2`, which would
become the coefficient of an nth power of x in d. Line 12 takes care of reducing
this modulo f , which results in assigning

r(i) ← r(i) − fiG[n−1] = di + b fi − fi b = di for all i < n,

completing the proof. ut

Since operating on G[i] involves integer arithmetic on n` bit integers, we may
modify Algorithm 8 to correct carries on e(i) in order to avoid executing line 8 of
Algorithm 8. This variant of the algorithm is given as Algorithm 9. Note that
with this change the only large integer operations are division with remainder
modulo 2` and thus cheap, while the final output of the algorithm is the same.

13

The proof of Lemma 1 can be directly adapted to the MLWE setting where
we let

{
ai =

n−1∑
j=0

ai,jx
j
}κ
i=1

,
{
bi =

n−1∑
j=0

bi,jx
j
}κ
i=1

, c =
n−1∑
j=0

cjx
j

with ai,j ∈ {−α, . . . , α}, bi,j ∈ {−β, . . . , β}, and cj ∈ {−γ, . . . , γ} and want to
compute

∑κ
i=1 ai · bi + c (mod f), by letting

` > log2(κ(δ − γ) + γ + ϕ) + 1.

Overall, we arrive at the following corollary.

Corollary 3 (KyberMulAdd). Let {ai, bi}κi=1, c ⊂ Z[x], be as above, with
α =

⌊
q
2
⌋
, and β = γ = η, and let f = xn + 1. Let

` > log2

(
κn
⌊q

2

⌋
η + η + 1

)
+ 1

be an integer. Let Ai := Snort(ai, f, `), Bi := Snort(bi, f, `), C := Snort(c, f, `),
and D := A ·B +C mod(+) f(2`). Then Sneeze (D, f, `) returns d :=

∑κ
i=1 ai ·

bi + c (mod f).

Remark 1. From d ∈ R, the result in Rq can be obtained by coefficient-wise
modular reduction.

Input: G ∈ {0, . . . , f(2`)− 1}
Input: f ∈ Z[x], monic
Input: bitlength `

1 n← deg(f) ;
2 G[−1] ← G, c ← 0 ;
3 for i = 0, 1, . . . , n− 1 do // step i

4 e(i) ← G[i−1] mod(+) 2` ;
5 G[i] ←

(
G[i−1] − e(i)) /2` ;

6 e(i) ← e(i) + c ;
7 if e(i) > 2`−1 then e(i) ← e(i) − 2`, c ← 1 else c ← 0 ;
8 r(i) ← e(i) ;
9 end

10 for i = 0, 1, . . . , n− 1 do r(i) ← r(i) − fi (G[n−1] + c) ; // subtract b · f(x)
11 return {r(i)}n−1

i=0 ;
Algorithm 9: Sneeze-Fast(G, f, `). Same as Sneeze, but avoiding large
integer arithmetic for carry propagation.

14

3.1 Compact Kronecker

In [Har09], David Harvey presents two improved packing techniques for Kronecker
substitution, reducing integer sizes at the cost of performing more multiplications:
KS2 or “negated evaluation points” evaluates at

(
2`,−2`

)
and KS3 or “reciprocal

evaluation points” evaluates at
(
2`, 2−`

)
. Each technique halves the required

integer bit size at the cost of performing two multiplications. Note that integer
arithmetic is super-linear (e.g. Karatsuba multiplication is used for medium-sized
inputs and has a cost of 3log2 L for integers of size L, see below) and thus this
trade-off produces a noticeable speed-up. The two techniques are orthogonal
and can be combined, which reduces bit sizes by a factor of four at the cost
of increasing the number of multiplications to four. The combined algorithm is
referred to as KS4.

The KS2 algorithm proceeds as follows. Assume a(x), b(x) are such that their
product c(x) := a(x) · b(x) has positive coefficients bounded by 22`. Let

c(+) := c(2`) = a(2`) · b(2`) =
∑

[i]2=0

ci 2i` +
∑

[i]2=1

ci 2i`

c(−) := c(−2`) = a(−2`) · b(−2`) =
∑

[i]2=0

ci 2i` −
∑

[i]2=1

ci 2i`

Then, we can recover the even coefficients of c(x) from

c(+) + c(−) = c(2`) + c(−2`) = 2
∑

[i]2=0

ci 2i`

and the odd coefficients from

c(+) − c(−) = c(2`)− c(−2`) = 2 · 2`
∑

[i]2=1

ci 2(i−1)`

since the sum and the difference cancel out either the even or the odd powers.
The coefficients can be either read directly with care to their offset, or dividing
the above quantities by the appropriate power of 2 over the integers.

The KS2 algorithm is compatible with arithmetic modulo f = xn + 1, when
n is even. When doing this over Zf(2`) some care must be taken since reducing
c(·) modulo f(2`) may change its parity. In such case the coefficients can be
recovered by either multiplying c(+) + c(−) by 2−1 mod(+) f(2`) and c(+) − c(−)

by 2−`−1 mod(+) f(2`), or multiplying both quantities by a desired power of 2
modulo f(2`) and reading the coefficients with the appropriate offset. Packing
and unpacking are identical to standard Kronecker substitution, i.e. the proof of
Lemma 1 applies directly when working with such an f .

On the other hand, adapting packing and unpacking to combine the KS3
algorithm with modular reduction is somewhat more involved, requiring a fair
amount of careful bit shifting. Implementing this strategy would roughly half the
number of multiplications required at the cost of a more involved packing/un-
packing algorithm. However, since our packing and unpacking routines already

15

take more time than the actual multiplications they facilitate and since our
target platform does not have efficient bit-shift operations, we did not attempt
an implementation of KS3.

4 Splitting the ring

Commercially available multipliers are usually capable of evaluating (x, y, z) 7→
x · y (mod z) where log x, log y, log z < m for some fixed value of m which may
be lower than what is required to apply Lemma 1 directly. In fact, for typical
parameter sizes of lattice-based cryptography and of RSA, this is expected to be
the case. Thus, in this section — where we focus on f = xn + 1 with n a power
of two — we explain our strategy for utilising these “too small” multipliers.

Let a(x), b(x), c(x) be polynomials of degree< n as defined in Lemma 1 and let
` be the packing length used, we want to compute a(x)·b(x)+c(x) (mod f)(x). So
far we have considered two ways of doing this. First, we can pack every coefficient
of each polynomial individually in a large enough buffer, say of length `, and
then directly compute the result using polynomial arithmetic. Alternatively, we
can use Lemma 1 and evaluate a(2`) · b(2`) + c(2`) mod(+) (2n` + 1) packing
all the coefficients of each polynomial at once in a buffer of length n`+ 1, and
then unpack the final result. A third option consists of interpolating between
these two methods by combining Kronecker substitution with (typically low-
degree) polynomial arithmetic in order to shorten the lengths of the multiplier’s
inputs. This approach is similar to fast integer multiplication algorithms by
Schönhage [Sch77] or Nussbaumer [Nus80] applying an FFT.

The idea is the following. Say we have

a(x) = a0 + a1 x+ a2 x
2 + a3 x

3 and b(x) = b0 + b1 x+ b2 x
2 + b3 x

4

and we want to compute a(x) · b(x) (mod x4 + 1), i.e.

(a3b0 + a2b1 + a1b2 + a0b3)x3 + (a2b0 + a1b1 + a0b2 − a3b3)x2

+(a1b0 + a0b1 − a3b2 − a2b3)x + a0b0 − a3b1 − a2b2 − a1b3

but we have a multiplier that would only let us work modulo x2 + 1 given the `
required by Lemma 1. Letting y = x2, we can write a(x, y) = a(0)(y) + a(1)(y)x
where

a(0)(y) = a0 + a2 y and a(1)(y) = a1 + a3 y,

and similarly for b = b(x, y). Then, computing a(x, y) · b(x, y) (mod y2 + 1)
can be accomplished by packing A(·) = Snort(a(·)), B(·) = Snort(b(·)), and
multiplying

Ĉ(x) := a(x, 2`) · b(x, 2`) mod(+) 22` + 1

= (A(0) +A(1) x) · (B(0) +B(1) x) mod(+) 22` + 1.

16

We obtain

(a1b1 − a3b3 + (a3b1 + a1b3) y)x2 + a0b0 − a2b2 + (a2b0 + a0b2) y
+(a1b0 + a0b1 − a3b2 − a2b3 + (a3b0 + a2b1 + a1b2 + a0b3) y)x

if we were to unpack the coefficients of Ĉ(x). Note that the coefficients on
the second line match our target, but the coefficients on the first line do not
(they are not grouped correctly and the signs do not necessarily match). This
can be corrected by using the identity y = x2 and thus rewriting x2 → y and
reducing again modulo y2 + 1. From our intermediate representation Ĉ(x) =
Ĉ0 + Ĉ1 x+ Ĉ2 x

2, this can be done by defining C(x) = C0 + C1 x with

C0 := Ĉ0 + (2` · Ĉ2 mod(+) 22` + 1) mod(+) 22` + 1 and C1 = Ĉ1,

and then unpacking C(x) to obtain a · b (mod x4 + 1).
More generally, this can be formally described as follows. Let n = m ·ω. Given

a polynomial p(x) =
∑n−1
i=0 pix

i of degree < n, we can set y = xm, and then
rewrite p as

p(x, y) =
(
p0 + p0+m y + · · ·+ p0+(ω−1)m y

ω−1) x0

+
(
p1 + p1+m y + · · ·+ p1+(ω−1)m y

ω−1) x1

+ . . .

+
(
pm−1 + pm−1+m y + · · ·+ pm−1+(ω−1)m y

ω−1) xm−1

= p(0)(y) + p(1)(y)x+ · · ·+ p(m−1)(y)xm−1

where we write p(i)(y) :=
∑ω−1
j=0 pi+jm y

j , polynomials in y of degree < ω (i.e.
p(i) ← Ff(p,m, i), cf. Algorithm 10). The idea is to pack each p(i), p ∈ {a, b, c},
into buffers P (i) := p(i)(2`) mod(+) (2ω` + 1) of length ω`+ 1, and then evaluate

a(x, 2`) · b(x, 2`) + c(x, 2`) mod(+) (2ω` + 1),

where p(x, 2`) ≡
∑m
i=0 P

(i) xi. By Lemma 1, the integer modulo operation will
act on the coefficients as reduction modulo yω + 1 ≡ xn + 1 (mod y− xm) would.
While this takes care of some of the modulo xn + 1 reductions coming from
the product a · b, those where yi xj ≡ xim+j ≥ xn but im < n must still be
taken care of. Furthermore, some grouping of terms with power yi xj ≡ yr xs for
(i, j) 6= (r, s) also needs to be done even if no reduction is required. In any case,
no powers of x will be changed by the addition of c.

17

To better see what adjustments need to be done to the resulting polynomial
in x, we look at a(x, y) · b(x, y) (mod yω + 1) in detail.

a(x, y) · b(x, y) =
m−1∑
i,r=0

a(i)(y) b(r)(y)xi+r

=
m−1∑
i,r=0

ω−1∑
j,s=0

ai+jm br+sm y
j+s xi+r

≡
m−1∑
i,r=0

ω−1∑
j,s=0

(−1)Jj+s≥ωKai+jm br+sm y
[j+s]ω xi+r (mod yω + 1)

Given that y[j+s]ω xi+r ≡ xm·[j+s]ω + i+r (mod y − xm), one can see that after
reducing modulo yω + 1 it will be necessary to further reduce modulo xm + 1
whenever m · [j+ s]ω + i+ r ≥ n, which can happen only if i+ r ≥ m. We do this
by sending i+ r 7→ i+ r−m and j + s 7→ j + s+ 1 and multiplying the constant
coefficient by −1. Groupings can be made under similar conditions. Indeed, let
i∗, j∗ ≥ 0 be powers for x, y respectively. We want to group terms every time
i1 + j1 m = i2 + j2 m. A possible strategy is to group terms under the monomial
where i∗ < m, j∗ < ω (if ω < m this can be seen as writing the integer i∗ + j∗m
in base m). Hence, here we also map i∗ 7→ i∗ −m and j∗ 7→ j∗ + 1, this time
without multiplying by −1. Both these operations can be described as sending
any monomial yj xi where i ≥ m to yj+1 xi−m (mod yω + 1), or equivalently
(after evaluating a(x, 2`) · b(x, 2`) + c(2`) (mod 2ω` + 1)) by mapping monomials
xi with i ≥ m to 2` xi−m. After all the reductions and grouping are done, one
can simply Sneeze every coefficient to obtain the final result. The full procedure
results in Algorithms 10, 11.

A possible optimisation could be that of choosing ` more aggressively. Indeed,
we only ever need to pack polynomials of degree ω, and hence we could use this
value in place of n. This would save ≈ logm bits per packed coefficient while still
being able to perform the reduction modulo yω + 1 ≡ 2ω` + 1, overall resulting in
a saving of size ≈ ω logm per packed polynomial p(i)(y). In this case one would
need to unpack the P (i) before the second reduction and final grouping, and
handle these afterwards on the CPU.

Input: polynomial g ∈ R
Input: step size m, dividing n
Input: offset o

1 ω ← n/m ;
2 return

∑ω

j=0 gm·j+o x
j ;

Algorithm 10: Ff(g,m, o). Return a new polynomial containing every mth
coefficient of g, starting at offset o.

18

Input: polynomial a(x) ∈ R
Input: polynomial b(x) ∈ R
Input: bitlength `
Input: width parameter ω, dividing n

1 f ← xω + 1 ;
2 m ← n/ω ;

// construct polynomials A(x), B(x) of degree < m
3 for i = 0, 1, . . . ,m− 1 do
4 Ai ← Snort(Ff(a(x), m, i), f, `) ;
5 Bi ← Snort(Ff(b(x), m, i), f, `) ;
6 end
7 F ← 2ω` + 1 ;

// polynomial multiplication modulo integer F

8 Ĉ(x)← A(x) ·B(x) mod(+) F ;
// construct polynomial C(x) of degree < m

9 Cm−1 ← Ĉm−1 ;
10 for i = 0, 1, . . . ,m− 2 do
11 Ci ← Ĉi +

(
2` · Ĉm+i mod(+) F

)
mod(+) F ;

12 end
// construct tuple ĉ of polynomials ĉi each of degree < ω

13 for i = 0, 1, . . . ,m− 1 do
14 ĉi ← Sneeze (Ci, f, `) ;
15 end

// construct polynomial c(x) of degree < n
16 for i = 0, 1, . . . , ω − 1 do
17 for j = 0, . . . ,m− 1 do
18 cm·i+j ← (ĉj)i ;
19 end
20 end
21 return c(x) ;
Algorithm 11: a(x) · b(x) mod xn + 1 using an integer multiplier capable of
performing modular multiplication of integers up to ω`+ 1 bits.

At the heart of Algorithm 11 is polynomial multiplication of two, typically low-
degree, polynomials in line 8. A straightforward choice to realise this multiplication
is schoolbook multiplication. This has quadratic complexity but is a simple
algorithm. Another natural option is Karatsuba multiplication. In its simplest
form, the algorithm computes the product a+b·x and c+d·x in Z[x] by computing
the products t0 = a · c, t1 = b · d and t2 = (a+ b) · (c+ d) = ac+ ad+ bc+ bd and
outputting t0 + (t2 − t0 − t1) · x+ t2x

2. It has a cost of 3dlog2 Le multiplications
for degree L− 1 polynomials. We note that finding better multiplication formulas
for larger degrees is an active area of research [Mon05,FH07,CÖ10,BDEZ12].

19

5 Implementation

Using the strategies outlined in Sections 3 and 4, we are now ready to fix an
implementation of Kyber and the KyberMulAdd gadget (see Corollary 3)
using a big integer multiplier. We focus on the Kyber768 parameter set (or more
precisely a variant) and implement it on the Infineon SLE 78 (SLE78CLUFX5000)
equipped with an RSA, a AES and a SHA-256 co-processor and 16 Kbyte RAM.
All our software is native code and written in C and assembly language.

5.1 Description of Kyber using Kronecker

First we provide a description of our variant of Kyber.CPA that takes into
account Kronecker substitution. The algorithms closely resemble the implemen-
tation on our target device and include certain optimisations for performance
and reduction of memory consumption.

In Algorithm 12 we describe our implementation of Kyber.CPA.Gen10

and follow the notation of [SAB+17] where appropriate The sampling of a
uniform polynomial ai,j ∈ A is done by Parse(XOF(ρ||i||j)) for a random
seed ρ ∈ {0, 1}256 using the Extendable Output Function (XOF) denoted as
XOF(·). The sampling of a secret or noise polynomial in Rq is described by
CBD(PRF(σ,N)) where CBD stands for centred binomial distribution and
where PRF is a pseudorandom function (PRF) that takes a random seed σ ∈
{0, 1}256 and an integer N for domain separation. In [SAB+17] it is specified
that PRF(σ,N) = SHAKE-256(σ,N) and that XOF = SHAKE-128.

With regard to arithmetic, it is easy to see that s0, . . ., sk−1 are used k times
each, when computing A · s. Thus a straightforward optimisation is to pack
them into a big integer only once. This resembles some similarity to the NTT,
where it is also possible to achieve speedups by the very simple observation that
polynomials that are used several times have to be transformed into the NTT
domain only once. To obtain more control over the usage of Snort and Sneeze,
which is already integrated into the high-level gadget KyberMulAdd, we split
KyberMulAdd into sub-functions. The Ĉ = MulAddSingle(A,B,C) function
takes as input A = Snort(a), B = Snort(b), B = Snort(a) for a, b, c ∈ Rq and
computes Ĉ(x)← A(x) ·B(x) mod(+) F as specified in line 8 of Algorithm 11.
The C = FinalEll(Ĉ) function takes Ĉ and constructs the polynomial C(x)
of degree < m (line 11 of Algorithm 11) by multiplying by 2`. To save stack
memory we do not generate the full matrix A but only one coefficient after the
other. All in all, our approach to key generation requires k2 + 2k calls to Snort,
k2 big integer multiplications realised by MulAddSingle and k calls to Sneeze
as well as FinalEll.

CPA-secure Kyber encryption is described in Algorithm 13 where the com-
putation of ATr + e1 can be realised in the same way as the key generation
procedure by packing each polynomial of r into R only once and with on-the-fly
10 Instead of using SHA3-512 to hash the randomness, we directly take the output

from the on-chip TRNG using the TRNG(·) function; see below.

20

1 ρ
$←− TRNG() ; // ρ ∈ {0, 1}256 sampled from internal TRNG

2 σ
$←− TRNG() ; // σ ∈ {0, 1}256 sampled from internal TRNG

3 N ← 0 ;
// Sample s and transform to S

4 for i = k − 1, k − 2, . . . , 0 do
5 stmp ← CBD(PRF(σ,N)) ;
6 N ← N + 1 ;
7 Si ← Snort(stmp) ;
8 end

// Compute As + e
9 for i = 0, 1, . . . , k − 1 do

10 e← CBD(PRF(σ,N)) ;
11 N ← N + 1 ;
12 T̂ ← Snort(e) ;
13 for j = 0, 1, . . . , k − 1 do
14 atmp ← Parse(XOF(ρ||i||j)) ;
15 Atmp ← Snort(atmp) ;
16 T̂ ←MulAddSingle(Atmp, Sj , T̂) ;
17 end
18 T ← FinalEll(T̂) ;
19 ti ← Sneeze(T) ;
20 end
21 pk ← Encodedt (Compressq(t, dt)||ρ) ;
22 sk ← Encode13(s mod(+) q) ;
23 return pkCPA := pk, skCPA := sk ;

Algorithm 12: Kyber.CPA.Imp.Gen

generation of polynomials of A to save stack memory. The only difference is
that we initialize Ûtmp with on-the-fly sampled and packed error polynomials
ei ∈ e1 before computing the k scalar products. For 〈t, r〉 + e2 + d q2c · m we
sample e2 by e ← CBD(PRF(σ,N)), set V̂ ← Snort(e + m̄) and then com-
pute the scalar product in a loop with V̂ ←MulAddSingle(Ri, Ttpm, V̂). All
in all, Kyber.CPA.Imp.Enc requires k2 + 2k + 1 calls to Snort, k2 + k big
integer multiplications by MulAddSingle and k + 1 calls to Sneeze as well as
FinalEll.

In Algorithm 14 we describe CPA-secure Kyber decryption. The implementa-
tion of the scalar product to compute 〈s,u〉 follows the approach from encryption.
To reuse MulAddSingle and to save code needed for a subtraction gadget
we first negate v by computing V̂ ← Snort(−v) and then negate the final
result again as Compressq(−v, 1) to obtain v − 〈s,u〉. With only one scalar
multiplication we finally need k + 1 calls of Snort, k big integer multiplications
by MulAddSingle and one call to Sneeze as well as FinalEll.

21

Input: m ∈M
Input: pkCPA

1 t, ρ← Decodedt (pkCPA) ;
2 t← Decompressq(t) ;
3 N ← 0 ;

// Sample MLWE secret r and transform to R
4 for i = k − 1, k − 2, . . . , 0 do
5 rtmp ← CBD(PRF(σ,N)) ;
6 N ← N + 1 ;
7 Ri ← Snort(rtmp) ;
8 end

// Compute AT r + e1
9 for i = 0, 1, . . . , k − 1 do

10 e← CBD(PRF(σ,N)) ;
11 Ûtmp ← Snort(e) ;
12 N ← N + 1 ;
13 for j = 0, 1, . . . , k − 1 do
14 atmp ← Parse(XOF(ρ||i||j)) ;
15 Atmp ← Snort(atmp) ;
16 Ûtmp ←MulAddSingle(Atmp, Rj , Ûtmp) ;
17 end
18 Utmp ← FinalEll(Ûtmp) ;
19 ui ← Sneeze(Utmp) ;
20 end

// Compute 〈t, r〉+ e2
21 m̄← EncodeMsg(m) ;
22 e← CBD(PRF(σ,N)) ;
23 e← e+ m̄ ;
24 V̂ ← Snort(e) ;
25 for i = 0, 1, . . . , k − 1 do
26 Ttpm ← Snort(ti) ;
27 V̂ ←MulAddSingle(Ri, Ttpm, V̂) ;
28 end
29 V ← FinalEll(V̂) ;
30 v ← Sneeze(V) ;

// Encode ciphertext
31 c1 ← Encodedu (Compressq(u, du)) ;
32 c2 ← Encodedv (Compressq(v, dv)) ;
33 return c := (c1||c2) ;

Algorithm 13: Kyber.CPA.Imp.Enc

5.2 Implementation of Kyber on SLE 78

We now give details of our implementation of CPA and CCA-secure Kyber768
(thus k = 3) on the SLE 78 that are independent of the chosen approach for
packing and big integer multiplication (see Section 5.3 and Section 5.4). All
our implementations are not fully compatible with the specification as Kyber

22

Input: c := (c1||c2)
Input: skCPA

1 s← Decode13(skCPA) ;
2 u← Decompressq(Decodedu (c1)) ;
3 v ← Decompressq(Decodedv (c2)) ;
4 V̂ ← Snort(−v) ;

// Compute v − 〈s,u〉
5 for i = 0, 1, . . . , k − 1 do
6 Utmp ← Snort(ui) ;
7 Stmp ← Snort(si) ;
8 V̂ ←MulAddSingle(Stmp, Utmp, V̂) ;
9 end

10 V ← FinalEll(V̂) ;
11 v ← Sneeze(V) ;
12 return Encode1(Compressq(−v, 1)) ;

Algorithm 14: Kyber.CPA.Imp.Dec

is explicitly defined with a specific NTT and assumes that the pseudorandom
polynomials of A are already output by the sampler in the NTT domain.

To expand randomness into a longer bitstream, Kyber originally specifies
the use of various instances from the SHA3 family as PRNG (originally, XOF
is SHAKE-128 and PRF is SHAKE-256). We implemented one version of the
samplers that is compatible with the specification where SHAKE-128 and SHAKE-
256 are realised in software. Hardware acceleration is not possible as our target
device does not have a SHA3 hardware accelerator. The SHA3 implementation
written in C has been optimized to some extent with assembly to remove obvious
performance bottlenecks introduced by the compiler. Additionally, we have
implemented a (non-compatible) Kyber variant that is using AES-256 in counter
mode to implement XOF and PRF. A similar approach has been used by Google
in their NewHope experiment where the constant polynomial a was also sampled
using AES [Lan16]. Even though there are some theoretical concerns [ADPS16],
this approach appears to be valid in practice. When AES-256 is chosen as PRNG
we can rely on the AES co-processor of the SLE78CLUFX5000 and do not need
to implement AES in software.

A difference that is not noticeable by a user is that we, as previously mentioned,
do not hash the randomness provided to key generation due to the availability
of a TRNG. The hashing of the input randomness in the Kyber specification is
intended as a protection against leakage of the internal state of a random number
generator. However, on our target device we have access to a certified RNG with
appropriate post-processing and thus expensive computation of SHA3-512 is
unnecessary.

The implementations of CBD, Parse, Encode, Decode and Decompressq
follow the C reference implementation and are not particularly optimised using
assembly. Our implementation of CCA-secure Kyber using the FO transformation
is denoted as Kyber.CCA.Imp.Gen for key generation, Kyber.CCA.Imp.Enc

23

for encapsulation and Kyber.CCA.Imp.Dec for decapsulation straightforwardly
follows Algorithm 4 to 6. The main additional operations are the computation of
hash functions to implement random oracles. In one version of our implementation
we follow the specification where H is using SHA3-256 and G using SHA3-512
and where SHA3 is implemented in software. Additionally, we implemented a
variant where H is realised by the MAC-based scheme HKDF [Kra10] using a
SHA-256 co-processor and where H is realised by a call to SHA-256. The usage of
HKDF is necessary has the output of G has to be longer than a single SHA-256
hash.

5.3 Realisation of KyberMulAdd with KS1

The KyberMulAdd gadget consists of the functions Snort, MulAddSingle,
FinalEll, and Sneeze. In case of KS1 (standard Kronecker substitution) pa-
rameters (ω,m) = (64, 4) can be used (see Algorithm 11). Then 64 coefficients
can be packed into one integer and it is possible to perform polynomial arithmetic
modulo x4 + 1. When aiming for minimal size we could have used 25 bits of
precision per coefficient and thus 64 · 25 = 1600 bits in total. However, to simplify
the packing algorithm we have chosen 32 bits per coefficient (thus ` = 32) which
leads to integers of 64 · 32 = 2048 bits. This way no shifts by arbitrary integers
are required as everything is immediately word aligned in Snort. This provides
a performance advantage as the SLE 78 needs one cycle for each shift to the right
or left. Moreover, the big integer multiplier is relatively fast and thus the tradeoff
between simpler packing/unpacking and slightly larger integer coefficients turned
out to be favorable. However, on different platforms this may not be the case.
An issue that costs some performance is the correct handing of carry bits caused
by negative coefficients in Snort.

For a single big integer multiplication in MulAddSingle we use the RSA
co-processor on the SLE78CLUFX5000 which has five registers of length slightly
larger than 2048-bit. In a simplified model11 it is able to compute additions of
two registers in 8 cycles while a multiplication with modular reduction takes
roughly 9,300 cycles. However, not all registers are general purpose. One register
is a working register that contains the result of a computation and is not directly
accessible from the CPU. Another register is needed to store the modulus when
performing operations modulo p. Thus three registers are available for temporary
results or operands. Naturally, for an integer multiplication modulo log2 p = 2048,
two registers are already occupied with operands.

For KS1 with parameters (ω,m) = (64, 4) and ` = 32 one option to realise
the polynomial multiplication Ĉ(x) ← A(x) · B(x) mod(+) F for A,B,C ∈ Zp
with p = F = 2ω` + 1 = 22048 + 1 described in line 8 of Algorithm 11 would
be schoolbook multiplication. As we have to do polynomial arithmetic modulo
x4 + 1 this would lead to 42 = 16 multiplications in Zp due to the quadratic
complexity of schoolbook multiplication. To reduce the number of multiplications
11 We account for cycles needed for specific configuration instructions in the simplified

numbers presented here.

24

we have chosen Karatsuba multiplication for our KS1 implementation of the
MulAddSingle function, which leads to 9 multiplications, 17 additions and 16
subtractions in Zp. These numbers include additions or subtractions required
for the modulo x4 + 1 operation. In general, Karatsuba multiplication leads to a
large number of additions as a trade-off for fewer multiplications. An approach
where the additions are executed on the RSA co-processor would be possible
but requires a lot of transfers. We thus decided to exploit the ability to run the
co-processor and the CPU in parallel. While the RSA co-processor executes a
modular multiplication we compute long integer additions in parallel on the CPU.
This can easily be achieved by the appropriate rearrangement of multiplication
and addition/subtraction operations in the Karatsuba formula. Some additions
or subtractions caused by the modulo x4 + 1 operation are also hidden behind
Karatsuba multiplications. For the remaining additions and subtractions we make
use of the co-processor. To save cycles for transfers we store the result of several
additions/subtractions in one register of the co-processor so that we only have
to transfer values into the co-processor and then read out the final result. The
FinalEll function (see line 10 of Algorithm 11) requires 3 multiplications by 2`.
They are implemented on the co-processor using a special command that allows
fast shifting by 32 bits and are thus relatively cheap.

5.4 Realisation of KyberMulAdd with KS2

The KyberMulAdd gadget can also be implemented for KS2 (compact Kro-
necker) with parameters (ω,m) = (128, 2). Compact Kronecker would allow to
pack 128 coefficients into two big integers with 13 bits per coefficients. With 13
bits of precision per coefficient 13 · 128 = 1664 bits would be required in total.
However, similarly to KS1 we use 16 bits for easier packing/unpacking and end
up with integers of size of 16 · 128 = 2048 bits (` = 16). Computations are then
performed on two polynomials modulo x2 + 1. This leads to 2 · 22 = 8 multipli-
cations in Zp for p = F = 2ω` + 1 when using schoolbook multiplication. With
Karatsuba a reduction to 2 · 6 multiplication would be possible. As the difference
between Karatsuba and schoolbook is small we use schoolbook multiplication
to implement KS2. This allows us to store partial products during schoolbook
multiplication in the free register of the RSA co-processor. This way we can
perform additions with the RSA co-processor and save time as we do not have to
retrieve every result from the co-processor into the memory.

6 Performance and comparison

In this section we describe the performance of our Kyber768 implementation on
the SLE 78 and compare our results to related work. All cycle counts are averages
of several runs and have been measured on a cycle accurate emulator model.

25

6.1 Implementation performance

In Table 2 we provide cycle counts of our implementation of Kyber768, its variants,
and selected sub-functions. The results show similar performance for the KS1
and KS2 approach in Kyber.CPA.Imp with a small advantage for KS2. The
explanation is that KS1 with Karatsuba requires only a single multiplication more
than KS2 with schoolbook. The additional additions necessary for Karatsuba
in KS1 can effectively be hidden by running them in parallel with the RSA co-
processor and Snort for KS1 is roughly twice as fast than for KS2. However, this
is only a conclusion for the particular parameters using the specific co-processor.
KS1 and KS2 might lead to very different results in case our approach would be
used to implement a scheme like NewHope where n is much larger than in Kyber.
Cycle counts for CBD and Parse show that usage of the AES co-processor
provides a significant speedup compared to the SHA3 software implementation.
For CBD the difference is a factor of 300 and for Parse even a factor of 945.
With more optimization of the SHA3 software, e.g. by writing it fully in assembly,
it might be possible to reduce this to some extent. An additional advantage is
that the AES co-processor already implements some countermeasures against
physical attacks. Such attacks are not the focus of our work but a secured PRNG
would be easier to realise with the AES co-processor than by using a shared SW
implementation of SHA3 (see [OSPG18] where this necessity is discussed and
performance of a shared SHA3 is given). With roughly ≈ 376, 000 cycles used
for sampling in Kyber.CPA.Imp.Gen (≈ 9× Parse + 6×CBD) and roughly
≈ 407, 000 cycles used in Kyber.CPA.Imp.Enc(≈ 9×Parse + 7×CBD) the
sampling requires only about 10 percent of the overall runtime. Additionally,
in Table 3 we have computed the sum of cycles based on the calls to measured
subfunctions for KS1. This gives an overview what amount of cycles can be
associated to each operation. In all three functions the most cycles are contributed
by MulAddSingle and Sneeze. They would be a natural target for further
optimization.

Compared to a Kyber768 implementation that is using the NTT as specified
in [SAB+17] on the SLE 78 in software, our approach of using the co-processor
to compute the KyberMulAdd gadget provides an advantage. On the SLE
78 a single n = 256 NTT costs 997,691 cycles. The computation of Kyber-
CPA.Enc for k = 3 requires 8 calls to the NTT12 which alone would account for
roughly 8 · 997, 691 ≈ 8.0 million cycles plus additional overhead from pointwise
multiplication and addition.

In case one would want to make our implementation compatible with Kyber
as specified in [SAB+17] in terms of NTT usage and still use the KyberMulAdd
gadget we would have to perform k2 inverse NTTs and then use our multiplication
algorithm. This would add roughly 32 · 997, 691 ≈ 9.0 million cycles to Gen
and Enc when executed on the CPU. It would basically nullify all gains from a
different and faster algorithm for polynomial multiplication.

12 See [SAB+17, Algorithm 5] where 3 NTTs are required to transform r, 3 inverse
NTTs are applied to Â ◦ r̂ and 2 NTTs are needed to obtain v.

26

All in all, when our Kyber variant that is using the AES co-processor (i.e. AES-
HW) is run on our target device with an average clock frequency of 50 MHz we
can execute Kyber.CPA.Imp.Gen in 72.5 ms, Kyber.CPA.Imp.Enc in 94.9
and Kyber.CPA.Imp.Dec in 28.4 ms.

For the CCA variant the decryption becomes slower due to the re-encryption
but the additional overhead of the hash functions H and G is rather low when the
SHA-256 co-processor is used (HW-SHA-256) to compute SHA-256 and HKDF
with HMAC-SHA-256. When H and G are instantiated with SHA3 implemented
in software (SW-SHA3) a significant portion of the computation is now attributed
to SHA3. In comparison we can execute Kyber.CCA.Imp.Gen in 79.6 ms (290,3
ms with SW-SHA3), Kyber.CCA.Imp.Enc in 102.4 ms (571.2 ms with SW-
SHA3) and Kyber.CCA.Imp.Dec in 132.7 ms (394.0 ms with SW-SHA3). An
implementation of Kyber that is fully compatible with the specification [SAB+17]
would not achieve practical performance mainly due to the slow SHA3 PRNG
performance and to a lesser extent due to the slower NTT in software. Of course,
further low-level optimization of SHA3 and the NTT could change this picture
to some extent.

6.2 Comparison with related work

In Table 4 we provide a comparison of our results with related work on similar
target platforms. However, it should be noted that such a comparison will always
lack precision as many parameters of published implementations differ in terms
of cryptographic (post-quantum) bit-security level, implementation security level,
exact variant of a scheme, CPU architecture, maximum clock frequency of the
device, or availability of specific accelerators. Moreover, only limited information
is available about most smart card platforms and those platforms are often
not available without signing non-disclosure agreements. It is also clear that
the requirements for a certified contactless high security controller, where most
computations are done using co-processors, are expected to lead to different CPU
designs or low-level implementations than that for a high performance embedded
microcontroller.

As we use an RSA co-processor for lattice-based cryptography, a natural
target for a comparison is RSA. The cycle counts given in Table 4 for co-processor
supported RSA on our SLE 78 target device are based on the data sheet. With
an average clock frequency of 50 MHz on the SLE 78, RSA encryption can be
executed in 6 ms while RSA decryption with CRT needs 120 ms. In comparison
with our work this shows that our Kyber implementation is two order of magnitude
slower for encryption but performs decryption with similar speed. In case RSA
is not used with CRT our Kyber decryption even outperforms RSA. However,
it should be noted that the RSA cycle counts do not account for padding
like Optimal Asymmetric Encryption Padding (OAEP) which used to achieve
CCA2 security for RSA. However, they include countermeasures against physical
attacks (e.g. exponent blinding or message blinding, see [FWA+13]) while our
implementation does not.

27

Table 2. Performance of our work on the SLE 78 target device in clock cycles.

Operation Cycles

Snort (KS1) 31,017
Sneeze (KS1) 295,730
MulAddSingle (KS1) 201,767
FinalEll (KS1) 28,381

Snort (KS2) 70,015
Sneeze (KS2) 295,331
MulAddSingle (KS2) 186,652
FinalEll (KS2) 90,728

NTT (n = 256, in SW) 997,691
Pointwise-Multiplication (n = 256, in SW) 356,549
CBD(PRF(σ,N)) (Software-SHA3) 9,341,406
CBD(PRF(σ,N)) (Hardware-AES) 31,068
Parse(XOF(ρ||i||j)) (Software-SHA3) 19,934,170
Parse(XOF(ρ||i||j)) (Hardware-AES) 21,081

Kyber.CPA.Imp.Gen (HW-AES: PRF/XOF; KS1) 3,953,224
Kyber.CPA.Imp.Enc (HW-AES: PRF/XOF; KS1) 5,385,598
Kyber.CPA.Imp.Dec (KS1) 1,382,963

Kyber.CPA.Imp.Gen (HW-AES: PRF/XOF; KS2) 3,625,718
Kyber.CPA.Imp.Enc (HW-AES: PRF/XOF; KS2) 4,747,291
Kyber.CPA.Imp.Dec (KS2) 1,420,367

Kyber.CCA.Imp.Gen (HW-AES: PRF/XOF; HW-SHA-256: H; KS2) 3,980,517
Kyber.CCA.Imp.Enc (HW-AES: PRF/XOF; HW-SHA-256: G,H; KS2) 5,117,996
Kyber.CCA.Imp.Dec (HW-AES: PRF/XOF; HW-SHA-256: G,H; KS2) 6,632,704

Kyber.CCA.Imp.Gen (HW-AES: PRF/XOF; SW-SHA3: H; KS2) 14,512,691
Kyber.CCA.Imp.Enc (HW-AES: PRF/XOF; SW-SHA3: G,H; KS2) 28,557,962
Kyber.CCA.Imp.Dec (HW-AES: PRF/XOF; SW-SHA3: G,H; KS2) 19,702,139

Publicly available information on the performance of RSA and ECC on
various smart cards running the JavaCard platform can be found in works like
[DRHM17,SNS+16], the Bachelor’s thesis of Kvašňovský [Kva16] as well as in
the JCAlgTest project13. Across the selected cards, runtime for an RSA2048
encryption function call range from 8 to 74 ms while RSA2048 decryption takes
between 426 to 2,927 ms and 140 to 1,569 ms when using the Chinese Remainder
Theorem (CRT). On-card key generation for RSA2048 is a complex process
with a variable runtime due to the required primality testing and takes between
6,789 and 44,143 ms. There is also a certain overhead by the JavaCard platform
compared to a pure native implementation as well as overhead from various
countermeasures against physical attacks.

13 See https://www.fi.muni.cz/~xsvenda/jcalgtest/comparative-table.html.

28

https://www.fi.muni.cz/~xsvenda/jcalgtest/comparative-table.html

Table 3. Called functions, number of calls, clock cycles, and final sum of clock cycles.

Kyber.CPA.Imp.Gen (KS1)

Function Calls Cycles per function Product

CBD(PRF(σ,N)) (HW-AES) 6 31,068 186,408
Parse(XOF(ρ||i||j)) (HW-AES) 9 21,081 189,729
Snort 16 31,017 496,272
MulAddSingle 9 201,767 1,815,903
Sneeze 3 295,730 887,190
FinalEll 3 28,381 85,143
Encode/Decode - - 400,226

= 4,060,871
Kyber.CPA.Imp.Enc (KS1)

Function Calls Cycles per function Product

CBD(PRF(σ,N)) (HW-AES) 7 31,068 217,476
Parse(XOF(ρ||i||j)) (HW-AES) 9 21,081 189,729
Snort 16 31,017 496,272
MulAddSingle 12 201,767 2,421,204
Sneeze 4 295,730 1,182,920
FinalEll 4 28,381 113,524
Encode/Decode - - 676,453

= 5,297,578
Kyber.CPA.Imp.Dec (KS1)

Function Calls Cycles per function Product

CBD(PRF(σ,N)) (HW-AES) 0 31,068 0
Parse(XOF(ρ||i||j)) (HW-AES) 0 21,081 0
Snort 4 31,017 124,068
MulAddSingle 3 201,767 605,301
Sneeze 1 295,730 295,730
FinalEll 1 28,381 28,381
Encode/Decode - 365,175

= 1,418,655

29

For comparison with other post-quantum schemes we have ported the reference
implementation of ephemeral/CPA-secure NewHope with n = 1024 claiming 255-
bits of post-quantum security onto our target device. To obtain a fair comparison
we also changed the internal PRNG to use the co-processor-based AES in counter-
mode and we removed costly randomness hashing in the key generation. With
these modifications the main bottleneck in NewHope is the computation of NTTs.
When comparing CPA-secure NewHope implementation (claimed 255-bit security
level) with our CPA-secure Kyber (claimed 161-bit security level) in an ephemeral
key setting14, we achieve a factor of 6 better performance for Alice (Gen+Dec)
and a factor of 7 better performance for Bob (Enc).

Most modern general purpose ARM-based microcontroller platforms (e.g.
Cortex-M) have the advantage of a 32-bit architecture and are equipped with a
single-cycle or few-cycle multiplier (optional in Cortex-M0). Thus good perfor-
mance can be expected for most arithmetic operations, e.g. the inner loop of the
NTT. Open-source implementations of Kyber768 and NewHope1024 targeting
general purpose ARM controllers are available through the mupq project [va18].
It can be seen that in comparison with such a different class of devices our
CCA-secure Kyber768 implementation of Gen and Enc is slower than Kyber768
on ARM using the NTT.

7 Conclusion and future work

In this work we have shown that fast post-quantum cryptography is feasible on
current smart card platforms. On a commercially available device it is possible
to obtain a significant speedup of the arithmetic of lattice-based cryptography
by reusing already existing co-processors dedicated to the acceleration of RSA
or ECC. Our work can thus be used by the industry for a possibly smoother
migration towards PQC, by reusing already existing and available hardware. Our
work also shows that the NTT might not always be the superior polynomial
multiplication algorithm.15 This seems to be a worthwhile consideration in the
context of the NIST competition where some schemes made the NTT part of
their definition. Moreover, our results show that the performance of lattice-based
schemes on particular embedded devices highly depends on the speed of the
underlying PRNG. It might be worthwhile to consider constructions that make
use of PRNGs based on AES instead of SHA3 due to the better availability of
(secured) AES hardware acceleration on smart cards or constrained devices in
general. The same argument applies to the instantiation of hash functions using
SHA-256.

With regard to the optimisation of our particular Kyber implementation,
a possible next step is an implementation on an ARM-based smart card or
embedded secure element equipped with an ECC/RSA co-processor. On such an
14 Of course, a better target for comparison would be Kyber1024 with 218-bit security

but an implementation on SLE 78 is not available as we focus on Kyber768.
15 See also an NTT-related discussion on the NIST PQC mailing list: https://groups.

google.com/a/list.nist.gov/forum/#!topic/pqc-forum/r9R7OJT6x_c.

30

https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/r9R7OJT6x_c
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/r9R7OJT6x_c

Table 4. Comparison of our work with other PKE or KEM schemes on various microcontroller
platforms in clock cycles.

Scheme Target Gen Enc Dec
Kyber768a (CPA; our work) SLE 78 3,625,718 4,747,291 1,420,367
Kyber768b (CCA; our work) SLE 78 3,980,517 5,117,996 6,632,704

RSA-2048c SLE 78 - ≈ 300,000 ≈ 21,200,000
RSA-2048 (CRT)d SLE 78 - ≈ 300,000 ≈ 6,000,000
Kyber768 (CPA+NTT)e SLE 78 ≈ 10,000,000 ≈ 12,600,000 ≈ 5,400,000
NewHope1024f SLE 78 ≈ 14,700,000 ≈ 31,800,000 ≈ 15,200,000

Kyber768g ARM 1,200,351 1,497,789 1,526,564
NewHope-1024h ARM 1,168,224 1,738,922 298,877
CPA-RLWE-512i AVR - 1,975,806 553,536
CCA-RLWE-1024j ARM 2,669,559 4,176,68 4,416,918
QC-MDPCk ARM - 7,018,493 42,129,589
Curve25519l MSP 5,941,784 11,883,568 5,941,784
Curve25519m ARM 3,589,850 7,179,700 3,589,850
a CPA-secure Kyber variant using the AES co-processor to implement PRF/XOF and KS2
on SLE 78 @ 50 MHz.

b CCA-secure Kyber variant using the AES co-processor to implement PRF/XOF, the
SHA-256 co-processor to implement G and H and KS2 on SLE 78 @ 50 MHz.

c RSA-2048 encryption with short exponent and decryption without CRT and with
countermeasures on SLE 78 @ 50 MHz. Extrapoliation based on data-sheet.

d RSA-2048 decryption with short exponent and decryption with CRT and countermeasures
on SLE 78 @ 50 MHz. Extrapoliation based on data-sheet.

e Extrapolation of cycle counts of CPA-secure Kyber768 based on our implementation
assuming usage of the AES co-processor to implement PRF/XOF and a software
implementation of the NTT with 997, 691 cycles for an NTT on SLE 78 @ 50 MHz.

f Reference implementation of constant time ephemeral NewHope key exchange
(n = 1024) [ADPS16] modified to use the AES co-processor as PRNG on SLE 78 @ 50
MHz.

g Kyber768 from mupq project [va18] on ARM Cortex-M4F (STM32).
h Constant time ephemeral NewHope key exchange (n=1024) [ADPS16] from [AJS16] on
ARM Cortex-M0 (STM32) @ 48 MHz.

i Constant time CPA-secure RLWE-encryption [LP11] (RLWEenc-IIa with n = 512)
from [LPO+17b] on 8-bit ATxmega128A1 @ 32 MHz.

j CCA-secure RLWE-encryption [LP11] (n = 1024) from [OSPG18] on ARM Cortex-M4F
(STM32) @ 168 MHz. With first order masking decryption is 25,334,493 cycles.

k CPA-secure QC-MPDC public-key encryption [MTSB12] from [vMOG15] on ARM
Cortex-M4F (STM32F407) @ 168 MHz. Parameters provide 80-bit pre-quantum security
level.

l Elliptic curve Diffie-Hellman using Curve25519 [Ber06] from [DHH+15] on 16-bit
MSP430X @ 16 MHz. For simplification we report the cost of one point multiplication
(PM) in Gen, two PMs in Enc and one PM in Dec.

m Elliptic curve Diffie-Hellman using Curve25519 [Ber06] from [DHH+15] on ARM Cortex
@ 48 MHz. Reporting as in l .

31

architecture the comparison to standard microcontroller-based implementations
of PQC (e.g. [vMOG15,DHH+15,OSPG18]) would be much easier. Additionally,
it is an open question how much speedup ECC/RSA co-processors will actually
provide on ARM platforms equipped with a single-cycle multiplier. Here it is also
worth to consider that on an ARM processor Snort, Sneeze, and software-based
big integer addition are also expected to be significantly faster due to the more
efficient instruction set and larger word size, while the CPU and the co-processor
could still execute in parallel.

From the algorithmic side, in the case of the KS1, ω = 64 implementation of
Kyber we currently require ` ≥ 25 bits of precision, and hence opted for using 32
bits. By using the considerations made in Section 4 about swapping ω for n in
the formula for computing `, we could get down to ` ≥ 23, making it possible to
save some memory at the cost of a more complex unpacking.

In a more general direction it appears interesting to investigate whether a
performance advantage can be obtained with schemes specifically designed with
the constraints of the big integer multiplier in mind such as ThreeBears [Ham17]
or Mersenne-75683917 [AJPS17]. However, we note that these schemes use integer
sizes too large for direct handling with our co-processor. In contrast, MLWE-based
schemes immediately allow for a piece-wise approach. Thus, another interesting
target for implementation could be an MLWE-based scheme that is parameterised
with a power-of-two modulus q, e.g. SABER [DKRV17] which permits to efficiently
implement the strategy from Equation (1). For example, a viable choice could
be a prime-cyclotomic ring for n = 167 with 213 such that each ring element
fits directly into a co-processor register. Another approach would be a Kyber
instantiation with a smaller prime modulus q, as we do not have to choose q
in a way that a fast NTT exists. Moreover, our results naturally transfer over
to the Dilithium signature scheme and an implementation on the SLE 78 is a
natural next step. However, parameters have to be adapted for Dilithium, as it
uses a larger modulus q = 8380417. Another interesting question is whether it
is possible to efficiently use RSA/ECC co-processors to implement the NTT by
treating the big integer multiplier as a vector processor using smart packing of
coefficients or a variant of Kronecker substitution.

32

References

AD17. Martin R. Albrecht and Amit Deo. Large modulus ring-LWE ≥ module-
LWE. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part I, volume 10624 of LNCS, pages 267–296. Springer, Heidelberg, De-
cember 2017.

ADPS16. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In Thorsten Holz and Stefan Savage,
editors, 25th USENIX Security Symposium, USENIX Security 16, pages
327–343. USENIX Association, 2016.

AJPS17. Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Mikos Santha.
Mersenne-756839. Technical report, National Institute of Standards and
Technology, 2017. available at https://csrc.nist.gov/projects/post-
quantum-cryptography/round-1-submissions.

AJS16. Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. Newhope on ARM
cortex-m. In Security, Privacy, and Applied Cryptography Engineering -
6th International Conference, SPACE 2016, pages 332–349, 2016.

BDEZ12. Razvan Barbulescu, Jérémie Detrey, Nicolas Estibals, and Paul Zimmer-
mann. Finding optimal formulae for bilinear maps. In Ferruh Özbudak and
Francisco Rodríguez-Henríquez, editors, Arithmetic of Finite Fields, volume
7369 of Lecture Notes in Computer Science, pages 168–186. Springer Berlin
Heidelberg, 2012.

BDK+17. Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS
- kyber: a cca-secure module-lattice-based KEM. IACR Cryptology ePrint
Archive, 2017:634, 2017. to appear in IEEE European Symposium on
Security and Privacy 2018, EuroS&P 2018.

Ber06. Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006,
volume 3958 of LNCS, pages 207–228. Springer, Heidelberg, April 2006.

BLP+13. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical hardness of learning with errors. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages
575–584. ACM Press, June 2013.

BSJ15. Ahmad Boorghany, Siavash Bayat Sarmadi, and Rasool Jalili. On con-
strained implementation of lattice-based cryptographic primitives and
schemes on smart cards. ACM Trans. Embed. Comput. Syst., 14(3):42:1–
42:25, April 2015.

CCD+15. Matthew Campagna, Lidong Chen, Dr Özgür Dagdelen, Jintai Ding, Jen-
nifer K. Fernick, Nicolas Gisin, Donald Hayford, Thomas Jennewein, Nor-
bert Lütkenhaus, Michele Mosca, Brian Neill, Mark Pecen, Ray Perlner,
Grégoire Ribordy, John M. Schanck, Dr Douglas Stebila, Nino Walenta,
William Whyte, and Dr Zhenfei Zhang. ETSI whitepaper: Quantum
safe cryptography and security. http://www.etsi.org/images/files/
ETSIWhitePapers/QuantumSafeWhitepaper.pdf, June 2015.

CDW17. Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stickelberger
class relations and application to ideal-SVP. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 324–348. Springer, Heidelberg, May 2017.

33

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://www.etsi.org/images/files/ETSIWhitePapers/QuantumSafeWhitepaper.pdf
http://www.etsi.org/images/files/ETSIWhitePapers/QuantumSafeWhitepaper.pdf

CHT12. Peter Czypek, Stefan Heyse, and Enrico Thomae. Efficient implementations
of MQPKS on constrained devices. In Emmanuel Prouff and Patrick
Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 374–389.
Springer, Heidelberg, September 2012.

Chu17. Gu Chunsheng. Integer version of ring-LWE and its applications. Cryptology
ePrint Archive, Report 2017/641, 2017. http://eprint.iacr.org/2017/
641.

CLT13. Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical
multilinear maps over the integers. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 476–493.
Springer, Heidelberg, August 2013.

CÖ10. Murat Cenk and Ferruh Özbudak. On multiplication in finite fields. Journal
of Complexity, 26(2):172–186, 2010.

CS15. Jung Hee Cheon and Damien Stehlé. Fully homomophic encryption over
the integers revisited. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 513–536. Springer,
Heidelberg, April 2015.

dCRVV15. Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Efficient software implementation of ring-LWE encryption. In
Proceedings of the 2015 Design, Automation & Test in Europe Conference
& Exhibition, DATE 2015, pages 339–344, 2015.

DHH+15. Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter, Christof
Paar, Ana Helena Sánchez, and Peter Schwabe. High-speed curve25519
on 8-bit, 16-bit, and 32-bit microcontrollers. Des. Codes Cryptography,
77(2-3):493–514, 2015.

DKRV17. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. Saber. Technical report, National Institute of Standards and
Technology, 2017. available at https://csrc.nist.gov/projects/post-
quantum-cryptography/round-1-submissions.

DRHM17. Petr Dzurenda, Sara Ricci, Jan Hajny, and Lukas Malina. Performance
analysis and comparison of different elliptic curves on smart cards. In Inter-
national Conference on Privacy, Security and Trust (PST), 2017. to appear,
see https://www.ucalgary.ca/pst2017/files/pst2017/paper-39.pdf.

FH07. Haining Fan and M. Anwar Hasan. Comments on “five, six, and seven-term
karatsuba-like formulae”. IEEE Trans. Computers, 56(5):716–717, 2007.

FWA+13. Dirk Feldhusen, Guntram Wicke, Arnold Abromeit, Lex Schoonen, and
Zertifizierungsstelle BSI˙Minimum requirements for evaluating side-channel
attack resistance of rsa, dsa and diffie-hellman key exchange implementa-
tions. Technical report, German Federal Office for Information Security -
BSI, 1 2013. See https://www.bsi.bund.de/SharedDocs/Downloads/DE/
BSI/Zertifizierung/Interpretationen/AIS_46_BSI_guidelines_SCA_
RSA_V1_0_e_pdf.pdf?__blob=publicationFile&v=1.

GK15. Peter Günther and Volker Krummel. Implementing cryptographic pairings
on accumulator based smart card architectures. In Mathematical Aspects of
Computer and Information Sciences - 6th International Conference, MACIS
2015, Berlin, Germany, November 11-13, 2015, Revised Selected Papers,
pages 151–165, 2015.

Ham17. Mike Hamburg. Three bears. Technical report, National Institute of
Standards and Technology, 2017. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions.

34

http://eprint.iacr.org/2017/641
http://eprint.iacr.org/2017/641
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://www.ucalgary.ca/pst2017/files/pst2017/paper-39.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_BSI_guidelines_SCA_RSA_V1_0_e_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_BSI_guidelines_SCA_RSA_V1_0_e_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_BSI_guidelines_SCA_RSA_V1_0_e_pdf.pdf?__blob=publicationFile&v=1
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Har09. David Harvey. Faster polynomial multiplication via multipoint kronecker
substitution. J. Symb. Comput., 44(10):1502–1510, 2009.

HBB13. Andreas Hülsing, Christoph Busold, and Johannes Buchmann. Forward
secure signatures on smart cards. In Lars R. Knudsen and Huapeng Wu,
editors, SAC 2012, volume 7707 of LNCS, pages 66–80. Springer, Heidelberg,
August 2013.

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer,
Heidelberg, November 2017.

HRS16. Andreas Hülsing, Joost Rijneveld, and Peter Schwabe. ARMed SPHINCS
- computing a 41 KB signature in 16 KB of RAM. In Chen-Mou Cheng,
Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016,
Part I, volume 9614 of LNCS, pages 446–470. Springer, Heidelberg, March
2016.

Kra10. Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF
scheme. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
631–648. Springer, Heidelberg, August 2010.

Kva16. Rudolf Kvašňovský. The detailed performance analysis of JavaCard crypto-
graphic smartcards, 2016.

Lan16. Adam Langley. CECPQ1 results, Nov 2016.
LP11. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for

LWE-based encryption. In Aggelos Kiayias, editor, CT-RSA 2011, volume
6558 of LNCS, pages 319–339. Springer, Heidelberg, February 2011.

LPO+17a. Zhe Liu, Thomas Pöppelmann, Tobias Oder, Hwajeong Seo, Sujoy Sinha Roy,
Tim Güneysu, Johann Großschädl, Howon Kim, and Ingrid Verbauwhede.
High-performance ideal lattice-based cryptography on 8-bit AVR micro-
controllers. ACM Trans. Embedded Comput. Syst., 16(4):117:1–117:24,
2017.

LPO+17b. Zhe Liu, Thomas Pöppelmann, Tobias Oder, Hwajeong Seo, Sujoy Sinha Roy,
Tim Güneysu, Johann Großschädl, Howon Kim, and Ingrid Verbauwhede.
High-performance ideal lattice-based cryptography on 8-bit AVR micro-
controllers. ACM Trans. Embedded Comput. Syst., 16(4):117:1–117:24,
2017.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 1–23. Springer, Heidelberg, May 2010.

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75(3):565–599, Jun
2015.

Mon05. Peter L. Montgomery. Five, six, and seven-term karatsuba-like formulae.
IEEE Transactions on Computers, 54(3):362–369, 2005.

MTSB12. Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M.
Barreto. MDPC-McEliece: New McEliece variants from moderate density
parity-check codes. Cryptology ePrint Archive, Report 2012/409, 2012.
http://eprint.iacr.org/2012/409.

Nat16. National Institute of Standards and Technology. Submission requirements
and evaluation criteria for the Post-Quantum Cryptography standardiza-
tion process. http://csrc.nist.gov/groups/ST/post-quantum-crypto/
documents/call-for-proposals-final-dec-2016.pdf, December 2016.

35

http://eprint.iacr.org/2012/409
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf

Nus80. H. Nussbaumer. Fast polynomial transform algorithms for digital convo-
lution. IEEE Transactions on Acoustics, Speech, and Signal Processing,
28(2):205–215, Apr 1980.

OPG14. Tobias Oder, Thomas Pöppelmann, and Tim Güneysu. Beyond ECDSA and
RSA: lattice-based digital signatures on constrained devices. In The 51st
Annual Design Automation Conference 2014, DAC ’14, pages 110:1–110:6,
2014.

OSPG18. Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-secure masked Ring-LWE implementations. IACR
TCHES, 2018(1):142–174, 2018. https://tches.iacr.org/index.php/
TCHES/article/view/836.

RdCR+16. Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren,
and Ingrid Verbauwhede. Additively homomorphic ring-lwe masking. In
Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016,
pages 233–244, 2016.

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM, 56(6):1–40, Sep 2009.

S+17. William Stein et al. Sage Mathematics Software Version 8.0. The Sage De-
velopment Team, 2017. http://www.sagemath.org.

SAB+17. Peter Schwabe, Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede
Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien
Stehle. Crystals-kyber. Technical report, National Institute of Standards and
Technology, 2017. available at https://csrc.nist.gov/projects/post-
quantum-cryptography/round-1-submissions.

SBPV07. Kazuo Sakiyama, Lejla Batina, Bart Preneel, and Ingrid Verbauwhede.
HW/SW co-design for public-key cryptosystems on the 8051 micro-
controller. Computers & Electrical Engineering, 33(5-6):324–332, 2007.

Sch77. Arnold Schönhage. Schnelle multiplikation von polynomen über körpern
der charakteristik 2. Acta Informatica, 7(4):395–398, Dec 1977.

Sho97. Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–
1509, October 1997.

SNS+16. Petr Svenda, Matús Nemec, Peter Sekan, Rudolf Kvasnovský, David For-
mánek, David Komárek, and Vashek Matyás. The million-key question -
investigating the origins of RSA public keys. In 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016.,
pages 893–910, 2016.

SSTX09. Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Ef-
ficient public key encryption based on ideal lattices. In Mitsuru Matsui,
editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 617–635. Springer,
Heidelberg, December 2009.

va18. various authors. Post-quantum crypto library for the ARM Cortex-M4.
Website, 2018. accessed April 2018, see https://github.com/mupq/pqm4.

vMOG15. Ingo von Maurich, Tobias Oder, and Tim Güneysu. Implementing QC-
MDPC McEliece encryption. ACM Trans. Embedded Comput. Syst.,
14(3):44:1–44:27, 2015.

VZGG13. Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra.
Cambridge university press, 2013.

Wen13. Erich Wenger. A lightweight atmega-based application-specific instruction-
set processor for elliptic curve cryptography. In Lightweight Cryptography

36

https://tches.iacr.org/index.php/TCHES/article/view/836
https://tches.iacr.org/index.php/TCHES/article/view/836
http://www.sagemath.org
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://github.com/mupq/pqm4

for Security and Privacy - Second International Workshop, LightSec 2013,
pages 1–15, 2013.

37

A Cyclotomic gadgets

In this Appendix we prove Corollaries 1 and 2.

Proof (of Corollary 1). We need to verify that

f(2`) > 2n` − 1 (5)

and that
di ∈ {−δ, . . . , δ} (6)

Condition 5 holds since f(2`) = 2n` + 1. Condition 6 follows by explicitly
evaluating

d(x) =
n−1∑
i=0

di x
i := a(x) · b(x) + c(x) (mod xn + 1)

which implies that
di =

∑
[j+k]n= i

−1Jj+k≥nK aj bk + ci

and hence
max

{aj}j ,{bk}k,
{cm}m

|di| ≤ nαβ + γ =: δ.

ut

Lemma 2. Let a =
∑n−1
i=0 ai x

i, b =
∑n−1
i=0 bi x

i with ai, bi ∈ Z, and let f =∑n
i=0 x

i. Let ci :=
∑
j+k=i ajbk such that c :=

∑2n−2
i=0 ci x

i = a · b and let
d :=

∑n−1
i=0 di x

i ≡ c (mod f). Then

d =
n−3∑
i=0

(ci − cn + ci+n+1)xi + (cn−2 − cn)xn−2 + (cn−1 − cn)xn−1

and each di is a sum of at most 2n− 1 terms of the form ajbk.

Proof. Let f (m) :=
∑m
i=0 x

i (it follows that f ≡ f (n)). Since a and b have
degree < n, we know that we need to reduce modulo f only the powers xi+n for
i = 0, . . . , n− 2 of c. For i ≥ 1 we have

xi+n ≡ xi(xn − f (n)(x)) (mod f)
= −xi(f (n−1))
= −xi−1(xf (n−1))
= −xi−1(f (n) − 1)
≡ xi−1 (mod f),

38

while for i = 0, xn ≡ −f (n−1) (mod f). Hence, we can write

c =
2n−2∑
i=0

ci x
i

=
n−1∑
i=0

ci x
i + cn x

n +
n−3∑
i=0

cn+i+1 x
n+i+1

≡
n−1∑
i=0

ci x
i − cn

n−1∑
i=0

xi +
n−3∑
i=0

cn+i+1 x
i (mod f)

≡
n−3∑
i=0

(ci − cn + cn+i+1)xi + (cn−2 − cn)xn−2 + (cn−1 − cn)xn−1 (mod f)

where each ci is a sum of #{(j, k) ∈ [0, n− 1]2 ∩Z2 | j + k = i} = n− |i− n+ 1|
terms ajbk.

Hence,

d =
n−3∑
i=0

(ci − cn + cn+i+1)xi + (cn−2 − cn)xn−2 + (cn−1 − cn)xn−1

where by explicit computation dn−1 is a sum of 2n− 1 terms ajbk, dn−2 is a sum
of 2n− 2 such terms and, for i ≤ n− 3, di has 3n− |i− n+ 1| − |n− n+ 1| −
|n+ i+ 1− n+ 1| = 2n− 2 such terms. ut

Proof (of Corollary 2). We need to verify that

f(2`) > 2n` − 1 (7)

and that
di ∈ {−δ, . . . , δ} (8)

Condition 7 holds since f(2`) = 2n` + 2(n−1)` + · · ·+ 1. Condition 8 follows by
explicitly evaluating

d =
n−1∑
i=0

di x
i ≡ a · b+ c (mod f)

using Lemma 2, which implies that

max
{aj}j ,{bk}k,
{cm}m

|di| ≤ (2n− 1)αβ + γ =: δ.

ut

39

B Proof of Concept

Our high-level proof-of-concept implementation is written in SageMath [S+17].
-*- coding : utf -8 -*-
"""
Kyber using big integer arithmetic - proof -of - concept

.. note :: Run tests as ‘‘sage -t test.py ‘‘

"""
from sage .all import parent , ZZ , vector , PolynomialRing , GF
from sage .all import log , ceil , randint , set_random_seed , random_vector , matrix , floor

def BinomialDistribution (eta):
r = 0
for i in range (eta):

r += randint (0, 1) - randint (0, 1)
return r

def balance (e, q=None):
"""
Return a representation of ‘e‘ with elements balanced between ‘-q/2‘ and ‘q/2‘

: param e: a vector , polynomial or scalar
: param q: optional modulus , if not present this function tries to recover it from ‘e‘

: returns : a vector , polynomial or scalar over/in the integers
"""
try:

p = parent (e). change_ring (ZZ)
return p([balance (e_ , q=q) for e_ in e])

except (TypeError , AttributeError):
if q is None:

try:
q = parent (e). order ()

except AttributeError :
q = parent (e). base_ring (). order ()

e = ZZ(e)
e = e % q
return ZZ(e-q) if e>q//2 else ZZ(e)

Kyber (sort of)

class Kyber :

n = 256
q = 7681
eta = 4
k = 3
D = staticmethod (BinomialDistribution)
f = [1]+[0]*(n -1)+[1]
ce = n

@classmethod
def key_gen (cls , seed=None):

""" Generate a new public / secret key pair

: param cls: Kyber class , inherit and change constants to change defaults
: param seed: seed used for random sampling if provided

.. note :: Resembles Algorithm 1 of the Kyber paper .

"""
n, q, eta , k, D = cls.n, cls.q, cls.eta , cls.k, cls.D

if seed is not None:
set_random_seed (seed)

R, x = PolynomialRing (ZZ , "x"). objgen ()
Rq = PolynomialRing (GF(q), "x")
f = R(cls.f)

A = matrix (Rq , k, k, [Rq. random_element (degree =n -1) for _ in range (k*k)])
s = vector (R, k, [R([(D(eta)) for _ in range (n)]) for _ in range (k)])
e = vector (R, k, [R([(D(eta)) for _ in range (n)]) for _ in range (k)])
t = (A*s + e) % f # NOTE ignoring compression

return (A, t), s

@classmethod
def enc(cls , pk , m=None , seed=None):

""" IND -CPA encryption sans compression

40

: param cls: Kyber class , inherit and change constants to change defaults
: param pk: public key
: param m: optional message , otherwise all zero string is encrypted
: param seed: seed used for random sampling if provided

.. note :: Resembles Algorithm 2 of the Kyber paper .

"""
n, q, eta , k, D = cls.n, cls.q, cls.eta , cls.k, cls.D

if seed is not None:
set_random_seed (seed)

A, t = pk

R, x = PolynomialRing (ZZ , "x"). objgen ()
f = R(cls.f)

r = vector (R, k, [R([(D(eta)) for _ in range (n)]) for _ in range (k)])
e1 = vector (R, k, [R([(D(eta)) for _ in range (n)]) for _ in range (k)])
e2 = R([(D(eta)) for _ in range (n)])

if m is None:
m = (0 ,)

u = (r*A + e1) % f # NOTE ignoring compression
u. set_immutable ()
v = (r*t + e2 + q//2 * R(list (m))) % f # NOTE ignoring compression
return u, v

@classmethod
def dec(cls , sk , c, decode = True):

""" IND -CPA decryption

: param cls: Kyber class , inherit and change constants to change defaults
: param sk: secret key
: param c: ciphertext
: param decode : perform final decoding

.. note :: Resembles Algorithm 3 of the Kyber paper .

"""
n, q = cls.n, cls.q

s = sk
u, v = c

R, x = PolynomialRing (ZZ , "x"). objgen ()
f = R(cls.f)

m = (v - s*u) % f
m = list (m)
while len(m) < n:

m. append (0)

m = balance (vector (m), q)

if decode :
return cls. decode (m, q, n)

else :
return m

@staticmethod
def decode (m, q, n):

""" Decode vector ‘m‘ to ‘\{0 ,1\}^n‘ depending on distance to ‘q/2‘

: param m: a vector of length ‘\leq n‘
: param q: modulus

"""
return vector (GF (2) , n, [abs(e)>q/ZZ (4) for e in m] + [0 for _ in range (n-len(m))])

@classmethod
def encap (cls , pk , seed=None):

""" IND -CCA encapsulation sans compression or extra hash

: param cls: Kyber class , inherit and change constants to change defaults
: param pk: public key
: param seed: seed used for random sampling if provided

.. note :: Resembles Algorithm 4 of the Kyber paper .

"""
n = cls.n

if seed is not None:
set_random_seed (seed)

m = random_vector (GF (2) , n)

41

m. set_immutable ()
set_random_seed (hash (m)) # NOTE: this is obviously not faithful

K_ = random_vector (GF (2) , n)
K_. set_immutable ()
r = ZZ. random_element (0, 2**n -1)

c = cls.enc(pk , m, r)

K = hash ((K_ , c)) # NOTE: this obviously isn ’t a cryptographic hash
return c, K

@classmethod
def decap (cls , sk , pk , c):

""" IND -CCA decapsulation

: param cls: Kyber class , inherit and change constants to change defaults
: param sk: secret key
: param pk: public key
: param c: ciphertext

.. note :: Resembles Algorithm 5 of the Kyber paper .

"""
n = cls.n

m = cls.dec(sk , c)
m. set_immutable ()
set_random_seed (hash (m)) # NOTE: this is obviously not faithful

K_ = random_vector (GF (2) , n)
K_. set_immutable ()
r = ZZ. random_element (0, 2**n -1)

c_ = cls.enc(pk , m, r)

if c == c_:
return hash ((K_ , c)) # NOTE: this obviously isn ’t a cryptographic hash

else :
return hash (c) # NOTE ignoring z

class MiniKyber (Kyber):
"""
Tiny parameters for testing .
"""
n = 8
q = 127
eta = 1
k = 1
f = [1]+[0]*(n -1)+[1]
ce = n

class Nose:
"""
Snorting (packing) and sneezing (unpacking).
"""

@staticmethod
def snort (g, f, p):

"""
Convert vector ‘g‘ in ‘\ZZ^n‘ with coefficients bounded by ‘p/2‘ in absolute value to
integer ‘\ bmodp f(p)‘.

: param g: a vector of length ‘n‘
: param f: a minpoly
: param p: base

: returns : an integer mod ‘f(p)‘
"""
return g. change_ring (ZZ)(p) % f(p)

@staticmethod
def sneeze (G, f, p):

""" Convert integer ‘G \ bmodl f(p)‘ to vector of integers

: param G: an integer ‘\ bmodl f(p)‘
: param f: a minpoly
: param p: base

"""
assert (G >= 0 and G < f(p))
n = f. degree ()
c = 0
r = []
for i in range (n):

e = G % p
G -= e

42

e += c
G = G//p
c = int(e > p//2)
e -= c*p
r. append (e)

for i in range (n):
r[i] -= f[i]*(G+c)

return r[:n]

@staticmethod
def proof_sneeze (G, f, p):

""" Convert integer ‘G \bmod f(p)‘ to vector of integers

: param G: an integer ‘\bmod f(p)‘
: param f: a minpoly
: param p: base

"""
assert (G >= 0 and G < f(p))
n = f. degree ()
r = []
for i in range (n):

e = G % p
G -= e
G = G//p
if e > p//2:

e -= p
G += 1

r. append (e)

for i in range (n):
r[i] -= f[i]*G

return r[:n]

@classmethod
def prec(cls , scheme):

"""
Return ‘\ log_2 (k ce eta (q -1)/2 + (q -1)/2 + 1) + 1‘

1. eta q/2 is the upper bound on the product in absolute value
2. We add ce such products during modular reduction
3. We add up k such numbers when doing inner products
4. We add a number of size eta in absolute value
5. The modular reduction of the integer multiplier might add +/- max_i (| f_i |) to balance the output
6. One sign bit

"""
eta , q, k, f, ce = scheme .eta , scheme .q, scheme .k, scheme .f, scheme .ce
l = log(k*ce* floor (q/ZZ (2))* eta + eta + max ([abs(fi) for fi in f]) + 1, 2) + 1
return l

@classmethod
def muladd (cls , scheme , a, b, c, l=None):

"""
Compute ‘a \cdot b + c mod f‘ using big - integer arithmetic

: param cls: Skipper class
: param scheme : Scheme class , inherit and change constants to change defaults
: param a: vector of polynomials in ‘ZZ_q[x]/(x^n+1) ‘
: param b: vector of polynomials in ‘ZZ_q[x]/(x^n+1) ‘
: param c: polynomial in ‘ZZ_q[x]/(x^n+1) ‘
: param l: bits of precision

"""
R, x = PolynomialRing (ZZ , "x"). objgen ()
k, f = scheme .k, R(scheme .f)

if l is None:
l = ceil(cls.prec(scheme))

A = vector (R, k, [cls. snort (a[j], f, 2**l) for j in range (k)])
B = vector (R, k, [cls. snort (b[j], f, 2**l) for j in range (k)])
C = cls. snort (c, f, 2**l)
F = f(2**l)
D = (A*B + C) % F
d = cls. sneeze (D % F, f, 2**l)
return R(d)

Skipper

class Skipper4 (Nose):
"""
Kyber using big integer arithmetic

IND -CPA Decryption in 30 multiplication of (64 \cdot 25 =) 1600 - bit integers .

43

- Degree 4 polynomial multiplication
- Standard signed Kronecker substitution to pack 64 coefficients into one integer .

"""

@staticmethod
def ff(v, offset , start =0):

""" Fast - forward through vector ‘v‘ in ‘‘offset ‘‘ sized steps starting at ‘‘start ‘‘

: param v: vector
: param offset : increment in each step
: param start : start offset

"""
p = parent (v)
return p(list (v)[start :: offset])

@classmethod # TODO: n vs 2n expansion factor # TODO: tempted of getting rid of this
def prec(cls , kyber):

"""
Return ‘\ log_2 (k n eta (q -1)/2 + (q -1)/2 + 1) + 1‘

1. eta q/2 is the upper bound on the product in absolute value
2. We add n such products during modular reduction # TODO: n vs 2n
3. We add up k such numbers when doing inner products
4. We add a number of size eta in absolute value
5. The modular reduction of the integer multiplier might add +/- max_i (| f_i |) to balance the output
6. One sign bit

"""
n, eta , q, k, f = kyber .n, kyber .eta , kyber .q, kyber .k, kyber .f
l = log(k*n* floor (q/ZZ (2))* eta + eta + max ([abs(fi) for fi in f]) + 1, 2) + 1
return l

@classmethod
def muladd (cls , kyber , a, b, c, l=None):

"""
Compute ‘a \cdot b + c‘ using big - integer arithmetic

: param cls: Skipper class
: param kyber : Kyber class , inherit and change constants to change defaults
: param a: vector of polynomials in ‘ZZ_q[x]/(x^n+1) ‘
: param b: vector of polynomials in ‘ZZ_q[x]/(x^n+1) ‘
: param c: polynomial in ‘ZZ_q[x]/(x^n+1) ‘
: param l: bits of precision

"""
m, k = 4, kyber .k
w = kyber .n//m
R, x = PolynomialRing (ZZ , "x"). objgen ()
f = R ([1]+[0]*(w -1)+[1])

if l is None:
Could try passing degree w, but would require more careful
sneezing
l = ceil(cls.prec(kyber))

R = PolynomialRing (ZZ , "x")
x = R.gen ()

A = vector (R, k, [sum(cls. snort (cls.ff(a[j], m, i), f, 2**l) * x**i
for i in range (m))

for j in range (k)])

C = sum(cls. snort (cls.ff(c, m, i), f, 2**l) * x**i for i in range (m))

B = vector (R, k, [sum(cls. snort (cls.ff(b[j], m, i), f, 2**l) * x**i
for i in range (m))

for j in range (k)])

F = f(2**l)

MUL: k * 3^2 (Karatsuba for length 4)
% F here is applied to the 64-coeff - packs .
k comes from len(A) = len(B) = k, each constrains
a deg 4 poly needing (recursive) karatsuba => 9
W = (A*B + C) % F

MUL: 3
specific trick for how we multiply degree n = 256 polys
the coefficients from above need readjustment
here doing 2**l * is basically doing y * !!! and if this wraps around
it takes care of the - in front
W = sum ((W[0+i] + (2**l * W[m+i] % F))*x**i for i in range (m -1)) + W[m -1]*x**(m -1)

D = [cls. sneeze (W[i] % F, f, 2**l) for i in range (m)]

d = []
for j in range (w):

44

for i in range (m):
d. append (D[i][j])

return R(d)

@classmethod
def enc(cls , kyber , pk , m=None , seed=None , l=None):

""" IND -CPA encryption sans compression

: param kyber : Kyber class , inherit and change constants to change defaults
: param pk: public key
: param m: optional message , otherwise all zero string is encrypted
: param seed: seed used for random sampling if provided

"""
n, q, eta , k, D = kyber .n, kyber .q, kyber .eta , kyber .k, kyber .D

if seed is not None:
set_random_seed (seed)

A, t = pk

R = PolynomialRing (ZZ , "x")

r = vector (R, k, [R([(D(eta)) for _ in range (n)]) for _ in range (k)])
e1 = vector (R, k, [R([(D(eta)) for _ in range (n)]) for _ in range (k)])
e2 = R([(D(eta)) for _ in range (n)])

if m is None:
m = (0 ,)

u = vector (R, [cls. muladd (kyber , r, A. column (i), e1[i], l=l) for i in range (k)])
u. set_immutable ()
v = cls. muladd (kyber , r, t, e2 + q//2 * R(list (m)), l=l)
return u, v

@classmethod
def dec(cls , kyber , sk , c, l=None , decode = True):

""" Decryption .

: param kyber : Kyber class , inherit and change constants to change defaults
: param sk: secret key
: param c: ciphertext
: param l: bits of precision
: param decode : perform final decoding

"""
n, q = kyber .n, kyber .q

u, v = c
s = sk

m = -cls. muladd (kyber , s, u, -v, l=l)
m = balance (vector (m), q)
if decode :

return kyber . decode (m, q, n)
else :

return m

class Skipper2Negated (Skipper4):
"""
Kyber using big integer arithmetic

IND -CPA Kyber Decryption in 20 multiplications of (128 \cdot 13 =) 1664 - bit integers .

- Degree 2 polynomial multiplication
- Negated , signed Kronecker substitution to pack 128 coefficients into one integer .
"""

@classmethod
def prec(cls , kyber):

"""
Return half the precision required by ‘‘Skipper4 ‘‘.

: param kyber : Kyber class , inherit and change constants to change defaults

"""
return Skipper4 .prec(kyber)/ ZZ (2)

@classmethod
def muladd (cls , kyber , a, b, c, l=None):

"""
Compute ‘a \cdot b + c‘ using big - integer arithmetic

: param cls: Skipper class
: param kyber : Kyber class , inherit and change constants to change defaults
: param a: vector of polynomials in ‘ZZ_q[x]/(x^n+1) ‘
: param b: vector of polynomials in ‘ZZ_q[x]/(x^n+1) ‘
: param c: polynomial in ‘ZZ_q[x]/(x^n+1) ‘

45

: param l: bits of precision

"""
m, k = 2, kyber .k
w = kyber .n//m
R, x = PolynomialRing (ZZ , "x"). objgen ()
f = R ([1]+[0]*(w -1)+[1])
g = R ([1]+[0]*(w //2 -1)+[1])

if l is None:
l = ceil(cls.prec(kyber))

R = PolynomialRing (ZZ , "x")
x = R.gen ()

Ap = vector (R, k, [sum(cls. snort (cls.ff(a[j], m, i), f, 2**l) * x**i for i in range (m))
for j in range (k)])

An = vector (R, k, [sum(cls. snort (cls.ff(a[j], m, i), f, -2**l) * x**i for i in range (m))
for j in range (k)])

Cp = sum(cls. snort (cls.ff(c, m, i), f, 2**l) * x**i for i in range (m))
Cn = sum(cls. snort (cls.ff(c, m, i), f, -2**l) * x**i for i in range (m))

Bp = vector (R, k, [sum(cls. snort (cls.ff(b[j], m, i), f, 2**l) * x**i for i in range (m))
for j in range (k)])

Bn = vector (R, k, [sum(cls. snort (cls.ff(b[j], m, i), f, -2**l) * x**i for i in range (m))
for j in range (k)])

F = 2**(w * l) + 1

MUL: 2 * k * 3
Wp = (Ap*Bp + Cp) % F
Wn = (An*Bn + Cn) % F

We = (Wp+Wn) % F
Wo = (Wp -Wn) % F

Wo , We = (sum ((Wo [0+i] + (2**l * We[m+i] % F))*x**i for i in range (m -1)) + Wo[m -1]*x**(m -1)) % F, \
(sum ((We [0+i] + (2**l * Wo[m+i] % F))*x**i for i in range (m -1)) + We[m -1]*x**(m -1)) % F

_inverse_of_2_mod_F = F - 2**(w*l -1)
_inverse_of_2_to_the_l_plus_1_mod_F = F - 2**(w*l-1-l)
We = (We * _inverse_of_2_mod_F) % F
Wo = (Wo * _inverse_of_2_to_the_l_plus_1_mod_F) % F

D = [cls. sneeze (We[i] % F, g, 2**(2* l)) for i in range (m)]
D += [cls. sneeze (Wo[i] % F, g, 2**(2* l)) for i in range (m)]

d = []

for j in range (w //2):
for i in range (2*m):

d. append (D[i][j])

return R(d)

46

	Learning with Errors on RSA Co-Processors
	Introduction
	Preliminaries
	Hard problems
	Kyber
	Target platform

	Kronecker
	Compact Kronecker

	Splitting the ring
	Implementation
	Description of Kyber using Kronecker
	Implementation of Kyber on SLE 78
	Realisation of KyberMulAdd with KS1
	Realisation of KyberMulAdd with KS2

	Performance and comparison
	Implementation performance
	Comparison with related work

	Conclusion and future work
	Cyclotomic gadgets
	Proof of Concept

