
Improved Bitslice Masking: from Optimized
Non-Interference to Probe Isolation

Gaëtan Cassiers and François-Xavier Standaert
ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium

e-mails: gaetan.cassiers@student.uclouvain.be; fstandae@uclouvain.be

Abstract. We revisit the security analysis of bitslice masking which is
currently the most efficient way to protect block ciphers against higher-
order side-channel analysis. First, we put forward that the existing defini-
tion of Strong Non-Interference (SNI) used to reason about composabil-
ity in masked implementations requires minor adaptations to capture
the multiple-input multiple-output functions that bitslice implementa-
tions contain. We argue that the latter adaptations are instrumental in
the analysis of a compositional strategy used in the masked AES im-
plementations of Goudarzi and Rivain from EUROCRYPT 2017, where
all multiplications are SNI with one input “refreshed” in a SNI manner.
Second, we show that this strategy can be improved thanks to integer
programming and report on an optimized masked AES S-box with sig-
nificantly less SNI gadgets than previously required. Eventually we pro-
pose a new definition of Probe-Isolating Non-Interference (PINI) which
captures a weaker yet sufficient requirement for composability in masked
implementations. The latter definition allows major simplifications of the
probing security analyzes of complex circuits. We show that it leads to
improved performances for masked AES implementations (of order up
to 20) by proposing and proving a first PINI multiplication.

1 Introduction

Masking is among the most popular countermeasures to prevent side-channel
attacks. Its working principle is to split all the sensitive data manipulated by an
implementation in d+1 shares, and to perform the computations on those shares
only [11]. Under now well understood (noise and independence) leakage assump-
tions, the latter guarantees that the security of any side-channel attack against a
masked implementation grows exponentially in the number of shares [28,15,16].
Concretely, various types of masking schemes have been considered in the liter-
ature including additive/boolean masking (see, e.g., [23,29,14] and many follow-
ups), multiplicative masking [20,19], affine masking [31,18], Inner Product (IP)
masking [1,2], … All these proposals come with significant overheads in execution
time and randomness. We next focus on the case of additive/boolean masking,
which has been shown recently to provide the best concrete performances thanks
to bitslice implementations [21,24].

In the current state-of-the-art, masking schemes usually come with a security
proof in the so-called probing model [23,29]. In its simplest definition, d-probing

security requires that the observation of up to d intermediate computations in
the implementation does not reveal anything about the sensitive variables.1 It
has later been shown that while locally sufficient, this definition does not ensure
secure composition [14]. Two solutions have then been introduced to mitigate
this issue: first, formal tools enabling the automated analysis of implementations
(up to certain number of shares) [4]; second, more demanding definitions of
Non-Interference (NI) and Strong Non-Interference (SNI) that can be proven
generically and guarantee composability for any number of shares [5].

In this paper, we start from the observation that the definitions of NI and
SNI were originally introduced for operations with single inputs and single out-
puts, and therefore are not directly applicable to bitslice implementations. Our
contributions in this respect are threefold:

First, we introduce a definition of Multiple-Input Multiple-Output Strong
Non-Interference (MIMO-SNI), which extends the existing definition of SNI to
the bitslice case. The latter is instrumental to formally analyze a compositional
strategy proposed in [21] and re-used in [24], which is to use only SNI multipli-
cations and to systematically refresh one of their inputs with a SNI gadget. We
next call it the “greedy strategy” due to its high randomness requirements.

Second, we show how the greedy strategy can be optimized by representing
the circuit to mask as a “computation graph” and describing how to express the
definitions of NI, SNI and MIMO-SNI as graph properties. For simple circuits
(such as the AES S-box operating in F256), the number of solutions is sufficiently
small for exhaustive search (and we confirm the recent results of [8]). For more
complex circuits, exhaustive analysis is impossible and we rely on integer pro-
gramming. For illustration, we launch our optimization on the bitslice S-box of
Boyar, Matthews and and Peralta [10] that is used in [21,24] and can reduce
the number of SNI gadgets to 41 (with a lower bound of 34) compared to the
64 of the greedy strategy. In view of the significant (asymptotically dominat-
ing) impact of these SNI gadgets in the overall performances of a masked AES
implementation, it directly leads to comparable performance gains.

Third, we observe that the definition of MIMO-SNI is still theoretically
(over)demanding since it requires to cut the computation graph with refresh
operations in order to avoid any distinct path between two nodes. We suggest
an alternative approach based on “probe isolation” which rather ensures that
such paths cannot be exploited by an adversary (by verifying that the propa-
gated probes on these paths can be simulated with the same input shares). The
latter Probe-Isolating Non-Interference (PINI) enables a major simplification of
the security analyzes of complex masked circuits, since it allows the composition
of any linear gadget with PINI multiplications. We also use this definition to
exhibit concrete performance improvements, by proposing and proving a first
1 Admittedly, a security proof in the (abstract) probing model is only a first step in

the analysis of a masked implementation. Various physical defaults can contradict
probing security, e.g., by re-combining the shares because of glitches or transition-
based leakages [25,26,12,3]. Yet, it is a necessary first step since an insecurity in the
probing model usually leads to powerful concrete attacks.

2

PINI multiplication, which reduces the randomness requirements of the previ-
ous optimized bitslice S-box mixing SNI multiplications and refreshes for orders
up to 20. It is an interesting open problem to investigate more efficient PINI
multiplications that would generalize this gain to arbitrary orders.

2 Background

We work with (boolean) circuits and use the definition of [23]. A deterministic
circuit C is a Directed Acyclic Graph (DAG) whose vertices are (boolean) gates
and whose edges are wires. A randomized circuit is a circuit augmented with
random gates. A random gate is a gate with fan-in 0 that produces a random
output, uniformly and independently of everything else afresh for each invocation
of the circuit.

From these definitions, it is possible to define the notion of private circuit
(which is equivalent to security in the d-probing model [29]).

Definition 1 (Private circuit [23]). A private circuit for f : Fn
q → Fm

q is
defined by a triple (I, C,O), where

– I : Fn
q → Fn′

q is a randomized circuit with uniform randomness ρ and called
input encoder;

– C is a randomized circuit with input in Fn′

q , output in Fm′

q , and uniform
randomness r ∈ Fα

q ;
– O : Fm′

q → Fm
q is a circuit, called output decoder.

We say that C is a d-private implementation of f with encoder I and decoder O
if the following requirements hold:

– Correctness: for any input w ∈ Fn
q , Pr[O(C(I(w; ρ); r)) = f(w)] = 1, where

the probability is over the randomness ρ and r;
– Privacy: for any w,w′ ∈ Fn

q and any set P of d wires in C, the dis-
tributions {CP (I(w; ρ); r))}ρ,r and {CP (I(w

′; ρ); r)}ρ,r are identical, with
CP (I(w; ρ); r) the list of the d values on the wires from P .

From now on, we assume that I and O are the canonical encoder and decoder:
I encodes each input b by a block (bj)0≤j≤d of d+1 random values with sum b,
and O takes the sum of each block of d+1 values. Each block (bj)0≤j≤d is called
a sharing of b and each bj is called a share of b.

A gadget C implementing a function f : Fn
q → Fm

q is a private implementation
of f working with the canonical encoder and decoder. The gadget has n inputs
and m outputs, each of which is a vector of d + 1 shares. We usually denote
the inputs of a gadget as xi,j where i ∈ {1, . . . , n} is the input index and j ∈
{0, . . . , d} is the share index. Outputs are usually written as yi,j , i ∈ {1, . . . ,m}.
A set A is a set of share indices if A ⊂ {0, . . . , d}. We use the notations xi,A =
{xi,j : j ∈ A}, x∗,A = {xi,j : 1 ≤ i ≤ n, j ∈ A} and x∗,∗ = {xi,j : 1 ≤ i ≤ n, 0 ≤
j ≤ d}. When it is not clear from the context, we explicitly denote the gadget
G to which the inputs or the outputs are related: xG

i,j , yGi,j .

3

The wires in the set P used by the attacker are called the probes and the
corresponding values CP (I(w; ρ); r) the values of the probes. Abusing notation,
a probe p is sometimes used to denote the corresponding value.

In order to introduce other security definitions, we use the simulability frame-
work put forward in [8]. Note that the notion of (I,O)-Non-Interference intro-
duced in [5] is equivalent.

Definition 2 (Simulability [8]). Let P = {p1, . . . , pl} be a set of l probes of
a gadget C. Let I = {(i1, j1), . . . , (ik, jk)} ⊂ {1, . . . , n} × {0, . . . , d} be a set of
input wires of C.

A simulator is a random function S : Fk
q → Fl

q. A distinguisher is a random
function D : Fl

q × Fn(d+1)
q → {0, 1}.

The set of probes P can be simulated with the set of input wires I if and only
if there exists a simulator S such that for any distinguisher D and any inputs
x∗,∗, we have

Pr[D(CP (x∗,∗), x∗,∗) = 1] = Pr[D(S(xi1,j1 , . . . , xik,jk), x∗,∗) = 1],

where the probability is over the random coins in C, S and D.

Simulability is a sufficient condition for probing security: a circuit C is
d-probing secure if any set of probes P of size d can be simulated with d shares of
each input. It is not a necessary condition for probing security, because the dis-
tinguisher has access to the input shares which sometimes makes the simulation
of probing secure gadgets impossible (e.g., in first-order threshold implementa-
tions where non-linear gadgets leverage the input shares in order to reduce the
randomness requirements [26]).

We can now define Non-Interfering (NI) gadgets, Tight Non-Interfering (TNI)
gadgets and Strong Non-Interfering (SNI) gadgets. We again take the definitions
from [8] and denote output probes on a gadget as probes on shares of outputs
of the gadget, and internal probes as probes on any wire of the gadget including
inputs and outputs.

Definition 3. A gadget is d-NI if and only if every set of at most d internal
probes can be simulated with at most d shares of each input.

Definition 4. A gadget is d-TNI if and only if every set of t ≤ d internal probes
can be simulated with at most t shares of each input.

The following property is proved in [8]. Thanks to this property, we can use
the TNI definition when we discuss NI gadgets.

Property 1 (d-NI ⇔ d-TNI). A gadget is d-NI if and only if it is d-TNI.

Definition 5. A gadget is d-SNI if and only for if every set I of t1 internal
probes and every set O of t2 output probes such that t1 + t2 ≤ d, the set I ∪ O
of probes can be simulated with t1 shares of each input.

4

For all linear functions f , there is a trivial implementation which requires
no random gates and consists in applying the function independently to each
share: y∗,j = f(x∗,j) for j = 0, . . . , d. Such an implementation is always NI: the
simulator can use the x∗,j values for all the j’s for which there is a probe in the
evaluation of f(x∗,j). In the following, we always assume that linear operations
are implemented in this way.

There are many designs of gadgets that implement elementary field opera-
tions and are NI or SNI. The most studied ones are NI and SNI field multipli-
cation and so-called SNI refresh gadgets (which implement the identity function
in a SNI fashion). In the following, we will consider the multiplication of Ishai,
Sahai and Wagner as an example of SNI multiplication that is proven secure at
arbitrary orders and has randomness cost d(d + 1)/2 [23], the multiplication of
Belaid et al. as an example of NI multiplication that is proven secure at arbitrary
orders and has randomness cost

⌊
d2/4

⌋
+d [8], and the refresh of Batistello et al.

as an example of SNI refresh that is proven secure at arbitrary orders and has
randomness complexity in O(d log d) [7]. We use the randomness as the main cost
metric because of its relevance to composability and in view of its impact on the
overall performances of masked software implementations such as [21,24], which
we aim to improve. In this respect, we note that better randomness complexi-
ties can be reached, either by exploiting exhaustive searches (which therefore do
not hold for arbitrary orders [8,6]) or by working in larger fields (which is less
relevant for our investigations of bitslice masking) [9].

Eventually, in the rest of this article we study how to compose elementary
gadgets in order to build more complex functions such as S-boxes or block ciphers
that are (at least) probing secure. We use the following definitions of composite
function and composite gadget for this purpose.

Definition 6 (Composite function). A function f from Fm
q to Fn

q is a se-
quential composition of functions fκ for κ = 1, . . . , ` if the computation of
(y1, . . . , yn) = f(x1, . . . , xm) can be done using the following algorithm:

(ao0,1 , . . . , ao0,m) = (x1, . . . , xm)

(aoκ,1 , . . . , aoκ,nκ
) = fκ(aiκ,1 , . . . , aiκ,mκ

) for κ = 1, . . . , `

(y1, . . . , yn) = (ai`+1,1
, . . . , ai`+1,n

)

for some set of connection indices iκ,p and oκ,p.
The functions fκ are called composing functions.

This definition is different of the mathematical composition of functions f` ◦
· · · ◦ f1 in that all the outputs of f1 are not necessarily inputs of f2: an output
of f1 may (for example) be an input of f3 and f4 (it is thus also possible to
“re-use” values).

Definition 7 (Composite gadget). Let f be a composite function of functions
fκ for κ = 1, . . . , ` with connections indices iκ,p and oi,p. A composite gadget G
over d+1 shares that implements f is made of gadgets Gj over d+1 shares that
implement the functions fκ.

5

The connection of the composing gadgets is done as follows, for an evaluation
of (y1, . . . , yn)← G(x1, . . . , xm) (where the xi’s and yi’s are elements of Fl

q):

(ao0,1 , . . . , ao0,m)← (x1, . . . , xm)

(aoκ,1
, . . . , aoκ,nκ

)← Gκ(aiκ,1
, . . . , aiκ,mκ

) for κ = 1, . . . , `

(y1, . . . , yn)← (ai`+1,1
, . . . , ai`+1,n

)

where aκ ∈ Fl
q.

The gadgets Gκ are called composing gadgets.

3 Composition of bitslice gadgets

The previous definitions of NI and SNI gadgets have been shown to be very
effective to avoid compositional issues such as put forward in [14]. For example,
the specialization of the (I,O)-Non-Interference they provide is perfectly suited
to analyze the amount of refreshing required to implement an AES S-box with
operations in F256 [8]. Yet, one possible limitation of these abstractions is that
they implicitly assume gadgets with single inputs and single outputs. In this sec-
tion, we first argue that such definitions are therefore not sufficient to capture
the security of certain composite gadgets such as encountered in masked bitslice
implementations. We then propose a new definition of Multiple-Input Multiple-
Output (MIMO) SNI gadgets as a useful ingredient to analyze the security of
any composite gadget. We finally put forward that secure composite gadgets are
naturally obtained by the proposal in [21] of using (only) SNI multiplications
with one input refreshed in a SNI manner (although we will use an additional
ingredient for the full proof of this fact, discussed in Section 5.4).

3.1 Simulation framework and greedy strategy

We start by providing intuition about the simulation framework we use and the
greedy strategy with the simple circuit example of Figure 1a which performs
a multiplication of dependent values (masked at order d = 1). There is one
adversarial (internal) probe in the SNI multiplication gadget and we will try to
prove that the probe is not an attack (i.e., it is independent of any of the actual
inputs) by demonstrating that it is possible to simulate it using at most one
share of each of the inputs.2

According to the SNI definition, it is possible to perfectly simulate the adver-
sarial probe by knowing one share of each of the inputs of the SNI multiplication.
Let those required shares be the red snake wires in the circuit (the set of wires
shown is an arbitrary example, the shares required by the simulator depend of
course on the position of the adversarial probe). Those wires are called propagated
2 Note that this does not prove that the circuit is 1-probing-secure. Proving the

probing security would require to analyze all the possible sets of probes. A more
efficient way of making that proof is discussed in Sections 3.3 and 4.

6

1-SNI Mul.

(a)

1-SNI Mul.

R

(b)

Fig. 1. Implementation of (x + y)(x + z). The circuit is made of a SNI multi-
plication with linear circuits at the input, masked at order d = 1. The circuits
illustrate (a) the limitation of SNI input composability and (b) the greedy strat-
egy. The arrows indicate the adversarial probes (there is thus one internal probe
in the multiplication) and the red snake wires are the propagated probes. The
R box is a SNI refresh.

probes: if it is possible to simulate the propagated probes, then the adversarial
probe can be simulated. We can propagate the probes one step further: a probe
at the output of an addition can be simulated with probes on the two inputs of
the addition. This gives four propagated probes at the input of the circuit, which
probes all the shares of one of the inputs. Because of that, we cannot prove that
the circuit is probing secure.

The circuit of Figure 1b has the same functionality as the circuit of Figure 1a,
but is implemented using the greedy strategy: there is a SNI refresh gadget on
one of the inputs of the multiplication gadget. The propagated probe at the
output of the refresh gadget can be simulated using no input of the gadget
(thanks to the SNI property), which makes the circuit 1-NI (and thus 1-probing
secure).

The technique of proof used in this section is similar to the one used in [8] to
prove the security of the implementation of a masked AES S-box in F256. We call
this technique probe propagation: it is based on the idea of replacing adversarial
probes with propagated probes that can be used to simulate the adversarial
probes, and then iterating the process until the propagated probes are all at the
inputs of the circuit. The conclusion is then easy.

The propagation of probes happens backwards in the circuit (probes on the
outputs of a gadget propagate into probes on the inputs of the gadget). The
definitions of NI and SNI can be expressed as the following rules in the probe
propagation framework.

7

Probe propagation rules:

– For a NI gadget with no probes on shares of its output3 and ni probes inside
the gadget, there is a propagated probe on no+ni shares of each input (this
comes from Property 1).

– For a SNI gadget with no probes on output shares and ni probes inside the
gadget, there is a propagated probe on ni shares of each input. Hence, the
SNI gadgets (and in particular SNI refresh) stop the propagation of probes.

There are then two probe propagation conditions that guarantee security
against the considered adversarial probes.

Probe propagation security conditions:

1. For any NI or SNI gadget, the number of output probes must be at most d.
This follows from the definitions of NI and SNI.

2. For any input of the circuit, there cannot be propagated probes on all the
d+ 1 shares.

3.2 SNI is not enough (e.g., for bitslice implementations)

Say we are now interested in the situation where a non-linear gadget has multiple
inputs and multiple outputs, such as an S-box with a bitslice implementation.
To simplify the discussion, we take the case of 2-bit S-boxes (i.e., each S-box has
two inputs and two outputs) masked at order d = 1, but our reasoning applies
to any size of S-boxes (such as the 8 bit S-boxes of the AES) and any order.

A first example of this context is the serial composition of two S-boxes (in
which each of the outputs of the first S-box is connected to one input of the
second S-box), depicted in Figure 2a.

This leads to the following problem: if the S-boxes are d-SNI and the ad-
versary has d probes in the second S-box (remember d = 1 in our example),
the propagated probes can cover up to d shares of each of the inputs of this
S-box. There is thus a total of up to 2d propagated probes on outputs of the
first S-box. Since the number of probes discussed in the first probe propagation
security condition is the total number of probes on output shares, the condition
is violated in this example.

Next, the situation gets even worse when linear gadgets come into play. A
practical example is the AES S-boxes and MixColumns operations: 4 parallel
8-bit S-boxes followed by a 32-bit linear layer, followed again by 4 parallel 8-bit
S-boxes. We will however use simpler examples to explain the two additional
problems that arise in this case.

For the second problem, we consider a linear operation between two outputs
of one S-box (depicted in Figure 3a). The adversary has d probes on one output
3 We only consider here the gadgets with one output such as a multiplication. Multiple

output NI gadgets (such as bitslice S-box) are not investigated since the stronger
SNI property is itself is not sufficient for security of a block cipher implementation.

8

1-SNI S-box

1-SNI S-box

(a) SNI S-boxes: not
secure

1-SNI S-box

1-MI-SNI S-box

(b) First solution:
MI-SNI S-boxes

1-MO-SNI S-box

1-SNI S-box

(c) Second solution:
MO-SNI S-boxes

Fig. 2. First problem: serial composition of two S-boxes. Example for d = 1
and 2-bit S-boxes. The arrows indicate the adversarial probes and the red snake
wires are the propagated probes. Red boldface label for the S-box indicates that
the first probe propagation security condition is not satisfied.

of the linear operation. The probes propagate to 2d probes on the output of the
S-box. The first probe propagation security condition is again not respected.

The third problem depicted in Figure 4a is the close to the one discussed
previously for SNI multiplications (Figure 1): a linear layer at the input of the
S-box is such that the probes propagated by the S-box propagate through the
linear layer and reach all the shares of an input. This violates the second probe
propagation security condition.

1-SNI S-box

(a) SNI S-box: not se-
cure

1-MO-SNI S-box

(b) Solution: MO-
SNI

Fig. 3. Second problem: S-box with linear layer at the output. Example for
d = 1 and 2 bit S-box.

Summarizing, these examples show a limitation in the definition of SNI for
the analysis of bitslice S-boxes that does not appear for implementations of the
AES S-box in F256 (which have only one input and one output). In the following,

9

1-SNI S-box

(a) SNI S-box: not se-
cure

1-MI-SNI S-box

(b) Solution: MI-SNI

Fig. 4. Third problem: S-box with linear layer at the input. Example for d = 1
and 2 bit S-box.

we show how to fix this issue by adapting (I,O)-Non-Interference to this slightly
more general context.4

3.3 Multiple-Input Multiple-Output SNI

Intuition. Based on the previous examples, natural directions to extend the
definition of SNI and ensure composability in a bitslice implementation context
are twofold:

– First, require the simulator to work with at most d input shares instead of
d input shares on each input. This property is called Multiple-Input Strong
Non-Interference (MI-SNI) and adds a third probe propagation rule:
3. For a MI-SNI gadget with no probes on output shares and ni internal

probes, there is a total of ni propagated probes on the shares of the
inputs.

– Second, allow the adversary to probe up to d shares of each output, instead
of d output shares in total. This property is called Multiple-Output Strong
Non-Interference (MO-SNI) and adds a third probe propagation security con-
dition (which is the first condition adapted to the MO-SNI gadgets):
3. For any MO-SNI gadget, the number of probed shares on each output

must be at most d.

Either of these extensions (MI-SNI or MO-SNI) solves the first problem (see
Figures 2b and 2c), while the second problem is only solved by MO-SNI (see
Figure 3b) and the third problem is only solved by MI-SNI (see Figure 4b). As a
result, and since we want composability with any composite gadget, we need both

4 Not being composable does not directly imply the existence of an attack in the prob-
ing model, in particular for low security orders that may be tested exhaustively with
formal methods [4]. Yet, as the number of shares increases, the sufficient condition
of security that composable gadgets provide becomes increasingly useful.

10

properties for S-boxes: Multiple-Input Multiple-Output Strong Non-Interference
(MIMO-SNI).5

Formalization. We now formalize the definitions and prove that MIMO-SNI
enjoys a useful composability property.

Definition 8 (MI-SNI). A gadget is d-MI-SNI if and only for if every set I of
t1 internal probes and every set O of t2 output probes such that t1+ t2 ≤ d,
the set I ∪ O of probes can be simulated with at most t1 input shares.

Definition 9 (MO-SNI). Let Oi be a set of share indices for i = 1, . . . ,m. A
gadget is d-MIMO-SNI if and only if any set I of t1 internal probes and any
sets Oi such that there exists a t2 that satisfies t1 + t2 ≤ d and |Oi| ≤ t2 for
i = 1, . . . ,m, the set of probes I ∪ y1,O1

∪ · · · ∪ ym,Om
can be simulated with at

most t1 shares of each input.

MIMO-SNI can be defined as satisfying both MI-SNI and MO-SNI. For com-
pleteness we give the equivalent explicit definition:

Definition 10 (MIMO-SNI). Let Oi be a set of share indices for i = 1, . . . ,m.
A gadget is d-MIMO-SNI if and only if any set I of t1 internal probes and
any sets Oi such that there exists a t2 that satisfies t1 + t2 ≤ d and |Oi| ≤ t2
for i = 1, . . . ,m, the set of probes I ∪ y1,O1 ∪ · · · ∪ ym,Om can be simulated with
at most t1 input shares.

From these definitions, we derive the following composition rules, which are
used to prove the main result (Property 6).

Property 2. Serial composition of d-MO-SNI gadgets is d-MO-SNI.

Proof. We make the proof for two gadgets by describing the simulator. The
general case follows by induction. The probes to be simulated can be split in

– t1 internal probes in the first gadget,
– t2 internal probes in the second gadget,
– output probes yi,Oi ,

such that t1 + t2 + |Oi| ≤ d for all i. The probes in the second gadget and the
output probes can be simulated with t2 shares of each of its inputs. These shares
and the probes in the first gadget can be simulated with at most t1 shares of
each of its inputs. ut

Property 3. Parallel composition of d-MIMO-SNI gadgets is d-MIMO-SNI.
5 We note that this definition can also be applied to multiplication gadgets, and

that the SNI refresh & SNI multiplication composition of the greedy strategy is
MIMO-SNI In fact, only the MI-SNI part is relevant since a multiplication gadget
has only one output. This is not surprising since the problem solved by MI-SNI is
essentially the same as the one solved by the greedy strategy (see Figures 1 and 4).

11

Proof. The simulator for the composite gadget simply runs the simulator for
each internal gadget. The total number of input shares that are requested is at
most the number of internal probes. ut

Property 4. Serial composition of a linear & a d-MIMO-SNI gadget is d-MO-SNI.

Proof. Let t1 be the number of internal probes in the linear gadget and t2 the
number of internal probes in the MIMO-SNI gadget. The simulator uses the sim-
ulator of the MIMO-SNI gadget to simulate the internal probes of the MIMO-
gadget and the output probes. It has then to simulate t2 output shares of the
linear gadget and the t1 internal probes. Let A the set of share indices corre-
sponding to all the values to be simulated. The simulator can request to know
all the shares x∗,A and can thus trivially simulate the linear gadget. ut

Property 5. Serial composition of a d-MO-SNI & a linear gadget is d-SNI.

Proof. Let B be the set of share indices of the output probes and of the probes
in the linear gadget. The simulator of the MO-SNI gadget is used to simulate
its internal probes and all the output shares whose index is in B. Simulation of
the remaining probes is then trivial. ut

We can now prove our main composition theorem about Substitution Per-
mutation Networks (SPN), which shows that our definitions allow to build
d-SNI (hence d-probing secure) SPNs. We consider only SPNs whose S-boxes
are grouped into layers that operate over the full state.

Property 6. A SPN whose S-boxes are d-MIMO-SNI is d-SNI.

Proof. The SPN can be viewed as a alternating serial composition of linear
and S-box layers, whose first and last layers are linear (this is without loss of
generality since linear layers can be the identity function). A S-box layer is a
parallel composition of S-boxes.

The S-box layers are d-MIMO-SNI thanks to Property 3. A round, the serial
composition of one linear layer followed by one S-box layer is d-MO-SNI thanks
to Property 4. Serial composition of rounds is d-MO-SNI thanks to Property 2.
The combination of the final linear layer with the other rounds is d-SNI thanks
to Property 5. ut

We insist that this proof is limited to SPNs with full layers of d-MIMO-SNI
S-boxes. It is for example not yet a proof of the greedy strategy proposed in [21],
which uses MIMO-SNI multiplications within an S-box that does not have such
a regular (full-layer) structure. We defer this proof to Section 5.4 where the
introduction of “probe isolation” will allow much simplified analyses.

For a gadget with only one input, MI-SNI is equivalent to SNI and for a
gadget with only one output, MO-SNI is equivalent to SNI. Hence, MIMO-SNI
is equivalent to SNI for gadgets with one input and one output, such as the AES
S-box implemented over F256. Property 6 thus applies to an AES implementation
using the S-box in [8].

12

4 Optimized S-box implementations

The previous section gave a general framework for proving the security of refresh-
ing strategies in masked (bitslice) block cipher implementations using MIMO-
SNI S-boxes. In this section, we tackle the problem of minimizing the amount
of SNI gadgets in the implementation of such an S-box in order to reduce their
(e.g., randomness) cost.

For this purpose, we first show how to express this optimization based on the
properties of a graph describing the computations to perform. We then apply
this optimization to the AES S-box in F256 (confirming the results in [8]) and to
the bitslice AES S-box of Boyar, Matthews and Peralta [10], bringing significant
improvements over the greedy strategy in [21].

4.1 Connecting composability to computation graph properties

Let a masked S-box be given as a mix of elementary operations such as ad-
ditions, multiplications and refreshes. We can define a high-level computation
graph modeling this S-box as a DAG whose vertices represent operations and
edges represent intermediate values. The operations can take any number of in-
coming edges (usually one or two) and produce one outgoing edge. Besides the
aforementioned field operations and refreshes, such a computation graph may
include three other types of vertices:

– split vertices take one incoming edge and can produce any number of out-
going edge(s). They model multiple uses of an intermediate value;

– input vertices have no incoming edge, one outgoing edge and the edges con-
nected to these vertices are called input edges;

– output vertices have one incoming edge, no outgoing edge and the edges
connected to these vertices are called output edges.

For simplicity, we next assume that all the additions and multiplications in
our computation graphs are NI, and we model SNI gadgets as NI ones followed
by a SNI refresh. Given an optimized computation graph, an implementer can
then replace NI multiplications followed by a SNI refresh by (sometimes more
efficient) SNI multiplications. We insist that this modeling is without loss of
generality since it is equivalent from the probing model point of view and the
respective (e.g., randomness) costs of the different gadgets of a private circuit
are parameters of the optimizations in the next subsections.

The computation graph model is a formalization of the probe propagation
framework discussed in Section 3.1. Capitalizing on the remark that SNI refresh
gadgets stop the propagation of probes, we can simple remove them (and their
incident edges) from the graph to build a simplified graph. The probes inside
the refresh gadgets can be reported to gadgets connected to their input, hence
the simplified graph is equivalent to the original graph regarding security in the
probing model.

13

Definition 11 (Simplified computation graph). The simplification of the
computation graph G is the graph that is obtained from G by removing all SNI
refresh vertices and their incident edges.

Since there are at most d adversarial probes in the circuit, a simple security
condition is that each probe propagates backwards to a single input through a
single path. In this case, there will be at most d probes for each input and the
second probe propagation security condition will be satisfied. Furthermore there
will be at most d probes a the output of each gadget, since the probe propagation
graph is a DAG (it is the reversal of the computation graph) so that the first
probe propagation security condition will be satisfied too.

We can relax this constraint and impose that no probe can propagate back-
wards from a node to another one through two different paths, while still satis-
fying the probe propagation security conditions. In other words, for any pair of
vertices there should be at most one (directed) path between them.

It can be seen that the latter is a necessary condition: if probes can propagate
backwards through two paths from a node A to a node B and if the adversary
has d probes on the output of A, d+1 shares of the output of A could be required
for the simulation.

We now formalize this security condition with the following properties (which
generalize the proof that the AES inversion is d-SNI in [8]).

Property 7. Let G be a composite gadget. If the gadget is implemented with
only NI gadgets and SNI refreshes, and if for any pair of vertices u, v in the
corresponding simplified computation graph there exists at most one path from
u to v, then the gadget is NI.

Proof. For each edge i in the computation graph, there is a number of adversarial
probes ai, a number of propagated probes pi and a total number of probes si.
The sum of the ai’s is at most d. For all i, si = ai+pi. For each edge, the number
of propagated probes is:

– 0 if the node at the end of the edge is a refresh;
– the number of corresponding output probes if it is an output edge;
– the sum of the total number of probes of the outgoing edges of the vertex at

the end of the edge otherwise (i.e., for split or NI operations).

If for each input edge i, a simulator knows si well-chosen shares, then it can
simulate all the probes of the adversary by using the simulator for each gadget
in order to get the required intermediate values.

The probes inside a NI gadget are not considered since they can equivalently
be replaced with probes on output shares of the gadget.

We now prove that the hypothesis implies that for all input edges i, si ≤ d.
This proves that the gadget is NI thanks to the previous observation.

We use a small lemma for this purpose: for all edges i, si =
∑

j αijaj where
αij is the number of paths from the output node of i to the input node of j in
the simplified computation graph. This can be proven by backwards induction

14

on the graph: if all the children of a node satisfy this property, it is also satisfied
for the node itself if the node is a refresh, split or NI operation. Input and output
nodes are trivial.

The main hypothesis implies that αij ≤ 1 for all edges i and share indices j,
hence si ≤

∑
j aj ≤ d. ut

Property 8. Let G be a composite gadget. If the gadget satisfies Property 7 and
if for any input node u and any output node v, there is no path from u to v,
then the gadget is SNI.

Proof. Looking at the proof of Property 7, we observe that the coefficients αij =
0 for all input edges i and output edges j. Hence for all input edges i, si ≤ t1
where t1 is the number of internal probes. ut

Property 9. Let G be a composite gadget. If the gadget satisfies Property 8 and
if for any pair of output nodes u1, u2 there is no node v such that there is a path
from v to u1 and a path from u2 to v, then the gadget is MO-SNI.

Proof. We have to prove that for all edges i, si ≤ d. Using the lemma from the
proof of Property 7, we have that for any edge i, and input edges j, all but one
αij are zero (i.e.,

∑
j αij ≤ 1). This implies that si ≤ t1 + t2 ≤ d, taking the

definitions of t1 and t2 from the definition of MO-SNI. For input edges i, the
proof of Property 9 applies. ut

Property 10. Let G be a composite gadget. If the gadget satisfies Property 9 and
if for any pair of input nodes u1, u2 there is no node v such that there is a path
from v to u1 and a path from v to u2, then the gadget is MIMO-SNI.

Proof. In addition to Property 9, we want to prove that
∑

i∈Ie
si ≤ t1 where Ie

is the set of input edges.
We know that for all j,

∑
i∈Ie

αij ≤ 1 and for output edges j,
∑

i∈Ie
αij = 0.

Hence
∑

i∈Ie
si ≤

∑
j 6∈Oe

aj = t1 where Oe is the set of output edges. ut

4.2 Optimizing the AES S-box in F256

Using the previous graph formalization, we built a tool that checks if a circuit
is (MIMO-)SNI. If we want to build a SNI S-box with the multiplication chain
from [8], there are 16 wires on which we could insert a refresh. This number is
sufficiently small to make a exhaustive search, which confirms the result of [8]
and shows that it is the only solution with only three refresh elements (up to
the permutation of refresh gadgets with the (·)2α power gadgets): two refresh
gadgets and one SNI multiplication.6 It also shows that two refresh gadgets is the
minimum possible, even with all multiplications implemented as SNI gadgets.

6 [8] actually mentions two SNI multiplications are needed, but it was observed by
Jean-Sébastien Coron that one is enough during Adrian Thillard’s PhD defense.

15

4.3 Optimizing the bitslice AES S-box of Boyar et al.

We now optimize the implementation of a bitslice AES S-box. We take the logic
circuit by Boyar et al. in [10] and search where it requires to add SNI refresh
elements to get a MIMO-SNI implementation.

The circuit is made of three parts: a top linear transformation, a middle
non-linear transformation and a bottom linear transformation. Since our goal is
to have a probing secure implementation of the AES, we do not actually need
to have a fully MIMO-SNI S-box. Having only the middle non-linear transfor-
mation MIMO-SNI is enough since the top and bottom linear transformations
can be considered as combined with the other linear operations of the AES (i.e.,
ShiftRow, MixColumns and AddRoundKey) when applying the MIMO-SNI com-
posability property.

The non-linear transformation is made of 30 XOR gates and 32 AND gates,
hence it contains more than 2 · (30 + 32) = 124 wires. This means that it is
impossible to apply the exhaustive search used in section 4.2. We therefore re-
formulate our graph optimization problem into a linear programming problem,
for which there exists numerous solvers. The latter does not guarantee that we
can find an optimal solution with a reasonable amount of resources, but solvers
have efficient heuristics to find good solutions and can prove lower bounds for the
solution. Since we take care that our representation as an optimization problem
admits as acceptable solutions all the possible implementations of the considered
logic circuit, we are able to provide upper and lower bounds on the cost of the
optimal implementation.

We write the linear optimization problem in the following way. A binary
variable ei is associated to each edge i of the graph, indicating if it is cut (i.e., if
a refresh is inserted). All the paths in the graph are then computed and a binary
variable pj is assigned to each path j, again indicating if it is cut. A path is cut
if any edge in the path is cut. It implies a first general constraint pj ≤

∑
i ei

(the sum is over the edges in the path).
We can then add the various constraints related to Non-Interference proper-

ties. First, to enforce NI, for each pair of vertices (u, v) all but one paths from u
to v must be cut. Let J be the set of paths from u to v,

∑
j∈J pj ≥ |J |−1. Next,

to enforce SNI, when u is an input node and v an output node, the constraint
becomes

∑
j∈J pj ≥ |J |. For the MI part we need: for any node u, let J be the

set of paths from any input node to u,
∑

j∈J pj ≥ |J | − 1. Finally, for the MO
part we need: for any node u, let J be the set of paths from u to any output
node,

∑
j∈J pj ≥ |J | − 1.

The objective function to be minimized is a weighted sum of the ei variables.
The weigh associated to each variable is the cost of adding a refresh on the
corresponding edge. This cost can be any metric, such as the amount of random
bits required, the computation time, etc. Since each edge has a distinct associated
cost parameter, this is the point where we can take into account that the cost of
adding a SNI refresh gadget may not be the same as replacing a NI multiplication
with a SNI multiplication.

16

This simple way of writing our problem has two limitations. First, there are
many paths in the computation graph (in the order of magnitude of 105 for
the AES S-box) which leads to many variables and constraints in the optimiza-
tion problem. This can be mitigated by grouping paths into clusters that share
common parts and associating them to a single variable.

The second issue is related to split nodes: there are multiple trees of split
nodes that represent the split of a value in more than two parts, and all these
representations do not give equivalent possibilities for inserting refresh elements.
Furthermore, no tree can provide all the optimization degrees of freedom. Since
it would be impractical to run the optimization for all the possible trees, we
instead modified the optimization problem. Each split node is replaced by a set
of split nodes that form a fully connected DAG and constraints are set to ensure
that a constant number of added edges is cut, which ensures that the added
edges do not distort the objective function.

We ran this optimization with uniform cost for all edges (which, as discussed
in Section 6, is reasonable for very high order making considering the current
state-of-the-art for elementary gadget implementations). This gave a solution
with 41 SNI elements and a lower bound of 34 SNI elements. The implementation
of Goudarzi and Rivain in [21] uses two SNI elements per AND gate, totaling 64
SNI elements. Our optimized S-box is given in Appendix A.

5 Probe-isolating NI multiplications

In this section, we complement the previous optimization by introducing a new
kind of Probe-Isolating Non-Interference (PINI) definition, and proving that it
enjoys a very simple composition property. Furthermore, we show that any lin-
ear gadget satisfies this new definition, and we exhibit a multiplication gadget
that also satisfies it. It gives us the ability to directly implement any boolean
function with PINI gadgets. This is for example in contrast with the more com-
plex analysis of [8] (or the one in the previous section), which requires a careful
combination of NI and SNI gadgets.

5.1 Intuition

The main idea behind this new definition is to take into account not the number
of probes (or of required inputs for simulation), but instead their position (i.e.,
the shares’ index). The whole circuit can then be cut into d + 1 circuit shares
that are not interconnected, except for non-linear gadgets. If we neglect those
gadgets, the circuit is d-probing secure: the adversary can only probe d of the
circuit shares, hence it has no information about one circuit share, which contains
one share of each input. PINI gadgets behave in the probing model as if they

17

had no connection between circuit shares, which allows to implement non-linear
functions while keeping the previous intuition of circuit sharing valid.7

Intuitively, the (MIMO-)SNI approach using the computation graph model
of Section 4.1 cuts paths in the computation graph to avoid having distinct paths
between two nodes. By contrast, the probe-isolating approach allows those paths
while making sure that they are redundant from the adversarial viewpoint, by
ensuring that the propagated probes on both paths can be simulated with the
same shares.

5.2 Probe propagation framework

In the probe propagation framework, probes propagate through PINI gadgets in
a way that respects circuit shares isolation.

Internal probes in PINI gadgets cannot be trivially associated to a circuit
share, since there is no actual circuit share isolation inside (non-linear) PINI
gadgets (the isolation is only simulated). However, we can let those probes carry
the same intuition as the output probes: each internal (adversarial) probe gives
knowledge to the adversary of at most one circuit share. This preserves the
intuition that the adversary has knowledge of at most d of the d + 1 circuit
shares.

We thus add a fourth probe propagation rule:

4. Each output probe on a PINI gadget, propagates to all the input shares
that are in the same circuit share as the output probe. Each internal probe
propagates to all the input shares that are in one additional circuit share
(this circuit share may depend on the position of the probes).

The probe isolation principles also impact security conditions: we count the
number of circuit shares probed at the output, instead of the number of probes.
There is thus a fourth probe propagation security condition:

4. For any PINI gadget, the number of circuit shares touched by output probes
must be at most d.

The way PINI works is illustrated in Figure 5, which takes two cases where
SNI is not sufficient (Figures 1a and 3a) and shows how PINI solves the problem.

In Figure 5a, there is one internal probe which propagates to one share of each
input of the multiplication as it is the case for (S)NI multiplications. However,
the propagated probes have the same share index (they are in the same circuit
share), hence probe propagation through the linear operation does not violate
the second probe propagation security condition.

In Figure 5b, the two propagated probes at the output of the S-box have
the same share index, hence it does not violate the fourth probe propagation
security condition.
7 To some extent the probe isolation idea can be connected to the Domain-Oriented

Masking implementation approach described in [22]. However, the latter focuses on
the local security of gadgets without discussing composability issues.

18

1-PINI Mul.

(a) Multiplication

1-PINI S-box

(b) S-box

Fig. 5. PINI circuits, masked at order d = 1. The arrows indicate the adversarial
probes and the red snake wires are the propagated probes.

5.3 Probe-Isolating NI gadgets & composability

In this section, we give the formal definition of PINI, and prove security and com-
posability properties. Furthermore, we exhibit PINI addition and multiplication
gadgets.

We first show the link between the notion of circuit share and the notations
of Section 2. For a gadgets with inputs xi,j and outputs yi,j , all the shares of one
input are denoted as xi,∗ and all the input shares that are in the same circuit
share are all the input share that have the same share index j: x∗,j . The same
goes for outputs.

In the following definition, the set A is the set of share indices (i.e., circuit
shares) that are probed through output probes, and B is the set of circuit shares
requested to simulate the internal probes.

Definition 12 (Probe-Isolating Non-Interference). Let G be a gadget over
d+1 shares and P a set of d1 probes on wires of G (called internal probes). Let
A be a set of d2 share indices. G is d-Probe-Isolating Non-Interfering (d-PINI)
if and only if for all P and A such that d1 + d2 ≤ d, there exists a set B of at
most d1 indices such that probes on the set of wires P ∪ yG∗,A can be simulated
with the wires xG

∗,A∪B.

The following property shows that PINI satisfies the probing security re-
quirement up to a slight additional requirement of independent input encodings.
The latter is generally not a strong constraint, since we will use this property
for large circuits, such as complete block ciphers, but it prevents the use of the
optimizations described in [17].

Property 11 (PINI implies probing security). A d-PINI gadget (with d+1 shar-
ing) is d-probing secure if the encodings of the inputs are independent of each
other.

The probe isolation principle is also implicitly used in the seminal work of Ishai
et al. [23], but they use 2d+ 1 masking.

19

Proof. Any set of at most d probes can be simulated with at most d shares of
each input. Thanks to the independent input encodings, this set of simulation
input probes is independent from all the input values. ut

We now look at composability properties for PINI gadgets.

Property 12 (PINI composability). A composite gadget made of d-PINI compos-
ing gadgets is d-PINI.

Proof. All internal probes are either inside a gadget, or they are on a share of a
aj wire, in which case it can be considered as internal to one gadget for which
aj is an input or an output. Hence, if the set P of internal probes is of size d1,
there exists sets Pκ of probes internal to Gκ and of sizes d1,κ for κ = 1, . . . , `
such that P1 ∪ ... ∪ P` = P and d1,1 + ...+ d1,` = d1.

Let A` = A the set of d2 indices for output probes shares. For κ = ` to 1,
we apply the definition of d-PINI: there exists a set of share indices Bκ of size
at most d1,κ such that the probes Pκ and output probes yGκ

∗,Aκ
can be simulated

with the input probes xGκ

∗,Aκ−1
, where Aκ−1 = Aκ ∪Bκ.

By induction, we have Aκ−1 = A∪Bκ ∪ · · · ∪B`. This implies that |Aκ−1| ≤
d2 +

∑`
p=κ dp ≤ d2 + d1 ≤ d, hence the PINI conditions are satisfied for each

gadget.
Let B = A0 \ A, we have |B| ≤ |B1 ∪ · · · ∪ B`| ≤ d1. Finally, looking at the

whole circuit, we observe that the wires x∗,A∪B allow to simulate all the required
probes. ut

We next prove that linear gadgets are PINI.

Property 13. The trivial implementation of a linear function is d-PINI.

Proof. Take B as the set of all share indices for which there is a probe in P . ut

We finally introduce in Algorithm 1 a new multiplication gadget for d + 1
shares with d(d + 1)/2 randomness requirement. It is a small variation of the
ISW multiplication [23].

Property 14. The multiplication gadget of Algorithm 1 is d-PINI.

Proof. We prove that the values assigned to the probes by the simulator de-
scribed in Algorithm 3 are indistinguishable from the multiplication gadget
probes.

This behavior of the simulator is identical to the behavior of the gadget,
except for values zij , sij and p1ij for which i 6∈ X (X is generated by Algorithm 3).

In these cases, if zij or a sum in which it appears is probed, then there is
no probe on zji (or their intermediate values, or a sum in which it appears) or
on intermediate values of the computation of zij , hence rij is only observable to
the distinguisher through zij . This means that zij is seen by the distinguisher as
a uniform random variable independent from all other variables, which is what
the simulator generates.

20

Algorithm 1 PINI multiplication gadget over d+ 1 shares
Require: shared factors a, b ∈ Fd+1

q such that
⊕

i ai = a and
⊕

i bi = b
Ensure: output c ∈ Fd+1

q such that
⊕

i ci = a · b
for i = 0 to d do

for j = i+ 1 to d do
rij

$←− Fq;
rji ← rij ;

end for
end for
for i = 0 to d do

for j = 0 to d do
if i 6= j then

sij ← bj ⊕ rij ;
p0ij ← ai · rij ;
p1ij ← ai · sij ;
zij ← p0ij ⊕ p1ij ;

Ensure: zij = rij ⊕ ai · bj
end if

end for
end for
for i = 0 to d do

ci ← ai · bi ⊕
⊕d

j=0,j 6=i zij ;
end for

For probes on sij , the same argument applies: rij is only observable to the
distinguisher through sij , hence sij is seen by the distinguisher as a uniform
independent random variable. To simulate p1ij , the simulator simulates sij as
previously (and the same argument applies), then computes p1ij in the same
manner as Algorithm 1. ut

5.4 Relationship between PINI and MIMO-SNI
We first observe that MIMO-SNI implies PINI.
Property 15. Any d-MIMO-SNI gadget is d-PINI.
Proof. In the definition of PINI, take B as the share indices of t1 input shares
required by the simulator. ut

This leads immediately to the following composability result.
Corollary 1. A composite gadget whose composing gadgets are only d-MIMO-
SNI gadgets and linear gadgets is d-probing secure.
Proof. Direct from Property 15, Property 13, Property 12 and Property 11. ut

We note that this corollary now applies to the AES implementation pro-
posed in [21]: using only SNI multiplications and systematically refreshing one
of their inputs guarantees the input and output independence conditions which
are required to move from SNI to MIMO-SNI and therefore PINI gadgets.

21

Algorithm 2 Input shares chooser for the simulator of PINI multiplication
Require: Set of probes yG

∗,A ∪ P
X ← ∅;
for i = 0 to d do

if ai, ai, bi, ai · bi or ci is probed then
X ← X ∪ {i};

else if there exists k such that
⊕k

j=1 zij is probed then
X ← X ∪ {i};

end if
for j = 0 to d do

if there are at least two probes on intermediate values of computation of zij
(these values are rij , pkij , skij and zij) then

X ← X ∪ {i, j};
else if there is one probe on an intermediate value of the computation of zij
then

if i ∈ X or j ∈ X then
X ← X ∪ {i, j};

else
X ← X ∪ {i};

end if
end if

end for
end for
B ← X \A;

Ensure: |B| ≤ |P |

22

Algorithm 3 Simulator of probes for the PINI multiplication (Algorithm 1)
Require: Set of probes yG

∗,A ∪ P
Run Algorithm 2 and get X and B.

Require: Knowledge of input shares xG
∗,A∪B = xG

∗,X .
for 0 ≤ i ≤ d do

for 0 ≤ j ≤ d do
if i ∈ X and j ∈ X then

Compute wk
ij , skij and zij as specified by the algorithm of the multiplication

gadget;
else if i 6∈ X then

Leave zij and its intermediate values unassigned as they are not involved in
any probe;

else
Ensure: i ∈ X and j 6∈ X.
Ensure: Only one intermediate values of the computation of zij is probed, or

a sum in which zij appears.
Ensure: zji or its intermediate values do not appear in any probe.

if zij or a sum in which zij appears is probed then
zij

$←− Fq;
else if sij is probed then

sij
$←− Fq;

else if p0ij is probed then
rij

$←− Fq;
p0ij ← ai · rij ;

else if p1ij is probed then
sij

$←− Fq;
p1ij ← ai · sij ;

end if
end if

end for
end for
Compute (partial) sums of assigned zij , products aibi and associated ci.

Ensure: All the probed values are now assigned.

23

6 Performance comparison

We conclude the paper by discussing and comparing the expected performances
of our two proposals for the implementation of a (masked, bitslice) composable
AES S-box. As mentioned in Section 2, we use the randomness complexity (in
bits) as our main cost metric for this purpose (and since the computational com-
plexity is essentially similar for the gadgets we consider that all have to compute
the full matrix of shares’ products). To verify the validity of this assumption, we
compare the execution time of the various algorithms on a microprocessor.

We report the state-of-the-art randomness cost for the gadgets used in Ta-
ble 1. Using these cost formulas, we first observe that for sufficiently high orders
(d ≥ 17), the multiplication of Belaid et al. followed by the refresh of Batistello
et al. has a lower cost than the multiplication of Ishai, Sahai and Wagner, which
justifies the assumptions made for the optimization in Section 4.3.8

Order d NI mul. SNI refresh SNI mul. PINI mul.
1 1 1 1 1
2 2 [8] 3 3 3
3 4 [8] 4 [6] 6 6
4 5 [8] 8 10 10
5 11 12 15 15
6 15 14 [6] 21 21
7 19 20 24 [6] 28
d Cmul,NI Cref Cmul,SNI Cmul,PINI

Cmul,NI =
⌊
d2/4

⌋
+ d [8]

Cref = (d+ 1) (log2(d+ 1)− 1) [7]
Cmul,SNI = min (d(d+ 1)/2, Cmul,NI + Cref)
Cmul,PINI = d(d+ 1)/2 [Algorithm 1]

Table 1. Randomness cost of best known gadgets at various orders. Numbers
in the table with no reference are instantiations of the formula valid at all orders.
The formula for Cref is valid only if d+1 is a power of 2. It is more complicated in
other cases but it is stillO(d log d). The implementation of the SNI multiplication
is either the ISW multiplication [23] or a NI multiplication followed by a SNI
refresh.

Using those costs, we can evaluate the cost for a full bitslice, masked and
composable AES S-box for three different approaches: the greedy strategy, the
MIMO-SNI optimized S-box, and the S-box that uses PINI multiplications. The
bitslice S-box has 32 multiplications, hence the greedy strategy requires 32 SNI
8 Our optimization can be easily adapted to take into account the actual costs at

lower orders, but since the relative costs differ for every order, finding the optimal
implementation would require re-running the optimization for each order.

24

multiplications and 32 SNI refresh gadgets. The optimized MIMO-SNI S-box re-
quires 41 refresh elements, and 12 of those refresh the output of a multiplication
(hence can be implemented with a SNI multiplication). The PINI implementa-
tion simply requires 32 PINI multiplication gadgets.

The total randomness cost is shown in Figure 6. First, we can see that the
MIMO-SNI optimization reduces costs by approximately 20 % over the greedy
strategy. The PINI multiplication is even better at low orders (d ≤ 23), with
cost reduction up to 50 %. However, for large d values, PINI is less interesting,
which is logical since PINI multiplications have a cost of roughly d2/2 while NI
multiplications have a cost of roughly d2/4 and SNI refreshes d log(d).

5 10 15 20 25 30

0.5

0.6

0.7

0.8

0.9

1

Order d

R
el

at
iv

e
ra

nd
om

ne
ss

co
st

Greedy strategy
MIMO-SNI
PINI

Fig. 6. Randomness cost for a bitslice, masked and composable AES S-box im-
plementation. The cost is measured relatively to the cost of the greedy strategy.

It is interesting to note that the generic PINI construction is more efficient at
low orders than the other solutions, even though those solution use automatically
optimized gadgets.

We conclude by discussing the performance in a broader sense by looking at
the execution time of a software implementation. We take the RC = 80 scenario
from [24]: for their algorithm, the linear layers cost 1 % of execution time, the
arithmetic operations of the S-box 7 % and the randomness generation 92 %.
Their algorithm can be analyzed to find the execution time (expressed as per-
centage of their total runtime) of one arithmetic operation (including load/store
overheads) and the time to generate one random bit. Knowing the number of
arithmetic operations and amount randomness required for each of our algo-
rithms, we compute their execution time, which gives Figure 7.9

9 The only assumption of this estimation method is that the arithmetic operation
execution time and randomness generation time are constant across algorithms. The

25

0 5 10 15 20 25 30 35

0.6

0.8

1

Order d

R
el

at
iv

e
ru

nt
im

e
co

st

Greedy strategy
MIMO-SNI
PINI

Fig. 7. Software runtime cost for a bitslice, masked and composable AES S-
box implementation. The cost is measured relatively to the cost of the greedy
strategy.

We first note that since the randomness generation time is dominant, our
goal of reducing randomness requirements is justified. For the remaining part of
the execution time, our MIMO-SNI optimization approach reduces the number
of refresh operations, hence it reduces the amount of time spent in the S-box
computation compared to the greedy strategy.

For the PINI implementation, the arithmetic cost of the multiplications is
twice the cost of the greedy strategy (as it is the case for the randomness cost),
but there is no refresh cost. The conclusion is hence similar: the PINI imple-
mentation is very competitive for small orders, and becomes worse than the
MIMO-SNI optimization at large orders.

Finally, this comparative result (i.e., the choice between the MIMO-SNI op-
timization and PINI multiplications) is strongly dependent on the randomness
complexity of the (state-of-the-art) gadgets used. In this respect, it is worth
emphasizing that one core advantage of the PINI definition is that it allows
trivial proofs of complex circuits with one single type of gadget, namely PINI
multiplications (while the optimization has to deal with NI multiplications, SNI
multiplications and SNI refreshes). In this respect, the investigation of more effi-
cient PINI multiplications (that would make it the solution of choice for any
number of shares) is an interesting open problem.

Source codes. We join an archive containing the source codes used in this
submission as supplementary material.

estimation error is thus small and independent of many algorithmic parameters such
as the masking order.

26

References

1. Josep Balasch, Sebastian Faust, and Benedikt Gierlichs. Inner product masking
revisited. In Oswald and Fischlin [27], pages 486–510.

2. Josep Balasch, Sebastian Faust, Benedikt Gierlichs, Clara Paglialonga, and
François-Xavier Standaert. Consolidating inner product masking. In Takagi and
Peyrin [30], pages 724–754.

3. Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-
Xavier Standaert. On the cost of lazy engineering for masked software implemen-
tations. In Marc Joye and Amir Moradi, editors, Smart Card Research and Ad-
vanced Applications - 13th International Conference, CARDIS 2014, Paris, France,
November 5-7, 2014. Revised Selected Papers, volume 8968 of Lecture Notes in
Computer Science, pages 64–81. Springer, 2014.

4. Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking. In Os-
wald and Fischlin [27], pages 457–485.

5. Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and
type-directed higher-order masking. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 116–129. ACM, 2016.

6. Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-
Xavier Standaert, and Pierre-Yves Strub. Parallel implementations of masking
schemes and the bounded moment leakage model. In Coron and Nielsen [13],
pages 535–566.

7. Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun.
Horizontal side-channel attacks and countermeasures on the ISW masking scheme.
In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa Bar-
bara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture Notes in
Computer Science, pages 23–39. Springer, 2016.

8. Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian
Thillard, and Damien Vergnaud. Randomness complexity of private circuits for
multiplication. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in
Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II, volume 9666 of Lecture Notes in Computer Science,
pages 616–648. Springer, 2016.

9. Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian
Thillard, and Damien Vergnaud. Private multiplication over finite fields. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part III, volume 10403 of Lecture Notes in Com-
puter Science, pages 397–426. Springer, 2017.

10. Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques
with applications to cryptology. J. Cryptology, 26(2):280–312, 2013.

11. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener, edi-
tor, Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology

27

Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, vol-
ume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer, 1999.

12. Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,
Matthieu Rivain, and Praveen Kumar Vadnala. Conversion of security proofs from
one leakage model to another: A new issue. In Werner Schindler and Sorin A. Huss,
editors, Constructive Side-Channel Analysis and Secure Design - Third Interna-
tional Workshop, COSADE 2012, Darmstadt, Germany, May 3-4, 2012. Proceed-
ings, volume 7275 of Lecture Notes in Computer Science, pages 69–81. Springer,
2012.

13. Jean-Sébastien Coron and Jesper Buus Nielsen, editors. Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part I, volume 10210 of Lecture Notes in Computer Science, 2017.

14. Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
Higher-order side channel security and mask refreshing. In Shiho Moriai, editor,
Fast Software Encryption - 20th International Workshop, FSE 2013, Singapore,
March 11-13, 2013. Revised Selected Papers, volume 8424 of Lecture Notes in
Computer Science, pages 410–424. Springer, 2013.

15. Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage mod-
els: From probing attacks to noisy leakage. In Phong Q. Nguyen and Elisabeth
Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture
Notes in Computer Science, pages 423–440. Springer, 2014.

16. Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making masking
security proofs concrete - or how to evaluate the security of any leaking device. In
Oswald and Fischlin [27], pages 401–429.

17. Sebastian Faust, Clara Paglialonga, and Tobias Schneider. Amortizing randomness
complexity in private circuits. In Takagi and Peyrin [30], pages 781–810.

18. Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and Matthieu Rivain.
Affine masking against higher-order side channel analysis. In Alex Biryukov, Guang
Gong, and Douglas R. Stinson, editors, Selected Areas in Cryptography - 17th
International Workshop, SAC 2010, Waterloo, Ontario, Canada, August 12-13,
2010, Revised Selected Papers, volume 6544 of Lecture Notes in Computer Science,
pages 262–280. Springer, 2010.

19. Laurie Genelle, Emmanuel Prouff, and Michaël Quisquater. Thwarting higher-
order side channel analysis with additive and multiplicative maskings. In Bart
Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28 -
October 1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer Science,
pages 240–255. Springer, 2011.

20. Jovan Dj. Golic and Christophe Tymen. Multiplicative masking and power analysis
of AES. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume
2523 of Lecture Notes in Computer Science, pages 198–212. Springer, 2002.

21. Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking be in
software? In Coron and Nielsen [13], pages 567–597.

22. Hannes Groß, Stefan Mangard, and Thomas Korak. An efficient side-channel pro-
tected AES implementation with arbitrary protection order. In Helena Handschuh,

28

editor, Topics in Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the
RSA Conference 2017, San Francisco, CA, USA, February 14-17, 2017, Proceed-
ings, volume 10159 of Lecture Notes in Computer Science, pages 95–112. Springer,
2017.

23. Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture
Notes in Computer Science, pages 463–481. Springer, 2003.

24. Anthony Journault and François-Xavier Standaert. Very high order masking: Effi-
cient implementation and security evaluation. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES 2017 -
19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceed-
ings, volume 10529 of Lecture Notes in Computer Science, pages 623–643. Springer,
2017.

25. Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-channel leakage of
masked CMOS gates. In Alfred Menezes, editor, Topics in Cryptology - CT-RSA
2005, The Cryptographers’ Track at the RSA Conference 2005, San Francisco,
CA, USA, February 14-18, 2005, Proceedings, volume 3376 of Lecture Notes in
Computer Science, pages 351–365. Springer, 2005.

26. Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware imple-
mentation of nonlinear functions in the presence of glitches. J. Cryptology,
24(2):292–321, 2011.

27. Elisabeth Oswald and Marc Fischlin, editors. Advances in Cryptology - EURO-
CRYPT 2015 - 34th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part I, volume 9056 of Lecture Notes in Computer Science. Springer, 2015.

28. Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science,
pages 142–159. Springer, 2013.

29. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of
AES. In Stefan Mangard and François-Xavier Standaert, editors, Cryptographic
Hardware and Embedded Systems, CHES 2010, 12th International Workshop, Santa
Barbara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of Lecture Notes
in Computer Science, pages 413–427. Springer, 2010.

30. Tsuyoshi Takagi and Thomas Peyrin, editors. Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I, volume 10624 of Lecture Notes in Computer Science. Springer,
2017.

31. Manfred von Willich. A technique with an information-theoretic basis for pro-
tecting secret data from differential power attacks. In Bahram Honary, editor,
Cryptography and Coding, 8th IMA International Conference, Cirencester, UK,
December 17-19, 2001, Proceedings, volume 2260 of Lecture Notes in Computer
Science, pages 44–62. Springer, 2001.

29

A Optimized AES S-box implementation

R(·) means a SNI refresh gadget. The inputs are x0, . . . , x7 and the outputs are
s0, . . . , s7.

Top linear layer:

t0 = x1 + x2

t1 = x4 + y12

y1 = t0 + x7

y2 = y1 + x0

y3 = y5 + y8

y4 = y1 + x3

y5 = y1 + x6

y6 = y15 + x7

y7 = x7 + y11

y8 = x0 + x5

y9 = x0 + x3

y10 = y15 + t0

y11 = y20 + y9

y12 = y13 + y14

y13 = x0 + x6

y14 = x3 + x5

y15 = t1 + x5

y16 = t0 + y11

y17 = y10 + y11

y18 = x0 + y16

y19 = y10 + y8

y20 = t1 + x1

y21 = y13 + y16

Middle non-linear layer:

x7,0 = R(x7)
y1,0 = R(y1)
y2,0 = R(y2)
y3,0 = R(y3)
y4,0 = R(y4)
y5,0 = R(y5)
y6,0 = R(y6)
y7,0 = R(y7)
y8,0 = R(y8)
y9,0 = R(y9)
y10,0 = R(y10)
y11,0 = R(y11)
y12,0 = R(y12)
y13,0 = R(y13)
y14,0 = R(y14)
y15,0 = R(y15)
y16,0 = R(y16)
y17,0 = R(y17)
t2 = y12,0 · y15,0

t2,0 = t2
t3 = y6,0 · y3,0

t4 = t3 + t2,0
t5 = y4,0 · x7,0

t6 = t5 + t2,0
t7 = y13,0 · y16,0

t7,0 = t7
t8 = y1,0 · y5,0

t9 = t8 + t7,0
t10 = y7,0 · y2,0

t11 = t10 + t7,0

t12 = y9,0 · y11,0

t13 = y17,0 · y14,0

t14 = t13 + t12
t14,0 = t14
t15 = y10,0 · y8,0

t16 = t15 + t12
t17 = t4 + t14,0
t18 = t6 + t16
t19 = t9 + t14,0
t20 = t11 + t16
t21 = t17 + y20

t21,0 = R(t21)
t22 = t18 + y19

t22,0 = R(t22)
t23 = t19 + y21

t23,0 = t23
t24 = t20 + y18

t24,0 = R(t24)
t25 = t21,0 + t22,0
t26 = t23,0 · t21,0
t26,0 = R(t26)
t27 = t24,0 + t26,0
t27,0 = t27
t28 = t27 · t25
t29 = t28 + t22
t29,0 = R(t29)
t29,1 = R(t29)
t30 = t24,0 + t23,0
t31 = t26,0 + t22,0
t32 = t31 · t30

t33 = R(t32) + t24,0
t33,0 = R(t33)
t34 = t23,0 + t33
t35 = t27,0 + t33,0
t36 = t35 · t24
t36,0 = R(t36)
t37 = t34 + t36,0
t37,0 = R(t37)
t38 = t27,0 + t36,0
t39 = t38 · t29,0
t40 = t39 + t25
t40,0 = R(t40)
t41 = t37,0 + t40,0
t41,0 = t41
t42 = t29,1 + t33,0
t42,0 = R(t42)
t43 = t29,1 + t40,0
t44 = t33,0 + t37
t45 = t41,0 + t42
t45,0 = t45
z0 = y15,0 · R(t44)
z1 = t37,0 · y6,0

z2 = x7,0 · t33,0
z3 = y16,0 · t43
z4 = y1,0 · t40,0
z5 = t29,1 · y7,0

z6 = t42,0 · y11,0

z7 = t45,0 · y17,0

z8 = t41,0 · y10,0

z9 = y12,0 · t44

z10 = y3,0 · t37
z11 = y4,0 · t33
z12 = y13,0 · t43
z13 = y5,0 · t40,0
z14 = t29,0 · y2,0

z15 = t42,0 · y9,0

z16 = t45,0 · y14,0

z17 = y8,0 · t41
o0 = z0
o1 = z1
o2 = z2
o3 = R(z3)
o4 = R(z4)
o5 = z5
o6 = R(z6)
o7 = R(z7)
o8 = R(z8)
o9 = R(z9)
o10 = R(z10)
o11 = z11
o12 = R(z12)
o13 = z13
o14 = z14
o15 = z15
o16 = R(z16)
o17 = R(z17)

Bottom linear layer:

t46 = o15 + o16
t47 = o10 + o11
t48 = o5 + o13
t49 = o9 + o10
t50 = o2 + o12
t51 = o2 + o5
t52 = o7 + o8
t53 = o0 + o3

t54 = o6 + o7
t55 = o16 + o17
t56 = o12 + t48
t57 = t50 + t53
t58 = o4 + t46
t59 = o3 + t54
t60 = t46 + t57
t61 = o14 + t57

t62 = t52 + t58
t63 = t49 + t58
t64 = o4 + t59
t65 = t61 + t62
t66 = o1 + t63
t67 = t64 + t65
s0 = t59 + t63
s1 = Not(t64 + s3)

s2 = Not(t55 + t67)
s3 = t53 + t66
s4 = t51 + t66
s5 = t47 + t65
s6 = Not(t56 + t62)
s7 = Not(t48 + t60)

30

	Improved Bitslice Masking: from Optimized Non-Interference to Probe Isolation
	Gaëtan Cassiers and François-Xavier Standaert*-0.2cm

