
Founding Cryptography on Smooth Projective Hashing

Bing Zenga

aSchool of Software Engineering, South China University of Technology, Guangzhou, 510006, China

Abstract

Oblivious transfer (OT) is a fundamental primitive in cryptography. Halevi-Kalai OT (Halevi, S. and Y. Kalai (2012),
Journal of Cryptology 25(1)), which is based on smooth projective hash(SPH), is a famous and the most efficient
framework for 1-out-of-2 oblivious transfer (OT2

1) against malicious adversaries in plain model. However, it does not
provide simulation-based security. Thus, it is harder to use it as a building block in secure multiparty computation
(SMPC) protocols. A natural question however, which so far has not been answered, is whether it can be can be made
fully-simulatable. In this paper, we give a positive answer. Further, we present a fully-simulatable framework for
general OTn

t (n, t ∈ N and n > t). Our framework can be interpreted as a constant-round blackbox reduction of OTn
t

(or OT2
1) to SPH. To our knowledge, this is the first such reduction. Combining Kilian’s famous completeness result,

we immediately obtain a black-box reduction of SMPC to SPH.

Keywords: oblivious transfer, secure multiparty computation, malicious adversaries, smooth projective hashing.

1. Introduction

1.1. Secure Oblivious Transfer
Oblivious transfer (OT), introduced in [1], is a fundamental cryptographic primitive allowing the secure multiparty

computation (SMPC) of any computable function [2]. Beside this completeness result by Kilian, OT exhibits interests
on its own since this primitive is generally used as a building block in a variety of cryptographic protocols: secure
computation of the median [3], privacy-preserving data publishing [4], privacy-preserving set operations [5], elec-
tronic commerce [6], private mutual authentication [7], privacy preserving data mining [8], database search [9, 10],
oblivious keyword search [11], oblivious polynomial evaluation [12], contract signing [13].

t-out-of-n oblivious transfer (OTn
t) deals with the scenario where a sender holds n private values m1,m2, . . . ,mn

and a receiver possesses t private indexes i1, i2, . . . , it. The receiver expects to get the values mi1 ,mi2 , . . . ,mit without
leaking any information about which ones were chosen. On the other hand, the sender does not want the receiver to
know anything but the t values queried about.

In SMPC, two categories of adversaries are usually considered: semi-honest (also called honest-but-curious) and
malicious. In both cases, the adversary’s goal is to learn more information using the transcript of the computation than
what is inferred by his private input and the result of the computation. However, there is a fundamental difference
between these two models: a semi-honest adversary always executes the steps of the SMPC protocol faithfully while
a malicious enemy can arbitrarily deviate from them [14]. Obviously, security against malicious adversaries (SAMA)
is higher than security against a semi-honest adversary and is closer to the reality. In this paper, we focus on SAMA.
Many OT protocols with SAMA are known, e.g., [15, 6, 16, 17, 18, 19, 10, 20, 21].

A standard way of proving the security of a SMPC protocol is to use the ideal/real model paradigm. In this context,
adversaries in the real world are demonstrated to be equivalent to enemies in the ideal world where the computation
is executed by an incorruptible entity named ideal functionality. As the SMPC protocol (in the real world) simulates
the ideal world, the security is said to be fully-simulatable. [17, 18, 19, 10, 20, 21] are shown to be fully-simulatable.

Halevi-Kalai OT [16] is a remarkable work among known protocols, because it is the most efficient framework
for OT2

1 against malicious adversaries in plain model. Indeed, it is an abstraction of highly efficient protocols of Naor

Email address: zeng.bing.zb@gmail.com (Bing Zeng)

Preprint submitted to X May 13, 2018

and Pinkas [15] and Aiello et al [6]. However, Halevi-Kalai OT is non-simulatable. Thus, it is harder to use it as a
building block in secure multi-party computation protocols. A concrete attack on non-simulatable OT shown by [9]
is selective-failure attack where the sender causes a failure depending on the receiver’s selection. A natural question
however, which so far has not been answered, is whether Halevi-Kalai OT can be made fully-simulatable.

1.2. Our Contribution

In the following subsections, we are to provide detailed explanations of our contribution. The main points can be
summarized as follows.

1. We present a positive answer to the question. Specially, we make Halevi-Kalai OT2
1 fully-simulatable, then ex-

tends it to general case OTn
t . Thus, we present a generally realizable framework for OTn

t with fully-simulatable
SAMA in plain model.

2. As a theoretical contribution, our framework is a constant-round blackbox reduction of OTn
t to SPH. To our

knowledge, this is the first such reduction. Combining Kilian’s completeness result [2], we immediately obtain
a black-box reduction of SMPC to SPH.

We tress that OTn
t has its own interesting when compare it with OT2

1. First, there are many applications for OTn
t

itself, e.g., [12, 9, 22, 10]. Second, when an efficient OTn
t protocol is needed in practice, it is unknown how to

construct it from a known OT2
1 protocol. Specifically, there is not an efficient reduction OTn

t to OT2
1 on SAMA level

is known except a prohibitively expensive reduction employing zero-knowledge proofs for NP [23]. Although there
are some reductions of weaker security, e.g. [9], they do not provide simulation-based security. This justifies directly
constructing fully-simulatable SAMA protocols for OTn

t .

1.2.1. Cryptographic Approach
The SPH variant used in [16] was called verifiably smooth projective hash family. It deals with two types of

instances (smooth and projective) which are computationally indistinguishable due to a property called hard subset
membership. Nonetheless, another property called verifiable smoothness provides a way to verify whether at least one
of a two instances is smooth. In the remaining of this paper, we are to denote verifiably smooth projective hash family
with hard membership property by VSPH-HM.

For each instance x of each type, there are two kinds of keys (hash keys and projection keys). In addition, every
projective instance holds a witness while no smooth instance does so. A hash value is computed from a hash key (i.e.,
Hash(x, hk)) while a projection value is computed from a projection key and a witness (i.e., pHash(x, pk,w)). For
a smooth instance, the projection value reveals almost no knowledge about the hash value due to a property called
smoothness. However, for a projective instance, the projection value equals the hash value. This fact is guaranteed by
another property called projection.

Despite the notion of VSPH-HM can be used to deal with OTn
1, it seems difficult to extend it to handle the gen-

eral case OTn
t . The reason is that, to hold verifiable smoothness, both types of instances have to be generated in a

dependent way. This makes it difficult to design an algorithm checking that at least t of n arbitrary instances are
smooth without leaking any information to the adversaries which could be used to distinguish smooth instances from
projective instances. Therefore, even constructing a non-simulatable protocol for OTn

t as in [16] seems difficult.
Another problem comes from the fact that, for a protocol using a VSPH-HM, it is impossible to gain simulation-

based security in the case where only the receiver is corrupted. The reason is that, to extract the adversary’s real input
in this case, the simulator has to identify the projective part of a smooth-projective instance pair. However, this is
computationally impossible because of the hard subset membership assumption.

Seeing the above difficulties, we define a new variant of SPH called smooth projective hash family with distin-
guishability and hard subset membership (SPH-DHM). See [24] for its instantiations. The most essential difference
between the notions of SPH-DHM and VSPH-HM is that a SPH-DHM also provides witnesses to the smooth instances
while verifiable smoothness is removed. Furthermore, we introduce the distinguishability property providing a way
to differentiate smooth instances from projective ones when needed witnesses are given. This enables a SPH-DHM to
generate both types of instances independently. Thus, the notion of SPH-DHM is tailored to treat OTn

t .
We would like to recall that, in [16], the receiver learns the value it queried about via a projective instance. For a

smooth-projective instance pair, if the witness pair is available, the simulator can identify the projective instance, and

2

hence the simulator can learn which value the adversary chooses (i.e. it learns the adversary’s real input). Employing a
cut-and-choose technique as in [19, 25], the simulator can see the witnesses by rewinding the adversary’s computation.
Our idea is for the receiver to ”cut” some instance vectors (where each one contains t projective instances and n − t
smooth instances) and for the sender to ”choose” some instance vectors at random to check their legalities (i.e., the
sender checks that each vector indeed contains at least n − t smooth instances). The receiver then sends the chosen
instance vectors’ witnesses. Combining the previous analysis, we can see that for a protocol constructed following
this idea, the simulator can extract the adversary’s real input, and hence simulation-based security can be gained in
the case where only the receiver is corrupted.

In the case where only the sender is corrupted. The authors of [16] argue that their protocol gives a simulation-
based security. Though their simulation idea is intuitively right, we find it not true. The main problem is that the input
extraction is not completed in one shot. See Section 3.2 for the details. To solve this problem, we let both parties
commonly choose instance vectors to open via a coin-tossing protocol. This gives opportunities to the simulator to
know the choices of malicious adversaries and to bias the common choices. Then the simulator can cheat malicious
adversaries and extract their input in one shot.

In [26], Zeng et al. presented a framework for OTn
t secure against covert adversaries whose design is close to the

protocol presented in this paper. In [27], Aumann and Lindell proved that, for any protocol, if its deterrence factor to
covert adversaries was ε = 1 − µ(k) (where µ(·) is a negligible function of the security parameter), then the protocol
was also secure against malicious adversaries. With this result in mind, one might naturally wonder whether it would
be possible to get such a good deterrence factor for [26] via a simple parameter setting to ensure [26]’s security against
malicious adversaries. Unfortunately, this straightforward idea does not allow for [26]’s formal security proof to hold.
For example, in the case where only the sender is corrupted, following Theorem 23 and the proof of Lemma 24 in
[26], the expected running time of the simulator would be

(
K

K−g

)
= 1/(1 − ε), where K and g are statistical security

parameters. If ε = 1 − µ(k), then the expected running time
(

K
K−g

)
= 1/µ(k) is greater than any positive polynomial in

the security parameter. As a consequence, in the current paper, to obtain security against malicious adversaries, the
ideas behind formal security proofs are totally different from [26].

The above discussion gives examples emphasizing that, in the field of provable security, it is usually technically
difficult and error-prone rather than straightforward to construct a scheme with higher security level from one with
lower security level.

To summarize our approach at a high level, our basic idea is to use the notion of SPH-DHM and a cut-and-choose
technique to construct a framework Π for OTn

t with fully-simulatable SAMA. Our scheme can be depicted as follows:

1. Let K be a predetermined positive integer. The receiver generates a hash family parameter and ”cuts” K vectors
where each vector contains t projective instance-witness pairs and n−t smooth instance-witness pairs. It shuffles
each vector and sends the parameter and the shuffled instance vectors to the sender.

2. The sender checks that the hash family parameter is legal. Then, both parties commonly run a coin-tossing
protocol to ”choose” instance vectors to check their legalities.

3. To prove the chosen instance vectors’ legalities, the receiver sends their witness vectors to the sender.
4. After the sender has checked the validity of those vectors, the receiver reorders each non-chosen instance vector

using a permutation over {1, 2, . . . , n} based on its private indexes (representing the t elements it wants to obtain).
Then, the receiver forwards all these permutations to the sender.

5. According to the permutations, the sender reorders every non-chosen instance vector. Then, it encrypts its
private n values by XOR-ing them with the hash values of the non-chosen instance vectors. Finally, the sender
sends the encryptions and projection keys of non-chosen instance vectors to the receiver.

6. The receiver computes the projection values of the non-chosen instances vectors and it XOR-es the projection
values and the encryptions to gain the t values it sought.

1.2.2. Reducing SMPC to SPH
As a theoretical contribution, our protocol can be interpreted as a constant-round blackbox reduction of OTn

t to
SPH. Besides SPH, our protocol Π employs two cryptographic primitives: a perfectly hiding commitment and a
perfectly binding commitment, which are used to toss coins. The coin-tossing can be carried out sequentially (bit
by bit) [28], without using perfectly hiding commitments. Further, perfectly binding commitments can be built from

3

one-way functions [29], which are implied by SPH. We therefore obtain a O(K) round black-box reduction of OTn
t to

SPH. Combining Kilian’s completeness result [2], we also obtain a black-box reduction of SMPC to SPH.

1.2.3. Efficiency of the Construction
Our framework Π for OTn

t costs 6 communication rounds. In practice, it expectedly costs 20 n encryptions and 20 t
decryptions. In the particular case of OT2

1, its communication rounds (respectively, expected computational overhead)
is 3 times (respectively, 20 times) of [16]. Thus, it is practical.

1.3. Paper Organization

In the next section, we describe the notations used throughout our work and the security definition for OTn
t . In

Section 4, we define a new variant of smooth projective hash (i.e. SPH-DHM). Our framework Π for OTn
t is exposed

in Section 5 and its security is demonstrated in Section 6. In Section 7, we extend our framework from OT2
1 to OTn

t .

2. Preliminaries

Most notations and concepts mentioned in this section come from [29, 30, 31] and we tailored them to deal with
OTn

t .

2.1. Basic Notations and Definitions

We set the following notations for this paper:

• N: set of natural numbers.

• k: security parameter where k ∈ N. It is used to measure the security of the underlying computational assump-
tions (e.g., the DDH assumption).

• K: statistical security parameter where K ∈ N. This is the number of instance vectors that the receiver ”cuts”,
and so K defines the size of our ”cut-and-choose” test. Thus, K is used to measure the probability that the
adversary is not caught in cut-and-choose type checks (see Lemma 30). Note that this probability does not
depend on any computational intractability assumption.

• [n]: the set {1, 2, . . . , n} where n ∈ N.

• Ψ = {T ⊆ [n] : |T | = t}: the set of the receiver’s all legal private inputs in t-out-of-n oblivious transfer.

• ~x〈 j〉: the j-th entry of the vector ~x.

• S n: the set of all permutations of [n] where n ∈ N.

• σ(~x): the vector gained by shifting the i-th entry of the n-vector ~x to the σ(i)-th entry where σ ∈ S n. In other
words, σ(~x) denotes the vector ~y such that: ∀i ∈ [n] ~y〈σ(i)〉 = ~x〈i〉.

• Poly(.): an unspecified positive polynomial.

• {0, 1}∗: set of all bitstrings.

• α ∈U D: an element α chosen uniformly at random from a domain D.

• α ∈χ D: an element α chosen from a domain D according the probabilistic distribution χ.

• |X|: the cardinality of a finite set X.

Definition 1. A (positive) function µ(.) is called negligible in k, if and only if:

∀Poly(·) > 0∃k0 ∈ N : ∀k > k0 µ(k) < 1/Poly(k).

4

Definition 2. A probability ensemble

X
de f
= {X(1k, a)}k∈N,a∈{0,1}∗

is an infinite sequence of random variables indexed by (k, a), where a represents various types of inputs used to sample
the instances according to the distribution of the random variable X(1k, a).

Definition 3. A probability ensemble X is polynomial-time constructible, if there exists a probabilistic polynomial-
time (PPT) sampling algorithm Samp(.) such that for any a, any k, the random variables Samp(1k, a) and X(1k, a)
are identically distributed.

Definition 4. Let X,Y be two probability ensembles. We say they are computationally indistinguishable, denoted by
X c

= Y, if for any non-uniform PPT algorithm D with auxiliary input z = (zk)k∈N (where each zk ∈ {0, 1}∗), there exists
a negligible function µ(.) such that for any sufficiently large k and any a ∈ {0, 1}∗, it holds that

|Prob(D(1k, a, X(1k, a), zk) = 1) − Prob(D(1k, a,Y(1k, a), zk) = 1)| 6 µ(k).

Definition 5. Let X,Y be two probability ensembles. They are said to be statistically indistinguishable, denoted by
X s

= Y, if their statistical difference is negligible. More specifically, if there exists a negligible function µ(.) such that

1/2 ·
∑

α∈{0,1}∗
|Prob(X(1k, a) = α) − Prob(Y(1k, a) = α)| = µ(k).

Definition 6. Let X,Y be two probability ensembles. They are said to be identical, denoted by X ≡ Y, if the distribu-
tions of X(1k, a) and Y(1k, a) are identical.

Remark 7. Let X,Y be two probability ensembles. We obviously have: X ≡ Y implies X s
= Y and X s

= Y implies
X c

= Y.

2.2. OTn
t with Non-Adaptive SAMA

The OTn
t functionality is defined as follows.

f : N × {0, 1}∗ × {0, 1}∗ −→ {0, 1}∗ × {0, 1}∗

(1k, ~m,T) 7−→ (λ, (~m〈i〉)i∈T)

where:

• k is the security parameter,

• ~m is a vector of n values having identical bitlength,

• λ denotes the empty string,

• T is a set of t indexes from [n],

• (~m〈i〉)i∈T is the sequence of t values indexed by T .

In this functionality, the sender S privately holds the input ~m and receives no output while the receiver R privately
owns the set T and receives (~m〈i〉)i∈T .

Before engaging the OT protocol, the adversary A corrupts the parties listed in the set I ⊆ {S,R}. As A is non-
adaptive, the set I of corrupted players will not change until the computation ends. In our case, we consider that at
most one party is corrupted byA. Non-corrupted participants (i.e. honest parties) will faithfully follow the protocol’s
instructions. When A corrupts a party, A takes control over the party’s actions and A gets aware of the party’s
communication and computation history. In particular, the input of the corrupt participant is known (and controlled)
by A. The objective of A is to gain some extra knowledge about the honest player’s private input other than what is
inferred by the result of the computation andA’s protocol input.

We are now to recall how the ideal/real world paradigm works. For simplicity, we are to associate the value 1 with
the sender S and the value 2 with the receiver R. Thus: {S,R} = {1, 2}.

5

2.2.1. The Ideal World
In the ideal world, there is an incorruptible trusted third party (TTP) (named ideal functionality in Section 1). An

execution of OTn
t proceeds as follows.

• Inputs. All entities know the public security parameter k. The sender S holds ~m. The receiver R holds T . The
adversary A holds a name list I ⊆ {1, 2}, a randomness rA ∈ {0, 1}∗ and an auxiliary input z = (zk)k∈N, where
zk ∈ {0, 1}∗.

Before proceeding to the next stage,A corrupts parties listed in I and learns their inputs.

• Sending inputs to the TTP. Each honest party sends its input to the TTP. For each corrupted party, A sends a
string to the TTP on behalf of the party. This string may be the input of the corrupted party, other input of the
same length, or an early termination request Aborti (i ∈ I).

Denote the inputs received by the TTP by ~y = (y1, y2) (note that ~y does not necessarily equal (~m,T)). If the TTP
receive an Aborti for some i ∈ I, it sends Aborti to both parties and the ideal execution terminates.

Remark 8. If the TTP received multiple aborting messages, then it means that both players have been corrupted by
A. This situation represents no security objective whatsoever since the adversary controls every entity.

In the case no aborting message was sent to the TTP, the execution of the protocol proceeds to the next step.

• TTP answering the adversary. The TTP computes f (y1, y2) and sends A the outputs (f (y1, y2)〈i〉)i∈I of the
corrupted parties.

• TTP answering the honest parties. A sends either Aborti for some i ∈ I or Continue to the TTP. If the TTP
receives Continue, then it sends the honest parties their results. Otherwise, it sends the honest parties Aborti.

• Outputs. Each honest party always outputs the message obtained from the TTP. Each corrupted party outputs
nothing. Instead, A outputs any arbitrary (PPT computable) function of the initial inputs of the corrupted
parties, the auxiliary input, and the messages obtained from the TTP.

The output of the execution is defined/denoted by a 3-entry vector Ideal f ,A(z),I(1k, ~m,T, rA) written as:

Ideal f ,A(z),I(1k, ~m,T, rA) = (Ideal f ,A(z),I(1k, ~m,T, rA)〈0〉, Ideal f ,A(z),I(1k, ~m,T, rA)〈1〉, Ideal f ,A(z),I(1k, ~m,T, rA)〈2〉)

where

• Ideal f ,A(z),I(1k, ~m,T, rA)〈0〉 isA’s output,

• Ideal f ,A(z),I(1k, ~m,T, rA)〈1〉 is the sender’s output,

• Ideal f ,A(z),I(1k, ~m,T, rA)〈2〉 is the receiver’s output.

2.2.2. The Real World
In the real world, we do not have any TTP and the two parties communicate with each other using an authenticated

channel. Let Π be a protocol for OTn
t . A execution of Π proceeds as follows.

• Inputs. They are identical to the inputs in the ideal world except that S (resp., R) additionally holds a random-
ness r1 (resp., r2).

• Computation. Computing f is done via interactions between the sender and the receiver. Each honest party
strictly follows the prescribed protocol Π. The corrupted parties follows A’s instructions and may arbitrarily
deviate from Π.

• Outputs. Each honest party always outputs what Π instructs. Each corrupted party outputs nothing. Instead,
A outputs any arbitrary (PPT computable) function of the initial inputs of the corrupted parties, the auxiliary
input, and the messages it sees during the execution of Π.

The output of the execution is defined/denoted by a 3-entry vector RealΠ,I,A(zk)(1k, ~m,T, rA, r1, r2) where the first,
second and third entries are A’s output, the sender’s output and the receiver’s output respectively similarly to
Ideal f ,A(z),I(1k, ~m,T, rA).

6

2.2.3. Security Definition
Intuitively speaking, we say that protocol Π securely computes OTn

t in the presence of malicious adversaries, if
and only if, for any malicious adversaryA, what harmA can do in the real world is not more than in the ideal world.
This intuition is formally captured by the following definition.

Definition 9. Let f denote the functionality of OTn
t . Let Π be a concrete protocol for OTn

t . Let Ψ be a set of the
receiver’s all legal private inputs. We say Π securely computes f in the presence of malicious adversaries, if and only
if for any non-uniform PPT adversaryA with auxiliary input z = (zk)k∈N in the real world, there exists a non-uniform
probabilistic expected polynomial-time adversary S with the same auxiliary input in the ideal world such that, for
any I ⊆ [2], the following equation holds.

{RealΠ,I,A(zk)(1k, ~m,T)}k∈N,~m∈({0,1}∗)n,T∈Ψ,zk∈{0,1}∗
c
= {Ideal f ,I,S(zk)(1k, ~m,T)}k∈N,~m∈({0,1}∗)n,T∈Ψ,zk∈{0,1}∗ , (1)

where the parameters input to the two probability ensembles are the same. The adversary S is called the simulator of
the adversaryA.

We point out that the security definitions presented in [30, 31] require the simulator S to run in strictly polynomial-
time but those from [32, 25, 19] allow S to run in expected polynomial-time. Definition 9 follows the latter. We argue
about our choice as follows. First, allowing the simulator to run in expected polynomial-time is essential for achieving
(non-trivial) constant-round protocols (our framework Π has constant round complexity) as Barak and Lindell showed
that there was no (non-trivial) constant-round ZK proof of argument having a strictly polynomial-time black-box
simulator [33]. Second, in many cases (also when strictly polynomial-time simulators exist), the expected running
time of the simulator provides a better bound than the worst-case running time [34].

2.3. Smooth Projective Hash

As said in Section 1, SPH was introduced to design chosen-ciphertext secure encryption schemes and Halevi and
Tauman Kalai applied a variant of this cryptographic primitive to construct a protocol for OT.

Definition 10 ([16]). A hash familyH is defined by means of the following PPT algorithmsH = (PG, IS, IT,KG,Hash, pHash):

• Parameter generator PG: it takes a security parameter k as input and returns a hash parameter Λ: i.e. Λ ←

PG(1k).

• Instance sampler IS: it takes a security parameter k and a hash parameter Λ as input and returns a triple, i.e.,
(ẋ, ẇ, ẍ)← IS(1k,Λ)), where ẋ is a projective instance, ẇ is one of its witnesses, ẍ is a smooth instance.

• Instance-testing algorithm IT: it tests the parameters Λ and two strings x0, x1, i.e., IT(Λ, x0, x1) ∈ {0, 1} . The
intent is to test that at least one of x0, x1 is a smooth instance.

• Key generator KG: it takes a security parameter k, a hash parameter Λ and an instance x as input and outputs
a hash-projection key pair (hk, pk): i.e., (hk, pk)← KG(1k,Λ).

• Hash algorithm Hash: it takes a security parameter k, a hash parameter Λ, an instance x and a hash key hk as
input and outputs a value y: i.e., y← Hash(1k,Λ, x, hk).

• Projection algorithm pHash: it takes a security parameter k, a hash parameter Λ, an instance x, a projection
key pk and a witness w of x as input and outputs a value y: i.e., y← pHash(1k,Λ, x, pk,w).

The smoothness requires that for any ẍ, its projection key and hash value are almost uniformly distributed. The
projection requires that for any ẋ and any its hash-projection key pair (hk, pk), its hash value equals its projection value.
The verifiable smoothness requires that if IT(Λ, x0, x1) = 1, then at least one of x0, x1 is a smooth instance. The hard
subset membership requires the smooth instances ẍ and projective instances ẋ are computationally indistinguishable.
We let VSPH-HM denote the hash family which holds all properties mentioned here.

7

2.4. Commitment Scheme
In this section, we briefly introduce the cryptographic tool commitment scheme which will be used in our frame-

work. For the strict definitions and the details, please see [29, 35].

Definition 11. A commitment scheme is a two-party protocol involving two phases.

• Initial Inputs. At the beginning, all parties know the public security parameter k. The unbounded sender P1
holds a randomness r1 ∈ {0, 1}∗, a value m ∈ {0, 1}Poly(k) to be committed to. The probabilistic polynomial time
(PPT) receiver P2 holds a randomness r2 ∈ {0, 1}∗.

• Commit Phase. P1 computes a commitment, i.e., γ ← Com(1k,m, r1), then P1 send γ to P2.

• Reveal Phase. P1 sends a de-commitment, which typically consists of (m, r1), to P2. Receiving de-commitment,
P2 checks its validity. Typically P2 checks that γ = Com(1k,m, r1) holds. If de-commitment pass the check, P2
accepts m.

Definition 12. A commitment scheme provides two security guarantees.

• Hiding prevents P2 from the committed value m before reveal phase. That is, for any PPT P2, any m1,m2 ∈

{0, 1}poly(k), the probability ensembles describing the output of P2 in two cases are computationally indistin-
guishable, i.e.,

{〈P1(m1), P2〉(1k)}k∈N
c
= {〈P1(m1), P2〉(1k)}k∈N,

• Binding prevents P1 opening a commitment in two different ways. That is, for any unbounded P1, any m1,m2 ∈

{0, 1}Poly(k) such that m1 , m2, the probability that P2 accepts m2 while the committed value is m1 is 0, where
the probability is taken only over the randomness used by P2.

Definition 12 indeed describes a type called perfectly binding of commitment scheme, which we will use in this
paper. Another type we will use is perfectly hiding, which guarantees that for any (possibly unbounded) P2 learns
nothing about the committed value before reveal phase. For any commitment scheme, at most one of its two security
guarantees is against unbounded adversaries. We use BC and HC to denote the commitment operations Com of
perfectly binding type and perfectly hiding type, respectively.

3. Halevi-Kalai OT and Its Problems in Simulation-Based Proof

3.1. Halevi-Kalai OT
Let us recall Halevi-Kalai OT2

1 protocol [16] first. It proceeds as follows:

• R1 (Receiver’s step): R generates the hashing parameters Λ and samples random instances (ẋ, ẍ,w), where ẋ is
projective and w is its witness. R sets xb ← ẋ and x3−b ← ẍ (b ∈ {1, 2}). R sends (Λ, xb, x3−b).

• S1 (Sender’s step): S verifies that at least one instance of (x1, x2) is smooth. If the test fails then the sender
aborts. Otherwise the sender encrypts each message mi via XOR-ing it with hash value of xi. S sends ciphertext
ci along projection key of xi.

• R2 (Receiver’s step): R XOR-es ciphertext cb with projection value of xb and gets message mb.

Halevi-Kalai OT2
1 protocol meets privacy-based definition, which is a weaker notion than simulation-based defi-

nition. In this definition, no party should be able to distinguish two views generated based on distinct set of inputs for
the other party but yield the same output.

Definition 13 ([16]). A protocol is said to privately implement oblivious transfer OT2
1 if the following conditions are

satisfied:

• Receiver’s Privacy: Denoted by R(1n, b) the message sent by the honest receiver with input (1n, b). Then the
ensembles {R(1n, 1)}n∈N and {R(1n, 2)}n∈N are computationally indistinguishable; {R(1n, 1)}n∈N

c
= {R(1n, 2)}n∈N .

8

• Sender’s Privacy: Denote by S(1n,m1,m2, q) the response of the honest sender with input (1n,m1,m2) when the
receiver.s first message is q. Then there is a negligible function µ such that for any n > 0, any three messages
m1,m2,m′ ∈ {0, 1}l(n), and any message q ∈ {0, 1}∗, it holds that

S(1n,m1,m2, q) s
= S(1n,m1,m′, q) ∨ or

S(1n,m1,m2, q) s
= S(1n,m′,m2, q)

3.2. Simulation Problems

Halevi and Kalai discusses the possibility of simulation-based security of their OT2
1. In the case that the receiver

is corrupted, [16] admits that their security definition does not give a simulation-based guarantee. The reason is that
the simulator can not extract the choice of a malicious receiver.

In the case that the sender is corrupted, Halevi-Kalai asserts that Definition 13 gives a simulation-based guarantee.
We find that this is not true. Following their ideas [16, Sec. 3], the simulator should be constructed as follows.

1. The simulator S invokes the adversaryA as a subroutine.
2. Simulator S plays the role of an honest receiver with private input 1, and extracts message m1.
3. S rewindsA , plays the role of an honest receiver with private input 2, and extracts message m2.
4. S sends (m1,m2) to the TTP, and outputs whatA outputs.

Since {R(1n, 1)}n∈N
s
= {R(1n, 2)}n∈N , the views of adversary A in the real world and ideal world are statistically

indistinguishable too. Combining with the fact that the sender S outputs nothing in both the real world and the ideal
world, one may conclude that the two worlds are computationally indistinguishable. However, this simulation ignores
two subtle problems.

P1 A may not always gives responses to S.

P2 (m1,m2) is not extracted in one shot.

To illustrate P1, consider the following. A may gives responses in the first extraction and refuses to respond in
the second extraction. This is possible, becauseA receives distinct messages in two distinct extractions. If this is the
case, S can not extract m2 and fails.

To illustrate P2, consider the following. SinceA is malicious, it may choose distinct values in distinct extractions.
For example, the adversaryA follows the following strategy:

• in each execution,A chooses two random values m1,m2 ∈U {0, 1}∗ as its real input and finally outputs them.

More concretely, let us assume that the real input of A in the first interaction and the second interaction are (a1, a2)
and (b1, b2) respectively. We also assume that honest receiver R takes 1 as its input. Then we know,

Real = ((a1, a2), λ, a1) Ideal = ((b1, b2), λ, a1)

where (a1, a2), (b1, b2) are outputs of adversary A and simulator S, respectively. Considering the random choices of
a1, a2, b1, b2, it holds with overwhelming probability that

a1 < {b1, b2}.

That is, in the ideal world, the receiver get a value that is highly probable to be inconsistent with the output of S. This
distinguishes the real world from the ideal world.

More generally, we have Lemma 14. Since the proof is similar to the discussion above, we omit the details.

Lemma 14. Let Π be a protocol that is supposed to implement a two-party functionality f (x, y) such that the first
party receives f1(x, y) and the second party receives f2(x, y). Let S be the simulator of the case that the malicious
adversary corrupts the first party. If simulator S does not extract real input of the adversary in one shot, and there
exists a value ν such that makes f2(·, ν) injective, then S does not provide black-box-simulation-based security.

9

4. A New Smooth Projective Hash

Since previous definitions of SPH do not suffice for our application, we define another variant of SPH. See [24]
for its instantiations.

Definition 15. A (n, t)-hash familyH is defined by means of the following PPT algorithmsH = (PG, IS, pIS,Check,DI,
KG,Hash, pHash):

• Parameter generator PG: it takes a security parameter k as input and returns a hash parameter Λ: i.e. Λ ←

PG(1k).

• Checker Check: it takes a security parameter k and a hash parameter Λ as input and returns an indicator bit
b ∈ {0, 1}: i.e. b← Check(1k,Λ). The objective is to check that Λ was correctly generated.

• Instance sampler IS: it takes a security parameter k and a hash parameter Λ as input and returns a vector
~a = ((ẋ1, ẇ1), . . . , (ẋt, ẇt), (ẍt+1, ẅt+1), . . . , (ẍn, ẅn)) (i.e., ~a ← IS(1k,Λ)) where each entry of ~a is an instance-
witness pair with the first t pairs are projective and the last n − t pairs are smooth.

• Projective instance sampler pIS: similar to IS with exception that all n instances are projective.

• Distinguisher DI: it takes a security parameter k, a hash parameter Λ and an instance-witness pair (x,w) as
input and outputs an indicator value b: i.e., b← DI(1k,Λ, x,w). Its goal is to distinguish smooth instances and
projective instances.

• Key generator KG: it takes a security parameter k, a hash parameter Λ and an instance x as input and outputs
a hash-projection key pair (hk, pk): i.e., (hk, pk)← KG(1k,Λ, x).

• Hash algorithm Hash: it takes a security parameter k, a hash parameter Λ, an instance x and a hash key hk as
input and outputs a value y: i.e., y← Hash(1k,Λ, x, hk).

• Projection algorithm pHash: it takes a security parameter k, a hash parameter Λ, an instance x, a projection
key pk and a witness w of x as input and outputs a value y: i.e., y← pHash(1k,Λ, x, pk,w).

Definition 16. For a given hash parameter Λ, if Check outputs 1, then Λ is said to be legal; otherwise, it is said to
be illegal.

Remark 17. It is obvious that any Λ generated by PG is legal.

Definition 18. Let R = {(x,w) : x,w ∈ {0, 1}∗} be a relation. For a legal Λ, we define its projective relation as ṘΛ =

{(ẋ, ẇ) : (ẋ, ẇ) is generated by IS(1k,Λ)} and its smooth relation as R̈Λ = {(ẍ, ẅ) : (ẍ, ẅ) is generated by IS(1k,Λ)}.

Definition 19 (Distinguishability). For any legal hash parameter Λ, any instance-witness pair (x,w), we require:

DI(1k,Λ, x,w) =

0 if (x,w) ∈ ṘΛ,
1 if (x,w) ∈ R̈Λ,
2 otherwise.

Definition 20. If R is a relation, then its language is defined as L
de f
= {x ∈ {0, 1}∗ : ∃w((x,w) ∈ R)}.

Let L̇Λ and L̈Λ be the languages of relation ṘΛ and relation R̈Λ, respectively. The properties smoothness and
projection to be defined next will ensure that L̇Λ ∩ L̈Λ = ∅ holds. That is, no instance can exhibit both smoothness and
projection.

Definition 21 (Projection). For any hash parameter Λ generated by PG(1k), any projective instance-witness pair
(ẋ, ẇ) generated by IS(1k,Λ), and any hash-projection key pair (hk, pk) generated by KG(1k,Λ, ẋ), it holds that

Hash(1k,Λ, ẋ, hk) = pHash(1k,Λ, ẋ, pk, ẇ).

10

Definition 22. For an instance-witness vector ~a = ((x1,w1), . . . , (xn,wn)), we define its instance vector as x(~a)
de f
=

(x1, . . . , xn) and its witness vector as w(~a)
de f
= (w1, . . . ,wn).

Definition 23. Fix a legal hash parameter Λ. If a vector ~a contain at least n − t smooth instance-witness pairs, (i.e.,
at least n − t pairs in R̈Λ), then ~a is said to be legal.

Remark 24. Note that any ~a generated by IS(1k,Λ) is legal, and the legality of any ~a that may be maliciously
generated can be checked by invoking algorithm DI at most n times.

Definition 25 (Smoothness). For any legal hash parameter Λ, any legal instance-witness vector ~a (without loss of
generality, we assume that the last n − t entries of ~a are smooth), any permutation σ ∈ S n, smoothness holds if the

two probability ensembles SM1
de f
= {SM1(1k)}k∈N and SM2

de f
= {SM2(1k)}k∈N, specified as follows, are statistically

indistinguishable: i.e., SM1
s
= SM2. Perfect smoothness holds, if SM1 ≡ SM2.

• GΛ

de f
= {y : x ∈ L̇Λ ∪ L̈Λ, (hk, pk)← KG(1k,Λ, x), y← Hash(1k,Λ, x, hk)} is a set of all possible hash values.

• Algorithm SmGen1(1k) works as follows:

– ~x← x(~a).

– For each j ∈ [n], perform: (hk j, pk j)← KG(1k,Λ, ~x〈 j〉), y j ← Hash(1k,Λ, ~x〈 j〉, hk j).

– Set
−−→
pky← (pk j, y j) j∈[n] and output

−−→
pky.

• Algorithm SmGen2(1k) works as SmGen1(1k) except that for each j ∈ {t + 1, t + 2, . . . , n}, y j ∈U GΛ.

• For i ∈ [2], algorithm SMi(1k) works as follows:
−−→
pky← S mGeni(1k),

−̃−→
pky← σ(

−−→
pky) and output

−̃−→
pky.

Definition 26 (Hard Subset Membership). For any σ ∈ S n, the two probability ensembles HS1
de f
= {HS1(1k)}k∈N and

HS2
de f
= {HS2(1k)}k∈N, specified as follows, are computationally indistinguishable, i.e., HS1

c
= HS2.

• Algorithm HS1(1k) works as follows: Λ← PG(1k), ~a← IS(1k,Λ) and outputs (Λ, x(~a)).

• Algorithm HS2(1k) operates as HS1(1k) except that it outputs (Λ, σ(x(~a))).

Remark 27. In this paper, for a projective instance ẋ, its witness ẇ is mainly used to gain the instance’s hash value
while, for a smooth instance ẍ, its witness ẅ serves as a proof of smoothness (i.e., a proof of ẍ ∈ L̈Λ). The distin-
guishability property guarantees that, given the needed witness-vector, projective instances and smooth instances are
distinguishable.

For notational simplicity, we denote a (n, t)-hash family H that holds properties smoothness, projection, distin-
guishability and hard subset membership (n, t)-SPH-DHM. Similarly, we denote a verifiably smooth projective hash
family with hard subset membership property [16] VSPH-HM. As both our SPH-DHM notion and Halevi and Tauman
Kalai’s VSPH-HM are used to construct protocols for OT, it is necessary to discuss the differences between these two
variants of SPH.

1. The major difference between these two notions is that a SPH-DHM not only provides a witness to each pro-
jective instance (as a VSPH-HM) but also to every smooth instance. For example, (2, 1)-SPH-DHM samples
tuples of form ((ẋ1, ẇ1), (ẍ2, ẅ2)) while VSPH-HM samples tuples of form (ẇ, ẋ, ẍ).

2. The hard subset membership property of SPH-DHM is stronger than that of VSPH-HM, because the former
requires that indistinguishability holds for multiple instances.

3. The key generation algorithm KG of a SPH-DHM takes an additional parameter: an instance x. This tech-
nical modification makes instantiating such a hash family easier as we will see in Section ?? using the LWE
assumption.

11

4. The instance sampling algorithm IS of a VSPH-HM generates tuples consisting of a smooth instance, a pro-
jective instance and its witness. To deal with OTn

t , in a SPH-DHM, the sampling algorithm returns vectors
containing t projective instance-witness pairs and n − t smooth instance-witness pairs. As a natural result, the
properties of smoothness and hard subset membership are extended to consider instance vectors of n entries.

5. A SPH-DHM does not need the verifiable smoothness property of a VSPH-HM (implemented by algorithm IT
in [16]). This property was used by Halevi and Tauman Kalai to verify whether at least one of two instances is
smooth. Instead, a SPH-DHM exhibits the distinguishability property (implemented by algorithm DI).

6. A SPH-DHM additionally provides an algorithm pIS which plays a key role in simulation-based security proof.
In the case that the sender is corrupted, our simulator invokes pIS to cheat the adversary and extract its real
input. However, Halevi-Tauman can not offer a simulation-based proof in this case.

5. A Fully-Simulatable Framework for OT2
1

5.1. Description of the Protocol

For clarity, we make the following convention. If S refuses to send R a message which is supposed to be sent, or S
sends an invalid message that R cannot process then R halts the protocol and outputs Abort1. Likewise, if R deviates
in a similar way, S outputs Abort2. The inputs are described as follows:

• Public Inputs: The security parameter k, the statistical security parameter K, and descriptions of three crypto-
graphic tools: a (2, 1)-SPH-DHM H , a perfectly binding commitment BC, and a perfectly hiding commitment
HC.

• Private Inputs: The sender S holds two values (m1,m2) ∈ {0, 1}∗ and holds a random tape r1 ∈ {0, 1}∗. The
receiver R holds an index o ∈ {1, 2} and holds a random tape r2 ∈ {0, 1}∗. The adversary A holds a name list
I ⊆ {S,R} = {1, 2} and a random tape rA ∈ {0, 1}∗.

• Auxiliary Inputs: The adversaryA holds an auxiliary input z ∈ {0, 1}∗.

The interactions between R and S as described in Protocol 1.

Remark 28. Note thatS only cares about whether each chosen instance vector contains at least one smooth instances.
Thus, in Step R2, to prove the legalities of the chosen instance vectors, R only needs to send the witnesses of the smooth

instances. Formally speaking, R only needs to send ((i, j, ~̃wi〈 j〉))i∈C, j∈Ji to S, where Ji
de f
= { j : ~̃xi〈 j〉 is smooth}.

5.2. Analysis of Π

5.2.1. Correctness of the Protocol
We now check that, when both the sender S and the receiver R are honest, Π is sound. For each i < C, we know:

~c〈o〉 = ~m〈o〉 ⊕ (⊕i<C ~βi〈o〉) and m′o = ~c〈o〉 ⊕ (⊕i<Cβ
′
io).

˜̃~xi〈o〉 is a projective instance. H’s property projection guarantees that its projection value equals its hash value. That
is to say: ~βi〈o〉 = β′io. Thus, we get: ~m〈o〉 = m′o which proves that R gets ~m〈o〉 which is the sought data.

For j , o, ˜̃~xi〈 j〉 is a smooth instance. H’s smoothness property guarantees that its projection value reveals no
knowledge of its hash value. Thus, R cannot get any information about ~m〈 j〉.

5.2.2. Security of the Scheme
The security of Π can be stated as follows.

Theorem 29. Assume that in Π (i.e., Protocol 1) the smooth projective hash familyH holds properties distinguisha-
bility and hard subset membership, the commitment scheme BC is perfectly binding and the commitment scheme HC is
perfectly hiding. Then, Π securely computes functionality OT2

1 in the presence of non-adaptive malicious adversaries
where the sender’s security is statistical and the receiver’s security is computational.

12

Protocol 1 Π

R1 (Receiver’s step): R chooses a hash parameter and samples its instance-witness vectors as follows.

1. R chooses a hash parameter Λ← PG(1k).
2. R samples K instance-witness vectors: ∀i ∈ [K] ~ai = ((ẋi1, ẇi1), (ẍi2, ẅi2))← IS(1k,Λ).
3. R shuffles each of these K vectors. That is, for each i ∈ [K], R uniformly chooses a bit di ∈U {0, 1}. If di = 1,

then R does nothing, ~̃ai ← ~ai ; otherwise exchange its two entries, ~̃ai ← ((ẍi2, ẅi2), (ẋi1, ẇi1)).
4. R sends the hash parameter Λ and the instance vectors ~̃x1, ~̃x2, . . . , ~̃xK to S, where ~̃xi is the instance vector of
~̃ai (i.e., ~̃xi = x(~̃ai)).

S1-S3 (Sender’s step)/R2-R4 (Receiver’s step): S and R cooperate to toss a bit-string r = r1 ⊕ r2 called choice
indicator. r indicates that the instance vectors {~̃xi : r〈i〉 = 1} are chosen.

S1 S uniformly chooses a string r1 ∈U {0, 1}K , commits to it γ1 ← HC(r1) and sends γ1.
R2 R computes similarly, r2 ∈U {0, 1}K , γ2 ← BC(r2) and sends γ2.

S2/R3 S (R, respectively) sends the de-commitment to γ1 (γ2, respectively).
S3/R4 S and R compute r ← r1 ⊕ r2 respectively and share this bit-string.

Error Handling. In above steps, R and S respectively checks that the received commitments and de-
commitments are legal. S additionally verifies that the hash parameter is legal by calling Check(1k,Λ).
If one check fails, S (R, respectively) halts and outputs Abort2 (Abort1, respectively).

R5 (Receiver’s step): According to choice indicator, R sends the witnesses of the chosen vectors and instructs S
to rearrange each unchosen vector. For convenience later, we let C = {i : r〈i〉 = 1} be the set of indices of chosen
instance vectors and call C the choice set defined by r.

1. For each unchosen vector ~̃xi(i < C), R prepares a rearrangement indicator bi, where bi ← 1 if ~̃xi〈o〉 is
projective; bi ← 0 otherwise.

2. For each chosen vector ~̃xi(i ∈ C), R prepares the witness ~̃wi.
3. R sends the witnesses {~̃wi : i ∈ C} and rearrangement indicators {bi : i < C}.

Comment: The value of bi tells whether S should exchange the two entries of ~̃xi.
S4 (Sender’s step): S checks the legality of the chosen instance vectors and sends the encryption of ~m to R via the
following instructions.

1. S verifies that each chosen instance vector is legal by checking if it contains at least one smooth instance.
Knowing the witness vectors {~̃wi}i∈C , R invokes algorithm DI to check the validity of instance vectors {~̃xi}i∈C .
If R did not send the witness vectors or if the check fails, then S halts and outputs Abort2; otherwise S
proceeds to the next step.

2. S rearranges each non-chosen instance vector: ∀i < C, exchanges the two entries of ~̃xi if bi = 0. Let ˜̃~xi denote
each resultant vector.

3. S encrypts the value ~m = (m1,m2). That is, for each i < C and for each j ∈ {1, 2}, (hki j, pki j) ←

KG(1k,Λ, ˜̃~xi〈 j〉), βi j ← Hash(1k,Λ, ˜̃~xi〈 j〉, hki j), ~βi
de f
= (βi1, βi2), ~c← ~m ⊕ (⊕i<C ~βi),

−→
pki

de f
= (pki1, pki2).

4. S sends the encryption of ~m and the projection keys, (~c, (
−→
pki)i<C), to R.

R6 (Receiver’s step) R decrypts ~c. That is, for each i < C, the receiver computes β′io ←

pHash(1k,Λ, ˜̃~xi〈o〉,
−→
pki〈o〉,

˜̃~wi〈o〉), m′o ← ~c〈o〉 ⊕ (⊕i<Cβ
′
io). Finally, R recovers the values m′o.

13

We defer the strict proof of Theorem 29 to Section 6 and simply give an intuitive analysis here. First, let’s focus
on the sender’s security. The framework should prevent any malicious adversary controlling the corrupted receiver
from learning more than 1 value. This is achieved by using a cut and choose technique. The following lemma shows
that the probability that the malicious adversaries learn extra values is negligible.

Lemma 30. In the case where the sender is honest and the receiver is corrupted by a malicious adversary, the
probability that the adversary learns more than one value is at most 1/2K .

Proof. Let A be a malicious adversary. According to the design of Π, the following conditions are necessary for A
to learn any extra value.

1. A has to generate at least one illegal instance vector containing more than one projective instance. If not, A
cannot correctly decrypt more than one encryptions due to the smoothness ofH . Without loss of generality, we
assume the illegal instance vectors are ~x`1 , ~x`2 , . . . , ~x`d .

2. All illegal instance vectors are lucky not to be chosen by the sender and all the unchosen instance vectors are
just the illegal instance vectors: i.e., C = {`1, `2, . . . , `d}. We prove this claim in the following two cases.

(a) If C ⊂ {`1, `2, . . . , `d}, then there exists an illegal instance vector chosen by the sender who detects the
cheating andA gains nothing.

(b) If C ⊃ {`1, `2, . . . , `d}, then there exists a legal instance vector not chosen by the sender. Following the
instructions of Π, this instance vector is used to encrypt the values (m1,m2). Looking at Step S4, the final
encryptions are gained by XOR-ing the two values and the hash values of all unchosen instance vectors.
Because a legal instance vector holds at least one smooth instances, at least one encryptions statistically
hide their encrypted values. As a result,A knows almost nothing about at least one encrypted values.

Now, let us estimate the probability that the second necessary condition is met. Since S is honest, r1 is uniformly
distributed. Since HC is perfectly hiding, adversary A learns nothing about r1 before the reveal phase. Perfectly
binding of BC guarantees thatA can not open its commitment to be a value different from r2. So the choice indicator
r is uniformly distributed. We have:

Prob(C = {`1, `2, . . . , `d}) = (1/2)d(1/2)K−d = 1/2K .

This means that the probability thatA cheats to learn more than one value is at most 1/2K .

Second, consider the receiver’s security. It is necessary for Π to prevent any malicious adversary controlling the
corrupted sender from learning which values the receiver chose. Intuitively, there might be a possible information
leakage from rearrangement indicators bi of R. Since the o-th entry of ˜̃~xi is projective for each i < C, learning the
receiver’s private input o means identifying a projective entry of some ˜̃~xi. Since this is OT2

1,A indeed can guess o with

probability 1/2. However,H’s hard subset membership property guarantees that ˜̃~xi’s projective instances and smooth
instances are computationally indistinguishable. As a result, the probability of A identifying a projective entry of ˜̃~xi

is negligibly greater than 1/2. This guarantees that A does not have any better algorithms than random guessing to
learn o.

Another cheating strategy thatA can follow is to send invalid messages. If R cannot process these messages (e.g.,
the messages are malformed), then R detects a cheating tentative and aborts. If R can process them nonetheless, this
can be viewed asA altering its private values. This has no significance whatsoever since in the ideal worldA is also
allowed to alter its input before sending it to the TTP. In a word, this cheating approach is not effective andA cannot
gain any extra knowledge following this strategy.

5.2.3. Efficiency of the Framework
It is clear that the receiver’s Step R3-S5 can be executed in one round while the sender’s Step S3-S4 can be

executed in one round too. As Step R6 can be performed without communication, Π needs 6 communication rounds .
Abstractly, we can see an invocation of Hash as a call to an encryption algorithm and an invocation of pHash

as a request to the corresponding decryption algorithm. Such a consideration is justified since, in Π, Hash plays an
encrypting role to hide S’s values while pHash can be considered as decryption machine recovering the values that

14

R wants. This parallel to a cryptosystem is not fortuitous as the first usage of a SPH was to construct public-key
encryption schemes [36].

Looking at the generation of choice indicator, it is easy to see that the expected number of chosen instance vector
is K/2. Therefore, the main expected computational overhead is K encryptions at the sender (Step S4) and K/2
decryptions at the receiver (Step R6).

Since K determines the computational overhead of Π, a natural question is how to set it in practice. In the proof
of Theorem 29, the simulator S does not simulate the case where the adversary learns more than one values. This is
justified, because Lemma 30 shows this case arises with negligible probability 1/2K (see Remark 40 for the details).
Thus, we must set K to be a value so that 1/2K is small enough to be negligible in the security parameter.

In [20], it is said that an error of 1/240 ≈ 9.09 × 10−13 would be negligible in practice. So, we set K = 40 for our
purpose. It follows that, in a practical point of view, the main expected computational overhead is 40 encryptions and
20 decryptions.

Remark 31. How to set the security parameter k or the statistical security parameter K in practice? This is essentially
the question of bridging theoretical cryptography and practice in order to translate a guarantee of asymptotic security
into a concrete security one. The task of determining the value of the (statistical) security parameter to use, generally
speaking, is complex and depends on the scheme in question as well as other considerations. This problem is discussed
in [29, 37] for instance but no concrete standard solution is suggested.

6. Formal Security Proof

This section is dedicated to the demonstration of Theorem 29. To distinguish the entities in two worlds, we denote
the sender, the receiver and the adversary in the real world by S, R, A and their corresponding entities in the ideal
world by S′, R′, S.

Based on the parties corrupted byA, there are four cases to be considered: onlyS is corrupted, onlyR is corrupted,
both parties are corrupted, no party is corrupted. Because the security proofs of the last two cases are trivial, we omit
them to save space.

6.1. Only S is Corrupted
In this case,A takes the full control of S in the real world. Correspondingly,A’s simulator S takes the full control

of S′ in the ideal world, where S is constructed as described in Algorithm 2.
Without considering Step Sim3, S is polynomial-time. However, taking Step Sim3 into consideration, this is not

true any more. Let p1, p2 respectively denotes the probability that A correctly reveals its commitment first time (in
Step Sim2) and second time (in Step Sim3). Since S commits to a random value r2 ∈U {0, 1}K in Step Sim2 while
commits to value r2 ← r1 ⊕ r in Step Sim3, the views A holds before revealing his commitment in the two times are
distinct. Thus, p1, p2 are distinct too.

The expected number of times of rewinding in Step Sim3 is

p1/p2.

The computational hiding of BC only guarantees that |p1 − p2 ≤ µ(k)| rather than p1/p2 ≤ µ(k). What is worse, there
is a risk that p1/p2 is not bound by a polynomial. For example, p1 = 2k, p2 = 22k, which result in p1/p2 = 2k. This is
a big problem and gives rise to many other difficulties we will encounter later.

Fortunately, [35] encounters and solves a problem similar to ours. Using the idea of [35], we can overcome our
problem too. See Algorithm 3 for the modified simulator.

Proposition 32. The modified simulator S runs in expected polynomial-time.

Proof. It is easy to see that Step Sim3.1 and Sim3.2 expectedly cost at most g(k)/p1 and s(k)/p̃1 rewinding. Let Ti

denote the running time of the i-th Step of the simulator and T∗ the the running time of one rewinding in subroutine
Getr. The expected running time τ(k) of modified simulator is

τ(k) ≤ (1 − p1)(T1 + T2) + p1[T1 + T2 + T∗ · g(k)/p1 + T∗ · s(k)/p̃1]

= T1 + T2 + T∗g(k) + T∗s(k) ·
p1

p̃1

(2)

15

Algorithm 2 Simulator S when S is the only Corrupted Player
Input: The security parameter k, the statistical security parameter K, the auxiliary input zk, the name list I = {1}

(recall that the value 1 is associated to the sender) and a uniformly distributed randomness tape rS ∈ {0, 1}∗.
Sim1 (Initialization step):

1. S corrupts S′ and learns S′’s private input ~m = (m1,m2).
2. S takesA, a copy ofA, as a subroutine. S sets the initial inputs ofA as k, I, zk and r

A
with r

A
∈U {0, 1}∗.

3. S activates A. As in the real world, A sends a message to corrupt the sender. S plays the role of S and
suppliesA with ~m.

Comment: To simulate the environment that A can see in the real world, S simultaneously plays the roles who A
can interact with in the real world.
Sim2: Playing the role of R, S follows the receiver’s Step R1 of Π except it samples instances in this different way:

1. S uniformly chooses a choice indicator r ∈U {0, 1}K .
2. Let C be the set defined by r. For each i ∈ C, S honestly samples vector ~ai. For each i < C, S samples a

projective vector ~ai ← pIS(1k,Λ).

Sim2: S honestly follows the receiver’s Step R2-R4 and learns the value r1 committed byA.
Sim3: S repeats the following procedure untilA correctly open its committed value to be r1 again.

• S rewinds A to the state that A has sent its commitment γ1 and is waiting for a commitment γ2 from a
receiver, i.e., the end of Step S1 of the framework.

• S follows receiver’s Step R2-R4 except that it sets r2 ← r1 ⊕ r and uses fresh randomness to compute BC(r2)
in each repetition.

Comment: If Step Sim3 succeeds, then choice indicator r chosen by S is agreed by A too. If this is the case, S
will pass legality checks byA. Further, S can decrypt all values encrypted byA.
Sim4: S honestly follows receiver’s Step R5. On receiving (~c, (

−→
pki)i<C) fromA, S correctly decrypts all entries of

~c and gainsA’s full real private input ~̃m.
Sim5 (Output step): S sends ~̃m to the TTP and receives λ in return. Then, S sends Continue to the TTP. WhenA
halts, S outputs whatA returned.
Error Handling. Throughout this algorithm, if A refuses to send some message it is supposed to send or A sends
an invalid message that S cannot process, unless specified, the simulator S sends Abort1 to the TTP and halts with
outputting whateverA returns.

16

Algorithm 3 Modified Simulator S when S is the only Corrupted Player
Comment: We modify Algorithm 2 by replacing Step Sim3 with two new sub-steps: Step Sim3.1 and Step Sim3.2,
which invoke a common subroutine Getr(x, l).
Subroutine Getr(y, l): Simulator S rewinds A until it de-commits to r1, where parameter y tells the procedure
to repeat Step Sim2 or original Step Sim3, parameter l tells the procedure the upperbound number of repeating
original Step Sim3.

1. If y = ”Step Sim3” and the number of rewinding exceeds l, then returns 1.
2. RewindsA to the state thatA has sent its commitment γ1 and is waiting for a commitment γ2 from a receiver,

i.e., the end of Step S1 of the framework.
3. S executes receiver’s Step R2-R4 except that

• Case y = ”Step Sim2”: sets r2 ∈U {0, 1}K .

• Case y = ”Step Sim3”: sets r2 ← r1 ⊕ r.

What is more, S uses fresh randomness to computes commitment BC(r2) in each repetition.
4. According toA’s distinct responses, S executes in distinct ways:

• If A does not open its commitment correctly, then S goes to next repetition, i.e., go to Step 1 of this
procedure.

• IfA correctly reveals a value r′1 , r1 different from r1, S outputs Ambiguity and halts.

• IfA correctly reveals the value r1, this procedure returns 0.

Sim3.1: S estimates the value of p1. Let g(k) be a sufficiently large polynomial. S invokes Procedure
Getr(”Step Sim2”, 0) g(k) times, i.e., rewinds A until it de-commits to r1 g(k) times. S estimates the value of
p1 as

p̃1 =
g(k)

h
,

where h is the number of rewindingA.
Sim3.2: Let s(k) be another a sufficiently large polynomial. S invokes Procedure Getr(”Step Sim3”, s(k)/p̃1) to get
a de-commitment to r1, i.e., rewindsA at most s(k)/ p̃1 times to get a de-commitment to r1. IfA does not correctly
de-commits to r1, S halts with outputting Timeout.

17

Since T1,T2,T∗, g(k), s(k) are polynomials, it remains to consider the ratio p1/ p̃1. Let’s focus on subroutine Getr
and denote by Yi a binary random variable that equals 1 if A correctly reveals the value r1 in the i-th repetition and
equals 0 otherwise. Let 0 ≤ δ ≤ 1. We have:

Prob
(

p1

p̃1
>

1
1 − δ

)
= Prob

 p1
h
Σ

i=1
Yi/h

>
1

1 − δ

= Prob

 h∑
i=1

Yi < (1 − δ)hp1

≤

1
eδ2hp1/2

where the right hand side inequality follows the Chernoff bound [38]. Setting δ = 1/2, we get:

Prob
(

p1

p̃1
> 2

)
≤

1
ehp1/8

≤
1

eg(k) p1/8
, (3)

where the rightmost inequality follows the fact g(k) ≤ h. This shows that p1
p̃1

> 2 holds with at most negligible
probability in k.

Combining Inequality (2) and Inequality (3), it is easy to see that the modified simulator runs in expected
polynomial-time.

Lemma 33. The modified simulator S outputs Ambiguity with (at most) negligible probability.

Proof. Intuitively, this lemma guaranteed by computational binding of HC. The subtlety is that S runs in expected
polynomial-time, whereas computational binding is secure against strictly polynomial-time attacker.

We employ truncation technique to solve this subtlety. Specifically, assume by contraction that Ambiguity is output
with probability > 1/Poly(k). We truncate the executions of S when its running time exceeds 2Poly(k) · τ(k), where
τ(k) is the expected running time of S.

Following Markov’s inequality, we know the statistical distance between non-truncated S and truncated S is at
most 1/2Poly(k). Thus the truncated S outputs Ambiguity with probability > 1/2Poly(k). Since truncated S is strictly
polynomial-time, this contradicts computational binding of HC.

Lemma 34. The modified simulator S outputs Timeout with (at most) negligible probability.

Proof. We introduce the following probabilistic event notations:

• TO
de f
= {S outputs Timeout},

Case 1: p1 is negligible. In this case, S reaches Step Sim3.2 at most negligible probability. Thus, the lemma
holds.

Case 2: p1 is not negligible. We have:

Prob(TO) = p1(1 − p2)s(k)/ p̃1 .

Case 2.1: p2 ≥ p1/2. We have:

Prob(TO) ≤ (1 − p2)s(k)/ p̃1 ≤ (1 − p1/2)s(k)/ p̃1 = [(1 −
p1

2
)

2
p1]

p1
2

s(k)
p̃1 ≤ e

p1
p̃1

s(k)
2 .

s(k) is a polynomial and it is shown in the proof of Lemma 32 that p1
p̃1
> 2 is negligible. It follows that Prob(TO) drops

exponentially in k and the lemma holds.
Case 2.2: p2 < p1/2. We have

|p1 − p2| > p1/2, (4)

18

Assume by contraction that Prob(TO) > 1/Poly(k). Since (1 − p2)s(k)/ p̃1 < 1, we have

p1 > 1/Poly(k). (5)

Combining Inequality (4) (5), we have
|p1 − p2| > 1/2Poly(k).

Intuitively, this contradicts computational hiding of BC. Since S is not strictly polynomial-time, as in the proof of
Lemma 33 we should employ truncation technique again and formally prove this intuition. We omit the details.

Proposition 35. In the case where only the sender is corrupted, Equation (1) in Definition 9 holds.

Proof. Let’s focus on the real world. Because R is honest, its output is a deterministic function of A’s real private
input. Without loss of generality, we assume that A’s output, denoted by α = RealΠ,{1},A(zk)(1k, ~m,T)〈0〉, contains its
real private input, denoted by γ. Therefore, R’s output is a deterministic function of α, where the function is:

g(α) =

Abort1 if γ causes R to output Abort1,
γ〈o〉 if γ is a message of form (m1,m2).

It is easy to see that the output of the real world is a deterministic function of α. Specifically,

RealΠ,{1},A(zk)(1k, ~m,T) ≡ (α, λ, g(α)). (6)

Now, we concentrate our attention to the ideal world. We claim that S’s output, denoted by β = Ideal f ,{1},S(zk)(1k, ~m,T)〈0〉,
andA’s output are computationally indistinguishable:

α
c
= β. (7)

Note that S almost always takes A’s output as its own and, with at most negligible probability, it takes Timeout
or Ambiguity as its own output (See Lemma34 and 33). Therefore, the claim holds.

Similarly to the real world, we argue as follows that R′’s output is a deterministic function g of S’s output β.

1. Case 1: A does not correctly reveal r1 in Step Sim2. S outputs Abort1 and R′ outputs Abort1 (i.e., g(β)).
2. Case 2: A correctly reveals r1 in Step Sim2. Following Lemma34 and 33, we do not need to consider the case

S outputs Timeout or or Ambiguity. It remains to consider the case S successfully extracts the real input ofA.
In this case, β contains the real input ofA and R′ outputs the message it desires (i.e., g(β)).

Therefore, similarly to the real word, the following equation holds.

Ideal f ,{1},S(zk)(1k, ~m,T) c
= (β, λ, g(β)). (8)

Combining Equations (6), (7), (8), we deduce that Equation (1) holds which proves our proposition.

6.2. Only R is Corrupted

In this case, A takes the full control of R in the real world. Correspondingly, the simulator S takes the full
control of R′ in the ideal world. It works as represented in Algorithm 4 where we adopted the same policy as before
concerning the incorrect message transmission behavior ofA.

Remark 36. We stress the fact that o′ is one ofA’s possible private inputs as distinct rearrangement indicators may
correspond to distinct private inputs. However, as we will see in the proof of Lemma 39, this inconsistence does not
affect the correctness of our simulation.

Proposition 37. The simulator S runs in expected polynomial-time.

19

Algorithm 4 Simulator S when R is the only Corrupted Player
Input: The security parameter k, the statistical security parameter K, the auxiliary input zk, the name list I = {2}

(recall that the value 2 is associated to the receiver) and a uniformly distributed randomness tape rS ∈ {0, 1}∗.
Sim1 (Initialization step):

1. S corrupts R′ and learns R′’s private input o.
2. S takesA, a copy ofA, as a subroutine and sets the initial inputs ofA as k, I, zk and r

A
with r

A
∈U {0, 1}∗.

3. S activatesA.
4. As in the real world,A sends a message to corrupt the receiver. S plays the role of R and suppliesA with o.

Sim2: Playing the role of S, the simulator S honestly executes sender’s Step S1-S4.2 of Π. If A cause S to
output Abort2, then S halts outputting whatA returned. Otherwise, S stores the current state ζ ofA and received
messages.
Comment: Now S andA have negotiate a choice indicator r. Let C be the set determined by it.
Sim3: The simulator repeats the following procedure Ξ until A does not cause S to output Abort2. S records
received messages in the last repetition.

1. S rewinds A to state that it has sent hash parameter and instance vectors and is waiting for a commitment
from a sender, i.e., the beginning of Step R2 of Π.

2. Playing the role of S, the simulator S honestly follows Step S1-S4.2 to interact withA. In each iteration, S
uses fresh randomness.

Comment: Now S andA have negotiated a new choice indicator r̃. Let C̃ be the set determined by r̃.
Sim4:

• Case 1: C = C̃. The simulator S outputs Failure and halts.

• Case 2: C , C̃.

– Case 2.1: C̃ − C = ∅. The simulator is reset to the beginning of Step Sim1 with a new randomness
rS ∈U {0, 1}∗.

– Case 2.2: C̃ −C , ∅. The simulator S arbitrarily chooses one element e ∈ C̃ −C. Then, it proceeds to
the next step.

Comment: Let us focus on Case 2.2. Since e ∈ C̃, we know that S receives the witness vector ~̃we and ~̃xe passes
the legality check in Step Sim3. Since e < C, we know that S has received instance vector ~̃xe and rearrangement
indicator be in Step Sim2. Based on (~̃xe, ~̃we, be), S can easily deduceA’s private input.
Sim5: The simulator restoresA to the state ζ. Based on (~̃xe, ~̃we, be), S deduces private input o′ ofA of state ζ.
Sim6: The simulator sends o′ to the TTP and receives ~m〈o′〉 in return. Then, S sends Continue to the TTP. S
builds a value vector ~m

′

as follows: sets ~m
′

〈o′〉 ← ~m〈o′〉 and set ~m
′

〈3 − o′〉 to be a value uniformly chosen from
GΛ, where GΛ is a set of all possible hash values (see Definition 25).
Sim7 (Output step): Playing the role of S with private input ~m

′

, S follows Step S4.3-S4.4 of Π to complete the
interaction withA. WhenA halts, S outputs whatA returned.

20

Proof. First, let’s focus on Step Sim3. In each repetition of Ξ, the views of A are identically distributed because
of perfectly hiding of HC. This leads to the probability to be the same that A does not cause S to output Abort2.
We denote this value by p. Let τ3 and TΞ denote expected the running time of Step Sim3 and the running time of Ξ

respectively. We have:
τ3 = (1/p) TΞ.

For the same reason, the probability thatA does not cause S to output Abort2 in Step Sim2 is p as well. Let τ1−3
denote the expected running time of one run of the sequence Step Sim1 to Step Sim3. Let T j denote the running time
of S’s j-th step. We have:

τ1−3 ≤ T1 + T2 + p τ3 ≤ T1 + T2 + TΞ

Second, consider Step Sim4 and especially Case 2.1. Note that the initial inputs of S (apart from the refreshed
randomness) remain the same in each iteration. Thus, the probability that S runs from scratch in each iteration is the
same. We denote this probability by 1 − q. As a consequence, the expected running time of the sequence Step Sim1
to Step Sim4, denoted by τ1−4, is:

τ1−4 ≤ (1 + 1/q) (τ1−3 + T4)
≤ (1 + 1/q) (T1 + T2 + TΞ + T4).

The reason why there is 1 in the term (1 + 1/q) is that S has to run from scratch at least one time in any case.
Thus, the simulator’s expected running time, denoted by τS, can be upper bounded as:

τS ≤ τ1−4 + T5 + T6 + T7

≤ (1 + 1/q) (T1 + T2 + TΞ + T4) + T5 + T6 + T7.
(9)

Third, let’s estimate the value of q being the probability of the event {S does not run from scratch in an iteration}.
It is easy to see that this event happens if and only if one of the following mutually disjoint events happens.

1. Event {S halts before reaching Step Sim4} happens. We denote this event by E.
2. Event E happens and R = R̃ (i.e., S reaches Case 1 of Step Sim4), where R (resp., R̃) is the random variable

defined as the choice indicator recorded by S in Step Sim2 (resp., Step Sim3).
3. Event E happens and ∃i : R〈i〉 = 0 and R̃〈i〉 = 1, i.e., S reaches Case 2.2 of Step Sim4.

Based on this partition of {S does not run from scratch in an iteration}, we obtain:

q =Prob(E) + Prob(E ∩ {R = R̃})

+ Prob(E ∩ {∃i : R〈i〉 = 0 and R̃〈i〉 = 1})

=Prob(E) + Prob(E) [Prob({R = R̃}|E)

+ Prob({∃i : R〈i〉 = 0 and R̃〈i〉 = 1}|E)].

(10)

We introduce the following notations to denote probabilistic events:

• U1 represents {(r, r̃) : (r, r̃) ∈ ({0, 1}K)2 and r = r̃},

• U2 represents {(r, r̃) : (r, r̃) ∈ ({0, 1}K)2 and r , r̃ and ¬∃i (r〈i〉 = 0 and r̃〈i〉 = 1)},

• U3 represents {(r, r̃) : (r, r̃) ∈ ({0, 1}K)2 and r , r̃ and ∃i (r〈i〉 = 0 and r̃〈i〉 = 1)}.

It is easy to see that U1, U2, U3 are mutually disjoint, ({0, 1}K)2 = U1 ∪ U2 ∪ U3, |U1| = 2K and |U2| = |U3| =

(22k − 2K)/2.
Since both R and R̃ are uniformly distributed, we have:

Prob({R = R̃}|E) = |U1|/|({0, 1}K)2
| = 1/2K , (11)

21

and

Prob({∃i (R〈i〉 = 0 and R̃〈i〉 = 1)}|E) = |U3|/|({0, 1}K)2
|

= 1/2 − 1/2K+1.
(12)

Combining Equation (10) to Equation (12), we obtain:

q =Prob(E) + Prob(E) (1/2 + 1/2K+1)

=1/2 + 1/2K+1 + (1/2 − 1/2K+1) Prob(E)
(13)

In particular, we have q > 1/2. Combining Equation (9) and Equation (13), we get:

τS < 3 (T1 + T2 + TΞ + T4) + T5 + T6 + T7,

which means that the simulator’s expected running time is bounded by a polynomial in the security parameter k.

Lemma 38. The simulator S outputs Failure with probability at most 1/2K−1.

Proof. Let X be the random variable defined as the number of the trials of S in a whole execution. From the proof
of Lemma37, we know two facts. First, we have: Prob(X = i) = (1 − q)i−1q < 1/2i−1. Second, in each trial the event
{S outputs Failure} is the combined event of E and R = R̃. This combined event happens with probability:

Prob(E ∩ {R = R̃}) ≤ Prob(E) Prob({R = R̃}|E)

≤ Prob({R = R̃}|E).

Combining the above inequality to Equation (11), we obtain:

Prob(E ∩ {R = R̃}) ≤ 1/2K .

Therefore, the probability that S outputs Failure in a whole execution is

∞∑
i=1

Prob(X = i) Prob(E ∩ {R = R̃}) ≤ (1/2K)
∞∑

i=1

1/2i−1

≤ 1/2K−1.

Lemma 39. The output of the adversary A in the real world and that of the simulator S in the ideal world are
statistically indistinguishable, i.e.:

{RealΠ,{2},A(zk)(1k, ~m,T)〈0〉}k∈N,~m∈({0,1}∗)n,T∈Ψ,zk∈{0,1}∗
s
= {Ideal f ,{2},S(zk)(1k, ~m,T)〈0〉}k∈N,~m∈({0,1}∗)n,T∈Ψ,zk∈{0,1}∗ .

Proof. First, we claim that S’s output and A’s output are statistically indistinguishable. Indeed, S always returns
A’s output with the exception of returning Failure when Case 1 of Step Sim4 happens. Since Lemma 38 shows that
this situation arises with negligible probability, our claim holds.

Second, we claim that the outputs of A and A are statistically indistinguishable. From the proof of Lemma 30,
the probability that the adversary learns more than one value is negligible. As a result, we ignore this case. The only
difference between the views of real adversaryA and its copyA is that the encryption received byA is the encryption
of the constructed ~m

′

rather than ~m.
Looking at Step S4.3 of Π (i.e., Protocol 1), we know that the encryption is generated by XOR-ing the private

values of the sender with the hash values of the unchosen instance vectors.
The o′-th private value is hidden by hash values of projective instances. The projection property ofH guarantees

thatA (resp.,A) learns ~m
′

〈o′〉 (resp., ~m〈o′〉). Seeing Step Sim6 of S, we know:

~m
′

〈o′〉 = ~m〈o′〉.

22

The (3− o′)-th private value is hidden by hash values of smooth instances. The smoothness property ofH guarantees
thatA (resp.,A) learns nothing about ~m

′

〈3 − o′〉 (resp., ~m〈3 − o′〉) and

~c ′〈3 − o′〉 s
= ~c〈3 − o′〉.

Therefore, A’s view and A’s view are statistically indistinguishable. Thus, our second claim holds which achieves
our lemma demonstration.

Remark 40. Because S filters out the case that all chosen instance vectors are legal and all unchosen ones are
illegal by repeating procedure Ξ in Step Sim3, S does not simulate the real world case where A learns more than 1
values. Correspondingly, in the proof of Lemma 39, we do not consider this case too. This is justified by the fact that
Lemma 30 shows this situation arises with probability at most 1/2K .

Proposition 41. In the case where only the receiver is corrupted, Equation (1) in Definition 9 holds.

Proof. Note that the senders S and S′ end up with outputting nothing as they honestly follow Π. On the other hand,
the receivers R and R′ end up with no output either bcause they are corrupted and so are dummy players. As a
consequence, the fact that the outputs of S andA are statistically indistinguishable (Lemma 39) immediately proves
this proposition.

7. A Fully-Simulatable Framework for OTn
t

Protocol 2 extends our OT2
1 to OTn

t , where n, t are arbitrary positive integers and n > t.

Theorem 42. Assume that in Protocol 2 the smooth projective hash familyH holds properties distinguishability and
hard subset membership, the commitment scheme BC is perfectly binding and the commitment scheme HC is perfectly
hiding. Then, Protocol 2 securely computes functionality OTn

t in the presence of non-adaptive malicious adversaries
where the sender’s security is statistical and the receiver’s security is computational.

Note that hard subset membership of H guarantees that the adversary can not learn any extra knowledge from
rearrangement indicators σ2

i . The proof of Theorem 42 is almost the same as that of Theorem 29, thus we omit the
details.

Protocol 2 A Framework for OTn
t

This Protocol is constructed via modifying Protocol 1. We list the modifications as follows.

1. Public Inputs: The employed hash familyH is a (n, t)-SPH-DHM rather than a (2, 1)-SPH-DHM.
2. Private Inputs: The sender S holds a vector ~m ∈ ({0, 1}∗)n of size n rather than a vector of size 2. The receiver
R holds an index set T ∈ Ψ of size t rather than a single index o ∈ {1, 2}.

3. Step R1.3. For each i ∈ [K], the receiver R uniformly chooses a permutation σ1
i ∈U S n and shuffles the vector

~̃ai ← σ1
i (~ai).

4. Step R5.1. The rearrangement indicators are permutations σ2
i over [n] rather than bits bi. For each non-

chosen vector ~̃xi(i < C), R reorders it by applying a random permutation σ2
i , so that each j-th (j ∈ T) entry

of the resultant vector σ2
i (~̃xi) is projective.

5. Step S4. Correspondingly, the sender S rearranges each unchosen vector according to rearrangement indica-
tor σ2

i .

References

[1] M. O. Rabin, How to exchange secrets by oblivious transfer, Tech. Rep. Technical Report TR-81, Aiken Computation Lab, Harvard University
(1981).

23

[2] J. Kilian, Founding cryptography on oblivious transfer, in: 20th Annual ACM Symposium on Theory of Computing (STOC’88), ACM Press,
Chicago, USA, 1988, pp. 20 – 31.

[3] G. Aggarwal, N. Mishra, B. Pinkas, Secure computation of the median (and other elements of specified ranks), Journal of Cryptology 23 (3)
(2010) 373–401.

[4] N. Mohammed, D. Alhadidi, B. C. M. Fung, M. Debbabi, Secure two-party differentially private data release for vertically partitioned data,
Dependable and Secure Computing, IEEE Transactions on 11 (1) (2014) 59–71.

[5] C. Hazay, K. Nissim, Efficient set operations in the presence of malicious adversaries, Journal of Cryptology 25 (3) (2012) 383–433.
[6] B. Aiello, Y. Ishai, O. Reingold, Priced oblivious transfer: How to sell digital goods, in: B. Pfitzmann (Ed.), Advances in Cryptology -

Eurocrypt’01, Vol. 2045 of Lecture Notes in Computer Science, Springer - Verlag, Innsbruck, Austria, 2001, pp. 119 – 135.
[7] S. Jarecki, X. M. Liu, Private mutual authentication and conditional oblivious transfer, in: S. Halevi (Ed.), Advances in Cryptology - Crypto

2009, Vol. 5677 of Lecture Notes in Computer Science, 2009, pp. 90–107.
[8] Y. Lindell, B. Pinkas, Privacy preserving data mining, Journal of Cryptology 15 (2002) 177–206.
[9] M. Naor, B. Pinkas, Computationally secure oblivious transfer, Journal of Cryptology 18 (1) (2005) 1–35.

[10] M. Green, S. Hohenberger, Practical adaptive oblivious transfer from simple assumptions, in: Y. Ishai (Ed.), 8th Theory of Cryptography
Conference (TCC’11), Vol. 6597, Springer - Verlag, Providence, USA, 2011, pp. 347 – 363.

[11] W. Ogata, K. Kurosawa, Oblivious keyword search, Journal of complexity 20 (2) (2004) 356–371.
[12] M. Naor, B. Pinkas, Oblivious polynomial evaluation, SIAM Journal on Computing 35 (2006) 1254 – 1281.
[13] S. Even, O. Goldreich, A. Lempel, A randomized protocol for signing contracts, Communications of the ACM 28 (6) (1985) 637–647.
[14] D. Catalano, R. Cramer, I. Damgård, G. Di Crescenzo, D. Poincheval, T. Takagi, Contemporary Cryptology, Advanced Courses in Mathe-

matics - CRM Barcelona, Birkhäuser, 2005.
[15] M. Naor, B. Pinkas, Efficient oblivious transfer protocols, in: 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’01),

Society for Industrial and Applied Mathematics, Washington, USA, 2001, pp. 448 – 457.
[16] S. Halevi, Y. Tauman Kalai, Smooth projective hashing and two-message oblivious transfer, Journal of Cryptology 25 (1) (2012) 158–193.
[17] M. Green, S. Hohenberger, Blind identity-based encryption and simulatable oblivious transfer, in: K. Kurosawa (Ed.), Advances in Cryptology

- Asiacrypt’07, Vol. 4833 of Lecture Notes in Computer Science, Springer - Verlag, Kuching, Malaysia, 2007, pp. 265 – 282.
[18] J. Camenisch, G. Neven, abhi shelat, Simulatable adaptive oblivious transfer, in: M. Naor (Ed.), Advances in Cryptology - Eurocrypt’07, Vol.

4515 of Lecture Notes in Computer Science, Springer - Verlag, Barcelona, Spain, 2007, pp. 573 – 590.
[19] A. Y. Lindell, Efficient fully-simulatable oblivious transfer, in: T. Malkin (Ed.), Topics in Cryptology - CT-RSA 2008, Vol. 4964 of Lecture

Notes in Computer Science, Springer - Verlag, San Francisco, USA, 2008, pp. 52 – 70.
[20] Y. Lindell, B. Pinkas, Secure two-party computation via cut-and-choose oblivious transfer, Journal of Cryptology 25 (4) (2012) 680–722.
[21] C. Peikert, V. Vaikuntanathan, B. Waters, A framework for efficient and composable oblivious transfer, in: D. Wagner (Ed.), Advances in

Cryptology - Crypto’08, Vol. 5157 of Lecture Notes in Computer Science, Springer - Verlag, Santa Barbara, USA, 2008, pp. 554 – 571.
[22] J. Han, W. Susilo, Y. Mu, M. H. Au, J. Cao, Aac-ot: Accountable oblivious transfer with access control, IEEE Transactions on Information

Forensics and Security 10 (12) (2015) 2502–2514. doi:10.1109/TIFS.2015.2464781.
[23] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game, in: 19th Annual ACM Symposium on Theory of Computing (S-

TOC’87), ACM Press, New York, USA, 1987, pp. 218 – 229.
[24] B. Zeng, New smooth projective hashing for oblivious transfer, Cryptology ePrint Archive, Report 2018, http://eprint.iacr.org/

(2018).
[25] Y. Lindell, B. Pinkas, An efficient protocol for secure two-party computation in the presence of malicious adversaries, Journal of Cryptology

28 (2) (2015) 312–350. doi:10.1007/s00145-014-9177-x.
URL http://dx.doi.org/10.1007/s00145-014-9177-x

[26] B. Zeng, C. Tartary, P. Xu, J. Jing, X. Tang, A practical framework for t-out-of-n oblivious transfer with security against covert adversaries,
IEEE Transactions on Information Forensics and Security 7 (2) (2012) 465–479.

[27] Y. Aumann, Y. Lindell, Security against covert adversaries: Efficient protocols for realistic adversaries, Journal of Cryptology 23 (2) (2010)
281–343.

[28] M. Blum., Coin flipping by phone, IEEE Spring COMPCOM, 1982, pp. 133–137.
[29] O. Goldreich, Foundations of Cryptography: Volume I - Basic Tools, Cambridge University Press, 2001.
[30] O. Goldreich, Foundations of Cryptography: Volume II - Basic Applications, Cambridge University Press, 2004.
[31] R. Canetti, Security and composition of multiparty cryptographic protocols, Journal of Cryptology 13 (1) (2000) 143 – 202.
[32] R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, T. Malkin, Adaptive versus non-adaptive security of multi-party protocols, Journal of

Cryptology 17 (3) (2004) 153 – 207.
[33] B. Barak, Y. Lindell, Strict polynomial-time in simulation and extraction, SIAM Journal on Computing 33 (4) (2004) 783 – 818.
[34] O. Goldreich, On expected probabilistic polynomial-time adversaries: A suggestion for restricted definitions and their benefits, Journal of

Cryptology 23 (1) (2010) 1 – 36.
[35] O. Goldreich, A. Kahan, How to construct constant-round zero-knowledge proof systems for NP, Journal of Cryptology 9 (3) (1996) 167 –

189.
[36] R. Cramer, V. Shoup, Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption, in: L. R. Knud-

sen (Ed.), Advances in Cryptology - Eurocrypt’02, Vol. 2332 of Lecture Notes in Computer Science, Springer - Verlag, Amsterdam, The
Netherlands, 2002, pp. 45 – 64.

[37] J. P. Degabriele, K. Paterson, G. Watson, Provable security in the real world, Security & Privacy, IEEE 9 (3) (2011) 33–41.
[38] A. Blum, Lecture notes on randomized algorithms, www.cs.cmu.edu/~avrim/Randalgs11/lectures/lect0124.pdf (January 2011).

24

http://dx.doi.org/10.1109/TIFS.2015.2464781
http://eprint.iacr.org/
http://dx.doi.org/10.1007/s00145-014-9177-x
http://dx.doi.org/10.1007/s00145-014-9177-x
http://dx.doi.org/10.1007/s00145-014-9177-x
www.cs.cmu.edu/~avrim/Randalgs11/lectures/lect0124.pdf

	1 Introduction
	1.1 Secure Oblivious Transfer
	1.2 Our Contribution
	1.2.1 Cryptographic Approach
	1.2.2 Reducing SMPC to SPH
	1.2.3 Efficiency of the Construction

	1.3 Paper Organization

	2 Preliminaries
	2.1 Basic Notations and Definitions
	2.2 OTnt with Non-Adaptive SAMA
	2.2.1 The Ideal World
	2.2.2 The Real World
	2.2.3 Security Definition

	2.3 Smooth Projective Hash
	2.4 Commitment Scheme

	3 Halevi-Kalai OT and Its Problems in Simulation-Based Proof
	3.1 Halevi-Kalai OT
	3.2 Simulation Problems

	4 A New Smooth Projective Hash
	5 A Fully-Simulatable Framework for OT21
	5.1 Description of the Protocol
	5.2 Analysis of
	5.2.1 Correctness of the Protocol
	5.2.2 Security of the Scheme
	5.2.3 Efficiency of the Framework

	6 Formal Security Proof
	6.1 Only S is Corrupted
	6.2 Only R is Corrupted

	7 A Fully-Simulatable Framework for OTnt

