
Improved Distinguisher Search Techniques
Based on Parity Sets

Xiaofeng Xie1 and Tian Tian1

National Digital Switching System Engineering & Technological Research Center,
P.O.Box 407, 62 Kexue Road, Zhengzhou, 450001, China. tiantian d@126.com

Abstract. Division property is a distinguishing property against block
ciphers proposed by Todo at EUROCRYPT 2015. To give a new ap-
proach to division property, Christina et al. proposed a new notion called
the parity set at CRYPTO 2016. Using parity sets, they successfully took
further properties of S-boxes and linear layers into account and found im-
proved distinguishers against PRESENT. However, the time and memory
complexities to compute parity sets are expensive. In this paper, we intro-
duce the idea of meet-in-the-middle to the integral distinguisher search
along with a variety of techniques to reduce computation complexity. As
a result, we obtain a new distinguisher against 9-round PRESENT which
has 22 balanced bits.

Keywords: Division property · Parity set · Integral attacks · Meet-in-
the-middle · PRESENT.

1 Introduction

Division property was a technique proposed by Todo at EUROCRYPT 2015 to
search integral distinguishers against block ciphers [Tod15,KW02]. Todo applied
this technique to structural evaluation against both the Feistel and the SPN
constructions and attack the full MISTY1 [Tod17]. After that, many improved
techniques based on division property were proposed [SWW17,TIHM17,Tod16].
At FSE 2016, Todo and Morii introduced bit-based division property and made
it effective to find distinguishers against non-S-box-based ciphers [TM16]. Al-
though this technique found more accurate integral distinguishers, it could not
be applied to ciphers whose block length is more than 32 because of its high
time and memory complexities. Based on Todo’s work, Xiang et al. converted
the distinguisher search algorithm based on bit-based division property into an
MILP problem at ASIACRYPT 2016 [XZBL16]. They used this method to an-
alyze serval lightweight block ciphers and obtained a series of improved results
including a 9-round PRESENT distinguisher with only one balanced bit. This
distinguisher is the best known distinguishers with respect to the round number.

At CRYPTO 2016, Boura and Christina introduced the parity set to study
division property in another view [BC16]. They utilized the parity set to exploit
further properties of the PRESENT S-box and PRESENT linear layer, lead-
ing to serval improved distinguishers against reduced-round PRESENT with all

2 F. Author et al.

the output bits balanced. Since more properties of S-boxes and the linear layer
are utilized, parity sets can find more accurate integral characteristics. But the
problem is that, though the authors did not point out, it requires higher time
and memory complexities than division property does.

Table 1. Integral characteristics against PRESENT

Methods #Rounds Number of Balanced bits Data Reference

Degree evaluation 7 1 220.3 [WW13]
Parity set 6 64 232 [BC16]
Parity set 7 64 252 [BC16]
Parity set 8 64 263 [BC16]

MILP model 9 1 260 [XZBL16]
Our method 9 22 263 Sect. 5

Our work aims at reducing time and memory complexities when using parity
sets to search integral distinguishers. To achieve this goal, we revisit the def-
inition of division property and parity set. As a result, we find it is possible
to introduce the idea of meet-in-the-middle into the distinguisher search, which
permits us to reduce time and memory complexities. Before the proposal of our
new search framework, we introduce a new concept which is called the term set
and investigate the propagation rules of the term set through different block
cipher operations in this paper. The term set of an output bit describes all the
terms contained in the ANF(Algebraic normal form) of this output bit. Recall
that the vectors contained in the parity set correspond to all the terms whose
parity over the input set is odd. Then if none of the term in the ANF of an
output bit is contained in the parity set, which means the intersection of the
parity set and the term set is empty, then we can make a conclusion that this
output bit is balanced. Thus, our idea is dividing the n-round propagation of
the parity set into n1-round propagation of the parity set and (n − n1)-round
propagation of the term set and transforming the distinguisher search problem
into the comparison of these two sets. Moreover, to improve the efficiency of
the involved set comparisons, we propose two useful techniques: size reduction
of parity/term sets and multiple comparisons. As illustrations, we perform ex-
tensive experiments on PRESENT, and find a 9-round distinguisher with 22
balanced output bits. Table 1 shows the comparison of our distinguisher and
previous ones.

The rest of the paper is organized as follows. In Section 2, we review PRESENT,
the division property, and the parity set briefly. In Section 3, we introduce the
term set, and investigate the propagation rules of it. Section 4 introduces our
distinguisher search techniques in detail. Section 5 applies our new techniques
to PRESENT. Finally, conclusions are drawn in Section 6.

Improved Distinguisher Search Techniques Based on Parity Sets 3

2 Preliminaries

2.1 Notation

Notation 1 (Hamming Weight) For x ∈ Fn
2 , denote by wt(x) the hamming

weight of x. The hamming weight of x is the number of 1’s appear in the x. For
x ∈ Fn1

2 × Fn2
2 × . . . × Fnm

2 , where x = (x1,x2, . . . ,xm),xi ∈ Fni
2 (0 < i ≤ m),

denote W (x)
W (x) = (wt(x1), wt(x2), . . . , wt(xm)) ∈ Zm.

Notation 2 (Bit Product Function) Let u, x ∈ Fn
2 . Denote

xu =
n∏

i=1

x[i]u[i],

and for u, x ∈ Fn1
2 × Fn2

2 × . . . × Fnm
2 , where x = (x1,x2, . . . ,xm), u =

(u1,u2, . . . ,um), define bit product function as

xu =
n∏

i=1

xui
i .

Notation 3 (Comparison between Vectors) For a, b ∈ Zm, denote a ≥ b
if ai ≥ bi for all 0 < i ≤ m, and a > b if a ≥ b but a ̸= b. This notion is also
suitable for a, b ∈ Fn

2 . It is obvious that a > b if and only if xa is divisible by
xb.

For u ∈ Fn
2 , let us denote

Prec(u) = {v ∈ Fn
2 : v ≤ u}, Succ(u) = {v ∈ Fn

2 : u ≤ v}.

It is worth noticing that the set Prec(u) just takes on all the elements satisfying
xv | xu and Succ(u) is the set of elements satisfying xu | xv.

Notation 4 (Comparison between Sets) For A and B be two sets whose
elements are in Fn

2 , let us denote A ≥ B if there exist a ∈ A and b ∈ B with
a ≥ b, and A ̸> B if none of such couple exists.

Proposition 1. Let A and B be two sets whose elements are in Fn
2 with A ≥ B.

If there are a1,a2 ∈ A,b1,b2 ∈ B such that a2 ≥ a1 and b1 ≥ b2, then
A \ {a1} ≥ B \ {b1}.

Proof. Since A ≥ B, there exist a ∈ A and b ∈ B such that a ≥ b. If we remove
a1 from A and b1 from B, then we still have


a2 ≥ b if a1 = a;
a ≥ b2 if b1 = b;
a2 ≥ b2 if a1 = a and b1 = b;
a ≥ b if a1 ̸= a and b1 ̸= b.

Thus, it can be seen that A \ {a1} ≥ B \ {b1} holds.

4 F. Author et al.

Fig. 1. Round function of the block cipher PRESENT

Notation 5 (Round Function) Let F be a permutation of Fn
2 defined by

F : x = (x1, x2, . . . , xn) 7→ y = (y1, y2, . . . , yn).

Then every yi can be seen as a Boolean function on x1, x2, . . . , xn, denoted by
yi = Fi(x). For a positive integer r, we denote F r as a composition of r permu-
tation F , and F−r as its inverse permutation.

Remark 1. We denote Er as a r-round cipher where r ∈ Z, and Er
i as the ANF

of the i-th output bit.

2.2 PRESENT

PRESENT is an example of SPN construction proposed in 2007 and consists of
31 rounds. The block length is 64 bits and two key lengths of 80 and 128 bits
are supported [BKL+07]. Its round function is depicted in Figure 1.

The S-box used in PRESENT is a 4-bit S-box which is a permutation of F4
2.

The ANF is giving by

S1(x1, x2, x3, x4) = x1 ⊕ x3 ⊕ x4 ⊕ x2x3,

S2(x1, x2, x3, x4) = x2 ⊕ x4 ⊕ x2x4 ⊕ x3x4 ⊕ x1x2x3 ⊕ x1x2x4 ⊕ x1x3x4,

S3(x1, x2, x3, x4) = 1⊕ x3 ⊕ x4 ⊕ x1x2 ⊕ x1x4 ⊕ x2x4 ⊕ x1x2x4 ⊕ x1x3x4,

S4(x1, x2, x3, x4) = 1⊕ x1 ⊕ x2 ⊕ x4 ⊕ x2x3 ⊕ x1x2x3 ⊕ x1x2x4 ⊕ x1x3x4.

Observation 1 The cubic terms in the ANFs of the second and fourth coordi-
nates (say S2 and S4) are the same.

As a result, the xor of these two coordinates

S2 ⊕ S4 = 1⊕ x1 ⊕ x2x3 ⊕ x2x4 ⊕ x3x4

only has degree 2. Moreover, it can be observed that every term in S2⊕S4 has a
multiple in S2 and S4 respectively. Based on this observation, we could improve
the efficiency of PRESENT distinguisher search in Section 4.

Improved Distinguisher Search Techniques Based on Parity Sets 5

2.3 Division Property and Parity Sets

In the following we will introduce the division property, parity set, and the
propagation rules of the parity set.

Definition 1 (Division Property [Tod15]). Let X be a multiset whose el-
ements belong to Fn

2 . Then X is said to have the division property Dn
k when it

fulfills the following conditions: For u ∈ Fn
2 , the parity of xu over all elements in

X is always even when wt(u) < k. For further study of division property, please
refer to [Tod15] and [SHZ+15] in detail.

Remark 2. In this definition, X is a multiset, but we focus on sets in this paper.

Definition 2 (Parity Set [BC16]). Let X be a set whose elements take value
of Fn

2 . The parity set of X is denoted by U(X) and defined as follow:

U(X) = {u ∈ Fn
2 :

⊕
x∈X

xu = 1}.

Remark 3. If the parity set U(X) of X is known, then the division property of
X is given by Dn

k , where
k = min

u∈U(X)
wt(u).

By definitions, it can be seen that parity sets always contains more infor-
mation than division property does. Besides, we shall show that the parity set
could exploit further properties of S-layers and linear layers. As a result, the
distinguisher search algorithm based on the parity set can find more accurate
integral distinguishers generally.

In the following, we choose affine subspaces of Fn
2 as input sets, and review the

propagation rules of the parity set through operations of the SPN construction.

Propagation rule 1 (Key Addition) Let X be a set whose parity set is U(X).
Then

U(k+X) ⊆
∪

u∈U(X)

Succ(u)

for any k ∈ Fn
2 .

Propagation rule 2 (S-box) Let S be a permutation of Fn
2 and X be a set

with parity set U(X). Then the parity set of S(X) satisfies

U(S(X)) = {v ∈ Fn
2 : xu appears in the ANF of Sv(x),u ∈ U(X)}.

In [BC16], the authors defined the set

V s(u) = {v ∈ Fn
2 : xu appears in the ANF of Sv(x)},

and presented the look-up table of V s(u) for the PRESENT S-box, see [BC16,
Table 1]. In [BC16, Table 1], all 4-bit words are represented in hexadecimal
number, and the rightmost bit of the word corresponds to the least bit.

As for the S-layer, the authors regarded it as the concatenation of several
independent S-boxes. The propagation rule can be described as following.

6 F. Author et al.

Propagation rule 3 (S-boxes) Let S be a permutation of Fmt
2 which consists

of t parallel independent S-boxes over Fm
2 : S(x1,x2, . . . ,xt) = (S(x1), S(x2), . . . , S(xt)).

For an input set X contained in Fmt
2 whose parity set is U(X), we have

U(S(X)) ⊆
∪

(u1,u2,...,ut)∈U(X)

V s1(u1)× V s2(u2)× . . .× V st(ut).

Propagation rule 4 (S-box with Key Addition) Now consider the propa-
gation where key addition is inserted before the S-boxes. Let U(X) be the parity
set of the input set. Then the parity set after a key addition and a S-box satisfies

U(S(X + k)) ⊆
∪

u∈U(X)

∪
v∈Succ(u)

V s(v).

In [BC16], the authors defined the set

VS(u) =
∪

v∈Succ(u)

V s(v).

The authors also presented Vs(u) for all u ∈ F4
2 for the PRESENT S-box, see

[BC16, Table 2].

For the proofs of these propagation rules, please refer to [BC16]. The distin-
guisher search algorithm based on the division property and the search algorithm
based on the parity set are similar [TM16,BC16]. In these two algorithms, we
should give the initial parity set U(X)(or initial division property) of an input
set X first, and then compute the parity set (or division property) after r-round
propagation, say U(Er(X)). If the parity set of outputs does not include all the
unit vectors (or the output set does not satisfy all the division property of or-
der 1), a distinguisher is found. But the sets can be very large when the round
number is high, which decides time and memory complexities when searching
distinguishers. Thus, our work mainly focus on how to improve the search algo-
rithm in respect of time and memory complexities.

3 Term Set and Their Propagation Rules

In this section, we propose a new concept that we call term set and show some
propagation rules of term set on SPN.

3.1 Term Set

Definition 3 (Term Set). Let f(x) be an n-variable Boolean function. The
term set of f(x) denoted by T (f), is the subset of Fn

2 defined by

T (f) = {u ∈ Fn
2 : xu appears in the ANF of f(x)}.

Improved Distinguisher Search Techniques Based on Parity Sets 7

In order to find a distinguisher, we need to compare T (Er
i) with U(Er(X))

and verify whether T (Er
i) ∩ U(Er(X)) is empty. Now the problem is how to

calculate T (Er
i). To solve this problem, we focus on its propagation rules for

round functions of iterated ciphers. With propagation rules we can obtain a set
A satisfying T (Er

i) ⊆ A, thus A∩U(Er(X)) = Ø implies T (Er
i)∩U(Er(X)) = Ø.

Actually, the propagation process of the term set corresponds to the cal-
culation process of ANF. To calculate Er

i (x), a simple and direct method is
to compute Er−1

i (x) firstly. This means calculating Ej(x) = Ej−1(E(x)) for
0 < j ≤ r − 1 recursively. Then calculate Er

i (x) by Er
i (x) = Ei(E

r−1(x)). This
means we need to store Ej(X) for i = 1, 2, . . . , r−1. However, as j increases the
scale of Ej(X) increases dramatically, and we run out of memory soon. Hence,
to reduce memory, we propose to calculate Ej

i (x) upside-down(refer to Figure
2), which means to calculate Er

i (x) by recursively computing:

Ej
i (x) = Ej−1

i (E(x)), (0 < j ≤ r).

Take 2-round PRESENT for example. To calculate E2
1(x), we first compute

E1
1(x) = x1 ⊕ x3 ⊕ x4 ⊕ x2x3,

and then we calculate E2
1(x) by

E2
1(x) = E1

1(E(x)) = E1(x)⊕ E3(x)⊕ E4(x)⊕ E2(x)E3(x)

= (x1 ⊕ x3 ⊕ x4 ⊕ x2x3)⊕ (x9 ⊕ x11 ⊕ x12 ⊕ x10x11)⊕ (x13 ⊕ x15 ⊕ x16 ⊕ x14x15)

⊕(x5 ⊕ x7 ⊕ x8 ⊕ x6x7) · (x9 ⊕ x11 ⊕ x12 ⊕ x10x11).

This method utilizes Ej
i (x) in every round during propagations instead of

recording the whole Ej(x). Thus, we investigate the propagation rules in this
way in this paper.

Since the S-boxes in SPN constructions work independently, the propagation
of term sets can also be divided into several parallel S-boxes. Note that we know
the ANF of the PRESENT S-box and the PRESENT linear layer, and so we can
easily show the propagation of term sets through PRESENT when the general
propagation rule is clear. In the subsequent discussions, we take the m-bit S-box
S as an example regardless of the position changes of variables during the linear
layer.

3.2 Propagation through S-box

Proposition 2. Let S be an S-box over Fm
2 . Denote

Ts(u) = {v ∈ Fm
2 : xv appears in the ANF of Su(x)}.

Then for an m-variable Boolean function f with the term set T (f), we have

T (f(S(x))) ⊆
∪

u∈T (f)

Ts(u).

8 F. Author et al.

Table 2. Sets Ts(u) for all possible inputs for the S-box of PRESENT.

Ts(u)

0 1 2 4 8 3 5 9 6 a c 7 b d e f

0 x

1 x x x x

2 x x x x x x x

4 x x x x x x x x

8 x x x x x x x x

3 x x x x x x

5 x x x x x x

9 x x x x x x x x

6 x x x x x x

a x x x x x x

c x x x x x x x x x x

7 x x x x

b x x x x

d x x x x

e x x x x

f x x x x

Proof. Since

f(S(x)) =
⊕

u∈T (f)

Su (x),

we have

T (f(S(x))) ⊆
∪

u∈T (f)

{v ∈ Fm
2 : xv appears in the ANF of Su(x)} =

∪
u∈T (f)

Ts(u).

Table 2 presents the Ts(u) of the PRESENT S-box where the rows describe
all v’s included in Ts(u) for every input u. All 4-bit words are represented in
hexadecimal number, and the rightmost bit of the word corresponds to the least
bit. Actually, we can make a conclusion from the definitions of Ts(u) and V s(u)
that Table 2 is the transposition of [BC16, Table 1].

3.3 Propagation through S-boxes

Proposition 3. Let S be a permutation of Fmt
2 which consists of t parallel inde-

pendent S-boxes over Fm
2 , namely, S(x1,x2, . . . ,xt) = (S(x1), S(x2), . . . , S(xt)).

For an mt-variable Boolean function f with the term set T (f), we have

T (f(S(x))) ⊆
∪

(u1,u2,...,ut)∈T (f(x))

Ts1(u1)× Ts2(u2)× . . .× Tst(ut).

Improved Distinguisher Search Techniques Based on Parity Sets 9

Proof. From Subsection 3.1, we know

T (f(S(x))) ⊆
∪

u=(u1,u2,...,ut)∈T (f)

Ts(u).

Now the problem is how to find all v = (v1, v2, . . . , vt) such that x v contained
in Su(x). Since only Sui(xi) may contain xvii , it follows that v ∈ Ts(u) if and
only if vi ∈ Tsi(u) for 1 ≤ i ≤ n. Therefore, it can be seen that Ts(u) ⊆
Ts1(u1)× Ts2(u2)× . . .× Tst(ut).

3.4 Propagation through Key Addition

Proposition 4. Let f be an n-variable Boolean function with the term set T (f).
For any k ∈ Fn

2 , the term set of f(k⊕x) = (x1⊕k1, x2⊕k2, . . . , xn⊕kn) satisfies

T (f(k⊕ x)) ⊆
∪

u∈T (f)

Prec(u).

Proof. For any k ∈ Fn
2 , let y = k⊕ x. We have

yv = (x⊕ k)
v
=

⊕
u≤v

xukv⊕u.

It follows that

T (f(k⊕ x)) =
∪

u∈T (f)

{xvkv⊕u, v ≤ u} ⊆
∪

u∈T (f)

Prec(u).

This completes the proof.

3.5 Propagation through One Round

Now we consider the round function where the round key is added before the
S-boxes in the SPN constructions. Because the propagation of the term set is
upside-down, the S-box is always before key addition when calculating term
sets(refer to Figure 2). Let f be an n-variable Boolean function. Then the term
set after one round encryption can be deduced by Subsections 3.3 and 3.4, i.e.

T (f(S(x⊕ k))) ⊆
∪

u∈T (f)

∪
v∈Ts(u)

Prec(v), for every k ∈ Fn
2 .

In the discussions of parity sets and term sets, we consider the round function
where the round key is inserted before S-Layer. Thus, in the subsequent discus-
sions, the round function E always implies that there is a round key addition
before S-Layer. We can also search distinguishers by term sets only. In detail, if
there exists a u ∈ Fn

2 such that no any elements v contained in T (Er
i) satisfy

v ≥ u, then a r-round distinguisher whose input set is Prec(u) is found. Howev-
er, the time and memory complexities of this method will be huge as well. Thus,
we take advantage of the meet-in-the-middle technique so that the term set and
the parity set could be combined to reduce time and memory complexities.

10 F. Author et al.

Fig. 2. Outline of our framework against SPN constructions

4 New Searching Techniques for Integral Distinguishers
Based on the Parity Set

In this section, we introduce our improved distinguisher search techniques in
detail.

4.1 A meet-in-the-middle framework

For an input set X and a round function E, denote the parity set after r-round
encryption as U(Er(X)), i.e., U(Er(X)) is the set that contains all the u’s such
that ⊕

x∈Er(X)

xu = 1.

Now we regard the n-bit state in the r-th round as variables x = (x1, x2, . . . , xn),
and consider the ANF of each output bit. If the ANF of an output bit yi(about
x = (x1, x2, . . . , xn)) does not contain any term in {xu : u ∈ U(Er(X))}, then
this output bit is balanced. Based on this observation, we improve the integral
distinguisher search by utilizing the meet-in-the-middle technique which divides
the n-round propagation of parity sets into n1-round propagation of parity sets
and (n−n1)-round propagation of ANF. An outline of this framework is given in
Figure 2. This search framework is similar to the one used in [YHSS16], which
is applied to search impossible differential distinguishers. Here we utilize term
sets to describe the ANF of output bits and transform the distinguisher search
problem into comparison of term sets and parity sets.

Note that it was mentioned in [BC16] that one of the difficulties for finding
a distinguisher is that the distinguisher property must hold for every secret key
k ∈ Fn

2 . Hence, we use ∪
k∈Fn

2

T (f(k⊕ x)) =
∪

u∈T (f)

Prec(u)

Improved Distinguisher Search Techniques Based on Parity Sets 11

to propagate term sets from f(x) to f(k ⊕ x). To guarantee the correctness of
the algorithm, we utilize∪

(u1,u2,...,ut)∈T (f)

Ts1(u1)× Ts2(u2)× . . .× Tst(ut)

to propagate term sets from f(x) to f(S(x)) when searching distinguishers. Sim-
ilar propagation model is used on parity sets as well, specifically, we evaluate
parity sets after key addition by

U((k⊕X)) ⊆
∪

k∈Fn
2

U(k⊕X) =
∪

u∈U(X)

Succ(u)

and

U((S(X))) =
∪

(u1,u2,...,ut)∈U(X)

V s1(u1)× V s2(u2)× . . .× V st(u t).

Our distinguisher search algorithm consists of four steps which can be described
as following.

Step 1 Round division: Choose the propagation round numbers of the parity
set and the term set respectively. Let us denote r1 as the propagation round
number of parity set and r2 as the propagation round number of term set,
where r1 + r2 = r.

Step 2 Choose an input set: Choose an input set X.
Step 3 Parity sets calculation: Calculate the parity set U(Er1(X)).
Step 4 Term sets calculation: Calculate the term sets T (Er2

i) for 1 ≤ i ≤ n.
Step 5 Sets comparison: Compare U(Er1(X)) with T (Er2

i) for 1 ≤ i ≤ n. If
U(Er1(X)) ∩ T (Er2

i) = Ø, then the i-th output bit in r-round encryption is
balanced. If none of such intersections are empty, then choose another input
set X and go to Step 2.

In order to compare parity sets with term sets efficiently in Step 5, we pro-
pose some novel techniques in the following subsections. Firstly, we propose a
technique to reduce the size of sets during propagation. Secondly, we introduce
the multiple comparison technique which could achieve quick comparisons.

4.2 Reduce the Sizes of Sets

Note that the last operation in the propagation of term sets described in Figure
2 is a key addition. Let T (f) be the term set before the last operation. Then the
final term set participating in the comparison step satisfies∪

k∈Fn
2

T (f(k⊕ x)) =
∪

u∈T (f)

Prec(u).

This leads to the following observation.

12 F. Author et al.

Observation 2 Let U(Er1(X)) be the parity set participating in comparison.
Let T (f) be previously defined. Since T (f(x⊕ k)) is a union of sets of the form
Prec(u), if we find v ∈ T (f(x)) and u ∈ U(Er1(X)) with u ≤ v, then there
must be an element v′ ∈ Prec(v) ⊆ T (f(x⊕ k)) such that v′ = u, which means
the output bit may be unbalanced.

Corollary 1. Let X be a set of elements in Fn
2 and T (f) be as defined in Obser-

vation 2. The i-th output bit of the (r2 + r1) round encryption is balanced over
the input X if and only if T (f) � U(Er1(X)).

Based on Corollary 1 , the comparison step in our technique against SPN
construction is converted into checking whether T (f) ≥ U(Er1(X)). Corollary 1
leads to the following size reduce operation.

Size Reduce Operation. We denote the size reduce operation on a term
set T (Er

i (x)) by Rt(T (Er
i (x))), and the size reduce operation on a parity set

U(Er1(X)) by Ru(U(Er1(X))). For the term set T (Er
i (x)), the operation Rt re-

moves all the elements v ∈ T (Er
i (x)) such that there is an element v′ ∈ T (Er

i (x))
with v′ ≥ v. As for a parity set, the operation Ru removes all the elements
u ∈ U(Er1(X)) such that there is an element u′ ∈ U(Er1(X)) with u ≥ u′.

It can be deduced from Proposition 1 that the comparison result of T (Er
i (x))

and U(Er1(X)) is the same as the comparison result ofRt(T (Er
i (x))) andRu(U(Er1(X))).

This guarantees the correctness of the technique using the size reduce operation.
It can be seen that by reducing the size of sets, the time complexity of compar-
ison step can be reduced to a great extent. However, during the experiment, we
find the complexity of the size reduce operation is still too costly and may even
increase the whole complexity of our technique. Therefore, we combine the size
reduce technique with propagation rules in the following.

4.3 Propagation Combined with Size Reduction

Notation 6 For X ⊆ Fn
2 , define

Max(X) =
∪
x∈X

Prec(x) and Min(X) =
∪
x∈X

Succ(x).

Remark: It is obvious that Max(Rt(T (f))) = Max(T (f)) and Min(U(X)) =
Min(Ru(U(X)). Thus, if a term set T (f) is a union of the Prec(u), then we
can just store X = Rt(T (f)) instead of T (f), since we can recover T (f) by
T (f) = Max(X).

Note that there is always a key addition before S-Layers (see Figure 2), and
so the term sets propagated before S-Layers (after key addition) are unions of
Max(u) according to the propagation rule

T (f(k⊕ x)) =
∪

u∈T (f)

Prec(u).

Improved Distinguisher Search Techniques Based on Parity Sets 13

Table 3. Reduced T ′s(u) for all possible inputs for the PRESENT S-box.

Rt
(
T ′s(u)

)
0 1 2 4 8 3 5 9 6 a c 7 b d e f

0 x

1 x x x

2 x x x

4 x x

8 x x x

3 x x x

5 x x x

9 x x x

6 x x x

a x x x

c x x x

7 x x x x

b x x x x

d x x x x

e x x x x

f x

As a result, we can only store Ru(T (f)) instead of the whole T (f) after key
addition to reduce the memory complexity, where each u ∈ Rt(T (f)) represents
the set Max(u).

Since

Max(u)
S(x)−−−→

∪
v∈Prec(u)

Ts(v),

we define

T ′s(u) =
∪

v∈Prec(u)

Ts(v).

Then, for any term set T (f), we have

T (f)
x=(x⊕k)−−−−−→ Max(Rt(T (f)))

x=S(x)−−−−→
∪

v∈Rt(T (f))

T ′s(v).

Thus, we can apply the size reduce operation to term sets before propagating
through key addition. Consequently, we apply the size reduce operation on the
term sets after propagating through S-Layer. As mentioned in Subsection 4.2,
it is costly to do size reduce operation after S-Layer propagation, we combine
the size reduce with S-Layer propagation rule directly, which means the term
set through S-layer is evaluated by Rt(T ′s(u)) instead of T ′s(u).

We show T ′s(u) and Rt(T ′s(u)) for all possible inputs for PRESENT S-box
in Tables 2 and 3 respectively. Note that the propagation based on Rt(T ′s(u))
only achieves size reduce partly. The effect of reduction depends on the length

14 F. Author et al.

Table 4. Reduced Vs(u) for all possible inputs for the PRESENT S-box

Ru
(
Vs(u)

)
0 1 2 4 8 3 5 9 6 a c 7 b d e f

0 x

1 x x x x

2 x x x x

4 x x x x

8 x x x x

3 x x x

5 x x x

9 x x x

6 x x x

a x x x

c x x x

7 x x

b x x x

d x x x

e x x x

f x

of blocks. However, in this subsection, we consider a 4-bit S-box as a block. To
achieve a further reduction, we propose the further reducing look-up table in
Subsection 4.4.

For the parity set, we can only store Ru(U(X)) after every key addition. Let
U(X) be an arbitrary parity set. Then we have

Min(U(X))
S(x⊕k)−−−−→

∪
v∈Ru(U(X))

Vs(v).

The propagation rule of key addition and the outline in Figure 2 make it suitable
to apply the size reduce operation to parity sets propagated after key addition.
Similarly, we propose Ru(V(u)) for propagation of parity sets. Table 4 shows the
Ru(V(u)) for all possible inputs for PRESENT S-box.

We can roughly estimate that by Tables 3 and 4, the memory complexity can
be reduced nearly by a factor of 3k for every round compared with the original
look-up table, where k is the number of active S-box whose input is either 0x0
or 0xf .

4.4 Further Reducing Look-up Table

As mentioned in Subsection 4.3, when combining the size reduce with propa-
gation, the effect of reduction depends on the length of blocks. The effect of
reduction would be better as the length of blocks increases. Consequently, we
regard a 16-bit super S-box as a block in this subsection to achieve a further
reduction.

Improved Distinguisher Search Techniques Based on Parity Sets 15

Fig. 3. work model of super S-box in PRESENT

Observation 3 The super S-boxes in PRESENT can work independently in the
2-round encryption. (refer to the Fig 3)

Based on Observation 3, we can easily construct a 2-round propagation table
for the super S-box by calculating

U(S(P (S(X))))

for all possible inputs, where S is a permutation of F4n
2 , which consists of four

PRESENT S-boxes

S(x 1,x2,x3,x4) = (S(x1), S(x2), S(x3), S(x4))

and P changes the position of coordinations of elements in parity sets. Next,
we reduce the parity set U(S(P (S(X)))) for all possible inputs X. Thus, we
construct a reduced table for 2-round propagation Ru

(
U(S(P (S(X))))

)
. The

reduced table of the term set can be constructed in the same way. There is no
doubt that the sizes of sets propagated in this way are smaller than the one
propagated by Ru(V ′

S(u)) and Rt(T ′s(u)). Furthermore, since this propagation
table passes through two rounds, the time complexity can also be reduced. The
greatest advantage is that it even reduces the time complexity in propagation.
Note that this technique requires little memory, but improves the algorithm to
a great extent.

4.5 Multiple Comparison

Now we consider how to reduce the time complexity of sets comparison. The
simplest way is to compare every couple of u,v where u ∈ U(X) and v ∈ T (x),
and check whether u ≤ v. But it still requires a high time complexity even when
we take the advantage of size reduce technique. Thus, we provide a multiple
comparison technique to achieve quick comparisons.

Theorem 1. Let A and B be two sets whose elements are in Fn
2 . If A ≥ B, then

max
u∈A

wt(u) ≥ min
v∈B

wt(v).

16 F. Author et al.

Proof. If A > B, then a > b for some a ∈ A and some b ∈ B. It can be seen
that

max
u∈A

wt(u) > wt(a) > wt(b) > min
v∈B

wt(v).

If A = B, then it is trivial that the result holds.

Theorem 2. If u,v ∈ Fnt
2 satisfy u ≥ v, then W (u) ≥ W (v).

Proof. If u ≥ v, then u[i] ≥ v[i] for 0 < i ≤ nt. Thus, we have

wt(uj) =

n∑
k=1

u[k + n · j] ≥
n∑

k=1

v[k + n · j] = wt(vj).

Since W (x) = (wt(x 1), wt(x 2), . . . , wt(xm)) ∈ Zm and wt(vj) ≤ wt(uj) for
0 < i ≤ nt, it follows that W (v) ≥ W (u).

Theorem 3. If u,v ∈ Fn
2 satisfy u > v, then we have u > v when regard them

as integers.

Proof. Since v[i] ≤ u[i] for 0 < i ≤ n and the inequality holds at least for one i,
it can be seen that

n∑
i=1

u[i] · 2i−1 >
n∑

i=1

v[i] · 2i−1.

Based on the above three theorems, we propose the following multiple com-
parison technique.

The Multiple Comparison Technique. Let U and T be the parity set
and the term set participate in comparison. The multiple comparison technique
can be described as follow.

Step 1 Obtain the minimum weight of parity sets

m = min
u∈U

wt(u)

and the maximal weight of term sets

M = max
v∈T

wt(v).

If M < m, then we can deduce from Theorem 1 that the output bit is
balanced. Otherwise, go to Step 2.

Step 2 Element filtering. Let

A = {u : u ∈ U and wt(u) > M}

and
B = {u : u ∈ T and wt(u) < m}.

According to Theorem 1, we remove A from U and remove B from T , e.t.
U = U/A and T = T/B.

Improved Distinguisher Search Techniques Based on Parity Sets 17

Step 3 Further filtering. Take an element t from T , and regard elements in U
and T as values in F 4×16

2 . Let us denote

C = {u : u ∈ U and W (u) < W (t)}.

If C = ∅, then let

D = {u : u ∈ T and W (u) = W (t)}.

By Theorem 2, all elements in D cannot be divisible by the elements in U .
Thus, we can remove D from T , e.t., T = T/D, and go to Step 5.
If C ̸= ∅, then regard elements in U and D as elements in F 16×4

2 . Let

C ′ = {u : u ∈ U and W (u) < W (t)} and D′ = {u ∈ D,W (u) = W (t)}.

If C ′ = ∅, then remove D′ from T i.e. T = (T/D′). If C ′ ̸= ∅, then go to
Step 4.

Step 4 To judge whether D′ ≥ C ′, the elements in C ′ and D′ are regarded as
the corresponding integers in this Step. Namely, for u ∈ C ′ or u ∈ D′, u is
seen as the integer

∑63
i=0 u[i] · 2i.

Firstly, we sort C ′ from small to large. For every u ∈ D′, based on Theorem
3, we only need to compare u with elements v < u, v ∈ C ′. If D′ � C ′, then
T = T/D′, and go to Step 5.

Step 5 If T ̸= ∅, take another t and go to step 3. If T = ∅ we can stop
comparison and make a conclusion that T � U .

If we find u ∈ U and v ∈ T such that u < v in Step 4, then we can stop
comparison and deduce that T ≥ U . This technique filters the terms using the
divisibility condition under degree order and alphabet respectively. Its effect in
time complexity is observable, and we will illustrate this improvement in detail
by the application to PRESENT.

5 Application to PRESENT

To illustrate our techniques, we apply our algorithm to PRESENT distinguisher
search in this section.

5.1 Search Rule Based on Observation 1

In the PRESENT S-box, for every term in S1, there exists a multiple in S2, S3,
and S4 respectively. Thus, we verify the parity of S1 first. If S1 is unbalanced,
every output of this S-box is unbalanced too. If S1 is balanced, then we verify
the property of S3 next. The search rule of S2 and S4 is presented as follows. As
illustrated in Observation 1, the degree of S2 ⊕ S4 is 2. Hence, S2 ⊕ S4 maybe
balanced even if S2 and S4 are unbalanced. Moreover, every term of S2⊕S4 has
a multiple in S2 and S4 respectively, which means the term set of S2 ⊕ S4 is
included in the term sets of S2 and S4 respectively. Accordingly, we propose the
search rule of S2 and S4 of the PRESENT S-box in Table 5, which is based on
Proposition 5.

18 F. Author et al.

Table 5. The search rule of S2 and S4 in the PRESENT S-box.

STEP1 RESULT STEP2 RESULT FURTHER RESULT

Judge S2 ⊕ S4 balanced Judge S2 balanced S4 is balanced

unbalanced S4 is unbalanced

Not balanced S2 and S4 are unbalanced

Proposition 5. Let X be the input set of encryption E. If E1(X) ⊕ E2(X) is
balanced over all the inputs. Then, the parity of these two output bits over all
the inputs are the same.

Proof. We already know
⊕

x∈X(E1(X)⊕E2(X)) = 0 which means
⊕

x∈X(E1(X))⊕⊕
x∈X E2(X) = 0, thus, the parity of

⊕
x∈X E1(X) and

⊕
x∈X E2(X) are the

same.

5.2 Our Results

First, we try to find 10-round PRESENT distinguishers by our technique, but
the search result of the rightmost output bit is unbalanced for all input sets
with dimension 63. Since this output bit has the simplest and the lowest degree
ANF among 64 output bits, our result shows that the PRESENT probably has
no 10-round integral distinguishers by only using the division property. Second,
we focus on the 9-round PRESENT, and find a distinguisher with 22 balanced
output bits. When searching the 9-round distinguisher against PRESENT, we
set the round number r1 of parity set propagation as 5 and propagation round
number r2 of term set as 4. We take the input:

(aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaac)

as an example. The order of the set U(Er1(X)) is 320347578. The minimal weight
of parity set is 22 and

#{u ∈ U(Er1(X), wt(u) = 22} = 59875200.

Table 6 shows some datum in the experiments. The effect of the size reduce
technique can be observed from the order of the sets. Before applying the size
reduce operation, since every row in V s(u) has nearly 10 elements, the order of
parity set should be nearly 10 × 104 × ((10)16)3 = 1053. And the effect of the
first and second step in multiple comparison is also obvious.
PRESENT’s 9-Round Distinguisher
Input:
(aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaac),
Output:
(????????????b3?bb3 ????????????b2?bb2 ????????????b1?bb1 bbbbbbbbbbbbbbbb),
where ‘c’ means a constant bit, ‘a’ means an active bit, ‘?’ means an unknown
bit, and ‘b’ means a balanced bit. Besides, the bits with the same notation bi
means their addition is balanced.

Improved Distinguisher Search Techniques Based on Parity Sets 19

Table 6. Experimental data during distinguisher search against 9-round PRESENT

Term sets T (Er2
1) T (Er2

2) T (Er2
3) T (Er2

4)

#set order 9932 3208722 2680786 3208722

Maximal weight 18 22 22 22

#{v : wt(v) ≥ 22} 0 38892 29940 38892

6 Conclusions

In this paper, we propose a concept called the term set to propagate some in-
formation of ANF. With term sets, we improve the distinguisher search method
based on the parity set both in terms of memory and time complexities. From
the relation between the parity set and the bit-based division property, it can be
seen that the term set could also be applied to improve the distinguisher search
method based on bit-based division property similarly. Applying our techniques
to other SPN ciphers will be one subject of our future work.

References

[BC16] Christina Boura and Anne Canteaut. Another view of the division property.
In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology
- CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, volume 9814
of Lecture Notes in Computer Science, pages 654–682. Springer, 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Ax-
el Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Pascal Paillier and In-
grid Verbauwhede, editors, Cryptographic Hardware and Embedded Systems
- CHES 2007, 9th International Workshop, Vienna, Austria, September 10-
13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer Science,
pages 450–466. Springer, 2007.

[KW02] Lars R. Knudsen and David A. Wagner. Integral cryptanalysis. In Joan Dae-
men and Vincent Rijmen, editors, Fast Software Encryption, 9th Interna-
tional Workshop, FSE 2002, Leuven, Belgium, February 4-6, 2002, Revised
Papers, volume 2365 of Lecture Notes in Computer Science, pages 112–127.
Springer, 2002.

[SHZ+15] Bing Sun, Xin Hai, Wenyu Zhang, Lei Cheng, and Zhichao Yang. New
observation on division property. IACR Cryptology ePrint Archive, 2015:459,
2015.

[SWW17] Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of bit-based divi-
sion property for ARX ciphers and word-based division property. In Tsuyoshi
Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYP-
T 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-
7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in Computer
Science, pages 128–157. Springer, 2017.

20 F. Author et al.

[TIHM17] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks
on non-blackbox polynomials based on division property. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 -
37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part III, volume 10403 of Lecture Notes in
Computer Science, pages 250–279. Springer, 2017.

[TM16] Yosuke Todo and Masakatu Morii. Bit-based division property and applica-
tion to simon family. In Thomas Peyrin, editor, Fast Software Encryption -
23rd International Conference, FSE 2016, Bochum, Germany, March 20-23,
2016, Revised Selected Papers, volume 9783 of Lecture Notes in Computer
Science, pages 357–377. Springer, 2016.

[Tod15] Yosuke Todo. Structural evaluation by generalized integral property. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EU-
ROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 287–314. Springer, 2015.

[Tod16] Yosuke Todo. Division property: Efficient method to estimate upper bound
of algebraic degree. In Raphael C.-W. Phan and Moti Yung, editors,
Paradigms in Cryptology - Mycrypt 2016. Malicious and Exploratory Cryp-
tology - Second International Conference, Mycrypt 2016, Kuala Lumpur,
Malaysia, December 1-2, 2016, Revised Selected Papers, volume 10311 of
Lecture Notes in Computer Science, pages 553–571. Springer, 2016.

[Tod17] Yosuke Todo. Integral cryptanalysis on full MISTY1. J. Cryptology,
30(3):920–959, 2017.

[WW13] Shengbao Wu and Mingsheng Wang. Integral attacks on reduced-round
PRESENT. In Sihan Qing, Jianying Zhou, and Dongmei Liu, editors, In-
formation and Communications Security - 15th International Conference,
ICICS 2013, Beijing, China, November 20-22, 2013. Proceedings, volume
8233 of Lecture Notes in Computer Science, pages 331–345. Springer, 2013.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP method to searching integral distinguishers based on division property
for 6 lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, volume
10031 of Lecture Notes in Computer Science, pages 648–678, 2016.

[YHSS16] Qianqian Yang, Lei Hu, Siwei Sun, and Ling Song. Extension of meet-in-the-
middle technique for truncated differential and its application to roadrunner.
In Jiageng Chen, Vincenzo Piuri, Chunhua Su, and Moti Yung, editors,
Network and System Security - 10th International Conference, NSS 2016,
Taipei, Taiwan, September 28-30, 2016, Proceedings, volume 9955 of Lecture
Notes in Computer Science, pages 398–411. Springer, 2016.

