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Abstract. The keyed sponge is a well-accepted method for message au-
thentication. It processes data at a certain rate by sequential evaluation
of an underlying permutation. If the key size k is smaller than the rate,
currently known bounds are tight, but if it exceeds the rate, state of the
art only dictates security up to 2k/2. We take closer inspection at the key
prediction security of the sponge and close the remaining gap in the exist-
ing security analysis: we confirm key security up to close to 2k, regardless
of the rate. The result impacts all applications of the keyed sponge and
duplex that process at a rate smaller than the key size, including the
STROBE protocol framework, as well as the related constructions such
as HMAC-SHA-3 and the sandwich sponge.

Keywords: outer-keyed sponge, full-keyed sponge, key prediction, graph-
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1 Introduction

Keyed cryptographic functions are desired to “behave like” a random function
with the same interface, in such a way that an adversary cannot easily distinguish
one from another. Almost all keyed cryptographic schemes have been analyzed
in this so-called indistinguishability model, at least from a generic perspective
where the underlying primitives are assumed to be sufficiently secure. The indis-
tinguishability model is rather strong: an attack grants an adversary knowledge
on some evaluations of the scheme, but not all. It does not produce a full break
of the scheme, but rather indicates a non-random property.

Key recoveries are a stronger type of attack. A key recovery can be used to
distinguish a scheme from random, but not the other way around. In some cases,
the best distinguishability attack is (close to) a key recovery attack. For example,
AES [20] supports keys of size 128, 192, or 256, and the best distinguishing
attack on AES known to date is (close to) the generic key recovery attack that
succeeds if the attacker makes a total amount of 2k offline evaluations of AES,
where k is the key size. In a bit more detail, it is generally believed that the
strong pseudorandom permutation (SPRP) of AES is around t/2k, where t is
the number of offline evaluations of AES.

It is not always straightforward to achieve security against key recovery at-
tacks up to 2k. An earlier example of this is the authenticated encryption scheme
McOE-X [22], for which Mendel et al. [37] described a simple key recovery at-
tack in 2n/2 evaluations, where n equals both key and state size. Fuhr et al. [23]



described sophisticated birthday-type key recovery attacks on CAESAR candi-
dates Marble [26] and AEZ v3 [30]. The designers of AEZ revised their scheme
to AEZ v4 in order to mitigate the attack [31], but subsequently, Chaigneau
and Gilbert [16] showed that AEZ v4.1 [32] is still vulnerable to a key recovery
attack with similar complexity.

1.1 Keyed Sponges

We will focus on keyed versions of the sponge construction by Bertoni et al. [6].
The (keyless) sponge construction is a hash function mode that operates on
a b-bit state, split into an inner part of capacity c and an outer part of rate
r, where c + r = b. Data is absorbed, and the digest is extracted, block-by-
block via the outer part of the state, interleaved with evaluations of a b-bit
permutation π. The function is proven [7] to achieve c/2-bit security in the
indifferentiability framework [36]. It has been adopted, among others, in the
SHA-3 hashing standard [21].

The first, and perhaps simplest, approach of transforming the sponge into a
pseudorandom function (PRF) is by Bertoni et al. [10], who suggested to simply
prepend the message m with the key K, i.e., to evaluate the sponge on input
(K‖m). The scheme got renewed analysis by Andreeva et al. [2], who dubbed it
the “outer-keyed sponge (OKS),” and later Naito and Yasuda [41].

Alternatively, one can design a PRF by just initializing the inner part with
the key K instead of with 0c. This construction, now known as the “inner keyed
sponge (IKS),” was introduced by Chang et al. [17] and received improved anal-
ysis by Andreeva et al. [2] and Naito and Yasuda [41].

Finally, it appeared that secrecy of the state after key injection could be used
to support full-state absorption: instead of absorbing data in the r-bit outer part
only, one could absorb over the entire b-bit state. The idea appeared first in the
donkeySponge [11]. An analysis for one output block only was given by Gaži
et al. [24]. A complete security treatment was given by Mennink et al. [38] and
Daemen et al. [18].

It is obvious that the full-keyed sponge is generically1 more efficient than the
outer-keyed and inner-keyed sponge: data is compressed b bits at a time rather
than r < b bits. From a security perspective, the schemes achieve approximately
the same level of security. In detail, all achieve a security level of around

M2

2c
+
MN

2c
+ Advkey-pre

F (N) (1)

(omitting constants and details, see Section 4), where M denotes the number of
queries to the construction, N the number of queries to the underlying permu-
tation, and Advkey-pre

F (N) is the probability that the adversary made queries to
the underlying permutation that match the key input to F ∈ {OKS, IKS,FKS}.
Intuitively, the first two fractions of (1) correspond to distinguishing F from a
random function, and the last term represents a key prediction, an isolated event

1 To get the same level of security, the underlying permutation may need more rounds.
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in typical security analyses (there is a subtle difference between a key prediction
and a key recovery, as we will explain in Section 5).

Note that all sponges achieve a security level of c bits at best, and there is
no reason to take a key of size k > c. As such, FKS has made IKS obsolete: both
require adaptation of the keyless sponge algorithm, both take one evaluation of
π to compress the key, both are approximately equally secure, but the FKS is
more efficient. FKS does not necessarily make OKS obsolete: although it is more
efficient, OKS does not require an adaptation of the keyless sponge algorithm,
and can evaluate it in a black-box manner. This happens, for example, in the
STROBE protocol framework [28, 29], as we will elaborate upon in Section 1.4.
We restrict our focus to OKS and FKS.

1.2 Key Prediction Security

For FKS, using that k < b without loss of generality, it is easy to see that

Advkey-pre
FKS (N) ≤ N/2k . (2)

Indeed, the key is compressed using one evaluation of π, the adversary can make
N attempts, and succeeds if one of those is performed for the corresponding key.

For OKS, the k-bit key is partitioned into r-bit blocks. If k ≤ r, then the key
prediction term is bounded as before (the key is compressed using one call to
π). On the other hand, if k > r, then the key is processed using more than one
evaluation of π, and the current state of the art suggests only 2k/2 security. In
more detail, Gaži et al. [25, Lemma 12] (full version of [24]) derived the following
bound for the key prediction term:

Advkey-pre
OKS (N) .

{
N/2k , if k ≤ r ,
bλ/2N/2k/2 , if k > r ,

(3)

where λ := dk/re denotes the number of permutation calls to process the key,
and where negligible terms are omitted (refer to Proposition 1 for the details).

This bound shows a counter-intuitive and devastating loss in the key size:
whereas one key block still yields the intuitively optimal bound of N/2k (“one
needs to make around 2k attempts to recover the key”), once the key size exceeds
the rate one loses half the key! Stated differently, the bound suggests that OKS
with a key of size 2r achieves the same level of security as OKS with a key of
size r.

In Section 3, we derive an improved bound on the key prediction security,
and demonstrate that

Advkey-pre
OKS (N) . cλ−1N/2k , (4)

where, again, λ := dk/re, and negligible terms are omitted (refer to Theorem 1
for the details). For k ≤ r (or λ = 1), the earlier bound of Gaži et al. was already
tight and the new bound matches it. For k > r (or λ > 1), our bound demon-
strates that close to k-bit security is achieved, with a logarithmic degradation
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in c. This innocent logarithmic loss, in turn, comes from the probability of a
lucky multi-collision; it was already present in the bound of Gaži et al., but we
slightly improved it. (We remark that the best attack against key prediction has
a success probability of around N/2k.)

The result is proven using a graph-based approach, wherein every edge cor-
responds to an r-bit key block guess and one considers the maximum number of
paths of length λ departing from root node 0b. We then consider configurations
of paths of length λ, corresponding to the direction in which the λ individual
queries to the underlying permutation are made. The proof is inspired by that
of Gaži et al. [25, Lemma 12], who also adopted a graph-based approach and
introduced the term of configurations, yet it differs in many aspects. Most im-
portantly, Gaži et al. observed that in any configuration, at least half is in the
same direction (either forward or inverse). They subsequently use a bad event
based on multi-collisions to upper bound the number of possibilities over these
≥ λ/2 edges, but ignore the problem of the adversary to find the connections
over the remaining ≤ λ/2 edges in reverse direction. This simplification leads to
discarding half of the key (hence the denominator 2k/2 in (3)). In our bound, we
perform an inductive argument on λ. We prove that for every added layer exten-
sion, the size of the yield, or equivalently the number of paths from 0b, depends
only on the presence of multi-collisions and is independent of the configuration
of the query.

1.3 Further Appearances of Key Prediction Security

The main functionality of the keyed sponge is authentication. It can be used for
(authenticated) encryption via the duplex construction by Bertoni et al. [8]. The
duplex is a stateful construction: a call to its initialization interface initializes
a state, and a call to its duplexing interface absorbs a data block, applies the
permutation π on the state, and squeezes at most r bits. Similar to the keyed
sponges, the absorption of the data block can be performed over the outer part
only (r bits) or over the entire state (b bits). We will refer to these two as the
outer-keyed duplex (OKD) and the full-keyed duplex (FKD). It is important
to note that these protocols do not extract data during absorption of the key;
in other words, the key is absorbed as if the function is an outer-keyed, resp.
full-keyed, sponge.

The security of keyed duplexes can be proven from keyed sponges and vice
versa [18, 38]. The reduction makes use of the fact that one evaluation of the
keyed duplex consists of ` evaluations of a keyed sponge, where ` denotes the
number of blocks that are duplexed in-between two initialization calls. Even
stronger, both the outer-keyed duplex and full-keyed duplex are proven to also
achieve the bound of (1), up to constant, where the key prediction security is
still for the keyed sponge function F ∈ {OKS,FKS}.

For both variants of the keyed sponges and keyed duplexes one can also
consider security in the nonce-respecting setting, where a nonce is compressed
into the state prior to the first data block. In this case, the general bound of (1)
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Table 1: Suggested parameters in the STROBE protocol framework [28,29].

scheme b c r k

STROBE-128/1600 1600 256 1344 256

STROBE-256/1600 1600 512 1088 256

STROBE-128/800 800 256 544 256

STROBE-256/800 800 512 288 256

STROBE-128/400 400 256 144 256

can go down to around

M2

2b
+
N

2c
+ Advkey-pre

F (N) , (5)

using techniques of [18, 34] (see also Section 4). Common factor in the bounds

of (1) and (5) is the presence of the term Advkey-pre
F (N) for F ∈ {OKS,FKS}.

Our improved analysis of Advkey-pre
OKS (N) in (4) immediately yields an improved

bound for the outer-keyed duplex, as well as for the nonce-respecting variants of
both the outer-keyed sponge and duplex.

Beyond the keyed sponges and keyed duplexes, key prediction security also
appears in the analyses of HMAC-SHA-3 [40] and the sandwich sponge [39]. In
these works, the authors adopted the old bound of Gaži et al. of (3). Our new
bound of (4) directly improves the security bounds of these schemes.

1.4 Application

Despite that FKS generically improves over OKS both from a security as an
efficiency perspective, there are still reasons to resort to OKS. First, the security
results only focus on the generic construction: full-state compression allows the
adversary more power, and the underlying permutation may likely need more
rounds. Second, the usage of OKS is conceptually simpler: the PRF can be
implemented using the keyless sponge algorithm as a black-box.

STROBE. This exact idea lies at the heart of the STROBE protocol frame-
work [28, 29]. It is designed on top of the sponge construction, and extends
the use of a single permutation to a lightweight framework for network proto-
cols, that allows for (keyless) hashing, authenticated encryption, authentication,
pseudorandom number generation, and many more. In order to allow for a sim-
ple framework with extremely small code size, all functionalities supported by
STROBE operate on the outer part only. In particular, STROBE does not allow
for full-state absorption but rather absorbs key and data in the outer part.

The STROBE protocol framework is based on SHAKE [42] and supports
instantiations with various widths, as indicated in Table 1. Whereas the larger
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Table 2: Parameters of the four sponge-based round 3 CAESAR candidates. For
Ketje and Keyak, we have taken the recommended key length.

scheme b c r k

Ascon [19] 320 256 64 128
320 192 128 96

Ketje [12] 200 184 16 92
400 368 32 128

Keyak [13] 800 256 544 128..224
1600 256 1344 128..224

NORX [4] 512 128 384 128
1024 256 768 256

STROBEs have k ≤ r, the more lightweight STROBE-128/400 has suggested key
size larger than r. The same applies to “STROBE lite” on 200-bits state (which
is not included in the table). Our analysis confirms that these instantiations
do achieve the claimed level of security and that the effective key length is not
halved (as suggested by the earlier bound of (3)). We remark that the 256-bit
key size in the STROBE protocol framework is a mere suggestion by the author;
implementers may opt to use a larger or smaller key.

CAESAR Competition. Multiple submissions to the CAESAR competition
for the development of a portfolio of authenticated encryption schemes [15]
adopted the keyed duplex. Focusing on the third round candidates, Table 2 lists
the parameters (b, c, r, k) of the four sponge-based schemes Ascon [19], Ketje [12],
Keyak [13], and NORX [4]. Keyak implements the full-keyed duplex construction
of [18] and the original key prediction bound of (2) applies. The remaining three
schemes evaluate the outer-keyed duplex, with one twist: despite that message
is absorbed in the outer part only, the key is absorbed in a full-state fashion.
For example, for Ascon-128, the 128-bit key is used (alongside the initialization
vector and nonce) to initialize the 320-bit state, and departing from that state,
the outer-keyed duplex (with rate r = 64) is evaluated. Therefore, also for these
schemes the original key prediction bound of (2) applies. Our observations nev-
ertheless demonstrate that if, for some reason, full-state absorption of the key is
infeasible, multi-round outer part absorption does not degrade security.

Lightweight Permutations. Our analysis improves over the existing bounds
for OKS in case the key size exceeds the rate. It becomes particularly rele-
vant in the context of lightweight cryptography and the current abundance in
“small” permutations, all with different features. Whereas most allow for a large
enough capacity and rate so that key compression takes only one round (typi-
cally permutations of size ≥ 384 bits, including Keccak-f [400] [9], C-Quark [3],
SPONGENT-256/256/128 [14], and Gimli [5]), some have a smaller state, such

6



as 228-bit Photon-256/32/32 [27], 320-bit Ascon [19], 200- or 280-bits PRI-
MATEs [1], and 128- or 256-bits Prøst [35]. If the rate is too small and one
does not opt to simply initialize the state using the key (as, e.g., described for
Ascon above), key absorption is necessarily performed in multiple rounds.

2 Preliminaries

For a finite set S, we denote by s
$←− S the uniform random sampling of s from S.

For a natural number b ∈ N, {0, 1}b denotes the set of b-bit strings, and perm(b)
denotes the set of all permutations π : {0, 1}b → {0, 1}b. We denote by {0, 1}∗
the set of all strings. For m ∈ {0, 1}∗, we denote by m1, . . . ,mν = "b(m) the
two-step process of (i) appending m with 10−|m|−1 mod b, and (ii) partitioning
the resulting string into ν ≥ 1 b-bit strings. For a b-bit string m ∈ {0, 1}b and
values c, r ∈ N such that c, r ≤ b, we denote by bmcc the c rightmost bits of m
and by dmer the r leftmost bits of m.

An adversary AO is a computationally unbounded algorithm that is given
adaptive access to an oracle O and outputs certain data. It wins if its output
fulfills a (possibly randomized) winning condition W.

2.1 General Keyed Sponge

This work is concerned with the outer-keyed sponge and the full-keyed sponge:
the former absorbs data in the outer part only, the latter absorbs data over the
entire state. We can therefore neatly describe both in one go by considering a
general keyed sponge that operates with two capacities: cab for absorption and
csq for squeezing. (Nevertheless, most of the results in the remainder of the work
concern the outer-keyed sponge.)

Let b, cab, csq, rab, rsq, k ∈ N be such that b = cab + rab = csq + rsq. Define
λ := dk/rabe. The general keyed sponge is a pseudorandom function based on a
permutation π ∈ perm(b) that takes as input a key K ∈ {0, 1}k, an arbitrary-
sized message M ∈ {0, 1}∗, and a natural number ` ∈ N, and outputs a value
z ∈ {0, 1}`:

GKSπ : (K,m, `) 7→ z ∈ {0, 1}` . (6)

The function is specified in Algorithm 1 and depicted (for integral λ := k/rab)
in Figure 1.

The general keyed sponge construction covers the outer-keyed sponge OKSπ

for (cab, rab) = (csq, rsq) =: (c, r). It covers the full-keyed sponge FKSπ for
(cab, rab) = (0, b) and (csq, rsq) =: (c, r).

Note that the parameter λ indicates the number of invocations of π to process
the key. As both the outer-keyed as the full-keyed sponge achieve a security level
of roughly csq at best, we can w.l.o.g. assume that k ≤ csq throughout. For FKS,
this implies that we always have λ = 1. For OKS, λ may be larger.
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Algorithm 1 General keyed sponge construction GKSπ

Input: K ∈ {0, 1}k, m ∈ {0, 1}∗, ` ∈ N
Output: z ∈ {0, 1}`
1: x1, . . . , xν = "rab(K ‖ m)
2: t = 0b

3: for i = 1, . . . , ν do
4: t = π(t⊕ (xi ‖ 0cab))

5: z = dtersq
6: while |z| < ` do
7: t = π(t)
8: z = z ‖ dtersq
9: return dze`

π π π π π

• •

0

0

K1 Kλ m1 mµ z1 z2

cab cab cab cab csq csq

Fig. 1: General keyed sponge for λ integral key blocks and µ message blocks.
The scheme covers the outer-keyed sponge for cab = csq =: c and the full-keyed
sponge for cab = 0 and csq =: c.

2.2 Yield

For proper understanding of the security of OKS and FKS against key prediction
security as defined in Section 3, we will introduce the yield of a transcript of
input-output tuples of π.

Definition 1. Consider GKS based on π ∈ perm(b), and let Q be a finite list
of input-output tuples of π. The yield yieldcab,λ(Q) of Q is defined as the set of

all keys K ∈ {0, 1}k for which there exists a message m ∈ {0, 1}∗ such that the
first λ = dk/rabe evaluations of π in line 4 of Algorithm 1 are in Q.

In other words, yieldcab,λ(Q) is the set of keys for which the absorption in GKS
can be performed by only reading data from Q, hence, without evaluating π.

The yield is closely related to a directed acyclic graph Gcab,λ(Q) = (V,A)
defined as follows. Vertex set V = {V0, V1, . . . , Vλ} consists of λ+1 layers, where

– V0 = {0b};
– For i = 1, . . . , λ: for any (s, t) ∈ Q and any L such that s⊕(L ‖ 0cab) ∈ Vi−1,

vertex t is added to Vi and arrow s⊕ (L ‖ 0cab)
L−−→ t with label L is added

to A.
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For given cab, λ, and Q, the size of the yield
∣∣yieldcab,λ(Q)

∣∣ equals the number

of paths from V0 = {0b} to Vλ in Gcab,λ(Q).
A visualization of the graph is depicted in Figure 2. By construction, |Vi| ≤

|Q| for all i = 1, . . . , λ. We highlight three further properties of the graph
Gcab,λ(Q):

– Two arrows departing from the same node, e.g., from u in Figure 2, happens
if there exist distinct L,L′ ∈ {0, 1}rab and distinct t, t′ ∈ {0, 1}b such that(

u⊕ (L ‖ 0cab), t
)
,
(
u⊕ (L′ ‖ 0cab), t′

)
∈ Q .

If the adversary makes a forward query, it can set such case with probability
1; if it makes an inverse query, the case happens only if the query response
s matches that of an existing vertex u in the previous layer: bsccab = buccab ;

– Two arrows arriving at the same node, e.g., at v in Figure 2, happens if there
exist distinct L,L′ ∈ {0, 1}rab and distinct s, s′ ∈ {0, 1}b such that(

s⊕ (L ‖ 0cab), v
)
,
(
s′ ⊕ (L′ ‖ 0cab), v

)
∈ Q .

(These two queries are necessarily the same as π is a permutation.) If the
adversary makes an inverse query, it can set such case with probability 1
(but the new edge will likely not appear in the tree, as the tree is built up
from 0b in V0); if it makes a forward query, the case happens only if there
exist two nodes in the previous layer with equal capacity: bsccab = bs′ccab ;

– As Q is the query history of a permutation, we can observe the following. In
the first of the above properties, the two vertices at which the arrows end,
t and t′, must necessarily be distinct; in the second case, the two vertices
from which the arrows depart, s and s′, must necessarily be distinct. We can
particularly conclude that there do not exist layer i ∈ {1, . . . , λ} and vertices
u ∈ Vi−1 and v ∈ Vi such that Gcab,λ(Q) contains two arrows from u to v.

3 Key Prediction

For F ∈ {GKS,OKS,FKS}, we define key prediction security by the following

experiment: for a random permutation π
$←− perm(b), consider an adversary A

that has oracle access to π±. The adversary can make a finite amount of queries

to its oracle, which are summarized in a transcript Q. Then, a key K
$←− {0, 1}k

is uniformly randomly drawn, and the adversary wins if K ∈ yieldcab,λ(Q).
Formally:

Definition 2. The key prediction security of F ∈ {GKS,OKS,FKS} against an
adversary A is defined as

Advkey-pre
F (A) = Pr

(
π

$←− perm(b) , Q ← Aπ
±
, K

$←− {0, 1}k :

K ∈ yieldcab,λ(Q)
)
. (7)
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V0 V1 V2 V3

•0b

•u

•

•

•

•

•

•

•

•

• v

•

•

Fig. 2: Example graph Gcab,3(Q) consisting of 4 vertex layers. Edge and vertex
labels are omitted for clarity, except for vertices u and v for the sake of discussion.

For N ≥ 0, we define by Advkey-pre
F (N) the maximum over all adversaries mak-

ing N queries to its oracle.

In above game, the key is only drawn after the adversary queries its oracle π±.
Its attack tools are mere combinatorics: it maximizes its chances by maximizing
the size of the yield of the query history.

In the remainder of the section, we will focus on F = OKS, hence we write
(cab, rab) = (csq, rsq) =: (c, r). We will recall the bound of Gaži et al. [24, 25]

on Advkey-pre
OKS in Section 3.1, and present our improved result in Section 3.2.

Sections 3.3 and 3.4 cover the rationale and proof of our result, respectively.
We discuss the possibility to generalize our results to multi-user security in
Section 3.5.

3.1 Bound of Gaži et al.

We briefly discuss the bound of Gaži et al. [25, Lemma 12] (full version of [24])

on Advkey-pre
OKS for integral λ := k/r, including a concise sketch of their proof

in our convention and notation. Afterwards, we will highlight several aspects of
their analysis that contribute to non-tightness of their bound.

Proposition 1 (Gaži et al. [25, Lemma 12]). Consider F = OKS for pa-
rameters (b, c, r, k), where λ := k/r is integral. We have

Advkey-pre
F (N) ≤

{
N
2k
, if λ = 1 ,

min
{
N2

2c + N
2k
, 1
2b

+ N2λ(3b−1)λ/2
2k/2

}
, if λ > 1 .

(8)

Proof (sketch). In case of λ = 1, the adversary can make at most N evaluations
of π for different key guesses K1, . . . ,KN , hence can obtain yield of size at most
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∣∣yieldc,λ(Q)
∣∣ ≤ N . Likewise, the claim follows from the fact that |V1| ≤ |Q| and

that Gc,λ(Q) contains no two arrows from 0b ∈ V0 to one and the same node
in V1 (property 3 in Section 2.2). The probability that a randomly selected key

K
$←− {0, 1}k is in the yield is thus at most N/2k.
We sketch Gaži et al.’s approach for λ ≥ 2, assuming for simplicity that

k = λ ·r. Consider any adversary making N queries, stored in a query history Q.
For α ∈ N, define by mcα the event that there exist no α+1 queries (si, ti)

α+1
i=1 to

π for which either all queries are in forward direction and bt1cc = · · · = btα+1cc,
or all are in inverse direction and bs1cc = · · · = bsα+1cc. Obviously, Pr (¬mc1) ≤
N2/2c. In addition, Gaži et al. prove using the Chernoff bound that2:

Pr (¬mc3b−1) ≤ 1/2b .

Gaži et al. subsequently prove that

mc1 =⇒
∣∣yieldc,λ(Q)

∣∣ ≤ N , (9)

mc3b−1 =⇒
∣∣yieldc,λ(Q)

∣∣ ≤ N2λ(3b− 1)λ/22k/2 , (10)

which in turn concludes the proof as the probability that a randomly selected

key K
$←− {0, 1}k is in the yield is at most

∣∣yieldc,λ(Q)
∣∣ /2k. It thus remains to

prove (9) and (10).
Regarding (9), mc1 implies that Gc,λ(Q) is a tree (cf. [25, Lemma 12]), and∣∣yieldc,λ(Q)

∣∣ is at most the number of nodes at layer λ: N . Regarding (10),
as the adversary only makes N queries, there are at most N possible nodes in
Vλ at distance λ from 0b. For any such node vλ, there are λ primitive queries
connecting

0b ←→ · · · ←→ vλ ,

and each of these primitive queries could have been made in forward or in inverse
direction. Let C ∈ {0, 1}λ be any configuration, where Ci = 0 means that
the arrow from Vi−1 to Vi corresponds to a forward query and Ci = 1 that it
corresponds to an inverse query. There are 2λ possible configurations. Starting
from the end node, by mc3b−1 there are at most 3b − 1 arrows into vλ that
correspond to forward queries to π, but we do not know anything about inverse
queries, other than that the in-degree of vλ is at most 2r. This gives the following
upper bound on the number of paths from 0b to (fixed) vλ for fixed configuration
S:

(3b− 1)λ−|S|(2r)|S| .

For |S| ≤ λ/2 this term is at most (3b − 1)λ/2(2r)λ/2. For |S| > λ/2 one can
revert the reasoning, i.e., start from the first node 0b instead of end node vλ.

2 There’s a small gap in the reasoning, namely that the Chernoff bound considers a
sum of independent events whereas in the current case a sum of inherently dependent
events is considered.
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This likewise gives upper bound

(3b− 1)|S|(2r)λ−|S| ,

which for |S| > λ/2 is also at most(3b− 1)λ/2(2r)λ/2. Summing over all possible
configurations S and all possible end nodes, we obtain∣∣yieldc,λ(Q)

∣∣ ≤ N2λ(3b− 1)λ/2(2r)λ/2 = N2λ(3b− 1)λ/22k/2 ,

as k = λ · r. ut

Besides the minor and insignificant glitch that the Chernoff bound is applied to
the sum of dependent events, the proof has two shortcomings that yield non-
tightness of the bound:

(i) The selection of the end node (N possibilities) already fixes the last vertex.
A single query may connect multiple elements from Vλ−1 with Vλ, hence
one cannot just assume that fixing the end node gives one arrow “for free,”
but it still fixes the inner part of the node at layer Vλ−1;

(ii) Assuming mc3b−1, there is no 3b-fold inner collision, and no more than
3b− 1 forward queries that map to the same node in a layer Vi; yet for the
inverse queries Gaži et al. cannot rely on mc3b−1 and resort to the fact that
any node has at most 2r incoming arrows. It is intuitively appealing to say
that also for inverse queries the number of useful arrows is at most 3b− 1,
where useful refers to the fact that the path should lead to root 0b ∈ V0.

3.2 Improved Key Prediction Security

We derive the following improved bound for key prediction security. The bound
for λ = 1 of Proposition 1 is already tight, and we restrict ourselves to the case
of λ > 1.

Theorem 1. Consider F = OKS for parameters (b, c, r, k), where λ := dk/re >
1. Let α > λ be a natural number. We have

Advkey-pre
F (N) ≤ (2α)λ−1N

2k
+ λ2λ22c

(
2eN∗

2cα

)α/λ
, (11)

where N∗ = max{N,λ2(λ−1)r}.

The proof will be given in Section 3.4, preceded by its rationale in Section 3.3.
Parameter α is a threshold: the first term increases whereas the second term

decreases for increasing α. By taking α/λ ≥ c, above bound simplifies to

Advkey-pre
F (N) ≤ (2α)λ−1N

2k
+ λ

(
16eN∗

2cα

)α/λ
,

using that λ ≤ c as λ ≤ k and k ≤ c. For N close to 2k, N∗ = N and the first
term dominates the equation. For smaller N , N∗ = λ2(λ−1)r, and the second
term dominates.
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Fig. 3: For parameter set (b, c, r, k) = (192, 128, 64, 128), the bound of Theorem 1
for α = 50, 52, 54, 56, 64, 128 (from right to left).

For the case of (b, c, r, k) = (192, 128, 64, 128), with λ = 2, the graph in
Figure 3 plots the bound of Theorem 1 for various choices of α. One sees that
taking α ≥ 2c is convenient for making the bound simple, but it is a rough
estimate. The first term dominates as long as α ≥ 54. For α ≤ 53 the second
term in (11) starts to dominate. The graph in Figure 3 depicts it well for α = 52:
it follows the linear behavior of the first term, until at some point the exponential
term of (11) becomes dominating. Numerical computation shows that for α = 54,
the bound of (11) equals 1 for N ≈ 2121.25. For comparison, the bound of Gaži
et al. of Proposition 1 equals 1 for N ≈ 264.

The best known attack is the generic one, that fixes λ−1 blocks K1, . . . ,Kλ−1
and varies Kλ: this procedure renders a yield of size exactly N − (λ − 1) and
succeeds in predicting the key with probability (N − (λ − 1))/2k ≈ N/2k. The
bound of Theorem 1 permits a small loss in comparison with this attack, which
comes from the accidental event of multi-collisions on the inner part of π. The
term increases exponentially in λ, which is due to the fact that multi-collisions
could occur at every evaluation of π, and they can amplify each other. In the
end, however, it only yields a small loss.

3.3 Rationale Behind Theorem 1

The proof, at a high level, relies on the observation that any path from V0 to a
fixed vertex vλ ∈ Vλ must contain at least one collision on the capacity: either
between a query and 0b ∈ V0 or vλ, or between two queries at any layer in
V1, . . . , Vλ−1. In addition, it uses that for a fixed inner part, there are at most
min{N, 2r} queries.
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The proof is easiest understood by considering λ = 3. In this case, we consider
graph Gc,3(Q) consisting of four layers V0, V1, V2, V3. The first step in the proof
will be to fix the last vertex v3 ∈ V3. There are at most N choices, as this choice
is equivalent to fixing (s, v3) ∈ Q. The choice also fixes the inner part of the
nodes in V2 under consideration: the query links V2 with V3 only for nodes v2
such that bv2cc = bscc. Define the fixed capacity by w := bscc ∈ {0, 1}c. We
henceforth have to focus on paths from 0b ∈ V0 to any v2 ∈ V2, where bv2cc = w.
See also Figure 4a. Any of these paths fits one of the four configurations of
Figure 4b.

V0 V1 V2

•0b

•

•

•

•

•

•

•

bv2cc
= w

(a) Targeted subgraph consisting of 2
layers, where w ∈ {0, 1}c is fixed.

V0 V1 V2

•

•

•

•

config. 00:

config. 01:

config. 10:

config. 11:

•

•

•

•

•

•

•

•

(b) Possible configurations for the direc-
tions of the queries. A circle © indicates
that a fixed inner value must be hit.

Fig. 4: Graph and configurations for the rationale of Section 3.3.

Assume, for the sake of argument, that Q contains no (α+ 1)-fold inner col-
lision (in either forward or inverse direction). For configuration 00 of Figure 4b,
we have at most α arrows from V1 to V2, each of which fixes the inner part of the
node in V1, yielding at most α arrows from V0 to V1; see also the circle indica-
tions in the figure. We have obtained that there are at most α2 paths that obey
to configuration 00. Likewise, there are at most α2 paths for configurations 10
and 11, using that the node in V0, 0b, has its inner part fixed: 0c. What remains
is configuration 01: the inner parts of the values at layers V0 and V2 are fixed,
and thus there are at most min{N, 2r} queries in Q that could depart from V0 in
forward direction and V2 in inverse direction. The expected numbers of collisions
in the middle is

min{N, 2r}2

2c
.

By Markov inequality, more than α2 paths exist with probability at most

min{N, 2r}2

2cα2
. (12)

This gives
∣∣yieldc,3(Q)

∣∣ = 4α2N , except with probability (12) and the probability
that there exists an (α+ 1)-fold inner collision.

14



Unfortunately, above reasoning is not entirely correct: the evaluation of con-
figuration 01 has to be performed for all possible w ∈ {0, 1}c, as the adversary
can freely choose the query for the last layer. Multiplying (12) by 2c does not
help; to the contrary, the bound becomes meaningless. Instead, configuration
01 will also be analyzed by relying on the non-existence of (α + 1)-fold inner
collisions: any hit adds at most α solutions.

Additional issues surface if we extend the reasoning to larger values of λ:
configurations like 001 (0c → · → · ← w) or 0101 (0c → · ← · → · ← w) appear.
To resolve these issues, a recursive reasoning (in λ) will be performed.

3.4 Proof of Theorem 1

Consider F = OKS for parameters (b, c, r, k), where λ := dk/re > 1, and let

π
$←− perm(b). Consider any adversary A with two-sided query access to π. We

will record the query history in a transcript Q, where we keep track of the query
direction using a bit C ∈ {0, 1}, i.e., a tuple (C, s, t) ∈ Q is made in forward
direction if C = 0 and inverse direction if C = 1. Associated with Q is graph
Gc,λ(Q) = (V,A) as defined in Section 2.2.

Defining Auxiliary Events. Let α > 0 be an integral threshold. At the core
of our proof is the event mc, that bounds the maximum size of a multi-collision
in Q. We define

mc = mc+ ∧mc− , (13)

where

mc+ : max
w∈{0,1}c

∣∣∣{(0, s, t) ∈ Q
∣∣∣ btcc = w

}∣∣∣ ≤ α , (14)

mc− : max
v∈{0,1}c

∣∣∣{(1, s, t) ∈ Q
∣∣∣ bscc = v

}∣∣∣ ≤ α . (15)

The event mc corresponds to mcα in the proof of Proposition 1, be it with α
omitted as subscript.

The proof will, implicitly, be performed by induction on λ. For i = 1, . . . , λ−1,
we define the event chi, a condition on chains of length i, as follows:

chi : max
C∈{0,1}i

max
v,w∈{0,1}c

∣∣∣{(C1, s1, t1), . . . , (Ci, si, ti) ∈ Q
∣∣∣

bs1cc = v ∧
(
btjcc = bsj+1cc

)i−1
j=1
∧ bticc = w

}∣∣∣ ≤ αi . (16)

In other words, chi is the maximum number of solutions to

v
C1←−→ · C2←−→ · · · Ci←−→ w , (17)

maximized over all possible configurations C = (C1, . . . , Ci) ∈ {0, 1}i (the label
on the arrow indicates the configuration of the query) and start and end nodes
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v, w ∈ {0, 1}c. There is an important difference between ch1 (or chi in general)
on the one hand and mc on the other hand: in ch1 the inner values of both sides of
the path are fixed, whereas in mc only one side is fixed. Nevertheless, mc⇒ ch1
by definition. Furthermore, for i = λ− 1 the proof needs chλ−1 only for v = 0c,
but we have opted to include the general event for simplicity of argument.

Bounding the Yield. Fix any vertex vλ ∈ Vλ. There are at most N choices
as this choice is equivalent to fixing (s, vλ) ∈ Q, and it also fixes the inner part
w := bscc ∈ {0, 1}c for the node at shore Vλ−1. We thus have to focus on paths
from 0b ∈ V0 to any vλ−1 ∈ Vλ−1 with bvλ−1cc = w. Let C ∈ {0, 1}λ−1 be any
configuration. By chλ−1, there are at most αλ−1 paths from 0c to the fixed w
for this particular configuration. Summing over all possible configurations and
all possible choices vλ, we obtain that

chλ−1 =⇒
∣∣yieldc,λ(Q)

∣∣ ≤ (2α)λ−1N . (18)

As the key K
$←− {0, 1}k is randomly selected, the adversary succeeds with prob-

ability at most
∣∣yieldc,λ(Q)

∣∣ /2k plus the probability that chλ−1 is not satisfied.

Analyzing Auxiliary Events. It remains to analyze the probability that
¬chλ−1. By basic probability theory,

Pr (¬chλ−1) ≤ Pr (¬mc) +

λ−1∑
i=1

Pr (¬chi | chi−1 ∧ · · · ∧ ch1 ∧mc) . (19)

Lemma 1. We have

Pr (¬mc) ≤ 2 · 2c
(

2eN

2cα

)α
. (20)

Proof (of Lemma 1). Without loss of generality, consider mc+. Fix any w ∈
{0, 1}c. Any forward query (0, s, t) satisfies btcc = w with probability at most
2r/(2b−N), as the response is randomly drawn from a set of size at least 2b−N
and at most 2r of those fulfill the condition. More than α satisfy the condition
with probability at most3(

N

α

)(
2r

2b −N

)α
≤
(

2eN

2cα

)α
,

using Stirling’s approximation and the fact that N ≤ 2b−1. The proof is com-
pleted by summing over all possible w ∈ {0, 1}c and by taking into account mc−

as well (cf. (13)). ut
3 In the bound we could take α + 1 instead of α, but have opted not to do so for

simplicity.
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Lemma 2.

Pr (¬chi | chi−1 ∧ · · · ∧ ch1 ∧mc) ≤

0 , for i = 1 ,

i2i22c
(

2ei2ir

2cα

)α/i
, for i > 1 .

(21)

Proof (of Lemma 2). We have mc ⇒ ch1 by definition, and focus on the case
of arbitrary i > 1. Fix any configuration C ∈ {0, 1}i and any v, w ∈ {0, 1}c,
in total 2i22c possible choices. We aim to prove that the number of solutions
to (17) is at most αi. To the contrary, assume it is more than αi. Then, by
the pigeonhole principle, there must be an index j ∈ {1, . . . , i} such that more
than αi/i solutions are constituted with the winning query, i.e., the query that
completes the chain, occurring at position j.4 Without loss of generality (the
argument is fully symmetric), assume that Cj = 0, i.e., that it is a forward
query.

As v ∈ {0, 1}c is fixed, there are at most 2jr possible values s ∈ {0, 1}b at
distance j−1 from v, i.e., the adversary can make at most min{N, 2jr} attempts.
As w ∈ {0, 1}c is fixed, there are at most 2(i−j)r possible inner parts x such that
a path

x
Cj+1←−−−→ · · · Ci←−→ w

can be constituted from the query history. The new forward query hits any of
these inner parts with probability at most 2(i−j)r · 2r/(2b − N). By chj−1 and
chi−j , any such hit adds at most αj−1 · αi−j = αi−1 solutions. In order to get
more than αi/i solutions, there must be more than α/i collisions, which happens
with probability at most

(
min{N, 2jr}

α/i

)(
2(i−j)r · 2r

2b −N

)α/i
≤
(

2ei2ir

2cα

)α/i
, (22)

again using Stirling’s approximation and the fact that N ≤ 2b−1, and where we
recall that the adversary has only min{N, 2jr} ≤ 2jr shots to success. The proof
is completed by summing over all possible configurations C ∈ {0, 1}i, start and
end nodes v, w ∈ {0, 1}c, and positions of the winning query j ∈ {1, . . . , i}. ut

4 It could be that this query occurs at multiple positions in the chain, but this does
not invalidate the reasoning due to generous counting.
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From (19) and Lemmas 1 and 2 we immediately obtain, using that α > λ,

Pr (¬chλ−1) ≤ 2 · 2c
(

2eN

2cα

)α
+

λ−1∑
i=2

i2i22c
(

2ei2ir

2cα

)α/i

≤ 2 · 2c
(

2eN

2cα

)α
+

λ−1∑
i=2

λ2i22c
(

2eλ2(λ−1)r

2cα

)α/λ

≤
λ−1∑
i=1

λ2i22c
(

2eN∗

2cα

)α/λ
≤ λ2λ22c

(
2eN∗

2cα

)α/λ
, (23)

where N∗ = max{N,λ2(λ−1)r}. Slight improvements in the bound could be
achieved, at the cost of readability penalties, in the derivation of Lemma 2 and
in the bounding of (23) above.

3.5 Generalization to Multi-User Security

It is straightforward to generalize our analysis to multi-user security. First, to

generalize Definition 2, one would consider K1, . . . ,Ku
$←− {0, 1}k, where u ∈ N

is the number of users, and the adversary wins if Ki ∈ yieldcab,λ(Q) for some i ∈
{1, . . . , u}. The core of the proof of Theorem 1 is about deriving an upper bound
on
∣∣yieldc,λ(Q)

∣∣. Once this bound is derived (and the analysis in Section 3.4
carries over verbatim), any of the u keys is in the yield with probability at most
u ·
∣∣yieldc,λ(Q)

∣∣ /2k.

4 Application to Keyed Sponge and Duplex

Keyed sponges are evaluated in a PRF security model. In more detail, let RO∞ :
{0, 1}∗ → {0, 1}∞ be a function that for every input m defines an infinitely
large string of random bits, and define RO : {0, 1}∗×N→ {0, 1}N as a function
that on input of (m, `) ∈ {0, 1}∗ × N outputs dRO∞(m)e`. Abusing notation,
write ro(∗,N) for the set of all such functions RO. For a random permutation

π
$←− perm(b), key K

$←− {0, 1}k, and RO $←− ro(∗,N), consider an adversary A
that has oracle access to either (FπK , π

±) or (RO, π±). It succeeds if it manages
to determine (with high probability) the world it is conversing with. Formally:

Definition 3. The PRF security of F ∈ {GKS,OKS,FKS} against an adver-
sary A is defined as

Advprf
F (A) = Pr

(
π

$←− perm(b) , K
$←− {0, 1}k : 1← AF

π
K ,π

±
)

−Pr
(
π

$←− perm(b) , RO $←− ro(∗,N) : 1← ARO,π
±
)
. (24)
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For M,N ≥ 0, we define by Advprf
F (M,N) the maximum over all adversaries

making M queries to its first oracle and N queries to its second oracle.

A bound on the PRF security of FKS was derived by Mennink et al. [38], but
we are mostly concerned with the outer keyed sponge. For OKS, an earlier proof
appeared by Bertoni et al. [10]. Andreeva et al. [2] improved the analysis and
generalized it to multi-user security. Naito and Yasuda [41] derived a bound
that is independent of the message length. As our security model considers an
adversary whose complexity is solely measured by M and N , we discard most
of the sophisticated improvements in [2, 41] and consider a simplified bound. In
addition, we modernize the bound using the key prediction security notion of
Definition 2.

Theorem 2 (Andreeva et al. [2] and Naito and Yasuda [41], simplified).
Consider F = OKS for parameters (b, c, r, k). We have

Advprf
F (M,N) ≤ const1 ·

M2

2c
+ const2 ·

MN

2c
+ Advkey-pre

F (N) . (25)

The constant terms const1 and const2 are small (they equal 1 and 4 in [2]). The
simplifications we have put through from [2,41] only affect the fractions in (25)
and do not affect the point we are making with regard to the remaining term in
(25). This term Advkey-pre

F (N) in turn corresponds to a specific bad event in the
analyses in [2,41]. Both Andreeva et al. [2, Lemma 2] and Naito and Yasuda [41,

Theorem 2] rely on the bound of Gaži et al. [24,25] on Advkey-pre
F (N): the bound

expressed in Proposition 1. Our new result of Theorem 1 directly improves over
the bounds from Andreeva et al. and Naito and Yasuda, and confirms that a
shorter key can be taken to achieve the same level of security.

On passing, we remark that the result has comparable impact to the keyed
duplex [8], a sponge-related construction well-suited for authenticated encryp-
tion. It is a stateful construction that has a “duplexing interface:” it gets as
input a data block of size r bits, transforms the state using a permutation, and
returns part of the outer part of the state. It comes with an outer-keyed flavor [8]
as well as a full-keyed flavor [18, 38], and the keyed sponge bounds are known
to be transferable to the duplex (and vice versa) up to some degree. Crucial to
this transition is that in the keyed duplex, the key absorption occurs with no
intermediate output of the outer part, and thus occurs in a full-/outer-keyed
sponge fashion. In this way, the key prediction term in the duplex bounds is also
Advkey-pre

F (N), where F ∈ {OKS,FKS}, i.e., the bound derived in Theorem 1.
In addition, generic security results on HMAC-SHA-3 [40] and the sandwich

sponge [39] explicitly rely on the key prediction security term of Gaži et al., and
our new bound immediately improves their results.

5 Note on Key Recovery

In a similar vein as in Section 3, one can define the key recovery security of

F ∈ {GKS,OKS,FKS}. For a random permutation π
$←− perm(b) and key
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K
$←− {0, 1}k, consider an adversary A that has oracle access to (FπK , π

±). The
adversary can make a limited amount of queries to its oracles, summarized in
a query transcript Q, and afterwards it outputs a key K ′ ∈ {0, 1}k. It wins if
K ′ ∈ yieldcab,λ(Q) and FπK(·) = FπK′(·). Formally:

Definition 4. The key recovery security of F ∈ {GKS,OKS,FKS} against an
adversary A is defined as

Advkey-rec
F (A) = Pr

(
π

$←− perm(b) , K
$←− {0, 1}k , (K ′,Q)← AF

π
K ,π

±
:

K ′ ∈ yieldcab,λ(Q) ∧ FπK(·) = FπK′(·)
)
. (26)

For M,N ≥ 0, we define by Advkey-rec
F (M,N) the maximum over all adversaries

making M queries to its first oracle and N queries to its second oracle.

In other words, key recovery security differs from key prediction security in that
the adversary has access to the keyed construction FπK .

One may argue that key recovery is a more meaningful notion to consider
than key prediction. However, close inspection at how a key recovery security
proof would look like reveals that the key recovery security of OKS is very close
to its PRF security. To wit, the core ingredients of the PRF security bound of
OKS (Theorem 2) are (i) the event of two evaluations of π imposed by F±K with
the same inner part, (ii) a primitive query to π± and an evaluation of π imposed
by F±K with the same inner part, and (iii) guessing/predicting the key. These
parts are represented by the three terms in the bound of Theorem 2 in equal
order.

Obviously, one way to recover the key is to predict it (part (iii) of the above).
Now, suppose the adversary makes a query to π± whose inner part is equal to
the inner part of an evaluation of π imposed by F±K (part (ii) of the above). In
this case, the adversary can back-track the sponge to obtain tλ, the state of the
sponge after the compression of the last key block. Once it knows tλ, depending
on λ it can learn (part of) the key. Regarding part (i): if two evaluations of π
imposed by F±K have the same inner part, the adversary can use this information
to distinguish the scheme from a random function but it has no means to use
this information to recover the key.

To summarize, the key recovery security bound would be constituted of parts
(iii) and (ii) of the PRF security bound. Part (i) is minor compared with (ii),
as the offline complexity is typically higher than the online complexity. We can
thus conclude that the key recovery security of OKS is very close to its PRF
security.
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24. Gaži, P., Pietrzak, K., Tessaro, S.: The Exact PRF Security of Truncation: Tight
Bounds for Keyed Sponges and Truncated CBC. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part I. Lecture Notes in Computer Science, vol. 9215, pp.
368–387. Springer (2015)
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