
R3C3: Cryptographically secure Censorship Resistant Rendezvous

using Cryptocurrencies

Mohsen Minaei∗ Pedro Moreno-Sanchez∗ Aniket Kate

Purdue University
{mohsen, pmorenos, aniket}@purdue.edu

Revision: May 15, 2018

Abstract

Cryptocurrencies and blockchains are set to play a major role in the financial and supply-chain systems.
Their presence and acceptance across different geopolitical corridors, including in repressive regimes, have
been one of their striking features. In this work, we leverage this popularity for bootstrapping censorship
resistant (CR) communication. We formalize the notion of stego-bootstrapping scheme and formally describe
the security notions of the scheme in terms of rareness and security against chosen-covertext attacks. We
present R3C31, a Cryptographically secure Censorship-Resistant Rendezvous using Cryptocurrencies. R3C3
allows a censored user to interact with a decoder entity outside the censored region, through blockchain
transactions as rendezvous, to obtain bootstrapping information such as a CR proxy and its public key.
Unlike the usual bootstrapping approaches (e.g., emailing) with heuristic security if any, R3C3 employs
public-key steganography over blockchain transactions to ensure cryptographic security, while the blockchain
transaction costs may deter the entry-point harvesting attacks. We develop bootstrapping rendezvous over
Bitcoin, Zcash, Monero and Ethereum as well as the typical mining process, and analyze their effectivity
in terms of cryptocurrency network volume and introduced monetary cost. With its highly cryptographic
structure, Zcash is an outright winner for normal users with 1168 byte bandwidth per transaction costing
only 0.03 USD as the fee, while mining pool managers have a free, extremely high bandwidth rendezvous
when they mine a block.

1 Introduction

One of the most ubiquitous and challenging problems faced by the Internet today is the restrictions imposed on
its free use. Repressive and totalitarian governments continue professing Internet censorship to their citizens.
Censors employ techniques [67] ranging from IP address filtering to deep-packet inspection to block disfavored
Internet content [29, 80]. Censored users are thereby prevented from not only accessing information on the
Internet in a totally free manner but also from expressing their views freely. Several circumvention systems have
been proposed and deployed over the last decade [8,19,23,27,33,41,48,52,54,56,59,65,73,78,79]; nevertheless,
censorship still remains a challenge to be fully resolved.

Today Bitcoin [58] and other cryptocurrencies are observing a fast growth and worldwide adoption. Impor-
tantly, adoption is prevalent even in countries like China with large-scale censorship, and completely censoring
Bitcoin may not be in the best interest of most countries [61]. The same also holds true for other cryptocur-
rencies focussed on different aspects such as complex smart contracts as in Ethereum [34] or privacy-preserving
coin transfers as in Zcash [66] and Monero [68].

Therefore, the availability of the cryptocurrencies across different geopolitical corridors makes them a suitable
fully distributed rendezvous to post steganographic messages. In fact, censored users can leverage the highly
cryptographic transaction structure to encode censored data while maintaining undetectability. In this work, we
thoroughly study for the first time the feasibility of using the different available cryptocurrencies as a censorship
circumvention rendezvous.

Firstly, we conceptualize the notion of stego-bootstrapping scheme, a two-way handshake between a censored
user and an uncensored entity (i.e., decoder) that allows the decoder to transmit bootstrapping credentials of

∗Both authors contributed equally and are considered co-first authors.
1An extra R for additional Resistance. We acknowledge the motivation from the name DP5 in [31].

1

an entry point for a censorship-circumvention protocol (e.g., Tor Bridge) to the censored user in the presence of
the censor (Section 2). We then formally describe the security properties for a stego-bootstrapping scheme in
terms of rareness and security against chosen-covertext attacks. Intuitively, we say that a stego-bootstrapping
scheme achieves rareness if it does not decode a valid message from a regular transaction (i.e., not carrying
steganographic data). Moreover, we say that a stego-bootstrapping scheme is secure against chosen-covertext
attacks if the adversary, given a covertext, cannot tell better than guessing whether it encodes a message of his
choice (Section 2).

Secondly, we contribute R3C3, our instantiation of the stego-bootstrapping scheme. R3C3 uses cryptocurren-
cies as rendezvous and reuses functionality already available in them, making R3C3 seamlessly deployable with
the major cryptocurrencies available today. In fact, we describe how R3C3 works using Bitcoin, Zcash, Monero,
and Ethereum as rendezvous. Additionally, we describe how to leverage the block creation as the rendezvous,
a feature available by definition in every cryptocurrency (Section 3 and 4).

Thirdly, we carry out a comparative study of the different rendezvous by thoroughly evaluating their tradeoffs
in terms of available bandwidth, monetary costs and percentage of cover transactions. Zcash is an outright
winner for normal users with 1168 byte bandwidth per transaction costing only 0.04 USD as the fee. When
using a block as rendezvous, miners have an extremely high bandwidth at no cost. The associated cost to
our solutions raises the bar for the censor to perform harvesting attacks [54]. Currently, censors retrieve entry
points at no cost (e.g., sending an email), making it easy to enumerate and block them (Section 5 and 6).

Finally, we have implemented R3C3 using Zcash as rendezvous, demonstrating the feasibility of our solution
in practice. Moreover, the performance evaluation of our prototype shows the feasibility for an uncensored user
to monitor simultaneously all the cryptocurrency blockchains looking for encoded data in real time, even with
her commodity equipment. Our sample execution in the Zcash test-net demonstrates that R3C3 is compatible
with current cryptocurrencies and ready to be deployed in practice (Section 7).

2 Problem Statement

In this work, we consider the problem of bootstrapping communication into an uncensored area. We refer to
this problem as stego-bootstrapping and illustrate it in Figure 1. A censored user sitting within a censored area
wants to receive the credentials (IP address, port number, and public key) of a censorship-resistance protocol
entry point (e.g., Tor bridge). For that, the censored user first sends a short forward bootstrapping message to
the uncensored area. A decoder is sitting in the uncensored area waiting to decode a message from the censored
user and reply it with a backward message that contains the information required to connect to an entry point
of an anonymous communication protocol (e.g., a Tor bridge) or a proxy. The communication between censored
user and decoder is hindered by the censor, an entity that decides what messages enter or exit the censored
area.

Apart from the natural challenge of having the censor inspecting all messages sent by the censored user, the
censor can also run the protocol impersonating a censored user, and this leads to two main problems. First, the
censor learns the identity of the decoder and can easily stop the messages addressed directly to it. Second, the
censor reproducing the protocol steps honestly appears as an honest censored user to the decoder. The censor
thereby receives the identity of a bootstrapping node that can be blacklisted. Repeating these steps several
times, the censor can perform a harvesting attack [54] and obtain all available entry points.

Therefore, we require a solution that allows the censored user to send bootstrapping messages to the decoder
without directly addressing them to it. Additionally, this solution must impose an extra cost for the censor to
carry out a harvesting attack.

In the rest of this section, we formalize this problem and describe the considered threat model and the goals.

2.1 Stego-Bootstrapping Scheme

The stego-bootstrapping problem inherently requires a two-way handshake, a challenge from the censored user
to the decoder and the corresponding response from the decoder to the censored user. The two-way handshake
can be considered as two independent “one-way handshakes” and each defined in terms of a public-key stegosys-
tem [30], with a single setup, encoding and decoding algorithms. This approach, however, requires the decoder
and censored user knowing each other’s public keys in advance. In practice, instead, the censored user knows
the public key of the decoder, but the decoder does not know the public key of the censored user.

2

Bridge/Proxy
User

Cens
ored

Area

Uncensored
Area

Censor

1

2 Decoder

3 4
Destination

5 6

Figure 1: Censorship circumvention bootstrapping problem. Censored user sends a covertext to the decoder,
who replies with another covertext including proxy’s details. Then, the censored user can access censored
information through the proxy. We, focus on the bootstrapping process (solid arrows).

We consider the two-way handshake as a whole and only require that the censored user knows in advance the
public key of the decoder. Therefore, our definition of stego-bootstrapping scheme contains two pairs of encoding
and decoding algorithms, the first for the challenge operations and the second for the response operations.

In the following, we formally define the notion of stego-bootstrapping scheme as well as its properties.

Notation. Let λ represent the security parameter. Let ε1(λ) and ε2(λ) be two negligible functions. Let Mc

and Mr be a set of challenge and response messages respectively. Let Cc and Cr be a set of challenge and
response covertexts respectively. Finally, let T be a set of tags.

Definition 1 (Stego-Bootstrapping Scheme). The stego-bootstrapping scheme is a tuple of algorithms (SBSetup,
SBEncodef , SBDecodef , SBEncodeb, SBDecodeb) defined as described below:

• vkd, skd, τ ← SBSetup(λ). On input the security parameter λ, output a public key vkd, a private key skd and
a tag τ ∈ T .

• {(cc, k),⊥} ← SBEncodef (vkd, cm, τ). On input a public key vkd, a challenge message cm ∈ Mc and a tag
τ ∈ T , output either a tuple consisting of a challenge covertext cc ∈ Cc and a symmetric key k; or the special
symbol ⊥ indicating an error in the encoding process.

• {(cm, k′),⊥} ← SBDecodef (skd, cc, τ). On input a a private key skd, a challenge covertext cc ∈ Cc and a tag
τ ∈ T , output either a tuple consisting of a challenge message cm ∈ Mc and a symmetric key k′; or the
special symbol ⊥ indicating an error in the decoding process.

• {rc,⊥} ← SBEncodeb(skd, k
′, rm). On input the private key skd, a symmetric key k′ and a response message

rm ∈ Mr, output either a response covertext rc ∈ Cr; or the special symbol ⊥ indicating an error in the
encoding process.

• {rm,⊥} ← SBDecodeb(vkd, k, rc). On input the public key vkd, a symmetric key k and a response covertext
rc ∈ Cr, output a response message rm ∈ Mr; or the special symbol ⊥ indicating an error in the decoding
process.

Theorem 1 (Stego-Bootstrapping Scheme Correctness). Let vkd, skd, τ be the output of SBSetup(λ). Let cm ∈
Mc and rm ∈ Cr be a pair of challenge and response messages. A stego-bootstrapping scheme is considered
correct if all the following conditions hold:

1. Let (cc, k) be the output of SBEncodef (vkd, cm, τ). Then, the algorithm SBDecodef (skd, cc, τ) returns a tuple
(cm′, k′) such that cm′ = cm and k′ = k.

2. Let rc be the output of SBEncodeb(skd, k
′, rm). Then, the algorithm SBDecodeb(vkd, k, rc) returns a response

message rm′ such that rm′ = rm.

3

2.2 Threat Model

We consider the censor as a malicious adversary with network capabilities within the censored area. It can use
a wide range of passive and active censorship techniques proposed in the literature such as eavesdrop, block
and inject traffic, statistical traffic analysis or active probing [47, 51, 72, 75, 77]. Moreover, we assume that the
censor knows the public key associated to the decoder. The censor has, however, limited capabilities outside
the censored area. In particular, the censor has no control over the decoder or her network communications.

We further require that the censor does not block the communications between censored users and the
rendezvous system where both censored user and decoder post their messages. We believe that this assumption
is realistic in practice, for instance, using a blockchain as an instantiation of the rendezvous. The user base
for different cryptocurrencies are continuously growing even in countries with heavy censorship, and banning
them all implies the banning of a cryptocurrency, having thereby economic consequences for the censored
area [61]. Finally, we require that the censor must not be able to modify or delete any information stored
in the rendezvous. Following with our running example, this can be achieved in practice as cryptocurrency
transactions are authenticated and replicated among all miners worldwide so that any attempt of modifying
such data is detectable by the censored user.

2.3 Security Goals

We characterize two fundamental security properties for a stego-bootstrapping scheme, namely, rareness and
security against chosen-covertext attacks.

Intuitively, we say that a stego-bootstrapping scheme achieves rareness if the probability of decoding a
covertext chosen uniformly at random into a valid message is negligible. Moreover, we say that a stego-
bootstrapping scheme is secure against chosen-covertext attacks if the adversary, given a pair of challenge and
response covertexts, cannot tell better than guessing whether they encode a pair of challenge and response
messages of his choice.

In the following, we formalize the notion of rareness in Definition 2. We inspire this definition from that
of Ruffing et al. [65]. They, however, propose a definition for an identity-based steganography scheme with a
single encoding and decoding algorithms. We adapt it for a stego-bootstrapping scheme by considering the two
encoding and decoding algorithms as described in Definition 1.

Definition 2 (Stego-Bootstrapping Rareness). Let ε1(λ) and ε2(λ) be two negligible functions. A stego-
bootstrapping scheme achieves rareness if for all tuples (vkd, skd, τ) output by SBSetup(λ), all the following
conditions hold:

1. Pr[SBDecodef (skd, cc, τ) 6= ⊥ | cc←$ Cc] ≤ ε1(λ);

2. Let (cc, k) be the output of SBEncodef (vkd, cm, τ) for an arbitrary cm ∈ Mc. Then,
Pr[SBDecodeb(vkd, k, rc) 6= ⊥ | rc←$ Cr] ≤ ε2(λ).

Next, we characterize a fundamental security property for a stego-bootstrapping scheme, namely, security
against chosen-covertext attacks (SBS-CCA). We inspire this definition from SS-CCA by Backes et al. [30] and
adapt it to consider the two encoding and decoding algorithms as defined in Definition 1.

We define SBS-CCA as a cryptographic game (ExpSBS-CCA
A (λ)) between two players, a challenger and an

attacker. This game is played in five rounds: key generation, first decoding stage, challenge, second decoding
stage and guessing stage.

In the key generation stage, the challenger runs vkd, skd, τ ← SBSetup(λ) and hands in the public key vkd
and the tag τ to the attacker.

In the first decoding stage, the attacker has access to an encoding oracle Oenc and a decoding oracle Odec
1

defined as follows:

• Oenc has access to the public key vkd, the private key skd and the tag τ . On input a tuple (cm, rm) ∈Mc×Mr,
Oenc returns the special symbol ⊥ or a tuple (cc, k, rc) constructed as follows:

1. Run {(cc, k),⊥} ← SBEncodef (vkd, cm, τ). If output is ⊥, return ⊥.

2. Run {(cm, k′),⊥} ← SBDecodef (skd, cc, τ). If output is ⊥, return ⊥.

3. Run {rc,⊥} ← SBEncodeb(skd, k
′, rm). If output is ⊥, return ⊥.

4

4. Return (cc, k, rc).

• Odec
1 has access to the public key vkd, the private key skd and the tag τ . On input a tuple (cc, k, rc) where

cc ∈ Cc, rc ∈ Cr and k is a symmetric key, the decoding oracle Odec
1 outputs either the special symbol ⊥ or a

tuple (cm, rm) constructed as follows:

1. Run {(cm, k′),⊥} ← SBDecodef (skd, cc, τ). If output is ⊥, return ⊥.

2. Run {rm,⊥} ← SBDecodeb(vkd, k, rc). If output is ⊥, return cm,⊥.

3. Output (cm, rm).

In the challenge phase, the attacker sends a pair of messages (cm∗, rm∗) ∈ Mc ×Mr to the challenger.
Then, challenger chooses a bit b and carries out the following steps depending on it.

• b = 0: The challenger sets (cc∗, rc∗)←$ Cc × Cr and returns the tuple (cc∗, rc∗).

• b = 1: The challenger carries out the following steps:

1. Run {(cc∗, k∗),⊥} ← SBEncodef (vkd, cm∗, τ). If output is ⊥, return ⊥.

2. Run {(cm∗, k′∗),⊥} ← SBDecodef (skd, cc∗, τ). If output is ⊥, return ⊥.

3. Run {rc∗,⊥} ← SBEncodeb(skd, k
′∗, rm∗). If output is ⊥, return ⊥.

4. Return (cc∗, rc∗).

The challenge phase finishes by sending the tuple cc∗, rc∗ to the attacker. The idea is that the attacker should
guess the value of b, i.e., the attacker should determine whether the messages cm∗, rm∗ have been encoded in the
covertexts cc∗, rc∗ or cc∗, rc∗ have been chosen at random from Cc × Cr instead. Note that, here the challenger
does not reveal the symmetric key k∗ to the adversary when b = 1, as otherwise, the adversary can trivially guess
the bit b by locally running the algorithm {rm,⊥} ← SBDecodeb(vkd, k

∗, rc∗) and checking whether the output
is a message rm = rm∗. In practice, this models the fact that the intermediate key material (i.e., symmetric
keys k, k′) are known only to the honest participants and not the the adversary (e.g., the censor). In the second
decoding stage, the attacker has access to the encoding oracle Oenc described above. Moreover, the attacker has
access to a decoding oracle Odec

2 , which is analogous to Odec
1 except that upon receiving the pair (cc∗, k′′, rc∗),

where k′′ denotes any symmetric key, returns ⊥. Finally, the game enters the guessing stage where the attacker
simply outputs a bit b∗.

Definition 3 (Security against covertext-chosen attacks). A stego-bootstrapping scheme is secure against
chosen-covertext attacks if every probabilistic polynomial-time adversary A has negligible advantage in the game
ExpSBS-CCA

A (λ). We define the adversary’s advantage as |Pr[ExpSBS-CCA
A (λ) = b]− 1/2|

2.4 System Goals

A stego-bootstrapping system should further preserve the following system properties.

• Harvesting-Resistance The stego-bootstrapping system must ensure that an attacker cannot carry out
unlimited protocol executions. This goal aims thereby at preventing the censor from obtaining all the entry
points.

• Cost-Efficiency The stego-bootstrapping system must provide a bootstrapping solution at a reduced cost
for the honest censored users and the decoder. We measure the cost in the USD currency.

• Compatibility The stego-bootstrapping system must reuse the functionality already provided by the chosen
rendezvous.

5

3 Key Ideas and Solution Overview

3.1 Key Ideas

Blockchain as rendezvous. Our solution, R3C3, leverages a blockchain as rendezvous for censored messages
encoded as blockchain transactions. The many blockchain-based systems existing today such as cryptocurrencies
(e.g., Bitcoin), privacy-preserving cryptocurrencies (e.g., Zcash or Monero), or smart contracts (e.g., Ethereum)
are managed in a distributed fashion by users located worldwide. This hinders the censor’s task of stopping these
systems, as demonstrated by other distributed systems like Tor. Moreover, the fact that the use of blockchain-
based systems is spread worldwide (even in regions with heavily active censorship [62]) adds an economic penalty
for the censor to prevent the censored users from using it.

A difference between R3C3 and other censorship circumvention protocols is that covertexts remain visible
in the corresponding blockchain even after the bootstrapping process has finished. However, this cannot be
leveraged by the censor because R3C3 is secure against chosen-covertext attacks. Therefore, the adversary
cannot tell better than guessing whether a covertext (i.e., a cryptocurrency transaction as implemented in
R3C3) contains bootstrapping data. Therefore, the censor is left with the choice of banning the complete
blockchain system or allow it completely.

Steganographic tagging scheme. Another building block required in our system consists of a crypto-
graphic construction that converts censored messages into ciphertexts that can be then encoded into a cover-
text transaction. For this purpose, there exist several public-key steganographic tagging schemes in the lit-
erature [28, 30, 43, 49, 71]. However, they assume in general high bandwidth not available in many different
blockchain transactions. Therefore, in this work, we adapt the construction used by Wustrow et al. [78]. The
main advantage of this approach is its succinctness. A ciphertext is composed of a group element (e.g., an
elliptic curve point) representing a public key and a random-looking bitstring of the size similar to the plaintext
message. Another advantage is that the group element can be easily included in a blockchain transaction as it
already uses elliptic curve points to represent public keys.

Fees. R3C3 introduces a fee overhead, which is inevitable due to the use of cryptocurrencies. To process and
confirm a transaction in each of the widely used cryptocurrencies, a transaction fee is paid to the miners. We
leverage this fee to increase the cost of a harvesting attack from the adversary, aiming thereby at a harvesting-
resistance system.

Paid Services. Currently, many censorship circumvention systems are paid services including even a premium
account to provide better performance. VPNs and domain fronting techniques [44] such as Meek [13, 17],
Lantern [12], Psiphon [15], are examples of systems that require payments for their high-performance services.
R3C3 can be used to not only bootstrap free of charge services such as Tor, but also bootstrap the mentioned
paid services. The fee of R3C3 compared to the actual cost of mentioned services is negligible. Moreover, the
bootstrapping process takes place infrequently.

3.2 Solution Overview

In a nutshell, the R3C3 protocol works as depicted in Figure 2. The censored user, with access to the decoder’s
public key vkd, a challenge message cm and a tag τ , encodes cm and τ into a challenge covertext cc (i.e., a
blockchain transaction) and transfers cc along the chosen communication medium. We consider a 64 bit tag
τ as described in [78] to flag the communication as part of a R3C3 execution. Additionally, cm contains the

User Rendezvous Decoder

1)
2) 4)

3)

5)
6)
7)

8)
9)

(I)
(II)

(IV)

(III)

Figure 2: Overview of the R3C3 protocol.

6

information request about the anonymous communication protocol to be used after the bootstrapping (e.g., Tor
in obfs3 mode [20]). As cm carries little information, it requires small bandwidth.

After that, the decoder, which is continuously getting covertexts from the chosen rendezvous, eventually gets
the covertext cc, decodes it and gets the challenge message cm. This notifies the decoder that some censored
user is trying to get the bootstrapping information and that such information must be included in a response
message rm.

For that, the decoder encodes rm into a new response covertext (rc) and adds it to the rendezvous. The
response message rm conveys information such as the IP address, connection port, and other optional configu-
ration information for the entry point requested by the censored user. Therefore, we envision that rm is longer
than cm and therefore it requires larger bandwidth. Finally, the censored user can obtain rc and decode it so
that the censored user gets the bootstrapping information.

What happens after this point is out of the scope of this work. For instance, the bootstrapping information
could contain the IP address, port and public key of a Tor bridge that allows the censored user to connect to the
Tor network. This is, however, an orthogonal problem discussed in depth in the literature so far [8, 12, 13, 20,
23, 33, 36, 40, 57, 73, 76]. We rely on these complementary solutions for the censorship-resistant communication
after bootstrapping.

3.3 Summary of Our Findings

We summarize our findings associated with the feasibility of different cryptocurrencies as rendezvous in Table 1.
We observe that shielded Zcash transactions provide the most bandwidth with 1168 bytes with the lowest

cost of 0.03 USD among all other cryptocurrencies. The downside is that only 8.5% of the transactions within
Zcash are shielded and is not the most prominent type of transaction. Moreover, Zcash currently has the lowest
market capitalization and therefore exerts the lowest economic impact for a censor if it decides to ban it.

Bitcoin, the most used cryptocurrency, provides 20 and 40 bytes for the challenge and response messages
correspondingly. Our Bitcoin-based solution relies on a transaction type used by more than 89% of the Bit-
coin transactions, therefore hindering the censor’s task. However, the fees in Bitcoin are the largest of all
cryptocurrencies and our encoding method entails the loss of coins as they are sent to unrecoverable addresses.
Fortunately, it is possible to lower the cost by deploying the same encoding techniques over Zcash transparent
transactions as they are conceptually identical to Bitcoin transactions.

After shielded Zcash, Monero provides the most bandwidth with 256 bytes. However, the fee associated with
a Monero transaction is similar to the one of Bitcoin. The type of transactions we consider in Monero blends in
with 33% of all Monero transactions, making it difficult for the censor to block all such transactions. Ethereum,
a blockchain-based system for smart contracts, provides the least amount of bandwidth with 16 bytes and a
moderate cost of 20-40 cents when compared to other approaches.

Lastly, we explored the possibility of encoding data at the formation of blocks for the blockchain. This pos-
sibility arises when both the censored users and decoder carry out the miner functionality within the blockchain
system. Our evaluation results show that, when the censored user and the decoder play the miner role in Bitcoin,
they can gain a bandwidth of up to 575 bytes without paying for a transaction fee and even receiving profit as
adding a new block to the blockchain results the corresponding block mining reward.

Bitcoin Zcash (Tr) Zcash (Sh) Monero Ethereum Miner
Challenge Bandwidth (bytes) 20 20 1168 256 16 575

Tx fee 0.88USD 0.03 USD 0.03 USD 0.77 USD 0.4 USD —
Burnt amount 0.22 USD 0.01 USD — — — —

Response Bandwidth (bytes) 40 40 1168 256 16 575
Tx fee 0.88 USD 0.03 USD 0.03 USD 0.77 USD 0.2 USD —

Burnt amount 0.44 USD 0.02 USD — — — —
% Sibling

transactions
89 91 8.5 33 > 8 100

Market cap USD
(rank)

146B (1) 1B (25) 1B (25) 36B (12) 83B (2) —

Table 1: Comparison of the different rendezvous. Here, we consider the coins market value [6] at the time of
writing. We denote transparent by (Tr) and shielded by (Sh). Similar to Zcash(Tr), results for Bitcoin can be
applied to Altcoins following the Bitcoin transaction patterns.

7

4 Our Protocol

4.1 Building Blocks

Encoding Scheme. For ease of exposition of R3C3, we describe here the notion of encoding scheme. It
allows to encode challenge and response data as a transaction compatible with the rendezvous available between
censored user and decoder. In this manner, we abstract away the details dependent on the different rendezvous.

Let Dc and Dr be a set of challenge and response data respectively. Let Ac and Ar be a set of challenge and
response auxiliary information. Let Tc and Tr be a set of challenge and response transactions respectively.

Definition 4 (Encoding Scheme). An encoding scheme is a tuple of algorithms (TxEncodef , TxDecodef ,
TxEncodeb, TxDecodeb) defined as below:

• {ctx,⊥} ← TxEncodef (cd, ca). On input a piece of challenge data cd ∈ Dc and the challenge auxiliary
information ca ∈ Ac, output a challenge transaction ctx ∈ Tc or the special symbol ⊥ indicating an error in
the encoding process.

• {cd,⊥} ← TxDecodef (ctx). On input a challenge transaction ctx ∈ Tc, output a piece of challenge data
cd ∈ Dc or the special symbol ⊥ indicating an error in the decoding process.

• {rtx,⊥} ← TxEncodeb(rd, ra). On input a piece of response data rd ∈ Dr and the response auxiliary infor-
mation ra ∈ Ar, output a response transaction rtx ∈ Tr or the special symbol ⊥ indicating an error in the
encoding process.

• {rd,⊥} ← TxDecodeb(rtx). On input a response transaction rtx ∈ Tr, output a piece of response data rd ∈ Dr
or the special symbol ⊥ indicating an error in the decoding process.

Definition 5 (Encoding Scheme Correctness). We say that a encoding scheme is correct if for all pieces of
challenge data cd ∈ Dc, challenge auxiliary information ca ∈ Ac, response data rd ∈ Dr and response auxiliary
information ra ∈ Ar, all the following conditions hold:

• Let ctx← TxEncodef (cd, ca). Then, cd∗ ← TxDecodef (ctx) and cd∗ = cd.

• Let rtx← TxEncodeb(rd, ra). Then, rd∗ ← TxDecodeb(rtx) and rd∗ = rd.

We instantiate the encoding scheme using the different cryptocurrencies as described in Section 5. Addi-
tionally, we instantiate the encoding scheme leveraging the mining process in Section 6.

Non-interactive Key Exchange. A non-interactive key exchange (NIKE) mechanism is a tuple of algorithms
(NIKE.KeyGen,NIKE.SharedKey). The algorithm (vk, sk)← NIKE.KeyGen(id) outputs a public key vk and a secret
key sk for a given party identifier id . The algorithm k ← NIKE.SharedKey(id1, id2, sk1, vk2) outputs a shared
key k for the two parties id1 and id2. We require a non-interactive key exchange mechanism secure in the
CKS model. Static Diffie-Hellman key exchange satisfies these requirements [35, 45]. Additionally, we require
a function ID(vku) that on input a public key vku returns the corresponding identifier idu. We implement this
function as the identity function.

Key Derivation Function. A key derivation function KDF(k, l) takes as input a key k and a length value
l and outputs a string of l bits. We require a secure key derivation function [53]. We use the hash-based key
derivation function (HKDF) defined in [53].

4.2 Our Construction

We inspire from TapDance [78] to build the cryptographic construction at the core of R3C3. In TapDance, a
Diffie-Hellman key exchange is leveraged to create a symmetric key and an initialization vector (IV) between
the censored user and the decoder. This symmetric key and IV are then used to encrypt the message using
AES. This approach has the drawback that ciphertexts always have a length multiple of the AES block size,
what supposes an overhead that we want to avoid given the somewhat restricted bandwidth in our choice of
rendezvous.

In our construction for R3C3, we aim at optimizing the succinctness of the ciphertext. Although we also
use the Diffie-Hellman key exchange to generate a symmetric key between the censored user and the decoder,

8

• vkd, skd, τ ← SBSetup(λ). Generate skd ←$ {0, 1}λ. Compute vkd ← BBK(skd). Set τ ← {0, 1}64.
Return vkd, skd, τ .

• {(cc, k),⊥} ← SBEncodef (vkd, cm, τ):

– Compute vku, sku ← NIKE.KeyGen(idu)

– Compute kd ← NIKE.SharedKey(ID(vku), ID(vkd), sku, vkd)

– Compute sks||kc||kr ← HKDF(kd, λ+ lc + lr)

– Compute vkp ← vksksd

– Set ctc := τ ||cm⊕ kc

– Compute cc← TxEncodef ((vku,H(vkp), ctc), sku)

– If cc = ⊥, return ⊥. Else, return the tuple cc, kd

• {(cm, k′),⊥} ← SBDecodef (skd, cc, τ).

– Compute cd← TxDecodef (cc)

– If cd = ⊥, return ⊥. Otherwise:

∗ Parse vk′u,H(vk′p), ct′c ← cd

∗ Compute k′d ← NIKE.SharedKey(ID(vkd), ID(vk′u), skd, vk′u)

∗ Compute sk′s||k
′
c||k
′
r ← HKDF(k′d, λ+ lc + lr)

∗ Compute vkd ← gskd

∗ Compute vk′′p ← vk
sk′s
d

∗ Set m′ := ct′c ⊕ k′c
∗ Parse τ ′||cm′ ← m′

∗ Set b := (τ ′ = τ) ∧ (H(vk′p) = H(vk′′p))

∗ If b = 0, return ⊥. Else, return the tuple cm′, k′d

• {rc,⊥} ← SBEncodeb(skd, k
′, rm).

– Compute sk′s||k
′
c||k
′
r ← HKDF(k′, λ+ lc + lr)

– Compute sk′′p ← skd · sk′s

– Compute vk′′p := gsk
′′
p

– Set ctr := rm⊕ k′r

– Compute rc← TxEncodeb((ctr, vk′′p), sk′′p)

– Return rc

• {rm,⊥} ← SBDecodeb(vkd, k, rc)

– Compute rd← TxDecodeb(rc)

– If rd = ⊥, return ⊥. Otherwise:

∗ parse ct′r, vkp ← rd

∗ Compute sks||kc||kr ← HKDF(k, λ+ lc + lr)

∗ Set rm := ct′r ⊕ kr

∗ If vkp 6= vksksd , return ⊥. Otherwise, return rm

R3C3

Figure 3: The R3C3 construction. Here, we denote by lc the bandwidth available for the challenge message and
by lr, the bandwidth available for the response message. We denote string concatenation by ||. Here, H is a
cryptographic hash as implemented in the corresponding encoding scheme.

9

we use the symmetric key differently. The symmetric key becomes a master key for a key derivation function
to derive three other keys. Two of the three derived keys become fresh symmetric encryption keys to encrypt
(and decrypt) the challenge and response messages.

The last derived key becomes a fresh private key sks shared between the censored user and the decoder. From
sks, the censored user can create a public key vkp such that only the intended decoder knows the corresponding
private key skp. We call the key pair vkp, skp as the paying key pair. The paying key pair is used by honest users
to pay for the service provided by the decoder. The censored user can associate coins to vkp before including it
in the covertext sent to the decoder so that vkp becomes a funded address in the blockchain used as rendezvous.
When the covertext arrives to the decoder, the decoder can use the coins associated to vkp and the corresponding
skp to pay for the cost of sending the response covertext to the censored user. Remember that the decoder can
use the coins at vkp because our construction reconstructs the corresponding skp only at the decoder side.

We formalize our construction for R3C3 in Figure 3.

4.3 Security Analysis

In this section, we note that R3C3 is correct, it achieves rareness and it is secure against covertext-chosen
attacks. We then discuss further properties that can be achieved by R3C3 with trivial modifications.

Theorem 2 (R3C3 is correct). Let NIKE be a correct non-interactive key exchange protocol. Let HKDF be
a correct key derivation function. Let H be a collision-resistance hash function. Let Π be a correct encoding
scheme. Then, R3C3 is a correct stego-bootstrapping scheme as defined in Theorem 1.

Proof. We start by showing that condition 1 holds. In particular, given a pair (cc, k)← SBEncodef (vkd, cm, τ),
we need to show that SBDecodef (skd, cc, τ) returns a pair (cm′, k′) such that cm′ = cm and k′ = k.

By correctness of Π, vk′u = vku, H(vk′p) = H(vkp) and ct′c = ctc. Moreover, as H is collision-resistant,

vk′p = vkp. As NIKE is a correct non-interactive key exchange protocol, k′d = kd. If SBDecodef does not return
⊥, this proves that both functionalities output the same symmetric key. Now, we show that SBDecodef does
not return ⊥.

Given the correctness of HKDF, the symmetric key k′c = kc. Then, it is easy to see that ct′c ⊕ k′c =
τ ′||cm′ ⊕ k′c ⊕ k′c = τ ′||cm′. The fact that ct′c = ctc implies that τ ′ = τ and cm′ = cm. Finally, it is easy to see
that vk′′p and vk′p are constructed equally, and therefore SBDecodef returns a tuple (cm′, k′d).

The condition 2 holds following similar arguments. This concludes the proof.

Theorem 3 (R3C3 achieves rareness). Let NIKE be a secure non-interactive key exchange protocol in the CKS
model. Let HKDF be a secure key derivation function. Let Π be a correct encoding scheme. Then R3C3 achieves
rareness as defined in Definition 2.

Proof. We start by showing that condition 1 holds. For that, we need to show that the probability
Pr[SBDecodef (skd, cc, τ) 6= ⊥ | cc←$ Cc] < ε1(λ).

Let vk′u,H(vk′p), ct′c be the tuple extracted by TxDecodef (cc). W.l.o.g., let ct′c := τ ′||cm′ ⊕ k′c. Now, let k′′c
be the symmetric key generated after running NIKE and HKDF functions as defined in SBDecodef . It is easy
to see that the probability that k′c = k′′c is negligible. Therefore, ct′c ⊕ k′′c = cm′||τ ′ ⊕ k′ ⊕ k′′c = τ∗||cm∗. Given
that, τ∗ is pseudorandom string, the probability that τ∗ = τ is 1

2|τ|
, and therefore negligible.

Now, we show that the condition 2 holds. For that, we need to show that the probability
Pr[SBDecodeb(vkd, k, rc) 6= ⊥ | rc←$ Cr] ≤ ε2(λ) where k is part of the pair (cc, k)← SBEncodef (vkd, cm, τ).

Let vkp := gsks the public key encoded in cc after executing SBEncodef . Note that, the same vkp is generated

in SBDecodeb given that HKDF is a correct key derivation function invoked on the same input. Let vk′p := gsk
′
s

be the public key encoded in rc.
Looking at the code, it is clear that each covertext encodes fresh (and therefore different) keys. Therefore,

as cc 6= rc, it implies that vkp 6= vk′p. This concludes the proof.

Theorem 4 (R3C3 is secure against covertext-chosen attacks). Let NIKE be a correct and secure non-interactive
key exchange protocol in the CKS model. Let HKDF be a correct and secure key derivation function. Let Π be
a correct encoding scheme. Then, R3C3 is secure against covertext-chosen attacks as defined in Definition 3.

10

Proof. Assume by contradiction that R3C3 is not secure against covertext-chosen attacks. Therefore, there must
exist an adversary A such that |Pr[ExpSBS-CCA

A (λ) = b]−1/2| > ε1(λ). Then, we construct an adversary B such
that |Pr[ExpNIKE

B (λ) = b] − 1/2| > ε2(λ). We refer the reader to [45] for a formal description of ExpNIKE
B (λ).

We define B as follow:

• On input (λ, params):

– Query the challenger with input register(ID(vkd)) and retrieve vkd.

– Query the challenger with input extract(ID(vkd)) and retrieve skd.

– Compute vk′d, sk′d, τ ← SBSetup(λ). It is important to note that τ is independent of vk′d and sk′d.
Therefore, we can discard vk′d and sk′d and use the pair vkd, skd provided by the challenger.

– Input (vkd, τ, λ) to A.

• B simulates the oracle Oenc as follows. On input (cm, rm):

– Query the challenger with register(ID(vku)) and retrieve vku.

– Query the challenger with extract(ID(vku)) and retrieve sku.

– Query the challenger with reveal(ID(vku), ID(vkd)) and retrieve kd.

– Compute sks||kc||kr ← HKDF(kd, λ+ lc + lr)

– Compute vkp ← vksksd

– Set ctc := (τ ||cm)⊕ kc

– Compute cc← TxEncodef ((vku,H(vkp), ctc), sku)

– Compute skp ← skd · sks

– Set ctr := rm⊕ kr

– Compute rc← TxEncodeb((ctr, vkp), skp)

– If cc = ⊥ or rc = ⊥, return ⊥. Else, return the tuple (cc, kd, rc)

Due to the correctness of NIKE and HKDF there is no need to run SBDecodef as the symmetric key generated
in this function is equal to the one in SBEncodef . Similarly, the HKDF function in SBEncodeb is not necessary
to be computed.

• B simulates the oracle Odec
1 as follows. On input (cc, kd, rc):

– Compute cd← TxDecodef (cc)

– If cd = ⊥, return ⊥. Otherwise:

∗ Parse vku,H(vkp), ctc ← cd

∗ Compute sks||kc||kr ← HKDF(kd, λ+ lc + lr)

∗ Compute vkd ← gskd

∗ Compute vk′p ← vksksd

∗ Set m := ctc ⊕ kc
∗ Parse (τ ′||cm)← m

∗ Set b := (τ ′ = τ) ∧ (H(vk′p) = H(vkp))

∗ If b = 0, return ⊥.

– Compute rd← TxDecodeb(rc)

– If rd = ⊥, return ⊥. Otherwise:

∗ parse ctr, vkp ← rd

∗ Set rm := ctr ⊕ kr

– If b = 0 or vkp 6= vksksd , return ⊥. Otherwise, return (cm, rm)

Due to the correctness of HKDF there is no need to run SBEncodeb as the key generated in this function is
equal to the one in SBEncodef .

11

• At some point A outputs the challenge messages (cm∗, rm∗). Then B proceeds as follows and passes the
returned message to A:

– Query the challenger with register(ID(vk∗u)) and retrieve vk∗u.

– Query the challenger with extract(ID(sk∗u)) and retrieve sk∗u.

– Query the challenger with test(ID(sk∗u), ID(vkd)) and retrieve k∗d.

– Compute sk∗s ||k
∗
c ||k
∗
r ← HKDF(k∗d, λ+ lc + lr)

– Compute vk∗p ← vk
sk∗s
d

– Set ctc := (τ ||cm∗)⊕ k∗c

– Compute cc∗ ← TxEncodef ((vk∗u,H(vk∗p), ct∗c), sk∗u)

– Compute sk∗p ← skd · sk∗s

– Set ct∗r := rm∗ ⊕ k∗r

– Compute rc∗ ← TxEncodeb((ct∗r , vk∗p), sk∗p)

– If cc∗ = ⊥ or rc∗ = ⊥, return ⊥. Else, return the tuple (cc∗, k∗d, rc
∗)

• A outputs as b as its response to the challenge. Then, B sends response 1− b to the challenger. The b value
indicates if A has discovered a random tuple (b = 0) or a valid one executed by the protocol (b = 1). In
the case of challenger the value of b indicates the opposite. If b = 0 then a key generated by the protocol is
returned, otherwise (b = 1) a randomly generated key is returned. Therefore, the value 1− b is passed to the
challenger.

• B simulates the decoding oracle Odec
2 as defined for Odec

1 with the exception of the input (cc∗, k′′, rc∗), for any
symmetric key k′′. In this case B forwards ⊥ to A.

Analysis B is efficient, i.e., number of queries made to Oenc, Odec
1 , Odec

2 , by A is polynomial and the overall
protocol is completed in polynomial time. B faithfully simulates A, i.e., for each of the queries made to the
oracles, B executes the steps of the protocol as it is expected by A.

Now, every time A wins the ExpSBS-CCA
A (λ), B wins the ExpNIKE

B (λ) except for negligible probability. A can
distinguish between well formed challenges and random challenges. In other words, she differentiates if B was
using the proper NIKE key or a random key.

Therefore, we have that |Pr[ExpNIKE
B (λ) = b]−1/2| = Pr[ExpSBS-CCA

A (λ) = b]−1/2|−ε3(λ). By assumption,
Pr[ExpSBS-CCA

A (λ) = b] − 1/2| > ε2(λ). Then, it holds that |Pr[ExpNIKE
B (λ) = b] − 1/2| ≥ ε2(λ) − ε3(λ). This,

however contradicts the fact that NIKE is secure. Therefore, such B must not exist and R3C3 must be secure
against chosen covertext attacks.

In the following, we argue that R3C3 can be easily modified to achieve eventual forward secrecy for the
challenge covertext and immediate forward secrecy for the response covertext. We also argue that our approach
raises the bar for censor detection.

Eventual forward secrecy. The challenge covertext encodes information encrypted using a key derived
from vkd and vku. While the corresponding sku can be destroyed right after the creation of the corresponding
challenge covertext (i.e., the associated coins have been already spent), the decoder might reuse vkd for several
users and therefore should keep the corresponding skd in this case. However, the decoder is not forced to keep
the same vkd during the whole R3C3 lifetime. Instead, the decoder can spend the coins associated to vkd in
a fresh public key vk′d and destroy skd afterwards. Such transaction notifies to every user the change of the
decoder’s public key. Such transaction can also be seen by the censor. However, as skd has been destroyed,
covertext challenges created with such key are secure. Therefore, R3C3 can achieve eventual forward secrecy for
challenge covertexts.

Immediate forward secrecy. In R3C3, the decoder uses its pair of keys vkd, skd also for the response
covertext. However, it is possible to modify R3C3 so that the decoder generates instead a fresh pair of keys
vkr, skr and uses the newly generated keys to create the response covertext. The decoder can immediately delete
skr so that forward secrecy is preserved. Additionally, the decoder can include vkr in the response covertext so
that the censored user has enough cryptographic information to decode it.

12

Hindering censor detection. In R3C3 the public key of decoder vkd, is used for deriving a shared key for
encryption. We, however, note that users do not use vkd explicitly as the receiver of coins in their transactions.
Instead, they encrypt their messages with the shared key and use a fresh non-detectable address as the recipient
in the transactions, as explained in Section 4.2. Given that, censor cannot distinguish between a transactions
encoding a challenge message and any other transaction. Only the decoder, with access to skd can do it. Hence,
R3C3 raises the bar to limit the detection capabilities of the censor.

System Fee. R3C3 introduces a fee leveraging a cryptocurrency system. This fee is, however, negligible
compared to the cost of the current pay-per-service censor circumvention systems. R3C3 is a bootstrapping
mechanism that is employed infrequently, resulting in a low cost amortized over a long period of time. Moreover,
this can also improve the performance of non-paid censor circumvention systems. The associated cost raises the
bar for the censor to obtain the entry points of a circumvention system. Currently, censors are retrieving these
information at no cost (e.g., sending an email), making it easy to enumerate and block the entry points.

5 Cryptocurrency-Based Encodings

5.1 Encoding Scheme in Bitcoin

In this section, we describe the instantiation of the encoding scheme using the Bitcoin transactions. In particular,
we first describe the format of Bitcoin addresses and transactions, we then delve on the different possibilities
to encode data within them. By studying the a snapshot of the currently deployed Bitcoin blockchain, we
then set up the transaction parameters to be used in R3C3 and finally formally describe our instantiation of
encoding scheme with Bitcoin transactions. We emphasize that, although we focus on Bitcoin in this section,
similar design patterns and decisions apply to several other cryptocurrencies such as Litecoin that follow Bitcoin
core functionality. The use of these alternative cryptocurrencies might bring cheaper and yet fully functional
instantiations for the encoding scheme required in R3C3.

5.1.1 Address and Transaction Format

A Bitcoin address is composed of a pair of verification and signing ECDSA keys. A Bitcoin address is then
represented by the Base58 encoding for the hash of the verification key [2]. Bitcoins are exchanged between
addresses by means of a transaction. In its simplest form, a transaction transfers a certain amount of coins from
one input address to an output address. A transaction can contain several input and output addresses.

The Bitcoin protocol uses a scripting system called Script [26] that governs how bitcoins can be trans-
ferred between addresses within a transaction. In particular, coins are locked in an address according to
scriptPubKey, a Script excerpt that encodes the conditions to unlock the coins. The fulfillment of such
conditions are encoded in another Script excerpt called scriptSig. In the illustrative example of Bitcoin
transaction in Figure 4, 5BTC are transferred from the input addresses included in scriptPubKey{0,1} to the
output addresses included in scriptPubKey{2,3,4}. A transaction is valid if coins unlocked (or spent) in the
transaction has not been spent previously; the sum of input coins is greater or equal than the sum of out-
put coins; and for each input scriptPubKeyi there exists the corresponding scriptSigi such that a function
Eval(scriptPubKeyi, scriptSigi) returns true, where Eval evaluates whether scriptSigi contains the correct
fulfillment for the conditions encoded in scriptPubKeyi.

Inputs Outputs

scriptPubKey0, 2BTC scriptPubKey2, 1.0BTC
scriptPubKey1, 3BTC scriptPubKey3, 3.5BTC

scriptPubKey4, 0.5BTC

scriptSig0

scriptSig1

Figure 4: Illustrative example of Bitcoin transaction.

13

Table 2: Description of the Script excerpts used in the Bitcoin transactions. Text in blue denotes scriptPubKey
and orange denotes the corresponding scriptSig.

Lock’s name Script Description of unlocking conditions

Pay-to-PubKey
〈<pubKey> OP CHECKSIG〉 Including a signature 〈<sig>〉 of the Bitcoin transaction verifiable

using the verification key 〈<pubKey>〉.
〈<sig>〉

Pay-to-PubKeyHash

〈OP DUP OP HASH160 <pubKeyHash> Including a verification key 〈<pubKey>〉 such that 〈<pubKeyHash>〉
= H(〈<pubKey>〉) and a signature 〈<sig>〉 of the Bitcoin transaction
verifiable using the verification key 〈<pubKey>〉

OP EQUALVERIFY OP CHECKSIG〉

〈<sig> <pubKey>〉

Pay-to-ScriptHash 〈OP HASH160 H(script) OP EQUAL〉 Include a 〈redeem script〉 such that H(redeem script) = H(script)
and Eval (redeem script, 〈<sig>〉) returns true.

〈<sig> <redeem script>〉

Pay-to-Null 〈OP RETURN [data]〉 Coins can never be unlocked. Data can contain up to 80 bytes [18].

〈<empty>〉

Pay-to-Multisig

〈OP M <pubkey1> . . . <pubkeyn> Including M signatures 〈<sig1> . . . <sigm>〉 of the Bitcoin
transaction, verifiable using the corresponding verification keys
〈<pubkey1> . . . <pubkeyn>〉

OP N OP CHECKMULTISIG〉

〈<sig1> . . . <sigm>〉

5.1.2 Possibilities for Encoding Data

Our approach consists on encoding the tagged message originated by the censored user as (some of) the condi-
tions defined in the outputs scriptPubKeyi. We describe the different possible formats of the Bitcoin standard
locking mechanism in Table 2. In the following, we describe how to re-use each of them to encode data within
a transaction.

Pay-to-PubKey. Instead of including an actual verification key within the 〈<pubKey>〉 field, it is possible to
encode 33 bytes of data simulating thereby an ECDSA verification key. This encoding, however, implies the
loss of locked coins as it is not feasible to come up with a signing key corresponding to the data encoded as
verification key.

Pay-to-PubKeyHash. Instead of including the 20 bytes corresponding to the hash of a verification key within
the 〈<pubKeyHash>〉 field, it is possible to encode 20 bytes of data. This encoding does not restrict the encoded
data to an ECDSA verification key. Nevertheless, this encoding also implies the loss (or burnt in Bitcoin terms)
of the locked coins since it is not feasible to come up with the pre-image of a random hash value.

Pay-to-ScriptHash. Similar to the Pay-to-PubkeyHash, it is possible to encode 20 bytes of data replacing
the field H(script). As before, this approach allows the inclusion of arbitrary random data but implies the loss
of the locked coins.

Pay-to-Null. By definition of the lock mechanism, it is possible to encode up to 80 bytes of data within the
field 〈[data]〉. Although, this lock mechanism provides the maximum bandwidth so far, it also implies the loss
of the locked coins.

Pay-to-Multisig. As only M verification keys are actually used in this lock mechanism, it is possible to
encode 33 bytes of data in each of the remaining N−M keys, simulating thereby an N−M ECDSA verification
keys. The advantage of this encoding is that the locked coins can be unlocked as the necessary M verifications
are not modified. It is possible, however, to encode 33 bytes of data in each of the N verification keys at the
cost of losing the locked coins.

5.1.3 Setting R3C3 Parameters

The censored user could use any of the encoding methods presented in the previous section to send a small
message once. However, it has two drawbacks. First, using a single scriptPubKey provides really limited
bandwidth, and second, repeated usage of a certain lock mechanism could make the such usage pattern differ
from the overall distribution of lock mechanisms in the Bitcoin blockchain, easing thereby a possible detection

14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 3 4 5 6 7 8 9 10 11

fr
ac

ti
o

n
 o

f
tr

an
sa

ct
io

n
s�

�
�

number of inputs/outputs���

inputs
outputs

Figure 5: Distribution of number input and outputs in Pay-to-PubKeyHash transactions.

from the censor. In this state of affairs, in this section we describe how a censored user can get larger bandwidth
without easing the task of the censor.

We have downloaded a snapshot of the Bitcoin blockchain containing blocks 0 to 511000, containing a total
of 301, 855, 762 Bitcoin transactions carried out from the inception of Bitcoin until the time of writing. From
this dataset, we have extracted the number of appearances of each Bitcoin lock mechanism. In particular, we
observe that Pay-to-PubKeyHash is used by the 88.73% of the transactions, Pay-to-ScriptHash by the 11.22%
and the rest by less than 1% of the tansactions. From this distribution, we conclude that R3C3 should use
Pay-to-PubKeyHash as the lock mechanism.

The available bandwidth can be enlarged by using more than one output in a Bitcoin transaction. To
explore this possibility, we have extracted the distribution of the number of input and outputs used in Bitcoin
transactions that contain Pay-to-PubKeyHash, obtaining the results shown in Figure 5. From this, we conclude
that R3C3 should use Bitcoin transactions with one input and two outputs.

5.1.4 Implementation Encoding Scheme in Bitcoin

In this section, we describe our implementation of the encoding scheme using Bitcoin and following the guidelines
mentioned in the previous section. For readability, we highlight the encoded fields in blue.

Notation. We denote by ECDSA.KeyGen, ECDSA.Sign, ECDSA.Verify the three algorithms for the ECDSA
digital signature scheme as implemented in Bitcoin. In particular, ECDSA.KeyGen(λ) takes as input the security
parameter λ and outputs a pair of keys vk, sk. The algorithm ECDSA.Sign(sk, tx) takes as input the private key
sk and a transaction tx and outputs a signature σ. Finally, the algorithm ECDSA.Verify(vk, tx, σ) takes as input
a public key vk, a transaction tx and a signature σ and returns > if σ is a signature on tx created by the
corresponding private key sk. Otherwise, it returns ⊥.

We denote
〈OP DUP OP HASH160 H (vk) OP EQUALVERIFY OP CHECKSIG〉

by scriptPubKey(H(vk)). Similarly, we denote by scriptSig(tx, sk, vk) the fulfillment condition defined
as 〈ECDSA.Sign(tx, sk) vk〉. Finally, we denote by Extract an extraction function such that Extract(
scriptPubKey(x)) = x as well as Extract(scriptSig(tx, sk, vk)) = vk.

{ctx,⊥} ← TxEncodef (cd, ca). Parse vku,H(vkp), ct ← cd and sku ← ca. If |ct| > 20 bytes, return ⊥.
Otherwise, create a Bitcoin transaction tx1 as described below. Return tx1.

Here we assume that vku has been funded eariler with x BTC and that ct has been padded with pseudorandom
bytes so that |ct| = 20 bytes. The minimum value of x to not raise any suspicion from the censor is about
30, 000 Satoshi2. This amount of coins encode the coins to be burnt at the output scriptPubKey2 as well as
the amount of coins required by the decoder to pay for the transaction fee of the response covertext.

tx1
Inputs Outputs

scriptPubKey1(H(vku)), x BTC scriptPubKey2(ct), γ1BTC
scriptPubKey3(H(vkp)), (x− γ1)BTC

scriptSig(tx1, sku, vku)

2Each BTC is 108 Satoshi.

15

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100
 1000

 10000

 100000

 1x10 6

 1x10 7

 1x10 8

 1x10 9

 1x10 10

 1x10 11

cd
f

va
lu

e�
�

�

value (satoshi)���

(a) value

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

cd
f

va
lu

e�
�

�

age (block height)���

(b) age

Figure 6: CDF of the value and age, in the outputs of Pay-to-PubKeyHash transactions that contain only one
input and two outputs. The value is given in Satoshi (a Satoshi is 10−8 BTC). The age is given in block height
(on average each block in the Bitcoin network is created every 10 minutes).

{rtx,⊥} ← TxEncodeb(rd, ra). Parse ct, vkp ← rd and skp ← ra. If |ct| > 40 bytes, return ⊥. Otherwise,
create a Bitcoin transaction tx2 as described below. Return tx2.

As before, here we assume that ct has been padded with pseudorandom bytes so that |ct| = 40 bytes.

tx2
Inputs Outputs

scriptPubKey1(H(vkp)), x BTC scriptPubKey2(ct[0 : 19]), γ2BTC
scriptPubKey3(ct[20 : 39]), (x− γ2)BTC

scriptSig(tx2, skp, vkp)

{cd,⊥} ← TxDecodef (ctx). If ctx does not have one input and two outputs, return ⊥. If any of the lock
mechanisms is not of the type Pay-to-PubKeyHash, return ⊥.
Otherwise, compute ct ← Extract(scriptPubKey2(ct)). Compute vku ← Extract(scriptSig(tx, sku, vku)).
Compute H(vkp)← Extract(scriptPubKey3(H(vkp))). If vkp does not have at least 16, 000 Satoshi associated
with it, return ⊥ as it does not contain enough coins to pay for the response transaction fee. Otherwise, return
the tuple cd := (vku,H(vkp), ct).

{rd,⊥} ← TxDecodeb(rtx). If rtx does not have one input and two outputs, return ⊥. If any of
the lock mechanisms is not of the type Pay-to-PubKeyHash, return ⊥. Otherwise, compute ct[0 : 19] ←
Extract(scriptPubKey2(ct[0 : 19)) and ct[20 : 39] ← Extract(scriptPubKey3(ct[20 : 39])). Compute
vkp ← Extract(scriptSig(tx, skp, vkp)). Return the tuple rd := (ct, vkp).

Theorem 5 (Bitcoin Encoding Scheme Correctness). Let ECDSA.KeyGen,ECDSA.Sign,ECDSA.Verify be cor-
rect ECDSA digital signature scheme as implemented in Bitcoin. Let Extract be correct extract function for
scriptPubKey and scriptSig. Then, Bitcoin encoding scheme is correct according to Definition 5.

Proof. We start by showing that condition 1 holds. In particular, given ctx ← TxEncodef (cd, ca) we need to
show that TxDecodef (ctx) return cd∗ such that cd = cd∗.

By the correctness of Extract function ct∗ = ct, vk∗u = vku and H(vk∗p) = H(vkp). Moreover, as H is collision-
resistant, vk∗p = vkp. If TxDecodef does not return ⊥, this proves that both functionalities are correct. Now we
show that TxDecodef does not return ⊥.

Since TxEncodef has not returned ⊥ it means that |ct| is exactly 20 bytes (after padding) and sufficient fund
has been associated to the accounts. Upon receiving a transaction, TxDecodef checks the number of inputs and
outputs. tx1 has exactly one input and two outputs, along with sufficient funds, therefore TxDecodef will not
return ⊥.

The condition 2 holds following similar arguments. This concludes the proof.

5.1.5 System Discussion

Cost. R3C3 (BTC) requires to pay two transaction fees as well as burn coins three times because the
scriptPubKey outputs used to encode the ciphertexts are no longer spendable. At the time of writing,
using an online transaction fee estimator [3], the fee for a transaction is about 11, 000 Satoshi (0.88 USD). If the

16

censored user is willing to wait four hours for its transaction to get into the blockchain, the cost is reduced to 900
Satoshi (0.07 USD). Furthermore, to find the minimum value for burning coins without raising any suspicious,
we investigated all the Pay-to-PubKeyHash transactions with one input and two outputs. Figure 6 shows the
CDF value of the amounts in the outputs of such transactions. To blend with at least 25% of the outputs the
burned amount should be at least 2, 500 Satoshi.

Undetectability. The verification key vk is included in a field where a ECDSA verification key is expected
and the ct bytes are encoded as the output of a hash function. Therefore undetectability is preserved under the
assumption that the output of a hash function is indistinguishable from a uniform random number.3

Usage Pattern. Each transaction used in R3C3 (BTC) is structurally identical to the most widely used
transactions included in the Bitcoin blockchain. The pattern of a transaction with two outputs, one with a
much smaller value than the other, is highly used in Bitcoin as it represents a user that pays a little amount to
the payee and gets the rest back in the change address. Finally, R3C3 (BTC) creates several outputs that can
never be spent. This, however, remains in tune with the current usage of the Bitcoin blockchain. In particular,
as shown in Figure 6, around 50% of unspent outputs were created more than one year ago.

Harvesting-Resistance. By construction of R3C3 (BTC), the censored user funds the address represented by
vkp in the protocol and whose private key is known by the decoder only. Therefore, the decoder can use the
coins at vkp to send a covertext to the censored user without investing any of its coins. If such address is not
funded, the decoder aborts the protocol.

Efficiency. The decoder has to read all the transactions in the blockchain until it finds a transaction ctx such
that SBDecodef (ctx) does not return ⊥. This is, however, inevitable. The censored user only has to look for the
transaction rtx where coins associated to vkp are spent as this is the only transaction where the decoder might
have added the expected response data rd.

Compatibility. R3C3 (BTC) uses two transactions following the format defined in the Bitcoin protocol.
Therefore, R3C3 (BTC) preserves compatibility.

Bandwidth. R3C3 (BTC) uses scriptPubKey fields to encode the data. Each scriptPubKey field is
leveraged to encode exactly 20 bytes. This provides a 20 byte bandwidth for the challenge covertext, as one of
the two scriptPubKey fields is used. On the other hand, the response covertext has a 40 byte bandwidth as
it uses both of scriptPubKey fields to encode encrypted data.

5.2 Encoding Scheme in Zcash

5.2.1 Addresses and Transactions

Ben-Sasson et al. [66] proposed Zerocash, a privacy-preserving cryptocurrency scheme. The core idea behind
Zerocash has been implemented in Zcash [25, 50]. Nevertheless, the implementation slightly differs from the
original description in Zerocash paper. Therefore, in this section, we focus our description on the cryptocurrency
as detailed in [66] and extend the implementation details when it applies.

Zerocash supports two types of addresses: shielded and unshielded. An unshielded address is defined in the
same terms as a Bitcoin address and supports the same type of transactions. Therefore, it is possible to extend
the same approach as in Bitcoin by using unshielded addresses in Zerocash.

The main difference with Bitcoin resides on the shielded addresses. A shielded address (or coin) is a tuple of
the form (pk,x, ρ, r, s, com), where pk is a public key generated as PRFsk(0) with PRF being a pseudo-random
function and sk being a private key; x is the value associated to this coin, ρ, r and s are random seeds and com
denotes a commitment that represents the coin. We describe the format of com later in this section.

Zerocash supports two type of transactions: minting and pouring transactions. A mint transaction is used
to create new coins while a pouring transaction transfers the value of a certain coin into a fresh coin. Therefore,
a coin can be used only once in the blockchain.

Figure 7 (top) shows an illustrative example of minting transaction where a user with an unshielded address
scriptPubKey0 creates a coin c := (pk,x, ρ, r, s, com). For this transaction, the user locally samples and stores
ρ, r and s, computes k := Comr(pk||ρ) and com := Coms(x||k). The transaction thereby constructed is valid
if Eval(scriptPubKey0, scriptSig0) returns true, the value x is the same in the input and the output, and
com = Coms(x||k). Here, Eval denotes a function that returns true if scriptSig contains the correct fulfillments

3This is possible if we model the hash function as a random oracle.

17

for the conditions expressed in scriptPubKey. A minting transaction can have multiple unshielded inputs
and multiple shielded outputs.

An illustrative example of pouring transaction is depicted in Figure 7 (bottom). Omit for a moment the
unshielded addresses. Then, the rest of the transaction is an example of a user that wants to split the coin
(i.e., cold) created in the minting transaction of Figure 7 into two new coins cnew1 and cnew2 . For that, she
creates a single shielded output (rt, snold, comnew

1 , ct1, comnew
2 , ct2, h, vk∗, σ∗,Πpour) as follows: rt denotes the

root of a Merkle tree whose leafs contains all the commitments {comi} included so far in the blockchain;
snold := PRFskold(ρ) is the serial number associated to the coin being spent; comnew

1 and comnew
2 are the

commitments formed as described for com but for new values xnew
1 and xnew

2 . The values ctnew1 and ctnew2

are two ciphertext that contain the corresponding (xnew
i , ρnewi , rnew1 , snew1). These ciphertexts are encrypted

for the corresponding payee. In this manner, the payee can locally reconstruct the complete coin infor-
mation as cnewi := (pknewi ,xnew

i , ρnewi , rnew1 , snew1 , comnew
i). Finally, vk∗ is a fresh ECDSA verification key,

h := PRFskold(H(vk∗)), σ∗ is a signature of the complete output under sk∗, and Πpour is a zero-knowledge
proof of the correctness of the output (e.g., snold corresponds to one of the shielded coins ever created or σ∗ can
be correctly verified using vk∗). We refer the reader to [66] for a detailed explanation.

A pouring transaction can have several unshielded inputs and any combination of shielded and unshielded
outputs. A pouring transaction is valid if, for every shielded output, σ∗ is a valid signature under verification
key vk∗ and Πpour correctly verifies; additionally, the rest of the transaction must be valid as defined for a Bitcoin
transaction.

5.2.2 Possibilities for Encoding Data

Unshielded addresses in Zerocash are handled in the same manner as described in Section 5.1 for Bitcoin and
therefore we do not discuss them here. In a shielded output, there are several fields such that rt, snold or comnew

i

that cannot be used to encode our data without making the zero-knowledge proof Πpour fail. However, assume
that a user creates a transaction to send a coin to herself, then the data encrypted in cti is not required as
the intended payee is the user itself. Our insight then consists of encoding our data as the different ciphertexts
available in the shielded outputs for coins sent to the user herself. An important detail here is that this ciphertext
field as defined in the Zcash implementation contains an ephemeral public key for a Diffie-Hellman key exchange,
followed by a bitstring of encrypted data with the corresponding symmetric key. The portion of encrypted data
constitutes 584 bytes that can be reused to encode steganographic data in our system.

5.2.3 Setting R3C3 Parameters

We have downloaded a snapshot of the Zcash blockchain that contains blocks 0 to 277, 000, containing a total
of 2, 314, 139 transactions (including the coinbase transactions). These transactions have been carried out since
the inception of Zcash until the time of writing. From these datasets, we have studied the following parameters.

First, we extracted the number of shielded and unshielded outputs used in Zcash transactions. We obtain
that 8.1% of outputs are shielded while the rest are unshielded. Although, small yet, this observation shows that
shielded addresses have started to be used and as of the time of this study, more than 165 thousand shielded
transactions have been made (that is, more than 8% of the total). Therefore, we use shielded addresses in the
design of R3C3 in Zerocash to exploit the potential of privacy-preserving transactions.

Second, we study the number of new coins that are created at each shielded output and we observe that
there exist two new coins per output, and therefore two pairs of (com, ct) at all the shielded outputs. Third, we
study the distribution of additional unshielded input/outputs in Zcash shielded transactions. We observe from
Figure 8, that around 90% of shielded Zcash transactions also included one unshielded input and that around
10% include one additional unshielded output.

Finally, we observe that in the Zcash implementation, shielded outputs in a minting transaction are formatted

Inputs Outputs

scriptPubKey0, x ZEC (x, k, s, com)

scriptSig0

Inputs Outputs

scriptPubKey0,
x0 ZEC

scriptPubKey1, x1 ZEC

(rt, snold, comnew
1 , ct1, com

new
2 , ct2, h, vk

∗, σ∗,Πpour)

scriptSig0

Figure 7: Illustrative example of minting (left) and pouring (right) transaction in Zerocash.

18

tx1
Inputs Outputs

scriptPubKey1(H(vku)), x ZEC (rt, snold, comnew
1 , ct[0 : 583], comnew

2 , ct[584 : 1167], h, vk′, σ,Πpour)
scriptPubKey2(H(vkp)), xy ZEC

scriptSig(tx, sku, vku)

tx2
Inputs Outputs

scriptPubKey(H(vkp)), x∗ ZEC (rt, snold
1 , comnew

3 , ct[0 : 583], comnew
4 , ct[584 : 1167], h′, vk′′, σ′,Π′pour)

scriptSig(tx2, skp, vkp)

Table 3: Example of covertexts produced by TxEncodef (top) and TxEncodeb (bottom) algorithms for Zerocash.

identically to shielded outputs in pouring transactions to make them indistinguishable from each other. In
summary, most Zcash shielded transactions contain one additional unshielded input and possibly an additional
unshielded output. We use this conclusion in the construction of R3C3 for Zerocash.

5.2.4 Implementation Encoding Scheme in Zcash

Next, we describe our instantiation of the encoding scheme in Zcash, following the guidelines mentioned in the
previous section.

Notation. We denote by the terms ZC.KeyGen, ZC.Sign, ZC.Verify the three algorithms for the Ed25519 digital
signature scheme as implemented in Zerocash. We denote by Extract an extraction function working as follows:
Extract(scriptPubKey(x)) = x as well as Extract(scriptSig(tx, sk, vk)) = vk. Additionally, on input a field f
and a transaction tx, it returns the value of the field f if present in the shielded output of the transaction tx.

{ctx,⊥} ← TxEncodef (cd, ca). Parse vku,H(vkp), ct ← cd and sku ← ca. If |ct| > 1168 bytes, return ⊥.
Otherwise, create a Zcash transaction tx1 as shown in Table 3 and return tx1. Here, we assume that vku has
been funded earlier with x ZEC and that there exists an old coin with a value xold, previously funded in a
shielded output, whose serial number is snold.

The pair (comnew
1 , ctnew1) is set to an honest shielded coin for the censored user to get the remaining coins

back. Therefore, comnew
1 is wellformed committing to a coin with value x+xold−xy. However, as the censored

user is sending coins to herself, ct1 is not required and can be used to encode ct[0 : 583]. Moreover, we include
the public key vkp encoded in scriptPubKey2 similar to what has been defined in the encoding for Bitcoin.
The value xy must be enough to pay for the transaction fee. Finally, the pair (comnew

2 , ct2) is used to encode
the rest of the ciphertext ct. For that, comnew

2 is set to a commitment for a coin with value x = 0 and set
ctnew2 := ct[584 : 1167]. If |ct| < 1168 bytes, ct is padded with pseudorandom bytes. Finally, a fresh key pair
vk′, sk′ ← ZC.KeyGen(λ) is generated and used for the signature σ and the hash h of the shielded output.

{rtx,⊥} ← TxEncodeb(rd, ra). Parse ct, vkp ← rd and skp ← ra. If |ct| > 1168 bytes, return ⊥. Otherwise,
create a transaction tx2 as shown in Table 3 and return tx2.

This transaction spends the coins on vkp previously funded by the censored user in tx1. As before, the pair
(comnew

3 , ct3) and (comnew
4 , ct4) are used for encoding the ciphertext ct as follows. First, comnew

3 and comnew
4

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 tr

an
sa

ct
io

ns

number of inputs/outputs

inputs
outputs

Figure 8: Distribution of the unshielded inputs and outputs for Zcash shielded transactions.

19

are two commitment to two different coins, both with value x = 0. Then ct3 and ct4 are set to ct[0 : 583] and
ct[584 : 1167] respectively. If |ct| < 1168 bytes, ct is padded with pseudorandom bytes. Finally, a fresh pair
vk′′, sk′′ ← ZC.DeriveKey(λ) is used for the signature σ′ and the hash h′ of the shielded output.

{cd,⊥} ← TxDecodef (ctx). If ctx does not have an unshielded input, an unshielded output and a shielded
output, return ⊥. Otherwise, Compute ct[0 : 583] ← Extract(ctx, ct1), ct[584 : 1167] ← Extract(ctx, ct2),
H(vkp) ← Extract(scriptPubKey(H(vkp))) and vku ← Extract(scriptSig(tx, sku, vku)). Finally, return cd :=
(vku, H(vkp), ct).

{rd,⊥} ← TxDecodeb(rtx). If rtx does not have an unshielded input and a shielded output, return ⊥.
Otherwise, compute ct[0 : 583] ← Extract(rtx, ct3) and ct[584 : 1167] ← Extract(rtx, ct4). Extract vkp ←
Extract(scriptSig(rtx, skp, vkp)). Finally, return rd := (ct, vkp).

Theorem 6 (Zerocash Encoding Scheme Correctness). The Zerocash encoding scheme is correct according
to Definition 5.

Proof. We start by showing that condition 1 holds. In particular, given ctx ← TxEncodef (cd, ca) we need to
show that TxDecodef (ctx) return cd∗ such that cd = cd∗.

By the correctness of Extract function ct[0 : 583]∗ = ct[0 : 583], ct[584 : 1167]∗ = ct[584 : 1167] ,vk∗u = vku
and H(vk∗p) = H(vkp). Moreover, as H is collision-resistant, vk∗p = vkp. If TxDecodef does not return ⊥, this
proves that both functionalities are correct. Now we show that TxDecodef does not return ⊥.

Since TxEncodef has not returned ⊥ it means that |ct| is exactly 1168 bytes (after padding) and sufficient
fund has been associated to the accounts. Upon receiving a transaction, TxDecodef checks to have an unshielded
input and shielded output, along the fee associated to the unshielded output. tx1 has exactly one unshielded
input and a shielded output, along with sufficient funds in the unshielded output, therefore TxDecodef will not
return ⊥.

The condition 2 holds following similar arguments. This concludes the proof.

5.2.5 System Discussion

Cost. R3C3 (ZEC) requires to pay only two transaction fees. The rest of the coins are sent back to the censored
user using the shielded coins. The price of the transaction fee is 0.0001 ZEC (0.03 USD).

Undetectability. The random bitstrings are included in the part of the ciphertexts reserved for the output
of a symmetric key encryption algorithm. Moreover, we fit the censored user’s verification key and the shared
public key for the pre-payment within the slot reserved for a public key in the scriptSig.

Usage Pattern. R3C3 over Zerocash uses a transaction pattern that is followed by around 10% of the current
transactions. Moreover, as values are hidden within the shielded address, the values cannot be used by the
censor to distinguish between covertext and other transactions.

Harvesting-Resistance. An adversary must pay for each protocol execution. Therefore, the adversary
harvesting capability is bounded by the number of coins that he possesses.

Efficiency. The decoder has to read all the transactions in the blockchain until it finds a transaction ctx such
that SBDecodef (ctx) does not return ⊥. This is, however, inevitable. The censored user only has to look for
the transaction rtx that spends the coins associated to the public key vkp.

Compatibility. R3C3 (ZEC) uses two transactions following the format defined in the Zerocash protocol.
Therefore, R3C3 (ZEC) preserves compatibility. In fact, we have prototyped the complete R3C3 (ZEC) as we
describe in Section 7.

Bandwidth. R3C3 (ZEC) uses the ciphertext cti of a Zcash transaction, encoding 1168 bytes for the challenge
and response covertexts.

5.3 Encoding Scheme in Monero

5.3.1 Addresses and Transactions

A Monero address is of the form (A,B), where A and B are two points of the curve ed25519, as defined in
Monero. In order to avoid the linkability of different transactions that use the same public key, a payer does not
send the coins to the Monero address of the payee. Instead, the payer derives a one-time key verification key

20

Inputs Outputs
({vki}, {Com(xi, ri)}, {Πi}) ((vk′1,R

′
1),Com(x′1, r

′
1),Π′1)

((vk′2,R
′
2),Com(x′2, r

′
2),Π′2)

σring

Figure 9: Illustrative example of a Monero transaction.

vk and an extra random point R, from the payee’s address using the Monero Stealth Address mechanism [70].
Given an arbitrary pair (vk′, R′) set as an output in the blockchain, a payee can use her Monero address to
figure out whether the pair (vk′, R′) was intended for her and, if so, compute the signing key sk′ associated to
vk′. We refer the reader to [70] for further reading about the stealth addresses mechanism.

The Monero coins are transferred by means of a Monero transaction. As in Bitcoin, a Monero trans-
action is divided in inputs and outputs. However, in contrast to Bitcoin, an input consists of a tuple
({vki}, {Com(xi, ri)}, {Πi}), where {vki} denotes a ring of one-time keys that have previously appeared in
the blockchain, each Com(xi, ri) denotes a cryptographic commitment of the amount of coins xi locked in the
corresponding public key vki, and each Πi denotes a zero-knowledge range proof proving that xi is in the range
[0 : 2k], where k is a constant defined in the Monero protocol.

An output consists of a tuple ((vk′,R′), Com(x′, r′), Π′), where each element is defined as aforementioned.
Finally, a transaction contains a signature σring, created following the linkable ring signature scheme defined
in Monero [69]. A Monero transaction is valid if the following conditions hold. First, σring demonstrates that
the transaction sender knows the signing key sk∗ associated to a verification key within the set {vki} and such
verification key has not been spent before.

Second, let x∗ be the amount of coins encoded in the input commitment corresponding to the one-time key
being spent. Then it must hold that x∗ equals the sum of the output values. Finally, all zero-knowledge range
proofs correctly verify that all amounts are within the expected range. An illustrative example of a Monero
transaction with one input and two outputs is depicted in Figure 9.

5.3.2 Linkable Ring Signature Scheme

In the following, we describe the linkable ring signature scheme as implemented in Monero as it becomes crucial
for our approach of encoding a covertext within a Monero transaction.

Let λ be the security parameter, and let Zp be a group of primer order p. Moreover, let G be a cyclic group
generated by the generator g as defined in the Monero protocol. Then, a linkable ring signature scheme is a
tuple of algorithms (LRS.KeyGen, LRS.Sign, LRS.Verify) defined as below:

• vk, sk← LRS.KeyGen(λ): Sample sk←$ Zp. Compute vk := gsk. Return vk, sk.

• σ ← LRS.Sign((vk1, . . . , vkn−1, vkn), skn,m): Sample r ←$ Zp. Compute I := skn · H(vkn) and h0 ←
H(m||gr||H(vkn)r). Then, sample s1, . . . sn−1 ←$ Zn−1p and compute the following series:

h1 := H(m||gs1 · vkh0
1 ||H(vk1)s1 · Ih0)

h2 := H(m||gs2 · vkh1
2 ||H(vk2)s2 · Ih1)

...

hn−1 := H(m||gsn−1 · vk
hn−2

n−1 ||H(vkn−1)sn−1 · Ihn−2)

Now, solve s0 such that H(m||gs0 · vkhn−1
n ||H(vkn)s0 · Ihn−1 = h0. For that, solve gsn−1 · vk

hn−2

n−1 = gr, getting
that s0 = r − hn−1 · skn. Finally, output σ := (s0, s1, . . . , sn−1, h0, I).

• {>,⊥} ← LRS.Verify((vk1, . . . , vkn),m, σ): Parse

(s0, s1, . . . , sn−1, h0, I)← σ

21

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 1 2 3 4 5 6 7 8 9 10

fr
ac

ti
o

n
 o

f
tr

an
sa

ct
io

n
s�

�
�

number of inputs/outputs���

inputs
outputs

Figure 10: Distribution of inputs and outputs in Monero transactions.

and compute the series:

h1 := H(m||gs1 · vkh0
1 ||H(vk1)s1 · Ih0)

h2 := H(m||gs2 · vkh1
2 ||H(vk2)s2 · Ih1)

...

hn−1 := H(m||gsn−1 · vk
hn−2

n−1 ||H(vkn−1)sn−1 · Ihn−2)

hn := H(m||gs0 · vkhn−1
n ||H(vkn)s0 · Ihn−1

Return > if h0 = hn. Otherwise, return ⊥.

5.3.3 Possibilities for Encoding Data

As the information included in an input tuple must previously exist in the blockchain, we cannot modify them.
Our approach consists then in crafting an output tuple that encodes certain amount of data while maintaining
the invariants for the validity of the transaction. In particular, our insight is that if a user uses a Monero
transaction to transfer coins to herself, she does not need to create the pair (vk,R) from her own address (A,B),
using the stealth addresses mechanism. Instead, she can simply create a fresh vk and use the point R to encode
data. However, the commitment and the range proof must be computed honestly, as otherwise transaction
verification fails and the transaction does not get added to the blockchain. This allows to encode 32 bytes
instead of the R point.

Further, we can encode extra data within the signature. In particular, we observe that the LRS.Sign algorithm
samples n − 1 random values from Zp. Our insight is that instead of sampling random numbers, we can use
the corresponding bytes from a ciphertexts as random numbers. As values s1, . . . , sn−1 are included in the
signature, and therefore in the transaction, they allow to increase the bandwidth. Currently, the Monero
protocol establishes that the rings must be composed of 5 public keys and therefore 4 random numbers can be
used to encode data.

5.3.4 Setting R3C3 parameters

The construction previously sketched allows to encode one key in one output as well as 4 random points per
signature. However, it is interesting to study the transaction pattern in the Monero blockchain to see what
transaction format is actually used by Monero users and how to exploit it to encode data.

Towards this goal, we have downloaded a snapshot of the Monero blockchain that contains blocks 0 to
1, 500, 000, containing a total of 2, 376, 896 Monero transactions. These transactions have thereby been per-
formed since the inception of Monero until the time of writing. From this dataset, we have extracted the
distribution on the number of inputs and outputs used by each transaction, obtaining the results depicted
in Figure 10. From this results, we conclude that R3C3 should be based on transactions with one or two inputs
and two outputs. As a transaction contains as many signatures as inputs, we opt for transactions with two
inputs and two outputs.

22

5.3.5 Implementation of the Encoding Scheme in Monero

In this section, we describe our instantiation of the encoding scheme in Monero, following the guidelines men-
tioned in the previous section.

Notation. Here, we denote by LRS.KeyGen, LRS.Sign and LRS.Verify the key generation, signature and verifi-
cation algorithms of the linkable ring signature scheme implemented in Monero (see Section 5.3.2).

{ctx,⊥} ← TxEncodef (cd, ca). Parse vku, vkp, ct ← cd 4 and parse sku ← ca. If |ct| > 256 bytes, return ⊥.
Otherwise, create a Monero transaction tx1 as described below. Return tx1. The ciphertext ct is split in chunks
of 32 bytes and each chunck is included as a value si in the signature. Here we assume that the input keys have
been funded earlier with x′1 + x′2 XMR Additionally, we assume that ct has been padded with pseudorandom
bytes so that |ct| = 256 bytes.

tx1
Inputs Outputs

({vki1}, {Com(xi1, r
i
1)}, {Πi

1}) ((vku,R
′
1),Com(x′1, r

′
1),Π′1)

({vki2}, {Com(xi2, r
i
2)}, {Πi

2}) ((vkp,R
′
2),Com(x′2, r

′
2),Π′2)

σring := (s0, s1, . . . , sn−1, h0, I)
σ′ring := (s′0, s

′
1, . . . , s

′
n−1, h

′
0, I ′)

{rtx,⊥} ← TxEncodeb(rd, ra). Parse ct, vkp ← rd and parse skp,← ra. If |ct| > 256 bytes, return ⊥.
Otherwise, create a Bitcoin transaction tx2 as described below. Return tx2.

As before, here we assume that ct has been padded with pseudorandom bytes so that |ct| = 256 bytes.

tx2
Inputs Outputs

({vki1} ∪ vkp, {Com(xi1, r
i
1)}, {Πi

1}) ((vk′1,R
′
1),Com(x′1, r

′
1),Π′1)

({vki2}, {Com(xi2, r
i
2)}, {Πi

2}) ((vk′2,R
′
2),Com(x′2, r

′
2),Π′2)

σring := (s0, s1, . . . , sn−1, h0, I)
σ′ring := (s′0, s

′
1, . . . , s

′
n−1, h

′
0, I ′)

{cd,⊥} ← TxDecodef (ctx). If ctx does not have two inputs and two outputs, return ⊥. Otherwise, extract
the ciphertext ct by concatenating the values in the signature, and the pair vku, vkp from each of the outputs. If
vkp does not have at least 0.02 XMR associated coins, return ⊥. Otherwise, return the tuple cd := (vku, vkp, ct).

{rd,⊥} ← TxDecodeb(rtx). If rtx does not have two inputs and two outputs, return ⊥. Otherwise, extract
the ciphertext ct from the values included in the signature and extract vkp from the input ring. Finally, return
the tuple rd := (vkp, ct).5

Theorem 7 (Monero Encoding Scheme Correctness). The Monero encoding scheme is correct according to Def-
inition 5.

Proof. We start by showing that condition 1 holds. In particular, given ctx ← TxEncodef (cd, ca) we need to
show that TxDecodef (ctx) return cd∗ such that cd = cd∗.

By the correctness of Extract function s∗i = si,vk∗u = vku and vk∗p = vkp. If TxDecodef does not return ⊥,
this proves that both functionalities are correct. Now we show that TxDecodef does not return ⊥.

Since TxEncodef has not returned ⊥ it means that |ct| is exactly 256 bytes (after padding) and sufficient
fund has been associated to the accounts. Upon receiving a transaction, TxDecodef checks the number of inputs
and outputs. tx1 has exactly one input and two outputs, therefore TxDecodef will not return ⊥.

The condition 2 holds following similar arguments. This concludes the proof.

4Using Monero as rendezvous requires that the argument H(vkp) to be vkp,however, the required changes are trivial and do not
compromise any of the security properties.

5For ease of exposition, we assume that it is possible to guess where vkp is situated within the keys conforming the ring. In
practice, TxDecodeb returns the complete ring and the calling algorithm SBDecodeb checks each key individually looking for vkp.

23

Field Receiver Amount Fee Signature Data

Value H(vk2) x ETH γ ETH σ(sk1), vk1 0xfe. . .

Figure 11: Illustrative example of Ethereum transaction. The sender address is derived as the H(Ver. Key), in
this case H(vk1). Note, irrelevant fields have been omitted.

5.3.6 Discussion

Cost. R3C3 (XMR) requires to pay two transaction fees. This cost can be paid by the censored user by directly
paying the fee for the first transaction and by including enough coins in vkp so that the decoder can pay from
there the transaction fee for the second transaction. On average the censored user needs to pay 0.003 XMR

(0.77 USD) [14] for both of the transactions.

Undetectability. The verification key vk from censored user and decoder are included in a field where a
verification key is expected and the ct bytes are encoded as values that must be drawn uniformly at random for
the signature scheme to be secure.

Usage Pattern. Each transaction used in R3C3 (XMR) is structurally identical to more than 33% of the
transactions included in the Monero blockchain.

Harvesting-Resistance. By construction of R3C3 (XMR), the censored user funds the address represented by
vkp in the protocol and whose private key is known by the decoder only. Therefore, the decoder can use the
coins at vkp to send the rtx to the censored user without investing any of its coins. If such address is not funded,
the decoder aborts the protocol.

Efficiency. The decoder has to read all the transactions in the blockchain until it finds a transaction ctx such
that SBDecodef (ctx) does not return ⊥. This is, however, inevitable. The censored user only has to look for
the transaction rtx where vkp is included in one of the rings in the input part of the transaction.

Compatibility. R3C3 (XMR) uses two transactions following the format defined in the Monero protocol.
Therefore, R3C3 (BTC) preserves compatibility.

Bandwidth. R3C3 (XMR) uses four si values in each of the two signatures, where each si value is 32 bytes,
provides a total of 256 bytes of bandwidth. Usage of more public keys in the ring signature will provide more
bandwidth, however, this diverges from the most common pattern.

5.4 Encoding Scheme in Ethereum

5.4.1 Addresses and Transactions

Similar to Bitcoin, an Ethereum address is composed of a pair of verification and signing ECDSA keys. The
address is then represented by the hash of the verification key. Each transaction is associated with a signature
field, composed of 32 bytes of signature using the signing key of the senderσ(sk1), along with a 32 bytes of
the verification key vk1. There are two main differences with Bitcoin addresses. First, there exist two types of
addresses: external addresses and contracts. An external address holds a certain amount of ETH, the Ethereum
native coin. A contract has associated a piece of software that implements a certain business logic. Second,
there exist two types of transactions, defined by the type of address included in the receiver field.

If the receiver field is an external address, the transaction transfers ETH between addresses. For instance,
the illustrative transaction example in Figure 11 deduces x ETH from the sender’s balance H(vk1) and includes
them to the receiver’s balance H(vk2). The data field is then filled by the sender to include the description of
the payment. Note that, unlike Bitcoin and Zerocash, addresses in Ethereum can be used multiple times.

The second type of transaction appears when the receiver is set to a contract address. For instance, if H(vk2)
is a contract address, the transaction illustrated in Figure 11 is used by the owner of H(vk1) to invoke the
smart contract associated to H(vk2). The amount field includes then the number of ETH to be deduced from the
sender’s address, paying thereby for the fee associated to running the contract. Finally, the data field includes
the input to the function defined in the smart contract.

24

 1x106

 1x107

 1x108

 1x109

0 800
1600

2400
3200

4000
4800

5126

 1000

 10000

 100000

 1x106

 1x107

n
u

m
b

er
 o

f
tr

an
sa

ct
io

n
s�

�
�

n
u

m
b

er
 o

f
co

n
tr

ac
ts

�
�

�

block number (in thousands)���

transactions
contracts

Figure 12: Number of transactions and contracts created at each block height. Block heights are shown as a
multiple of thousand.

Contract Name Contract Address Number of Transactions

Etherdelta 2 0x8d12a197cb00d4747a1fe03395095ce2a5cc6819 8, 660, 074
BinanceWallet 0x3f5ce5fbfe3e9af3971dd833d26ba9b5c936f0be 1, 850, 473
CryptoKitties 0x06012c8cf97BEaD5deAe237070F9587f8E7A266d 1, 645, 667

Poloniex 2 0x209c4784AB1E8183Cf58cA33cb740efbF3FC18EF 1, 612, 733
EOSToken 0x86fa049857e0209aa7d9e616f7eb3b3b78ecfdb0 1, 558, 325

Table 4: Top five most used contracts in the Ethereum blockchain. They can be verified and examined in
https://etherscan.io

5.4.2 Possibilities for Encoding Data

Similar to Bitcoin in Section 5.1, we can use ETH transfer transactions to encode 20 bytes of data in the receiver
field given that external addresses are defined using the same script language as in Bitcoin. However, this
encoding implies the loss of sent coins as it is not feasible to come up with a private key corresponding to the
encoded data in the receiver field. Although useful and feasible in practice, we omit this possibility here in favor
of exploring new alternative communication channels.

The contract invocation transaction can be exploited to encode information within the data field. This field
is mostly used in transactions that are invoking a contract method or in the case of contract creation. In those
cases, it contains the input data for the invoked contract or recently created contract.

5.4.3 Setting R3C3 parameters

We have downloaded a snapshot of the Ethereum blockchain that contains blocks 0 to 5126000, containing a total
of 165, 912, 123 Ethereum transactions. These transactions have thereby been performed since the inception of
Ethereum until the time of writing.

From this dataset, we have first extracted the transactions that create a contract and from them, the list of
contracts created in Ethereum. As shown in Figure 12, we see that more than 1, 386, 985 contracts have been
created in the Ethereum blockchain. Moreover, the growth rate of contract creation is similar to the growth rate
of transactions. Therefore, contract creation is a potential possibility for encoding data to send to the decoder
that we leave to explore as future work.

Instead, in this work we focus on another crucial use of data field other than contract creation, and that is
the method invocation of an already deployed contract. We have extracted the transactions invoking contracts
already created. Table 4 shows the top five most used contracts within Ethereum along with their addresses
and number of transactions made to them. Among them, the contract Etherdelta 2 is the most invoked ever
with around 8.6 million transactions invoking it at the time of writing.

Therefore, we conclude that we can use the data field of a transaction invoking the Etherdelta 2 contract
to encode our data. Nevertheless, the approach described here can be easily extended if any other contract is
invoked. Etherdelta 2 is a contract deployed by a decentralized trading platform that exchanges different types
of coins. Source code of this contract is available in [9, 16]. Inspecting such code, there exist multiple methods
that can be used to encode the data. For instance, the testTrade method checks whether a trade between two

25

https://etherscan.io

different addresses can take place. The outcome of the method is reduced, either true or false, resulting in
minimum suspicious for the censor compared to other methods with richer outcomes.

The signature of this method is as follow:

f unc t i on testTrade (address tokenGet ,
u int amountGet , address tokenGive , u int amountGive ,
u int exp i r e s , i n t nonce , address user , u int8 v ,
bytes32 r , bytes32 s , u int amount , address sender)

Each of the addresses are 160 bits and the uint values are 256 bits. To minimize the censorship capabilities
from the censor, one can use valid addresses of Tokens, users and signatures. However, one can still encode data
in the amountGet, amountGive, expires, amount field, resulting in a maximum of 1024 bits. In order to encode
data so that it simulates realistic amounts, we encode 32 bits in each field and simulate floating point numbers.
We thereby get a total bandwidth of 16 bytes by reusing these four fields to encode data. Although it may not
be much bandwidth, it is enough to bootstrap the censored user.

5.4.4 Implementation of the Encoding Scheme in Ethereum

In this section, we describe our implementation of the encoding scheme in Ethereum following the guidelines
mentioned in the previous section. For readability, we highlight the encoded fields in blue.

Notation. We denote by ECDSA.KeyGen, ECDSA.Sign, ECDSA.Verify the three algorithms for the ECDSA
digital signature scheme as implemented in Ethereum. We denote H(vk) by address(vk). We denote by
Extract(tx, tag) a function that returns the value of the field tag included in tx, e.g. Extract(tx,Receiver) = H(vk2).

{ctx,⊥} ← TxEncodef (cd, ca). Parse vku,H(vkp), ct ← cd and sku ← ca. If |ct| > 16 bytes, return ⊥.
Otherwise, first create an Ethereum transaction tx0 to fund the one-time key vkp with x ETH as described below.
The minimum value of x is 0.0003 ETH, which is equivalent to one transaction fee.

tx0 (Fund one-time key)
Field Receiver Amount Fee Signature Data

Value H(vkp) x ETH γ ETH σ(sku), vku —

Next, create an Ethereum transaction tx1. Split the ciphertext ct is in chunks of 4 bytes. Each chunck
is included as a value vi in the low bit order of the amountGet, amountGive, expires, amount fields. Rest of
the fields are not changed and will contain proper addresses and values as explained earlier. Additionally, we
assume that ct has been padded with pseudorandom bytes so that |ct| = 16 bytes. H(vke) denotes the address of
the Etherdelta 2 contract. The value is set to zero and the only cost will be the transaction fee. Finally return
tx0||tx1.

tx1
Field Receiver Amount Fee Signature Data

Value H(vke) 0 γ ETH σ(sku), vku v1, v2, v3, v4

{rtx,⊥} ← TxEncodeb(rd, ra). Parse ct, vkp ← rd and skp ← ra. If |ct| > 16 bytes, return ⊥. Otherwise,
create an Ethereum transaction tx2 as described below. Return tx2.

As before, here we assume that ct has been padded with pseudorandom bytes so that |ct| = 16 bytes.

tx2
Field Receiver Amount Fee Signature Data

Value H(vke) 0 γ ETH σ(skp), vkp v1, v2, v3, v4

{cd,⊥} ← TxDecodef (ctx). Parse tx0||tx1 ← ctx. If tx1 does not have H(vke) as the receiver, return ⊥. Oth-
erwise, extract the ciphertext ct by concatenating the values of the amountGet, amountGive, expires, amount
fields as contained in data ← Extract(tx1, data). Compute σ(sku), vku ← Extract(tx1, signature). Compute
H(vkp)← Extract(tx0, receiver). If H(vkp) does not have at least 0.0003 ETH associated coins, return ⊥. Other-
wise, return the tuple cd := (vku,H(vkp), ct).

26

{rd,⊥} ← TxDecodeb(rtx). If rtx does not have H(vke) as the receiver and vkp as the verification key, return
⊥. Otherwise, extract the ciphertext ct by concatenating the values of the amountGet, amountGive, expires,
amount fields as contained in data← Extract(tx2, data). Compute σ(skp), vkp ← Extract(tx2, signature). Return
the tuple rd := (vkp, ct).

Theorem 8 (Ethereum Encoding Scheme Correctness). The Ethereum encoding scheme is correct according
to Definition 5.

Proof. We start by showing that condition 1 holds. In particular, given ctx ← TxEncodef (cd, ca) we need to
show that TxDecodef (ctx) return cd∗ such that cd = cd∗.

By the correctness of Extract function ct∗ = ct, vk∗u = vku and H(vk∗p) = H(vkp). Moreover, as H is collision-
resistant, vk∗p = vkp. If TxDecodef does not return ⊥, this proves that both functionalities are correct. Now we
show that TxDecodef does not return ⊥.

Since TxEncodef has not returned ⊥ it means that |ct| is exactly 16 bytes (after padding) and sufficient fund
has been associated to the accounts. Upon receiving tx0||tx1, TxDecodef checks the recipient of the transaction
tx1 to be H(vke). tx1, along with sufficient funds in address H(vkp), therefore TxDecodef will not return ⊥.

The condition 2 holds following similar arguments. This concludes the proof.

5.4.5 System Discussion

Cost. R3C3 (ETH) requires to pay three transaction fees. The first transaction tx0 is funded by the censored
user with the value of one transaction fee γ (0.0003 ETH) [10], to be used in tx2. To create tx0 and tx1, censored
user needs to pay two transaction fees. Therefore, the total cost will be three transaction fees. Two for the
challenge and one for the response.

Undetectability. The verification key vk is included in a field where a ECDSA verification key is expected
and the ct bytes are encoded as the low order 32 bits in each field of the uint256 to simulate realistic amounts.
Any amount in the low order 32 bits of the fields is likely and will not raise any suspicious to the censor.

Usage Pattern. Each transaction used in R3C3 (ETH) is sent to the most used contract within Ethereum
namely ehterdelta 2. More than 8 million transactions have been made to this contract within the last year. The
same technique explained in this work can be applied to similar contracts mentioned in Table 4. Just looking
at the top 10 most used contracts we see that five of them are contracts created by exchanges. In total they
have more than 15 million transactions. Therefore, transactions resulting from our technique blend in with at
least 8% of all transactions in Ethereum.

Harvesting-Resistance. By construction of R3C3 (ETH), the censored user funds the address represented by
vkp in the protocol and whose private key is known by the decoder as well. Therefore, the decoder can use the
coins at vkp to send a covertext to the censored user without investing any of its coins. If such address is not
funded, the decoder aborts the protocol.

Efficiency. The decoder has to read all the transactions in the blockchain until it finds a ctx, consisting of a
pair of transactions tx0 and tx1, such that SBDecodef (ctx) does not return ⊥. This results in O(n2) possibilities.
However, this can be improved in practice. The decoder can scan through all the transactions, namely tx1, and
extracts the sender vku of the transaction. Then, checks all the transactions that were sent by vku within a
time frame and considers each to be tx0. For a normal user, the number of such tx0 transactions are constant.
Resulting in a O(n) runtime.

Furthermore, the censored user only has to look for the transaction rtx where coins associated to vkp are
spent as this is the only transaction where the decoder might have added the expected response data rd.

Compatibility. R3C3 (ETH) uses three transactions following the format defined in the Ethereum protocol.
Therefore, R3C3 (ETH) preserves compatibility.

Bandwidth. R3C3 (ETH) In the chosen contract the censored user can use up to 1024 bits (four fields of 256
bits), however, to simulate realistic amounts to not raise the suspicion of the censor we use 32 bits of each field
resulting 16 bytes in total.

27

6 Mining-Based Encoding

In this section, we focus on how a censored user and a decoder performing the miner functionality can use the
structure of a block of transactions to convey information to the uncensored area.

Possibilities for Encoding Data. A miner creates the new blocks to be added to the blockchain. A block
contains a set of transactions submitted by the blockchain users. In principle, the miner can decide on its own
how to arrange the transactions within the block, except for the coinbase transaction, that must always be
the first. Therefore, our insight is that the miner can arrange the transactions in such a manner that conveys
information for the decoder.

Setting R3C3 parameters. We have studied the average number of transactions per block for different
cryptocurrencies in Table 5. On average, Bitcoin uses the most number of transactions per block, followed
by Ethereum. However, Bitcoin has the lowest block creation rate. Ethereum has the fastest block creation,
followed by Zcash. While Ethereum provides 68 bytes per minute compared, Bitcoin provides 57 bytes per
minute.

Implementation of the Encoding Scheme using Blocks. We denote by tx’ ← Π(k, tx) a permutation
function that takes as input a list of transactions sorted lexicographically tx and a permutation key k, and
returns a permuted list of the transactions tx’. Similarly, we denote by k ← GetPerm(tx, tx’) an algorithm that
on input a list of transactions and its permutation, returns the key k used for the permutation. We observe that
both of these operations can be performed efficiently in practice [1]. For simplicity, we denote by tx(vk, vk′,x) a
transaction that sends x coins from vk to vk′. In practice, we use this transaction to pay for the service provided
by the decoder. The details of this transaction depend on the cryptocurrency used. Finally, we assume that the
mechanism provides β bytes of bandwidth.

{ctx,⊥} ← TxEncodef (cd, ca). Parse vku,H(vkp), ct ← cd and sku ← ca. If |ct| > β bytes, return ⊥.
Otherwise, create a block that contains the set of transactions tx’ ∪ tx(vku, vkp,x), where tx’ := Π(ct, tx).
Finally, publish the block.

{rtx,⊥} ← TxEncodeb(rd, ra). Parse ct, vkp ← rd and skp ← ra. If |ct| > β bytes, return ⊥. Otherwise,
create a block that contains the set of transactions tx’ ∪ tx(vkp, vk′,x), where tx’ := Π(ct, tx). Finally, publish
the block. Here vk′ is a change address to recover the coins spent from vkp.

{cd,⊥} ← TxDecodef (ctx). If ctx is not a block of transactions, return ⊥. Otherwise, compute
ct ← GetPerm(tx, tx’). Moreover, extract vku and H(vkp) from the extra transaction in the block of the
form tx(vku, vkp,x). If x is not enough to pay for a transaction fee, return ⊥. Otherwise, return the tuple
cd := (vku,H(vkp), ct).

{rd,⊥} ← TxDecodeb(rtx). If ctx is not a block of transactions, return ⊥. Otherwise, compute ct ←
GetPerm(tx, tx’). Moreover, extract vkp from the extra transaction in the block of the form tx(vkp, vk′,x).
Finally, return the tuple cd := (vkp, ct).

Theorem 9 (Block based Encoding Scheme Correctness). The Miner encoding scheme is correct according
to Definition 5.

Proof. We start by showing that condition 1 holds. In particular, given ctx ← TxEncodef (cd, ca) we need to
show that TxDecodef (ctx) return cd∗ such that cd = cd∗.

By the correctness of Π and GetPerm function ct∗ = ct, vk∗u = vku and H(vk∗p) = H(vkp). Moreover, as H is
collision-resistant, vk∗p = vkp. If TxDecodef does not return ⊥, this proves that both functionalities are correct.
Now we show that TxDecodef does not return ⊥.

Cryptocurrency Tx per Block Bandwidth Block Time

Bitcoin 592 575 600
Zcash 9 2 150
Ethereum 33 16 14
Monero 3 3 bit 120

Table 5: Comparison of cryptocurrencies in terms of average number of transactions per block, bandwidth (in
bytes) provided per block and block creation rate (in seconds).

28

User Zcash-testnet Decoder

1)
2) 5)

4)

6)
7)
8)

3
9)

(I)

(II)

(IV)
(III)

Key derivation:
Encryption:
Send
Retrieve
Decryption:10)

Retrive
Key Derivation:
Decryption:
Encryption:
Send

Figure 13: Performance of the R3C3 protocol in the Zcash.

Since TxEncodef has not returned ⊥ it means that |ct| is less than β bytes and sufficient fund has been
associated to tx(vku, vkp,x). Upon receiving a block b, TxDecodef checks the last transaction tx(vku, vkp,x) to
have sufficient funds. Therefore TxDecodef will not return ⊥.

The condition 2 holds following similar arguments. This concludes the proof.

Cost. The proposed solution imposes a small cost to the censored user that is compensated by the block
creation reward. There is no const associated to the decoder. Undetectability. The transaction ordering

within a block is arbitrary and defined by the miner. Some blockchains require the miner to place a child
transaction after the parent transaction (output of parent transaction used as an input of the child transaction),
if such transactions exist in the same block. This may decrease the bandwidth slightly and further study has
to be done to investigate the frequency of such transactions in a block.

Harvesting-Resistance. In the block, censored user adds an extra transaction tx(vku, vkp,x), which is used
to pay for the fees and services that decoder faces for the response. If such a transaction is not present in the
block, then decoder refuses to respond.

Efficiency. Decoder retrieves all blocks in the blockchain until it finds a block of transactions ctx such that
SBDecodef (ctx) does not return ⊥. The censored user only has to look for the blocks of transaction rtx that
were created after the block ctx created by itself, where it includes a transaction from the sender vkp.

Compatibility. Each block creation used in R3C3 (MINER) is structurally identical to the other created blocks
as there is no specific guideline on how to arrange transactions in a block.

Bandwidth. We calculate the bandwidth of each block as bandwidth = log2(Ntx!), where Ntx is the number
of transactions in the block. Considering only one block, we see that Bitcoin provides the most bandwidth due
to having more transactions within its block. However, we have to consider the rate of block creation as well.
Although, Bitcoin has the most bandwidth for one block we need to consider the rate of block creation as well.
Considering a 10 minute time frame, miner can potentially (mining all the blocks) gain a bandwidth of 685
bytes in the Ethereum blockchain respectively as compared to 575 bytes in Bitcoin.

7 Implementation and Evaluation

We have developed a prototypical python implementation to show the feasibility of our system. The imple-
mentation encompasses the complete encoding and decoding operations. We use the Charm-Crypto library [5]
for the Diffie-Hellman key exchange and Cryptography [7] for the key derivation function. Given its higher
bandwidth, we use Zcash testnet as rendezvous and we interact with it using the Insight API [11] and Zcash
client [24].

7.1 Performance

We conducted our experiments on a machine with an Intel Core i7, 2.2 GHz processor and 16 GB RAM. For
our evaluation, we divide our experiments in two separated tasks: the cryptographic operations required in
the stego-bootstrapping scheme abstracting away the encoding scheme, and the instantiation of the encoding
scheme using Zcash. The results are shown in Figure 13.

29

Cryptographic Operations in Stego-Bootstrapping Scheme. We study the four algorithms composing
the stego-bootstrapping scheme. As shown in Figure 3, SBEncodef and SBDecodef require a key derivation
procedure. Figure 13 shows that the process of creating a fresh pair of keys and deriving a shared key and
symmetric key for encryption takes the censored user 95 milliseconds on average. After deriving the symmetric
key, it takes the censored user 150 microseconds on average to encrypt the challenge message.

Upon retrieving a block of transactions, the decoder considers each of the transactions at a time and performs
a key exchange to derive the shared and symmetric key in SBDecodef . After deriving the keys, decoder attempts
to decrypt the cipher within the transactions. If the tag τ is present in the decrypted cipher then it knows that
the transaction is from a censored user. The time of key derivation and decryption for each of the transactions
is on average 80 milliseconds and 30 microseconds respectively.

Then, for each of the transactions from the censored users, decoder performs the SBEncodeb function, using
the keys derived in SBDecodef (all the keys including the decryption and encryption ones are generated in
the SBEncodef and SBDecodef). The encryption of each response message takes on average 160 microseconds.
Lastly, the censored user performs SBDecodeb to decrypt the response message from the decoder, using the keys
derived in SBEncodef . This process takes on average 35 microseconds.

The decoder can parallelize the key derivation and decryption of each transaction. In particular, all the
transactions of a block can be decoded simultaneously if enough parallelization is available. Moreover, these
performance results apply to the other instantiations since they follow the same key derivation procedure and the
ciphertext length in all other instantiations is shorter than Zcash (and therefore it takes less time to encrypt and
decrypt). These results show that even a decoder running in a commodity machine can simultaneously decode
transactions from the different blockchain systems where R3C3 is used. This widens the possible anticensorship
channels available for censored users simultaneously and hinders the task of the censor.

Encoding Scheme Instantiated in Zcash. After the covertext is created, the censored user signs it and
sends it to the Zcash testnet. These operations are performed locally and take 8.3 minutes. The bottleneck is
the import of a fresh private key to the wallet using the Zcash client [24]. After further investigation, we notice
that the import of a fresh private key triggers a rescan of the entire blockchain and checks all the transactions
for the address associated with that private key. The censored user and decoder can benefit from a customized
wallet that does not perform such checks.

The decoder retrieves a block that contains n transactions. At this point, the decoder faces a similar
bottleneck as the censored user in the previous step. On average, it takes the decoder 8.1 minutes to get the
transaction from Insight API [11] and process it. We observe that after fresh keys have been imported, the
response transaction takes 1 second on average.

We note that the elapsed times to send and retrieve the challenge transactions are long. The reason is due
to the Zcash wallet [24] implementation for importing keys into the wallet. A better and more efficient imple-
mentation of the Zcash wallet can improve these times significantly. Additionally, part of the implementation
will be dominated by the time of publishing a transaction in the blockchain. In the case of Zcash, on average it
takes about 2.5 minutes to include a transaction in a block.

8 Related Work

The traditional censorship circumvention systems such such as VPNs [60, 63], Dynaweb [8], Ultrasurf [23],
Lantern [12], Tor [38, 39], and other [32, 40] benefit from establishing proxy servers outside of the censored
area. However, these systems are vulnerable to blockage. Censors actively scan and block the IP addresses
of the proxies. Circumvention systems respond with introducing new IP addresses. A prominent example of
such cat-and-mouse game is the Tor [39] and Great Firewall of China. Resulting in introducing mirrors [22],
bridges [20] and secret entry servers [21] in the Tor system. At the same time multiple attacks, such as active
probing and insider attacks have been proposed to discover the Tor bridges [4, 42, 55, 75, 77]. In recent years
domain fronting [13, 44] has been introduced, as a way to resist IP address filtering. However, due to the high
bandwidth and CPU usage it can be costly for the hosts [17]. To reduce the cost, we can benefit from the
use content delivery networks (CDNs) namely CDNBrowsing [48,81]. CDN’s disadvantage is the unblocking of
limited censored contents [81].

The most recent line of work in censor circumvention is decoy routing [27, 46, 52, 59, 78, 79]. Decoy routing,
unlike the typical end-to-end approach, it is an end-to-middle proxy with no IP address. The proxy is located
within the network infrastructure. Clients invoke the proxy by using public-key steganography to “tag” otherwise

30

ordinary sessions destined for uncensored websites. Message In A Bottle [56] follows a different anti-censorship
approach. Similar to our work, it is considered a bootstrapping mechanism where the communication medium
is the blog pings [74]. DEFIANCE [54] is an another bootstrapping mechanism that is proposed for finding Tor
bridges. It suggest use of proof-of-life and proof-of-work to make the task of censors harvesting all the bridges
harder. Our complementary work raises the bar for the censors by the inherent fees of cryptocurrencies.

All of these approaches are orthogonal to what we present in this paper. R3C3 exploits a new form of
communication channel that has been widely developed only recently. Therefore, we believe it can coexist with
current approaches and help augment the plethora of possibilities for anti-censorship.

9 Conclusions and Future Work

Despite the many academic and practical alternatives for censorship resistance, censorship remains today an
important problem that hinders numerous people from freely accessing and communicating information. In this
work, we explore the use of the widely deployed blockchain technologies as a communication channel in the
presence of a censor and we observe that the blockchain transactions enable multiple communication channels
offering interesting tradeoffs between bandwidth, costs and censorship resistance. Interestingly, we observe that
blockchain components other than transactions can also be used to construct communication channels. For
instance, we leverage the block creation process to build a communication channel.

However, in this work we are only scratching the tip of the iceberg. The different blockchain technologies are
in continuous development and new features are being added continuously. These additions may come with yet
unexplored possibilities to build a communication channel. For instance, the imminent deployment of off-chain
payment channels [37, 64] adds new locking mechanism to Bitcoin and the alike cryptocurrencies with extra
fields that can be used to encode extra covertext bytes. Therefore, we believe that this work sets the grounds
for future research works exploring the use of blockchain for censorship resistance communications.

Acknowledgements

We thank Tim Ruffing and Siddharth Gupta for their efforts with a preliminary manuscript associated with the
work. We thank Amir Houmansadr for encouraging suggestions on an early draft.

References

[1] Algorithm to generate all possible permutations of a list? https://stackoverflow.com/questions/2710713/

algorithm-to-generate-all-possible-permutations-of-a-list. (Accessed May, 2018).

[2] Base58Check encoding - Bitcoin Wiki. https://en.bitcoin.it/wiki/Base58Check_encoding#Encoding_a_

Bitcoin_address. (Accessed May, 2018).

[3] Bitcoin transaction fee estimator. https://estimatefee.com/. (Accessed May, 2018).

[4] Bridge Easily Detected by GFW. https://trac.torproject.org/projects/tor/ticket/4185. (Accessed May,
2018).

[5] Charm-crypto docs. https://jhuisi.github.io/charm/. (Accessed May, 2018).

[6] Cryptocurrency market capitalizations. https://coinmarketcap.com/. (Accessed May, 2018).

[7] Cryptography python library docs. https://cryptography.io. (Accessed May, 2018).

[8] Dynaweb. http://us.dongtaiwang.com/loc/download.en.php. (Accessed May, 2018).

[9] Etherdelta source code. https://etherscan.io/address/0x8d12a197cb00d4747a1fe03395095ce2a5cc6819#code.
(Accessed May, 2018).

[10] Ethereum transaction fee estimator. https://z.cash/download.html. (Accessed May, 2018).

[11] Insight: Zcash testnet explorer. https://explorer.testnet.z.cash/. (Accessed May, 2018).

[12] Lantern. https://getlantern.org. (Accessed May, 2018).

[13] meek pluggable transport. https://trac.torproject.org/projects/tor/wiki/doc/meek. (Accessed May, 2018).

[14] Monero transaction fee estimator. https://z.cash/download.html. (Accessed May, 2018).

[15] Psiphon. https://www.psiphon3.com/en/index.html. (Accessed May, 2018).

31

https://stackoverflow.com/questions/2710713/algorithm-to-generate-all-possible-permutations-of-a-list
https://stackoverflow.com/questions/2710713/algorithm-to-generate-all-possible-permutations-of-a-list
https://en.bitcoin.it/wiki/Base58Check_encoding#Encoding_a_Bitcoin_address
https://en.bitcoin.it/wiki/Base58Check_encoding#Encoding_a_Bitcoin_address
https://estimatefee.com/
https://trac.torproject.org/projects/tor/ticket/4185
https://jhuisi.github.io/charm/
https://coinmarketcap.com/
https://cryptography.io
http://us.dongtaiwang.com/loc/download.en.php
https://etherscan.io/address/0x8d12a197cb00d4747a1fe03395095ce2a5cc6819#code
https://z.cash/download.html
https://explorer.testnet.z.cash/
https://getlantern.org
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://z.cash/download.html
https://www.psiphon3.com/en/index.html

[16] Read methods of etherdelta contract. https://etherscan.io/address/0x8d12a197cb00d4747a1fe03395095ce2a5cc6819#
readContract. (Accessed May, 2018).

[17] Summary of meek’s costs, july 2016. https://lists.torproject.org/pipermail/tor-project/2016-August/

000690.html. (Accessed May, 2018).

[18] Talk Crypto Blog OP RETURN 40 to 80 bytes. http://www.talkcrypto.org/blog/2016/12/30/op_

return-40-to-80-bytes/. (Accessed May, 2018).

[19] TOR. https://www.torproject.org. (Accessed May, 2018).

[20] Tor:Bridges. https://www.torproject.org/docs/bridges. (Accessed May, 2018).

[21] Tor:hidden service protocol. https://www.torproject.org/docs/hidden-services. (Accessed May, 2018).

[22] Tor:mirrors. https://www.torproject.org/getinvolved/mirrors.html.en. (Accessed May, 2018).

[23] Ultrasurf. https://ultrasurf.us/. (Accessed May, 2018).

[24] Zcash client. https://z.cash/download.html. (Accessed May, 2018).

[25] Zcash project website. https://z.cash/. (Accessed May, 2018).

[26] Script - Bitcoin Wiki. https://en.bitcoin.it/wiki/Script, Accessed May, 2018.

[27] Amir Houmansadr, Giang T. K. Nguyen, M. C., and Borisov, N. Cirripede: Circumvention infrastructure
using router redirection with plausible deniability. Computer and Communications Security (CCS) (2011), Pages
187–200.

[28] Anderson, R. J. Stretching the Limits of Steganography. In Information Hiding (1996), pp. 39–48.

[29] Aryan, S., Aryan, H., and Halderman, J. A. Internet Censorship in Iran: A First Look. In USENIX Workshop
on Free and Open Communications on the Internet, FOCI (2013).

[30] Backes, M., and Cachin, C. Public-Key Steganography with Active Attacks. In Theory of Cryptography, Second
Theory of Cryptography Conference, TCC (2005), pp. 210–226.

[31] Borisov, N., Danezis, G., and Goldberg, I. DP5: A private presence service. PoPETs 2015, 2 (2015), 4–24.

[32] Boyan, J. The anonymizer - protecting user privacy on the web. Computer-Mediated Communication Magazine
4, 1997.

[33] Burnett, S., Feamster, N., and Vempala, S. Chipping away at censorship firewalls with user-generated content.
In USENIX Security (2010), pp. 29–29.

[34] Buterin, V., and Foundation, E. A next-generation smart contract and decentralized application platform.
(Accessed May, 2018).

[35] Cash, D., Kiltz, E., and Shoup, V. The twin diffie-hellman problem and applications. J. Cryptology 22, 4 (2009),
470–504.

[36] De Cristofaro, E., Soriente, C., Tsudik, G., and Williams, A. Hummingbird: Privacy at the time of twitter.
In Security and Privacy (SP) (2012), pp. 285–299.

[37] Decker, C., and Wattenhofer, R. A fast and scalable payment network with bitcoin duplex micropayment
channels. In Stabilization, Safety, and Security of Distributed Systems (SSS) (2015), pp. 3–18.

[38] Dingledine, R., and Mathewson, N. Design of a blocking-resistant anonymity system. Tech. rep., 2006.

[39] Dingledine, R., Mathewson, N., and Syverson, P. Tor: The second-generation onion router. Tech. rep., Naval
Research Lab Washington DC, 2004.

[40] Dyer, K. P., Coull, S. E., Ristenpart, T., and Shrimpton, T. Protocol misidentification made easy with
format-transforming encryption. In Computer and Communications Security (CCS) (2013), pp. 61–72.

[41] Dyer, K. P., Coull, S. E., and Shrimpton, T. Marionette: A Programmable Network Traffic Obfuscation
System. In USENIX Security (2015), pp. 367–382.

[42] Ensafi, R., Winter, P., Mueen, A., and Crandall, J. R. Analyzing the great firewall of china over space and
time. Proceedings on Privacy Enhancing Technologies (PoPET), 1 (2015), 61–76.

[43] Fazio, N., Nicolosi, A., and Perera, I. M. Broadcast Steganography. In Topics in Cryptology - CT-RSA 2014
- The Cryptographer’s Track (2014), pp. 64–84.

[44] Fifield, D., Lan, C., Hynes, R., Wegmann, P., and Paxson, V. Blocking-resistant communication through
domain fronting. Proceedings on Privacy Enhancing Technologies (PoPET), 2 (2015), 46–64.

[45] Freire, E. S. V., Hofheinz, D., Kiltz, E., and Paterson, K. G. Non-interactive key exchange. In Public-Key
Cryptography - PKC (2013), pp. 254–271.

32

https://etherscan.io/address/0x8d12a197cb00d4747a1fe03395095ce2a5cc6819#readContract
https://etherscan.io/address/0x8d12a197cb00d4747a1fe03395095ce2a5cc6819#readContract
https://lists.torproject.org/pipermail/tor-project/2016-August/000690.html
https://lists.torproject.org/pipermail/tor-project/2016-August/000690.html
http://www.talkcrypto.org/blog/2016/12/30/op_return-40-to-80-bytes/
http://www.talkcrypto.org/blog/2016/12/30/op_return-40-to-80-bytes/
 https://www.torproject.org
https://www.torproject.org/docs/bridges
https://www.torproject.org/docs/hidden-services
https://www.torproject.org/getinvolved/mirrors.html.en
https://ultrasurf.us/
https://z.cash/download.html
https://z.cash/
https://en.bitcoin.it/wiki/Script

[46] Frolov, S., Douglas, F., Scott, W., McDonald, A., VanderSloot, B., Hynes, R., Kruger, A., Kallitsis,
M., Robinson, D. G., Schultze, S., et al. An isp-scale deployment of tapdance. In Free and Open Communi-
cations on the Internet (FOCI) (2017).

[47] Geddes, J., Schuchard, M., and Hopper, N. Cover Your ACKs: Pitfalls of Covert Channel Censorship Cir-
cumvention. In Computer and Communications Security (CCS) (2013), pp. 361–372.

[48] Holowczak, J., and Houmansadr, A. Cachebrowser: Bypassing chinese censorship without proxies using cached
content. In Computer and Communications Security (CCS) (2015), pp. 70–83.

[49] Hopper, N. On Steganographic Chosen Covertext Security. In Automata, Languages and Programming, 32nd
International Colloquium, ICALP (2005), pp. 311–323.

[50] Hopwood, D., Bowe, S., Hornby, T., and Wilcox, N. Zcash Protocol Specification, 2018.

[51] Houmansadr, A., Brubaker, C., and Shmatikov, V. The Parrot Is Dead: Observing Unobservable Network
Communications. In Security and Privacy (SP) (2013), pp. 65–79.

[52] Karlin, J., Ellard, D., Jackson, A. W., Jones, C. E., Lauer, G., Mankins, D., and Strayer, W. T. Decoy
routing: Toward unblockable internet communication. In Free and Open Communications on the Internet (FOCI)
(2011).

[53] Krawczyk, H. Cryptographic extraction and key derivation: The HKDF scheme. In Advances in Cryptology -
CRYPTO (2010), pp. 631–648.

[54] Lincoln, P., Mason, I., Porras, P. A., Yegneswaran, V., Weinberg, Z., Massar, J., Simpson, W. A.,
Vixie, P., and Boneh, D. Bootstrapping communications into an anti-censorship system. In FOCI (2012).

[55] Ling, Z., Luo, J., Yu, W., Yang, M., and Fu, X. Extensive analysis and large-scale empirical evaluation of tor
bridge discovery. In INFOCOM (2012), pp. 2381–2389.

[56] Luca Invernizzi, C. K., and Vigna, G. Message in a bottle: Sailing past censorship. Computer Security
Applications (2013), 39–48.

[57] Mohajeri Moghaddam, H., Li, B., Derakhshani, M., and Goldberg, I. Skypemorph: Protocol obfuscation
for tor bridges. In Computer and Communications Security (CCS) (2012), pp. 97–108.

[58] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. (Accessed May, 2018).

[59] Nasr, M., Zolfaghari, H., and Houmansadr, A. The waterfall of liberty: Decoy routing circumvention that
resists routing attacks. In Computer and Communications Security (CCS) (2017), pp. 2037–2052.

[60] Nobori, D., and Shinjo, Y. Vpn gate: A volunteer-organized public vpn relay system with blocking resistance
for bypassing government censorship firewalls. In Networked Systems Design and Implementation (NSDI).

[61] Parker, E. Can china contain bitcoin?

[62] Peck, M. Why the biggest bitcoin mines are in china.

[63] Perta, V., Barbera, M., Tyson, G., Haddadi, H., and Mei, A. A glance through the vpn looking glass: Ipv6
leakage and dns hijacking in commercial vpn clients. Proceedings on Privacy Enhancing Technologies (PoPET), 1
(2015), 77–91.

[64] Poon, J., and Dryja, T. The bitcoin lightning network: Scalable off-chain instant payments.

[65] Ruffing, T., Schneider, J., and Kate, A. Identity-based steganography and its applications to censorship
resistance. In Communications Security, (CCS) (2013), pp. 1461–1464.

[66] Sasson, E. B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., and Virza, M. Zerocash:
Decentralized Anonymous Payments from Bitcoin. In Security and Privacy (SP) (May 2014), pp. 459–474.

[67] Tschantz, M. C., Afroz, S., Anonymous, and Paxson, V. SoK: Towards Grounding Censorship Circumvention
in Empiricism. In Security and Privacy (SP) (May 2016), pp. 914–933.

[68] van Saberhagen, N. Cryptonote v 2.0.

[69] van Saberhagen, N., Meier, J., and Juarez, A. M. CryptoNote Signatures.

[70] van Saberhagen, N., null, S., Meier, J., and Lem, R. CryptoNote One-Time Keys.

[71] von Ahn, L., and Hopper, N. J. Public-Key Steganography. In Advances in Cryptology - EUROCRYPT (2004),
pp. 323–341.

[72] Wang, L., Dyer, K. P., Akella, A., Ristenpart, T., and Shrimpton, T. Seeing Through Network-Protocol
Obfuscation. In Computer and Communications Security (CCS) (2015), pp. 57–69.

[73] Weinberg, Z., Wang, J., Yegneswaran, V., Briesemeister, L., Cheung, S., Wang, F., and Boneh, D.
Stegotorus: a camouflage proxy for the tor anonymity system. In Computer and Communications Security (CCS)
(2012), pp. 109–120.

33

[74] Wikipedia. Ping (blogging).

[75] Wilde, T. Knock Knock Knockin’ on Bridges’ Doors — Tor Blog. https://blog.torproject.org/

knock-knock-knockin-bridges-doors, 2017.

[76] Wiley, B. Dust: A blocking-resistant internet transport protocol. (Accessed May, 2018).

[77] Winter, P., and Lindskog, S. How the Great Firewall of China is Blocking Tor, 2012.

[78] Wustrow, E., Swanson, C. M., and Halderman, J. A. Tapdance: End-to-middle anticensorship without flow
blocking. In USENIX Security Symposium (2014), pp. 159–174.

[79] Wustrow, E., Wolchok, S., Goldberg, I., and Halderman, J. Telex :anticensorship in network infratructure.
USENIX Security Symposium (2011).

[80] Xu, X., Mao, Z. M., and Halderman, J. A. Internet Censorship in China: Where Does the Filtering Occur? In
Passive and Active Measurement (2011), pp. 133–142.

[81] Zolfaghari, H., and Houmansadr, A. Practical censorship evasion leveraging content delivery networks. In
Computer and Communications Security (CCS) (2016), pp. 1715–1726.

34

https://blog.torproject.org/knock-knock-knockin-bridges-doors
https://blog.torproject.org/knock-knock-knockin-bridges-doors

	Introduction
	Problem Statement
	99993em.5Stego-Bootstrapping Scheme
	Threat Model
	Security Goals
	System Goals

	Key Ideas and Solution Overview
	Key Ideas
	Solution Overview
	Summary of Our Findings

	Our Protocol
	Building Blocks
	Our Construction
	Security Analysis

	Cryptocurrency-Based Encodings
	Encoding Scheme in Bitcoin
	Address and Transaction Format
	Possibilities for Encoding Data
	Setting R3C3 Parameters
	Implementation Encoding Scheme in Bitcoin
	System Discussion

	Encoding Scheme in Zcash
	Addresses and Transactions
	Possibilities for Encoding Data
	Setting R3C3 Parameters
	Implementation Encoding Scheme in Zcash
	System Discussion

	Encoding Scheme in Monero
	Addresses and Transactions
	Linkable Ring Signature Scheme
	Possibilities for Encoding Data
	Setting R3C3 parameters
	Implementation of the Encoding Scheme in Monero
	Discussion

	Encoding Scheme in Ethereum
	Addresses and Transactions
	Possibilities for Encoding Data
	Setting R3C3 parameters
	Implementation of the Encoding Scheme in Ethereum
	System Discussion

	Mining-Based Encoding
	Implementation and Evaluation
	Performance

	Related Work
	Conclusions and Future Work

