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Abstract

Fuzzy extractors (Dodis et al., Eurocrypt 2004) convert repeated noisy readings of a high-entropy
source into the same uniformly distributed key. The functionality of a fuzzy extractor outputs the
key when provided with a value close to the original reading of the source. A necessary condition for
security, called fuzzy min-entropy, is that the probability of every ball of values of the noisy source is
small.

Many noisy sources are best modeled using continuous metric spaces. To build continuous-source
fuzzy extractors, prior work assumes that the system designer has a good model of the distribution
(Verbitskiy et al., IEEE TIFS 2010). However, it is impossible to build an accurate model of a high
entropy distribution just by sampling from the distribution.

Model inaccuracy may be a serious problem. We demonstrate a family of continuous distributions
W that is impossible to secure. No fuzzy extractor designed for W extracts a meaningful key from an
average element of W. This impossibility result is despite the fact that each element W ∈ W has high
fuzzy min-entropy. We show a qualitatively stronger negative result for secure sketches, which are used
to construct most fuzzy extractors.

Our results are for the Euclidean metric and are information-theoretic in nature. To the best of our
knowledge all continuous-source fuzzy extractors argue information-theoretic security.

Fuller, Reyzin, and Smith showed comparable negative results for a discrete metric space equipped
with the Hamming metric (Asiacrypt 2016). Continuous Euclidean space necessitates new techniques.

1 Introduction

Many physical processes have entropy but exhibit noise between readings of the same process [BBR88,
BS00, Dau04, EHMS00, GCVDD02, MG09, PRTG02, SD07, TSS+06]. When a secret is read multiple
times, readings are close (according to some metric dis) but not identical. In particular, most instanti-
ations of physical uncloneable functions (PUFs) [PRTG02, AMS+11, KKR+12] are entropic and noisy.
To use such noisy secrets in cryptographic applications, Wyner [Wyn75] and Bennett, Brassard, and
Robert [BBR88] identified two fundamental tasks: 1) Information-reconciliation: removing noise without
leaking information and 2) Privacy amplification: converting an entropic secret to uniformly random. We
focus on non-interactive protocols that provide information-theoretic security.

In this setting, information reconciliation is performed by a secure sketch [DORS08]. A secure sketch
is a pair of algorithms (SS,Rec). The SS or sketch algorithm takes an initial reading w and produces a
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nonsecret helper value ss. Let t be an error parameter. The Rec or recover algorithm takes a subsequent
reading w′ along with ss and outputs w if dis(w,w′) ≤ t. The security requirement for a secure sketch is
that w is hard to predict given ss.

A fuzzy extractor performs information reconciliation and privacy amplification simultaneously, pro-
ducing a stable and nearly uniform key [DORS08]. Fuzzy extractors similarly consist of two algorithms.
The generate algorithm (Gen) takes an initial reading w, producing a key along with a nonsecret helper
value pub. The reproduce (Rep) algorithm takes w′ and pub, reproducing key if dis(w,w′) ≤ t. The
security requirement for fuzzy extractors is that key is statistically close to uniform knowing pub. Most
fuzzy extractors combine a secure sketch and a randomness extractor [NZ93].

We consider sources W taking values in a continuous metric space. To distinguish from the discrete
case, a fuzzy extractor for such sources is known as a continuous-source fuzzy extractor [BDHV07].
Multiple PUFs produce such features including optical [PRTG02, SFIC14] and capacitance [TSS+06]
PUFs. We consider an n-dimension space with Euclidean distance: dis(x, y) =

√∑n
i=1(xi − yi)2.

The key question in designing a fuzzy extractor is which distributions W can be “secured.” A distri-
bution W has min-entropy, denoted H∞(W ), if every outcome has low probability. That is: H∞(W ) ≥ k
if ∀w,Pr[W = w] ≤ 2−k. There are two problems with applying min-entropy in continuous metric spaces
1) min-entropy is inherently a discrete notion and 2) there are discrete distributions with min-entropy
where key derivation is impossible. For example, arbitrary distributions with more errors than entropy
are impossible to secure [KLRW14, DGSV15, MvdLvdSW15, CFP+16].

Fuller, Reyzin, and Smith [FRS16] introduced a more precise notion to measure a noisy distribution’s
suitability for stable key derivation called fuzzy min-entropy. Fuzzy min-entropy codifies the adversary’s
success when provided with only the functionality of a fuzzy extractor (or secure sketch). Consider some
known distribution W . The adversary’s best strategy is to find w′ that maximizes the weight of possible
w ∈W within distance t of w′. Denote by Bt(w

′) the closed ball of radius t around w′. Fuzzy min-entropy
is formally defined as

Hfuzz
t,∞ (W )

def
= − log

(
max
w′

Pr[W ∈ Bt(w′)]
)
.

Since fuzzy extractors are designed for entropic distributions, the system designer only has a model of the
underlying physical process. As the designer can only work with a limited number of samples from the
distribution, this model is inherently limited. After deployment, the adversary spend more time modeling,
resulting in a more accurate model. As a result fuzzy extractors work for all distributions in a family W.
Ensuring security for a whole family is called the distributional uncertainty setting.

The discrete case Fuller, Reyzin, and Smith presented a family of distributionsW where each element
W ∈ W has fuzzy min-entropy such that no fuzzy extractor (GenW ,RepW) can simultaneously secure the
family W. That is, any fuzzy extractor (GenW ,RepW) must be insecure for at least one element W ∈ W
assuming the adversary knows the probability distribution W and the public helper value. Their result
is for discrete Hamming space. We ask a natural question:

Do continuous source fuzzy extractors exist for all families W with fuzzy min-entropy?

1.1 Our Contribution and Techniques

We show a family of distributionsW where no fuzzy extractor or secure sketch can secureW (Theorems 4.1
and 5.1 respectively). This answers the above question negatively. The secure sketch result is qualitatively
stronger as it holds even if the secure sketch is allowed to be wrong a constant fraction of the time. Since
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these results are negative, their form is slightly difficult to understand. We show a family W such that
for any cryptographic construction designed for W there exists an adversary that breaks security.

Our result holds for a uniform random W
$←W. We note the nonstandard notation, we are sampling

a probability distribution from a set of probability distributions. To give intuition we consider the case
of a secure sketch (SS,Rec). Our result relies on the following asymmetry: SS sees only w sampled from
W while the adversary knows which distribution W was used to sample w ←W . For error tolerance the
public output ss must have some information about w. If the familyW is carefully designed we can argue
the adversary gains independent knowledge from ss and the distribution W . Together this independent
knowledge can be used to break security. In both negative results there are two key components:

1. Leakage: Arguing that the public value ss restricts the set of possible w.

2. Independence: Showing that knowing the distribution W provides independent (and therefore
new) information about the point w.

The core of both proofs is constructing a family where these two properties hold.

Secure sketches To illustrate techniques we first focus on secure sketches.

1. Leakage: For a secure sketch to be correct for w it must hold that for most nearby w′, Rec(w′, ss) =
w. Denote by C the set of all points w where Rec of nearby points is w. More formally,

C =

{
w

∣∣∣∣ Pr
w′|dis(w,w′)≤t

[Rec(w′, ss) = w] ≥ 1/2

}
.

The points in C form a Shannon error correcting code. This implies that ∀x, y ∈ C, dis(x, y) ≥ t/2.
Since C forms a code, one can bound the size of C using packing arguments.

2. Independence: To show that learning the distribution W gives fresh information, we consider
distributions W that are the set of all points with the same output of a universal hash family [CW79].
That is, the description of W has two parts, the description of a hash function h and an output y. A
distribution Wh,y is the uniform distribution over the set {w|h(w) = y}. Since the hash is universal
and h is not known to the SS algorithm, given w, the rest of the support of W is unknown. Thus,
the information in h(y) reduces the uncertainty on the point w.

In order for each distribution W to have fuzzy min-entropy it is also necessary for the universal hash
family H to have preimage sets with minimum distance. That is, for h ∈ H and all x, x′ such that
h(x) = h(x′) then dis(x, x′) ≥ t. The hash function we use is all points in the coset of a random p-ary
lattice with minimum distance t. This hash function and the resulting family of distributions is described
in detail in Section 3.

Fuzzy extractor For a fuzzy extractor, showing the Leakage property is more delicate:

1. Leakage: The functionality of a fuzzy extractor allows a continuous region to map to the same
key. Thus, rather than considering consistent points, the fuzzy extractor partitions the metric space
based on what key is output by Rep. We call this partition Qkey. The functionality of a fuzzy
extractor demands that the true w lies in the interior of some part in Qkey. The adversary can then
limit their search to points in the interior.
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Challenges of continuous metric spaces Euclidean space is challenging for two reasons:

1. Volume grows exponentially with the radius of the ball in Euclidean space. This growth is super
exponential in Hamming space, growing exponentially in the binary entropy of the radius (see for
example [Gur10]). This slower rate of volume growth increases the size of C (resp. the size of the
interior of parts of Qkey) for secure sketches (resp. for fuzzy extractors).

2. In the fuzzy extractor case, the interior of the parts in Qkey is continuous which precludes the use of
counting techniques. In place of counting techniques, we show the volume of the interior is smaller
than the “volume” of different distributions. That is, we show that any region V of fixed volume v
must not include some distributions in W. As mentioned, each distribution W ∈ W is a coset of a
random lattice with minimum distance. For region V to contain a point from every coset, v must
be as large as the Voronoi cell of the lattice. The fraction of distributions not represented in V is
at least the ratio of v to the volume of the Voronoi cell.

Prior Positive Results for a single distribution W Recent work [FRS16, WCD+17] shows that for
any discrete distribution W with (super-logarithmic) fuzzy-min entropy there is a secure discrete fuzzy
extractor (GenW ,RepW ). These constructions need to know the probability distribution function of W
exactly and are not instantiable in polynomial time. This is called the precisely known distribution or
distribution sensitive setting. However, these techniques are inherently limited to discrete metric spaces.

Prior continuous-source fuzzy extractors applied quantization or partition the input space. As an
example, Verbitskiy et al. [VTO+10] construct a continuous-source fuzzy extractor in the precisely known
distribution model. Their construction partitions the input metric into A and then subpartitions the
parts of A using a second partition B. That is, every part of A intersects with every part of B.

The input w’s part in A is the key while w’s part in B is the public value pub. The system is correct
if for all w,w′ such that dis(w,w′) ≤ t either 1) w and w′ are in the same part of A or 2) w and w′ are
in different parts of both A and B. If w and w′ are in different parts of B, w′ can be “pushed” in the
direction of the part of w in B. This shift will make it so that w′ is pushed to right part of A.

For security, the probability mass in Akey ∩ Bpub must be the same for all key, pub. If so, knowledge
of pub gives no information about key. The resulting key length is |key| = log |A|.

Verbitskiy et al. describe how to choose A and B for a distribution over [0, 1]. However, it is
not clear how their technique extends to multiple dimensions or how large A can be for a fixed error
tolerance t.1 To the best of our knowledge it is not known how to build a continuous-source fuzzy
extractor for each distribution with fuzzy min-entropy. Prior work either considers a small constant
number of dimensions [VTO+10] or requires dimensions of the input to be uniform or independently
distributed [LSM06]. The major open question resulting from this work is whether continuous-source
fuzzy extractors exist for each distribution with fuzzy min-entropy.

Correlated random variables A rich line of research views w and w′ as samples from a correlated
pair of random variables [Wyn75, CK78, AC93, Mau93, RW05, TW15, HTW14]. Key length is bounded
based on mutual information. These works consider the precisely known distribution setting.

Organization The remainder of this paper is organized as follows, Section 2 covers basic notation and
mathematical prerequisites, Section 3 shows the family of distributions W that is used in both negative
results, Section 4 shows our fuzzy extractor negative result, and Section 5 shows our secure sketch negative
result. We focus on the fuzzy extractor negative result as it is more challenging.

1Verbitskiy et al. [VTO+10] extend their construction to work in the distributional uncertainty setting. They show
security when the statistical distance between the observed distribution W̃ and the actual distribution W is small. The
distributions described in this work can not be accurately estimated using a polynomial number of samples.
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2 Preliminaries

Random Variables We use uppercase letters for random variables and corresponding lowercase letters
for their samples. Multiple occurrence of the same random variable in an expression signifies the same
value of the random variable: for example (W, SS(W )) is a pair of random variables obtained by sampling
w according to W and applying the algorithm SS to w. The statistical distance between random variables
A and B with the same domain is

SD(A,B) =
1

2

∑
a

|Pr[A = a]− Pr[B = b]| = max
S

Pr[A ∈ S]− Pr[B ∈ S].

Entropy All logarithms in this work are base 2. Let (X,Y ) be a pair of random variables. Define min-
entropy of X as H∞(X) = − log (maxx Pr[X = x]) . The average (conditional) min-entropy [DORS08,
Section 2.4] of X given Y is

H̃∞(X|Y ) = − log

(
E
y∈Y

max
x

Pr[X = x|Y = y]

)
.

Define Hartley entropy H0(X) to be the logarithm of the size of the support of X, that is H0(X) =
log |{x|Pr[X = x] > 0}|. Define average-case Hartley entropy by averaging the support size:

H̃0(X|Y ) = log

(
E
y∈Y
|{y|Pr[X = x|Y = y] > 0}|

)
.

Metric Spaces and Balls For a metric space (M, dis), the (closed) ball of radius t around w is the set
of all points within radius t, that is, Bt(w) = {w′|dis(w,w′) ≤ t}. In this work we consider the Euclidean
distance (L2 metric) over vectors defined via dis(w,w′) =

√
(
∑n

i=1(wi − w′i)2).

Mod space (R/Z)n Our first result considers vectors in (R/Z)n in this metric the maximum distance
between any two points is

√
n/2 (the distance between (0, 0, ..., 0) and (1/2, ..., 1/2)). Volume in this

space is

|Bt| =
πn/2tn

Γ(n/2 + 1)
. (1)

as long as t ∈ [0,
√
n/2]. Here Γ is the Γ function. For simplicity we restrict our results to n = 2k where

Γ(2k/2 + 1) = k!.

Unit Cube Our second result considers vectors in the unit cube [0, 1]n. In this metric the maximum
distance between any two points is

√
n (the distance between (0, 0, ..., 0) and (1, 1, ..., 1)). The volume of

a ball in this space depends on whether the point is near a “boundary.” We use |Bt| to denote the volume
of a ball of radius t around an arbitrary point. This volume is bounded by:

Lemma 2.1. When n is even the volume |Bt| of the ball of radius in t ∈ [0,
√
n] in the L2 metric over

[0, 1]n satisfies

πn/2tn

(n/2)!2n
≤ |Bt| ≤

πn/2tn

(n/2)!
.
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2.1 Fuzzy Extractors

Fuzzy extractors derive stable keys from noisy sources.

Definition 2.2. [DORS08] An (M,W, κ, t, ε)-fuzzy extractor is a pair (Gen,Rep). Gen on input w ∈M
outputs an extracted string key ∈ {0, 1}κ and a helper string pub ∈ {0, 1}∗. Rep takes w′ ∈ M and
pub ∈ {0, 1}∗ as inputs. (Gen,Rep) have the following properties:

1. Correctness: if dis(w,w′) ≤ t and (key, pub)← Gen(w), Pr[Rep(w′, pub) = key] = 1.

2. Security: ∀W ∈ W, if (Key,Pub)← Gen(W ), SD((Key,Pub), (Uκ,Pub)) ≤ ε.

Often designers consider the family containing all distributions with a certain amount of (fuzzy) min-
entropy instead of an arbitrary family W. Every element in our family has fuzzy min-entropy so our
results hold if the fuzzy extractor secures all distributions with enough fuzzy min-entropy.

Recovering w from w′ forms the core of many fuzzy extractor constructions. The primitive that
performs just recovery is called a secure sketch. We recall the definition from [DORS08, Section 3.1]:

Definition 2.3. An (M,W, m̃, t)-secure sketch with error δ is a pair (SS,Rec). SS on input w ∈ M
returns a bit string ss ∈ {0, 1}∗. Rec takes an element w′ ∈ M and ss ∈ {0, 1}∗. (SS,Rec) have the
following properties:

1. Correctness: ∀w,w′ ∈M if dis(w,w′) ≤ t then Pr[Rec(w′,SS(w)) = w] ≥ 1− δ.

2. Security: for any distribution W ∈ W, H̃(W |SS(W )) ≥ m̃.

Note: The functionality of secure sketches ensures that when w1, w2 ∈ W |SS(W ) the points w1 and w2

cannot be too close to each other. In particular, this implies that the set W |SS(W ) is discrete and thus
H̃(W |SS(W )) is well defined. This is not true for fuzzy extractors where W |P can be continuous.

Fuller, Smith, and Reyzin [FRS16] proposed fuzzy min-entropy to measure suitability of a noisy
distribution for key extraction. Fuzzy min-entropy captures the adversary’s success probability when
provided with the functionality of the primitive. Fuzzy min-entropy measures ideal security. We adopt
this notion:

Definition 2.4. The t-fuzzy min-entropy of distribution W in a metric space (M, dis) is:

Hfuzz
t,∞ (W ) = − log

(
max
w′

∫
w∈M|dis(w,w′)≤t

dw

)
.

In the above, the measure assigns probability 1 to M and for any set X assigns probability |X|/|M|.

Prior work on continuous source fuzzy extractors uses one of two approaches to deal with the fact that
entropy does not easily translate to continuous spaces [LSM06, BDHV07, VTO+10]. They either provide
security for specific distributions or introduce a quantization step in the definition of security. The first
approach is undesirable as it is difficult to model uncertain distributions. In the second approach, security
is measured with respect to some quantization of the input space. That is, the metric space is partitioned
into different values of key. Li et al. [LSM06, Theorem 6] showed that the choice of quantization may
decrease the length of the derived key by a factor linear in the dimension of the space (Θ(n)) compared to
the optimal quantization. When the metric space is a bounded subset of Rn the desired security level is
often linear in the dimension. Thus, measuring security only after quantization may obscure whether key
derivation is possible. We believe that fuzzy min-entropy is a better measure of a distribution’s suitability
as it only relies on the functionality of the fuzzy extractor (not its implementation).
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3 The family of distributions W
In this section we describe the family of distributions W used in our negative results for both fuzzy
extractors and secure sketches. We use different properties of this family in the two negative results,
however, all of the properties are achieved by the same family of functions. Our negative results are for
an average element of W. Thus, instead of thinking of the adversary as receiving the description of W we
think of the adversary receiving Z where Z describes the uniform choice of W from W and we use WZ to
refer to an individual distribution. We define Z to be the restriction of the uniform distribution to points
that have a particular output for a specified element of a hash family. Z consists of two components
z = (A, h) and Wz = {w|HashA(w) = h}.

The key to both results is showing that it is hard to recover A, h from a single w and that the hash
has good geometric properties. The required properties are: 1) universality 2) regularity 3) the set Wz

minimum distance and 4) a large volume is required to cover every possible output of the hash family for
every fixed A.

The Hash Function The hash function we use is the coset of the input point with respect to a random
p-ary lattice with minimum distance ≥ t. Let K be the set of lattices of all p-ary lattices Λp(A) where
A ∈ Zn×mp with minimum distance t defined by Λp(A) = {y ∈ Znp : y = As mod p for some s ∈ Zm}.
Define HashA∈A : (R/Z)n → (R/pZ)m/Λp(A) be defined by

x 7→ [px]Λp(A)

where we understand [px]Λp(A) to be a coset containing px with respect to the lattice. Scaling a random
lattice to the unit cube is known as Construction A and is well studied in the lattice packing literature
(Conway and Sloane [CS13]). In our presentation we expand the input point rather than compressing the
lattice.

Note: The family is stated with respect to the input space (R/Z)n. This metric space will be used in
Section 4. Section 5 uses the metric [0, 1]n. We only use the first three properties in Section 5 and these
properties carry over to [0, 1]n.

Theorem 3.1. Let p be some prime and let n,m ∈ Z+ such that m = µn for some µ ∈ (0, 1/2). For
some matrix A ∈ Zn×mp define the lattice Λp(A) = {Ax|x ∈ Zmp }. Let A be the set of all lattices with

minimum distance t′ = tp = τp
√
n where τ = 1

6pµ
√

2e
. Define HashA∈A(w) = [pw]A. If p ≥ (3

√
2e)1/(1−µ)

the following are simultaneously achieved:

1. is 2−a-universal for a = (n−m) log p− 1, that is

∀v1 6= v2 ∈ (R/Z)n, Pr
A←A

[HashA(v1) = HashA(v2)] ≤ 2(n−m) log p−1,

2. is pm regular, that is
∀A ∈ A, h ∈ Range(HashA), |Hash−1

A (h)| ≥ pm,

3. preimage sets have minimum distance t for t = τ
√
n, that is

∀A ∈ A, v1 6= v2, if HashA(v1) = HashA(v2) then dis(v1, v2) ≥ t,

4. and has p−µn-preimage volume, that is ∀A ∈ A, V ⊆ (R/Z)n,

Pr
h

$←Range(HashA)

[
Hash−1

A (h) ∩ V 6= ∅
]
≤ Vol(V )

p−µn
.
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Proof. Let A be the the set of all p-ary lattices of rate m = µn, length n, and minimum distance t′ = tp.
That is,

A =

{
A|A ∈ Zn×mp , dim(A) = m, min

k∈K−{0n}
dis(k, 0n) > t′

}
.

Universality We show 2p−(m−n)-universality by first considering a slightly larger hash family. Let A′
be the set of all m-dimensional lattices over [0, 1]n. That is, consider A′ where

A′ = {A|A ∈ Zm×np , dim(A) = m} .

Define HashA′ as a hash function with this larger set of keys where the evaluation is still the coset after
multiplication by p. This hash function is universal. Fix v 6= w and write

Pr
K∈K′

[HashK(v) = HashK(w)] = Pr
K

[HashK(v − w) = 0]

= Pr
K

[v − w ∈ kerHashK]

= Pr
K

[[p(v − w)]K = 0] = pm−n

The last equality follows because the elements of A ∈ A′ are all m-dimensional subspaces. Thus, every
nonzero point is included in the null space with probability pm−n. We now show that the set A′ is not
much bigger than A.

We now show most p-ary lattices of dimension m have minimum distance > t. Our theorem is based
on the result of Erez et al. which show this construction (known as Construction A) is good for packing
in Euclidean space [ELZ05].

Lemma 3.2. Let n be an even integer. Let p be a prime, let µ ∈ (0, 1/2) and let m = µn. Suppose that

t ≤
√
n

3(2e)1/2pµ
−
√
n

2p

Then the defined hash function has minimum distance t with high probability across A. That is,

Pr
A

$←A

[
HashA has minimum distance t′

]
≥ 1/2.

In particular, when p ≥ (3
√

2e)1/(1−µ) then the conditions are fulfilled when t =
√
n

6pµ
√

2e
.

Proof. First note that we consider even n, this restriction is done to simplify calculations with the Γ
function but is not key to the result. By the Theorem statement and Stirling’s formula,

t ≤
√
n

3(2e)1/2pµ
−
√
n

2p

≤
n

√√
2π(n/2)n/2e−(n/2)

3pµπ1/2
−
√
n

2p

≤
n
√

(n/2)!

3pµπ1/2
−
√
n

2p

=
n
√

Γ(n/2 + 1)

3pµπ1/2
−
√
n

2p
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Erez et al. [ELZ05, Theorem 1] show that this lattice achieves this packing radius with good probability.

In particular, define r =
n
√

Γ(n/2+1)

pµπ1/2 and d =
√
n/(2p). Our requirement on t implies that t ≤ r/3− d/2.

Their proof shows that,

Pr
A

$←A

[
HashA has minimum distance t′

]
≥ 1−

(
2t+ d

r

)n
≥ 1−

(
2(r/3− d/2) + d

r

)n
= 1− (2/3)n

The fact that this value is at least 1/2 follows as n is even. We note that when p1−µ ≥ 3(2e)1/2 then for
the maximum value of t,

t =

√
n

3(2e)1/2pµ
−
√
n

2p
≥

√
n

3(2e)1/2pµ
−

√
n

2p1−µpµ

≥
√
n

3(2e)1/2pµ
−

√
n

6(2e)1/2pµ
≥

√
n

6(2e)1/2pµ
.

This completes the proof of Lemma 3.2.

Regularity To show pm-regularity, fix K, h and write

|Hash−1
K (h)| ≥ | kerHashK| = |{v : HashK(v) = 0}| ≥ pm

Since there are m linearly independent lattice vectors in Zmp and p possible coefficients that produce
distinct vectors (by linear independence).

Minimum distance This condition is immediately implied by the minimum distance of the lattice.

Preimage Volume Finally, note that any µn dimensional lattice has pµn points. The Voronoi region
of every lattice point in (R/Z)n is the same. Since the volume of the unit cube is 1 this means each region
has volume p−µn. This completes the proof that a hash function with the required parameters exists and
completes the proof of Theorem 3.1.

4 No fuzzy extractor can secure W
We now prove it is impossible to build a fuzzy extractor that securesW. As discussed in the introduction
we use (R/Z)n as the input space equipped with the Euclidean metric.

Theorem 4.1. Let γ ≥ 1 be a constant. Let M = (R/Z)n. Let µ ∈ [0, 1/2) be a constant and define
m = µn. Then there exists a family W such that, for all W ∈ W, Hfuzz

t,∞ = H∞(W ) ≥ m. Let (Gen,Rep)

be a (M,W, κ, t, ε)-fuzzy-extractor with perfect correctness with noise rate τ
d
= t/
√
n where the following

conditions hold:

1. Let p be a prime integer parameter such that p ≥ (3
√

2e)1/(1−µ).
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2. Noise rate τ = 1
6pµ
√

2e

3. The key length

κ ≥ 1 + max

{
0, log γ + n

(
log pµ − log(

6
√
e+
√
π

6
√
e

)

)}
.

Then ε ≥ 1
2 −

e
2
√

2πγ
.

We show the impossibility for an average member of W. Recall that we think of the distribution
W ∈ W as being described by an auxiliary variable Z that is a pair (A, h) where Wz = {w|HashA(w) = h}.
The hash function we use is HashA∈A : (R/Z)n → (R/pZ)m/Λp(A) be defined by

x 7→ [px]Λp(A)

where [px]Λp(A) the coset of the input point with respect to A. The conditions of Theorem 4.1 implies
those of Theorem 3.1 and thus we can use Theorem 3.1. For this proof we need the regularity, minimum
distance, and preimage volume conditions. By the 2m-regularity and minimum distance properties of
Hash, ∀z ∈ Z,H∞(Wz) = Hfuzz

t,∞ (Wz) = m.
We now want to show that for a random z ← Z, if (key, pub) is the output of Gen(Wz), then key can

be easily distinguished from uniform in the presence of pub and z. The outline for the proof is as follows:

• In the absence of information about z, the value w is uniform.

• pub partitions the key space (since there is perfect correctness).

• Each part is the partition created by pub is bounded in size.

• Valid w can only come from the interior of a part (by correctness of Rep, every candidate input w
to Gen must have all of its neighbors w′ produce the same output of Rep(w′, pub)).

• The volume of the interior of a part is smaller than the volume of a part.

• For many parts have interior volume smaller than the preimage volume of the lattice (the volume
of the Voronoi region of the lattice).

• Many elements W ∈ W have no point in the interior of the part.

• By averaging across parts, the average distribution W has no points in the interior of many parts.

• It is possible to distinguish a random key from one produced by Gen by checking if it comes from a
part whose interior has no preimage in W .

Proof. We now proceed with the formal proof. The following lemma bounds the volume of the smallest
parts.

Lemma 4.2. Suppose M is (R/Z)n with the Euclidean metric, κ ≥ 2, 0 ≤ t ≤
√
n

2 , and ε ≥ 0. Suppose
(Gen,Rep) is a (M,W, κ, t, ε)-fuzzy extractor for distribution family W over M. For any fixed pub, there
is a set GoodKeypub ⊂ {0, 1}κ of size 2κ−1 such that,

∀key ∈ GoodKeypub,Vol|{v ∈M|(key, pub) ∈ supp(Gen(v))}| ≤ 2−κ+1.

10



Proof of Lemma 4.2. Recall that Vol([0, 1]n) = 1. The set GoodKeypub consists of the 2κ−1 keys with the
smallest volume (breaking ties arbitrarily). Note that for

∀key ∈ GoodKeypub,Vol({v ∈M|Rep(v, pub) = key)}) ≤ 2−κ+1.

If not, then ∪keyVol(Qpub,key) > 1 because for every key 6∈ GoodKeypub,

Vol({v ∈M|Rep(v, pub) = key)}) > 2−κ+1.

This completes the proof of Lemma 4.2.

We now proceed to show on key ∈ GoodKeypub the size of the interior is bounded. By perfect correctness
of Rep, the input w to Gen has the following property: for all w′ within distance t of w, Rep(w′, pub) =
Rep(w, pub). Thus, if we partition M according to the output of Rep, the true w is t away from the
boundary of a part. Interior sets are small, which means the set of possible of w values is small. (Rep has
a deterministic output even if the algorithm is randomized, so this partition is well-defined.)

To formalize this intuition, fix pub and partition M according to the output of Rep(·, pub) as follows:
let Qpub,key = {w′ ∈ M|Rep(w′, pub) = key}. Note that there are 2κ keys and thus 2κ parts Qpub,key. For
the remainder of the proof we focus on elements in GoodKeypub. As explained above, if w is the input to
Gen, then every point w′ within distance t of w must be in the same part Qpub,key as w, by correctness of
Rep. Thus, w must come from the interior of some Qpub,key, where interior is defined as

Inter(Qpub,key) = {w ∈ Qpub,key|∀w′ s.t. dis(w,w′) ≤ t, w′ ∈ Qpub,key} .

We now use the isoperimetric inequality to bound the size of Inter(Qpub,key). The bounds on κ from the
theorem statement and the volume of the Voronoi region of the lattices contained in W are crucial for
this proof.

Lemma 4.3. Define all parameters as in Theorem 4.1. Then for any fixed

∀p,∀key ∈ GoodKeypub,Vol(Inter(Qp,key)) ≤
e√

2π · γ · pµn
.

Proof of Lemma 4.3. Fix some pub and some key ∈ GoodKeypub and consider Qp,key. Recall that

κ ≥ 1 + log(γ) + n

(
log pµ − log(

6
√
e+
√
π

6
√
e

)

)
.

By substitution one has,

Vol(Qpub,key) ≤ 2−κ+1 ≤ 1

(γ) · 2n
(

log pµ−log( 6
√
e+
√
π

6
√
e

)
) =

2
n log( 6

√
e+
√
π

6
√
e

)

(γ) · pµn·
.

Define α to be the radius of a ball with that volume. Using Equation 1 we have that

πn/2αn

(n/2)!
≤ 2

n log( 6
√
e+
√
π

6
√
e

)

(γ)pµn

11



Rearranging terms gives a bound on α:

α ≤
n
√

(n/2)!√
π

· 1
n
√
γ · pµ

·
(

6
√
e+
√
π

6
√
e

)
The isoperimetric inequality says that the interior of this part is maximized in the setting when Qpub,key

is a ball. Thus, for all key ∈ GoodKeypub

Vol(Inter(Qp,key)) ≤ Vol(Bα−t).

We know the quantity α− t is bounded by:

α− t ≤
n
√

(n/2)!√
π

· 1
n
√
γ · pµ

·
(

6
√
e+
√
π

6
√
e

)
− 1

6
√

2epµ

√
n

≤ 1

pµ

(
n
√

(n/2)!
n
√
γ
√
π
· (6
√
e+
√
π

6
√
e

)− 1

6
√
e

√
n

2

)
(2)

≤ 1

pµ

(
(n2 )(n+1

2
) · e( 1

n
− 1

2
)

n
√
γ

·
(

1√
π

+
1

6
√
e

)
− 1

6
√
e

√
n

2

)
(3)

≤
(
n
2

)(n+1
2

)
e

1
n
− 1

2

√
πpµγ1/n

(4)

Here equation 3 follows from 2 by use of Stirling’s upper bound that (n/2)! ≤ e(n/2)n/2+1/2 · e−n/2. As
γ ≥ 1 and n ∈ Z+, it is always true that

e2n

2
≤ (γ)2en.

Thus, Equation 4 follows by noting that the quantity(
n
2

) 1
2n e

1
2
− 1

2n

γ1/n
≤ 1

This gives us the desired bound on the volume of this interior:

Vol(Inter(Qp,key)) ≤
πn/2

(
(n2 )

(n+1
2 )

e
1
n−

1
2

√
πpµγ1/n

)n
(n/2)!

≤
(n2 )

n+1
2 p−µn · e · e

−n
2 γ−1

√
2π(n2 )

n+1
2 e

−n
2

=
e√

2π · γ · pµn
.

Here we use Stirling’s lower bound that (n/2)! ≥
√

2π(n/2)n/2+1/2e−n/2. This completes the proof of
Lemma 4.3.
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Figure 1: Tradeoff between entropy rate µ and noise rate τ for both fuzzy extractors (red) and secure
sketches (blue). Illustration of parameters in Theorem 4.1 and Theorem 5.1. In this analysis we assume
that there always exists a prime of size exactly 3(2e)1/(1−µ). The allowed noise rate τ may be reduced to
find such a prime. Recall that Bertrand’s postulate state’s that a prime exists between n and 2n for any
integer n > 1.

Lemma 4.3 implies that for each key ∈ GoodKeypub, the interior Vol(Inter(Qp,key)) is smaller than the
volume of the Voronoi region by a factor of e√

2πγ
. This means that for an average W ∈ W,

Pr
W←W,κ

$←GoodKeypub

[Inter(Qpub,key) ∩W = ∅] ≥ 1− e√
2πγ

.

Thus, on average across z = (k, h) a 1− e√
2πγ

fraction of keys in GoodKeypub (that is, overall 1
2 −

e
2
√

2πγ

fraction of keys cannot be produced). Define the set Implausible = {key, pub, z|Inter(Qpub,key) ∩Wz = ∅}.
Triples drawn by creating a key using the fuzzy extractor never come from the set implausible. However,
a uniformly random key will land in this set with probability 1

2 −
e

2
√

2πγ
. Thus, ε ≥ 1

2 −
e

2
√

2πγ
. This

completes the proof of Theorem 4.1.

Parameter discussion: There are settings of µ, τ, κ = Θ(1) such that the statistical distance ε is a

constant. Taking log p−µ ≤ log(6
√
e+
√
π

6
√
e

) ≈ −.1334 implies that κ only needs to satisfy κ ≥ 1 + log γ.

Substituting p ≥ (3
√

2e)1/(1−µ) and ignoring factors due to finding a prime p this condition holds when
µ ≤ .045. When γ = 4 then ε ≥ .35 (when κ ≥ 3). The full setting of achievable parameter ranges for a
constant κ, ε are in Figure 1.
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5 No Secure Sketch can secure W
We now show no secure sketch can be secure for an average member of W. We consider the metric space
[0, 1]n but we can embed other bounded, continuous spaces of finite dimension into the unit cube.

Theorem 5.1. Let M = [0, 1]n with the Euclidean metric dis where n is even positive integer. Let

µ ∈ [0, 1
2) be a constant and define m

d
= µn. There is a family W where for all W ∈ W, Hfuzz

t,∞(W ) =
H∞(W ) ≥ m, such that for any (M,W, m̃, t)-secure sketch with error δ, we have m̃ ≤ 3 provided the
following conditions hold:

1. n ≥ 2(h2(2δ) + log e). Note that n ≥ 6 suffices.

2. Let p be a prime integer parameter such that p ≥ (3
√

2e)
1

(1−µ)

3. Define the noise rate τ
d
= t/
√
n where τ = 1

6pµ
√

2e
.

4. The error parameter δ satisfies

δ ∈
[
0,

1

2
− log(1/τ)

2(1− µ) log p

)

Parameters: As an example, µ = .3 implies that p ≥ 129, so if we consider p = 131, we have that
τ ≤ .017 and δ ≤ .08. That is, there is a family with constant fuzzy entropy, constant error rate, and
constant error where no good secure sketch exists. The trade-off between µ and τ is illustrated in Figure 1.

Interpreting the result: A secure sketch “discretizes” the input space into regions that produce a
consistent value. Thus it is not surprising that, like the discrete case, a continuous secure sketch is not
always possible. As stated in the introduction, the geometry of the Euclidean metric is more challenging
than the Hamming metric due to the slower growth of volume.

Proof of Theorem 5.1. Recall that we use the family described in Theorem 3.1, the uniform distribution
over the support of a coset h of a random lattice with minimum distance t. In this proof we will use the
fact that for each W ∈ W the hash family is universal, regular, and has minimum distance.

We will define Z = (A, h) to be the pair of the lattice and coset and consider W = {Wz}. Let
n,m, µ, t, τ and p be defined as in the theorem statement. The core of the proof is showing two properties
of this hash function:

1. The family restricted to a hash function and output value has fuzzy min-entropy. This is because
the hash function is regular and has minimum distance.

2. The adversary learns from sketch value SS(WZ) and new information by seeing the hash function
and value. This is because the hash function is universal.

The first property is immediate, by the 2m log p-regularity and minimum distance properties of HashA,
H∞(Wz) = Hfuzz

t,∞ (Wz) = m log p ≥ m. We now proceed to show that some values of sketch that occur
with good probability decrease the number of possible input values.

14



Lemma 5.2. Let M denote the Euclidean mod-space [0, 1]n and |Bt| denote the volume of a sphere of
radius t inM. Suppose (SS,Rec) is a (M,W, m̃, t) secure sketch with error δ, for some distribution family
W over M. Then for every v ∈ M there exists a set GoodSketchv such that Pr[SS(v) ∈ GoodSketchv] ≥
1/2 and for any fixed ss,

log |{v ∈M|ss ∈ GoodSketchv}| ≤
h2(2δ)− log |Bt|

1− 2δ
,

and, therefore, for any distribution DM over M,

H0(DM|ss ∈ GoodSketchDM) ≤ h2(2δ)− log |Bt|
1− 2δ

.

Proof. For any v ∈M , define Neight(v) be the uniform distribution on the ball of radius t around v and
let

GoodSketchv = {ss| Pr
v′←Neight(v)

[Rec(v′, ss) 6= v] ≤ 2δ]} .

We prove the lemma by showing two propositions. The first is a simple application of the Markov
inequality shown by Fuller et al. [FRS16, Proposition D.2]

Proposition 5.3. For v ∈M, Pr[SS(v) ∈ GoodSketchv] ≥ 1/2.

To finish the proof of Lemma 5.2, we show that the set {v ∈ M|ss ∈ GoodSketchv} forms an error-
correcting code and bound the size of the code.

Definition 5.4. We say that a set C is an (t, δ)-Shannon code if there exists a (possibly randomized)
function Decode such that for all c ∈ C,

Pr
c′←Neight(c)

[Decode(c′) 6= c] ≤ δ.

The set {v ∈M|ss ∈ GoodSketchv} forms (t, 2δ) Shannon code if we set Decode(y) = Rec(y, ss). We now
bound the size of such a code.

Lemma 5.5. If C ⊂ [0, 1]n is a (t, δ)-Shannon code for any t > 0, then |C| <∞ and

log |C| ≤ h2(δ)− log |Bt|
1− δ

(5)

Proof of Lemma 5.5. First we show |C| <∞. Suppose for contradiction that |C| =∞. For any ε > 0, we
can find p, q ∈ C such that |p− q| < ε. Let Bt(p), Bt(q) be the t-radius balls centered on p, q respectively.
Then we can choose p, q, ε such that |Bt(p) ∩ Bt(q)| ≥ 2δ and |p − q| < ε < t. Let R be a uniform
distribution on Bt(p) ∩Bt(q). Clearly

Pr[dis(R, p) ≤ t] Pr[dis(R, q) ≤ t] = 1.

If Pr[Decode(R) 6= p] ≤ 1/2, we necessarily have Pr[Decode(R) 6= q] ≥ 1/2. Without loss of generality
assume that Pr[Decode(R) 6= q] ≥ 1/2. Then we have that

Pr
c′←Neight(q)

[Decode(c′) 6= c] ≥ Pr
c′←R

[Decode(c′) 6= c] Pr[c′ ∈ R] >
2δ

2
= δ.
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By contradiction, we know |C| <∞.
This we can assume that C is finite. Let X be a uniform distribution on C and Y a uniform distribution

on the t-radius ball centered on X. Here we use a variant of Fano’s inequality [Fan61] when Y is a
continuous random variable. This formulation is different from most continuous formulation’s of Fano’s
inequality which point the Euclidean norm of the estimate [CD09, Lemma 2]. We do not prove this
formulation, the proof is the same as the standard discrete formulation of Fano’s which only relies on X̂
and X.

Lemma 5.6. Let X be a discrete random variable on M, Y be a continuous random variable on M with
X̂(Y ) a discrete estimator of X based on Y . Then,

H1(X|X̂) ≤ h2(δ) + δ(log |C|).

where δ = Pr[X 6= X̂].

In particular, we consider the following estimator X̂(y), if there exists a single x ∈ C such that
dis(x, y) ≤ t output x. If there are multiple xi such that ∀i, dis(xi, y) ≤ t then output a random y. Then
we have that

H1(X|X̂) ≥ H0(X|X̂) ≥ log

(
(|C| ∗ |Bt|)
|[0, 1]n

)
= log |C|+ log |Bt|.

Here the second inequality proceeds by noting that that |C| ∗ |Bt|/|[0, 1]n measures the thickness of the
space and thus the average number of possible points x ∈ C within distance t for a uniform point y around
a codeword. Thickness is usually used to describe the quality of a covering radius. Here by thickness we
simply mean the total volumes of the balls of radius t divided by the size of the space. Combining these
two facts yields that Equation 5. This completes the proof of Lemma 5.5.

Lemma 5.2 follows from Lemma 5.5.

Since the hash is universal, entropy drops further when the adversary learns A, h. Let M denote the
uniform distribution on M and K denote the uniform distribution on K. We first recall that a universal
hash function reduces entropy of any distribution with small enough support:

Lemma 5.7. [FRS16, Lemma B.2] Let L be a distribution. Let {HashA}A∈K be a family of 2−a-universal
hash functions on the support of L. Assume A is uniform in K and independent of L. Then

H̃0(L|A,HashA(L)) < log(1 + | supp(L)| · 2−a) ≤ max(1, 1 +H0(L)− a) .

Applying Lemma 5.7 to Lemma 5.2, we get that for any ss,

H̃0(M|ss ∈ GoodSketchM,A,HashA(M))

< max

(
1, 2 +

h2(2δ)− log |Bt|
1− 2δ

− (n−m) log p

)
. (6)

We note that H̃0 serves as a bound on H̃∞ (see [FRS16, Lemma D.5]). That is,

H̃∞(M|ss ∈ GoodSketchM,A,HashA(M))

< max

(
1, 2 +

h2(2δ)− log |Bt|
1− 2δ

− (n−m) log p

)
.

We need just two more lemma technical lemmas:

16



Lemma 5.8. [FRS16, Lemma D.6] For any pair of random variables (X,Y ) and event η that is a
(possibly randomized) function of (X,Y ), H̃∞(X|η, Y ) ≥ H̃∞(X|Y )− log 1/Pr[η].

The second technical lemma bounds the size of ball in the Euclidean space:

Lemma 5.9. Let p be a prime such that p ≥ (3
√

2e)1/(1−µ) then

α
d
=
h2(2δ)− log |Bt|

1− 2δ
− (1− µ)n log p ≤ 0.

Proof. Due to Lemma 2.1 and Stirling’s formula, we have that

α =
h2(2δ)− log |Bt|

1− 2δ
− (1− µ)n log p

≤ h2(2δ) + n+ log((n/2)!)− n/2 log π − n log t

1− 2δ
− (1− µ)n log p

≤
h2(2δ) + n(1− log π

2 ) + log e(n/2)n/2+1/2e−n/2 − n log t

1− 2δ
− (1− µ)n log p

=
h2(2δ) + log e+ n(1− log π

2 − log e
2 ) + log(n/2)n/2+1/2 − n log t

1− 2δ
− (1− µ)n log p (7)

≤
h2(2δ) + log e+ n

2 log n
2 − n log t

1− 2δ
− (1− µ)n log p (8)

=
h2(2δ) + log e+ n log (n/2)1/2

τ
√
n

1− 2δ
− (1− µ)n log p

=
h2(2δ) + log e+ n log 1√

2τ

1− 2δ
− (1− µ)n log p

≤
n log 1

τ

1− 2δ
− (1− 2δ)(1− µ)n log p

1− 2δ
(9)

≤
n log 1

τ

1− 2δ
−

log(1/(τ))
(1−µ) log p(1− µ)n log p

1− 2δ
(10)

≤
n log 1

τ

1− 2δ
−

n log 1
τ

(1− 2δ)
= 0

Where Equation 8 follows from Equation 7 as n(1 − log π/2 − log e/2) + 1/2 log n/2 ≤ 0 for all even
positive integers. Equation 9 follows by the fact that n ≥ 2(h2(2δ) + log e) by assumption. Equation 10
follows by the assumption on δ.
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Putting these facts together allows us to conclude the theorem statement:

H̃∞(WZ |Z, SS(WZ)) = H̃∞(M|SS(M),A,HashA(M))

≤ log
1

Pr[SS(M) ∈ GoodSketchM]
+

H̃∞(M|ss s.t. ss = SS(M) and ss ∈ GoodSketchM,A,HashA(M))

≤ log
1

Pr[SS(M) ∈ GoodSketchM]
+

H̃0(M|ss s.t. ss = SS(M) and ss ∈ GoodSketchM,A,HashA(M))

< log
1

Pr[SS(M) ∈ GoodSketchM]
+ max

(
1, 2 +

h2(2δ)− log |Bt|
1− 2δ

−m log p

)
< log 2 + max

(
1, 2 +

h2(2δ)− log |Bt|
1− 2δ

−m log p

)
≤ log 2 + max

(
1, 2 +

h2(2δ)− log |Bt|
1− 2δ

− (1− µ)n log p

)
≤ log 2 + max(1, 2)

≤3

This completes the proof of Theorem 5.1.

6 Conclusion

Our two results show that model inaccuracy may be a major hurdle to constructing a continuous source
fuzzy extractor. There are three ways to overcome our results:

1. Our results use distributions W that have fuzzy min-entropy at most .5n and algorithms that
correct t ≈ .07

√
n errors (see Figure 1). One may be able to avoid these results when more fuzzy

min-entropy is present or less error tolerance is required.

2. One could use properties of a distribution beyond (fuzzy) min-entropy. For example, Li et al. [LSM06]
assumed that dimensions were independently distributed.

3. Some discrete fuzzy extractors provide computational security [FMR13, CFP+16, HRvD+17, ACEK17,
ABC+18, WLH18, WL18]. One could provide computational security instead of information-
theoretic security. We are not aware of any prior continuous-source fuzzy extractors that argue
computational security.

For secure sketches we considered the metric space [0, 1]n. Our results can be extended to other
bounded subsets of Rn. Our fuzzy extractor result instead considers (R/Z)n. This is due to a technical
limitation of the proof technique. We show that the volume of the interior of Qkey is smaller than the
volume of Qkey. Roughly, maximum security drops by a factor proportional to the ratio between these
volumes. To get a o(n) bound on key length this ratio must be exponential in the dimension n. In the
metric space [0, 1]n most parts of Qkey can be on a boundary of the unit cube. In the worst case these
objects can be 1-dimension so their interior volume is only a constant factor smaller than their total
volume.

We consider this to be an artifact of working with the unit cube. If a fuzzy extractor only secures points
on the boundary then the data does not simultaneously vary in n dimensions. Since extraneous dimensions
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complicate error-correction, a system designer would first reduce dimensionality (see for example [LPV11])
to find a representation that varies across all dimensions. This transformed distribution would be used
for stable key derivation. In the “mod” space there are no boundary points, the entire region is “n-
dimensional.”
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bauwhede, and Christian Wachsmann. Pufs: Myth, fact or busted? a security evaluation
of physically unclonable functions (pufs) cast in silicon. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 283–301. Springer, 2012.

[KLRW14] Patrick Koeberl, Jiangtao Li, Anand Rajan, and Wei Wu. Entropy loss in PUF-based
key generation schemes: The repetition code pitfall. In Hardware-Oriented Security and
Trust (HOST), 2014 IEEE International Symposium on, pages 44–49. IEEE, 2014.

20



[LPV11] Haiping Lu, Konstantinos N Plataniotis, and Anastasios N Venetsanopoulos. A survey
of multilinear subspace learning for tensor data. Pattern Recognition, 44(7):1540–1551,
2011.

[LSM06] Qiming Li, Yagiz Sutcu, and Nasir Memon. Secure sketch for biometric templates. In
Advances in Cryptology – ASIACRYPT, pages 99–113. Springer, 2006.

[Mau93] Ueli M. Maurer. Secret key agreement by public discussion from common information.
IEEE Transactions on Information Theory, 39(3):733–742, 1993.

[MG09] Rene Mayrhofer and Hans Gellersen. Shake well before use: Intuitive and secure pairing
of mobile devices. IEEE Transactions on Mobile Computing, 8(6):792–806, 2009.

[MvdLvdSW15] Roel Maes, Vincent van der Leest, Erik van der Sluis, and Frans Willems. Secure key
generation from biased pufs. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 517–534. Springer, 2015.

[NZ93] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, pages 43–52, 1993.

[PRTG02] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. Physical one-way
functions. Science, 297(5589):2026–2030, 2002.

[RW05] Renato Renner and Stefan Wolf. Simple and tight bounds for information reconcili-
ation and privacy amplification. In Bimal K. Roy, editor, Advances in Cryptology -
ASIACRYPT, volume 3788 of LNCS, pages 199–216. Springer, 2005.

[SD07] G. Edward Suh and Srinivas Devadas. Physical unclonable functions for device authen-
tication and secret key generation. In Proceedings of the 44th annual Design Automation
Conference, pages 9–14. ACM, 2007.

[SFIC14] Merrielle Spain, Benjamin Fuller, Kyle Ingols, and Robert Cunningham. Robust
keys from physical unclonable functions. In 2014 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pages 88–92. IEEE, 2014.

[TSS+06] Pim Tuyls, Geert Jan Schrijen, Boris Skoric, Jan van Geloven, Nynke Verhaegh, and Rob
Wolters. Read-proof hardware from protective coatings. In Louis Goubin and Mitsuru
Matsui, editors, Cryptographic Hardware and Embedded Systems - CHES 2006, volume
4249 of Lecture Notes in Computer Science, pages 369–383. Springer, 2006.

[TW15] Himanshu Tyagi and Shun Watanabe. Converses for secret key agreement and secure
computing. IEEE Transactions on Information Theory, 61(9):4809–4827, 2015.

[VTO+10] Evgeny A Verbitskiy, Pim Tuyls, Chibuzo Obi, Berry Schoenmakers, and Boris Skoric.
Key extraction from general nondiscrete signals. IEEE Transactions on Information
Forensics and Security, 5(2):269–279, 2010.

[WCD+17] Joanne Woodage, Rahul Chatterjee, Yevgeniy Dodis, Ari Juels, and Thomas Risten-
part. A new distribution-sensitive secure sketch and popularity-proportional hashing. In
Advances in Cryptology – CRYPTO, pages 682–710. Springer, 2017.

21



[WL18] Yunhua Wen and Shengli Liu. Robustly reusable fuzzy extractor from standard assump-
tions. In Advances in Cryptology – ASIACRYPT, 2018.

[WLH18] Yunhua Wen, Shengli Liu, and Shuai Han. Reusable fuzzy extractor from the decisional
Diffie–Hellman assumption. Designs, Codes and Cryptography, pages 1–18, 2018.

[Wyn75] Aaron D Wyner. The wire-tap channel. Bell System Technical Journal, The, 54(8):1355–
1387, 1975.

22


	Introduction
	Our Contribution and Techniques

	Preliminaries
	Fuzzy Extractors

	The family of distributions W
	No fuzzy extractor can secure W
	No Secure Sketch can secure W
	Conclusion

