
ISO/IEC 9797-1 Revisited: Beyond Birthday
Bound

Yaobin Shen, Lei Wang?, and Dawu Gu

Shanghai Jiao Tong University
{yb shen, wanglei hb, dwgu}@sjtu.edu.cn

Abstract. The international standard ISO/IEC 9797-1:2011 specifies
six versions of MACs, called MAC Algorithm 1-6, and many of these
MACs enjoy widespread use in practical applications. However, security
guarantees of these MACs are all capped at birthday bound since they all
use single CBC-MAC computations. It is recommended in this standard
to improve the security level by concatenating outputs of two MACs with
independent keys rather than XORing them.
In this paper, we show such claim is wrong by giving birthday forgery
attacks on concatenations of two MACs with independent keys in this
standard. Furthermore, we revisit the impact of XORing of two MACs
on ISO/IEC 9797-1:2011 and show this operation can only lift up the se-
curity level. We give the first two provable-security bounds for XORing
of two MAC Algorithm 1 (XMAC1) in ISO/IEC 9797-1:2011 with either
padding scheme 3 or 2. We prove that XMAC1 with padding scheme 3
is secure beyond birthday bound with O(σq2`/22n). Note that our result
implies that this is the first CBC-type MAC that provably goes be-
yond birthday barrier with only two secret keys. When instantiated with
padding scheme 2, we prove that XMAC1 is secure with birthday bound
O(σ2/2n). Illustrated with Joux et al’s attack, this bound is tight up to
a constant factor. We also prove that XORing of two MAC Algorithm 5
(XMAC5) is secure with a bound O(σq2`/22n).
Finally, together with previous results, we give a summary of the impact
of XORing of two MACs on ISO/IEC 9797-1:2011 and conclude that
such operation can only lift up the security bound.
Keywords: ISO/IEC 9797-1, birthday forgery attack, XMAC1, XMAC5,
beyond birthday bound

1 Introduction

A Message Authentication Code (MAC) is a fundamental symmetric-key primi-
tive to provide integrity and authenticity of messages between two parties. There
are several ways to realize a MAC including by using a universal hash [24], us-
ing a compression function [1] or using a block cipher [2]. Block cipher-based
MACs are a large family of MACs that use block ciphers to construct secure
PRFs (Pseudo-Random Functions) under the assumption that underlying block

? Corresponding author

ciphers are secure PRPs (Pseudo-Random Permutations). A MAC is said to be
secure if it is a good PRF under all adversaries. In information-theoretic proofs
of MACs, the underlying block cipher are usually replaced with a random permu-
tation at first step and the transformed construction would be given a rigorous
security proof. The advantage of PRF-security is often measured by n the block
size, q the total number of queries, ` the length of the longest message and σ
the total number of blocks of all queries. Many block cipher-based MACs can
achieve the so-called birthday security, generally with a bound like O(q2/2n).

It is not enough to reach birthday security for block cipher-based MACs, espe-
cially when the block size is small. For lightweight block ciphers (e.g. PRESENT
[7] and PRINCE [8]) as well as legacy block ciphers such as 3DES, the block
size is usually n = 64, in which the birthday bound becomes 232 and vulner-
able in many practical applications. For instance, Bhargavan and Leurent [6]
have demonstrated two practical attacks called Sweet32 that exploit collision on
short block ciphers. Hence, performing MACs with beyond birthday security in
practical devices is of great importance.

ISO/IEC 9797-1 is an international standard that defines MACs using a
block cipher. ISO/IEC 9797-1:2011[13] specifies six different mechanisms of CBC
MACs, called MAC Algorithm 1-6, where each MAC is defined by specifying the
final iteration and output transformation. Many of these MACs enjoy widespread
use in practical devices and thus are of great importance. Since each of these
MACs uses single CBC-MAC computations, they all suffer from birthday forgery
attacks as explained in [21,22]. Hence security guarantees of these MACs are all
capped at birthday bound which is less satisfying. It is suggested to improve the
security level by concatenating outputs of two MACs in Annex C, C.2 Rationale,
ISO/IEC 9797-1:2011:

if a MAC algorithm with a higher security level is needed, it is rec-
ommended to perform two MAC calculations with independent keys and
concatenate the results (rather than XORing them).

However, this claim is wrong and will be shown later that such concatenation can
not enhance the security guarantee except doubling communication complexity
among users and indeed XORing outputs of two MACs with independent keys
can lift up the security to beyond birthday bound for all kinds of MACs specified
in this standard.

Our contributions. Firstly, we notice a wrong claim in ISO/IEC 9797-
1:2011, that is, concatenation of two MACs can not improve the security level
but only double communication complexity among users. We argue this by giving
birthday forgery attacks on these concatenations, and these attacks show that
security guarantees of concatenations of any two MACs in ISO/IEC 9797-1:2011
are all still capped at birthday bound.

Secondly, we revisit the impact of XORing of two MACs on ISO/IEC 9797-
1:2011 and show that this operation can lift up the security level to beyond
birthday bound. Due to Joux et al’s double collision attack [16], the security

2

Table 1: Comparison of XMAC1, XMAC5 and other CBC-type MACs with
beyond birthday security. XMAC1 resp. XMAC5 denotes the XORing of two
MAC Algorithm 1 resp. 5 in ISO/IEC 9797-1:2011.

Algorithm #keys Security Ref.

SUM-ECBC 4 O(q3`3/22n) [25]

3kf9 3 O(q3`3/22n + q`/2n) [27]

XMAC1 with pad3 2 O(σq2`/22n) Sect. 5

XMAC1 with pad2 2 O(σ2/2n) App. A

XMAC5 2 O(σq2`/22n) Sect. 6

guarantee of XORing of two MAC Algorithm 1 (XMAC11) with padding scheme
2 is stopped at birthday barrier. On the other hand, the provable-security bounds
of XMAC1 with either padding scheme 2 or 3 still remain open which has been
pointed out by Rogaway in [23]. In 2010 [25], Yasuda proved that XORing of
two MAC Algorithm 2 (termed SUM-ECBC in his paper) is secure beyond birth-
day bound with either padding scheme 2 or 3, and his proof can also apply to
XORing of two MAC Algorithm 42 and obtain similar security bounds. How-
ever, provable-security bounds of XORing of the four rest standardized MACs
(XMAC1, XMAC3, XMAC5, XMAC6) remain absent until now. In particular,
provable-security bounds of XMAC1 and XMAC5 are related to the open prob-
lem of XORing of single-key CBC-MACs, which has been mentioned by Yasuda
[25] and Zhang et al [27].

In this paper, we give the first two security bounds for XMAC1 either instan-
tiated with padding scheme 3 or 2. When instantiated with padding scheme 3,
we prove that XMAC1 is secure beyond birthday barrier with a bound O(σq2`).
Compared with other two CBC-like MACs with beyond birthday bound security
SUM-ECBC [25] and 3kf9 [27], requiring four and three secret keys respectively,
XMAC1 only need two keys. Thus our result implies that XMAC1 is the first
CBC-type MAC that provably goes beyond birthday bound with only two se-
cret keys. When instantiated with padding scheme 2, we prove that XMAC1 is
secure with birthday bound O(σ2/2n). Together with Joux et al.’s attack [16],
this bound is tight up to a constant factor. The reason behind these two differ-
ent bounds for XMAC1 is that padding scheme 3 is a prefix-free encoding while
padding scheme 2 is not. Furthermore, we prove that XMAC5 can also achieve
the O(22n/3) security. XMAC5 is more efficient in a sense that it is not necessary
to compute the length of messages before beginning the process of authentica-
tion. On the other hand, XMAC3 and XMAC6 are similar to XMAC2 and can
be proved by Yasuda’s proof [25].

We finally give a summary of the impact of XORing of two MACs on ISO/IEC
9797-1:2011 and show that the resulted MAC can only be lifted to a higher

1 this is also the MAC Algorithm 5 specified in ISO/IEC 9797-1:1999 [12]
2 this is also the MAC Algorithm 6 specified in ISO/IEC 9797-1:1999

3

security level. Thus, according to our results, one can simply XORing two CBC-
like MACs at hand and achieve better security guarantees.

Organization. In Sect. 2, we give essential notations and definitions. We
give birthday forgery attacks on concatenations of two MACs of ISO/IEC 9797-
1:2011 in Sect. 3. We present our main results on XMAC1, XMAC5 in Sect. 4.
Then we give proofs of XMAC1 with padding scheme 3, XMAC1 with padding
scheme 2 and XMAC5 in Sect. 5, Appendix A, Sect. 6 respectively. Finally, we
discuss the impact of XORing of two MACs on ISO/IEC 9797-1:2011 in Sect. 7
and conclude this paper in Sect. 8.

2 Preliminaries

2.1 Notation

If X is a set, then X
$← X denotes the operation of drawing X from X uniformly

at random. {0, 1}∗ denotes all bit strings including the empty string. The bit
length of a string X is written by |X|. Concatenation of strings X and Y is
written as either X‖Y or simply XY . We denote X ⊕Y the bitwise exclusive-or
of two equal-length strings. For a string X ∈ {0, 1}n` with ` ≥ 1, we divide X
into n-bit blocks as X = X[1]‖ . . . ‖X[`] where |X[1]| = · · · = |X[`]| = n. If ` is
a non-negative integer such that ` < 2n, we write binn(`) for the n-bit binary
representation of `.

We write Perm(n) for the set of all permutations over {0, 1}n, and Rand(n)
for the set of all functions mapping {0, 1}∗ to {0, 1}n. We often perform lazy sam-

pling for specifying a random permutation P
$← Perm(n). We denote Dom(P)

and Ran(P) the sets of already-defined domain points and range points of P
respectively, and Dom(P) and Ran(P) for the complementary sets. A block ci-
pher E is a family of permutations {EK : K ∈ K}, where EK(·) = E(K, ·) is a
permutation over {0, 1}n specified by a key K. K is the key space and n is the
block length.

A MAC is an algorithm that takes two inputs a key K and a message M
then outputs a fixed-length tag T . K,M and T are all binary strings. The CBC
MAC is built from cipher block chaining some underlying block cipher. Let
Mi = Mi[1]‖Mi[2]‖ · · · ‖Mi[mi] be a message, where |Mi[1]| = |Mi[2]| = · · · =
|Mi[mi]| = n and mi is the block length. Then CBC[EK](Mi), the CBC MAC
of M , is defined as yimi

, where

yij = EK(Mi[j]⊕ yij−1)

for j = 1, . . . ,mi and yi0 = 0n.
There are total four padding schemes specified in ISO/IEC 9797-1:2011. As

padding scheme 1 allows a trivial forgery, we only consider padding scheme 2, 3
and 4 in this paper, and padding scheme 4 is only used in MAC Algorithm 5:

pad2 the message M is always right-padded with a single ’1’ bit then right-
padded with i bits ’0’ where i is the least non-negative integer such that
|M |+ i+ 1 is a positive multiple of n.

4

pad3 the message M is mapped to binn(|M |)‖M0i where i is the least non-
negative integer such that |M |+ i is a positive multiple of n.

pad4 if the message has length that is positive multiple of n, then no padding
shall be applied. Otherwise, the message shall be right-padded with a single
’1’ bit then right-padded with i bits ’0’ where i is the least non-negative
integer such that |M |+ i+ 1 is a positive multiple of n.

Note that after padded via padding scheme 3, the messages list would become
prefix-free, meaning that it is any such pair from this list where neither string is
a prefix of the other. We simply denote pad2(M), pad3(M) and pad4(M) the
operations of mapping M to a sequence of n-bit blocks with padding scheme 2,
3 and 4 respectively.

2.2 Security Notions

An adversary A is an algorithm that always outputs a bit. We write AO(·) ⇒ 1
to denote the event that A outputs 1 after interacting with oracle O(·). We focus
on the information-theoretic setting, namely, all keyed block ciphers are replaced
with random permutations. Throughout this paper, an adversary A is allowed to
unbounded computational power and assumed to be deterministic without loss
of generality. Its complexity is measured by the number of queries, the maximum
block length of messages, the total number of blocks of messages. Recalling that
any pseudo-random function (PRF) is a secure MAC [2], our goal is to prove
F [P] is a secure PRF, where F [P] is an interested function based on random
permutations. We say that F [P] is a secure PRF if it is indistinguishable from

a random function R $← Rand(n). Formally, we define

Advprf
F [P](A)

def
= Pr[P

$← Perm(n) : AF [P](·) ⇒ 1]−Pr[R $← Rand(n) : AR(·) ⇒ 1].

Note that the probabilities are taken over P,R, and A′s coins.

3 Forgery Attacks on The Concatenation of Two MACs
in ISO/IEC 9797-1:2011

In this section, we present birthday forgery attacks on the concatenation of six
ISO/IEC 9797-1:2011 MACs, which are depicted in Fig. 1. We only present the
attack for the concatenation of a MAC Algorithm with two independent keys
here and the attacks for the concatenation of two different MAC Algorithms
is the same. We denote MACiK(M) the MAC for a message M computed us-
ing the MAC Algorithm i specified in ISO/IEC 9797-1:2011 for 1 ≤ i ≤ 6. We
denote MACiK1(M)‖MACiK2(M) the concatenation of two MACs with inde-
pendent keys K1,K2. Since padding scheme 1 allows trivial forgery attack, we
only consider padding scheme 2, 3 and 4 here. The attack procedures are detailed
below.

At first, we consider messages after padded with scheme 2. For MAC1K1
(M)‖

MAC1K2(M), i.e., the concatenation of two MAC Algorithm 1, we first query

5

M [1]

Ek

M [2] M [3]

⊕

Ek

⊕

Ek

T

(a) MAC1K(M)

M [1]

Ek

M [2] M [3]

⊕

Ek

⊕

Ek Ek′

T

(b) MAC2K(M)

M [1]

Ek

M [2] M [3]

⊕

Ek

⊕

Ek E−1
k′

Ek

T

(c) MAC3K(M)

M [1]

Ek

M [2] M [3]

⊕

Ek

⊕

Ek

Ek′Ek′′

T

(d) MAC4K(M)

M [1]

Ek

M [2] M [3]

⊕

Ek

⊕

Ek

L · u
L · u2

T

(e) MAC5K(M)

M [1]

Ek

M [2] M [3]

⊕

Ek

⊕

Ek′

T

(f) MAC6K(M)

Fig. 1: Illustration of the six ISO/IEC MACs. The message M has been padded
with specific padding scheme. For MAC1K(M) and MAC5K(M), the underlying
key is K = k. For MAC2K(M), MAC3 and MAC6K(M), the underlying key is
K = (k, k′). For MAC1K(M), the underlying key is K = (k, k′, k′′).

a single block message M1 and obtain MAC1K1
(M1)‖MAC1K2

(M1). Then we
query two strings M1 ⊕ MAC1K1

(M1) and M1 ⊕ MAC1K2
(M1), and receive

MAC1K2
(M1⊕MAC1K1

(M1)) (the right half of concatenation) and MAC1K1
(M1⊕

MAC1K2(M1)) (the left half of concatenation) respectively. In this stage, we can
forge a MAC of the message M1‖M1 ⊕MAC1K1(M1)⊕MAC1K2(M1) without
querying this message since MAC1K1

(M1‖M1⊕MAC1K1
(M1)⊕MAC1K2

(M1)) =
MAC1K1

(M1⊕MAC1K2
(M1)) and MAC1K2

(M1‖M1⊕MAC1K1
(M1)⊕MAC1K2

(M1)) = MAC1K2
(M1 ⊕MAC1K1

(M1)). This attack only requires 3 queries.

6

For i ∈ {2, 3, 4, 6}, we adopt the idea of multicollisions attack in iterated
hash functions proposed by Joux [15]. For any i ∈ {2, 3, 4, 6}, we first focus
on collisions of the left half of concatenation, i.e., MACiK1(M). We search
two two-block messages a1,1‖r1,1 and a2,1‖r2,1 such that MACiK1(a1,1‖r1,1) =
MACiK1

(a2,1‖r2,1). This requires about 2n/2 MAC computations due to birth-
day paradox. Fixing a1,1‖r1,1 and a2,1‖r2,1, we then search a1,2‖r1,2 and a2,2‖r2,2
such that MACiK1

(a1,1‖r1,1‖a1,2‖r1,2) = MACiK1
(a2,1‖r2,1‖a2,2‖r2,2). This also

requires about 2n/2 MAC computations. We do this until find two 2t-block
(t ≥ n/2) messages a1,1‖r1,1‖ . . . ‖a1,t‖r1,t and a2,1‖r2,1‖ . . . ‖a2,t‖r2,t such that
MACiK1

(a1,1‖ . . . ‖r1,t) = MACiK1
(a2,1‖ . . . ‖r2,t). This yields 2t different mes-

sages ai1,1‖ri1,1‖ . . . ‖ait,t‖rit,t for i1, . . . , it ∈ {1, 2} with the same MAC value
on the left half of concatenation. Assume t ≥ n/2, then with high probability
there exists a collision among these 2t elements such that the MAC value on the
right half are also equal. Assume the collided messages are M1 and M2. Then
the two MAC values for M1‖A and M2‖A are also a collision for any n-bit block
A. This attack requires total about (1 + n) · 2n/2 MAC computations.

Secondly, we consider messages after padded with scheme 3 for i ∈ {1, 2, 3, 4, 6}
and padded with scheme 4 for i = 5. For any i ∈ {1, 2, 3, 4, 5, 6}, we first focus
on collisions of the left half of concatenation, i.e., MACiK1(M). Let t ≥ n/2
and each message has same block-length 2t. We search two 2t-block messages
a1,1‖r1,1‖0n‖ . . . ‖0n and a2,1‖r2,1‖0n‖ . . . ‖0n (the last 2t−2 blocks are all zero)
such that MACiK1

(binn(2t)‖a1,1‖r1,1‖0n‖ . . . ‖0n) = MACiK1
(binn(2t)‖a2,1‖r2,1

‖0n‖ . . . ‖0n). This requires about 2n/2 MAC computations due to birthday para-
dox. Fixing a1,1‖r1,1 and a2,1‖r2,1, we then search a1,2‖r1,2 and a2,2‖r2,2 such
that MACiK1(binn(2t)‖a1,1‖r1,1‖a1,2‖r1,2‖0n‖ . . . ‖0n) = MACiK1(binn(2t)‖a2,1
‖r2,1‖a2,2‖r2,2‖0n‖ . . . ‖0n). This also requires about 2n/2 MAC computations.
We do this until find two 2t-block (t ≥ n/2) messages a1,1‖r1,1 . . . ‖a1,t‖r1,t and
a2,1‖r2,1 . . . ‖a2,t‖r2,t such that MACiK1

(binn(2t)‖a1,1‖ . . . ‖r1,t) = MACiK1
(binn

(2t)‖a2,1‖ . . . ‖r2,t). This yields 2t different messages ai1,1‖ri1,1‖ . . . ‖ait,t‖rit,t for
i1, . . . , it ∈ {1, 2} with the same MAC value on the left half of concatenation.
Assume t ≥ n/2, then with high probability there exists a collision among these
2t elements such that the MAC value on the right half are also equal. Assume the
collided messages are ai1,1‖ri1,1 . . . ‖ait,t‖rit,t and aj1,1‖rj1,1 . . . ‖ajt,t‖rjt,t, then
the two MAC values for ai1,1‖ri1,1 . . . ‖ait,t‖rit,t⊕A and aj1,1‖rj1,1 . . . ‖ajt,t‖rjt,t⊕
A are also a collision for any n-bit block A. This attack requires total about
(1 + n) · 2n/2 MAC computations.

4 Main Results on XMAC1 and XMAC5

In the information-theoretic setting, we simply denote XMAC1[P] the XORing
of two MAC Algorithm 1 based on random permutations. Similarly, we denote
XMAC5[P] the XORing of two MAC Algorithm 5 based on random permuta-
tions. We consider an adversary A that makes at most q queries to its oracle,
each query being at most ` blocks, and the total number of blocks of all queries
being at most σ.

7

As for XMAC1, we have the following two results.

Theorem 1. With padding scheme 3, if ` ≤ 2n/3, one has

Advprf
XMAC1[P](A) ≤ 844σq2`

22n
.

Theorem 2. With padding scheme 2, one has

Advprf
XMAC1[P](A) ≤ 2σ2

2n
+

2σq

2n
+

0.5q2

2n
.

As for XMAC5, we have

Theorem 3. For ` ≤ 2n/3, one has

Advprf
XMAC5[P](A) ≤ 4

2n
+

58σ2q

22n
+

841σq2`

22n
.

The proof of Theorem 1 is given in Sec. 5, the proof of Theorem 2 is given in
Appendix A, and the proof of Theorem 3 is given in Sec. 6.

5 Security of XMAC1 with Padding Scheme 3

binn(|M |)

P

P ′

M [1] M [2] M [3]0∗

⊕

P

⊕

P ′

⊕

P

⊕

P ′

⊕

P

⊕

P ′

⊕ T

Fig. 2: Illustration of XMAC1[P] with padding scheme 3 for M =
M [1]‖M [2]‖M [3], where |M [1]| = |M [2]| = n and 1 ≤ |M [3]| ≤ n.

In this section, we adopt the framework used in proofs for SUM-ECBC [25] and
PMAC Plus [26], and prove that XMAC1[P] instantiated with padding scheme
3 (described in Fig. 2) is an O(22n/3)-secure PRF. Note that in the rest of this
section, we always consider the messages list after padded with padding scheme
3, i.e., Mi = pad3(Mi) and denote by mi = |pad3(Mi)| the length of message
for 1 ≤ i ≤ q. This messages list is easily seen to be prefix-free.

8

5.1 Main Ideas

We focus on the last input of random permutations P and P ′ at each query,
denoted by ximi

and uimi
for 1 ≤ i ≤ q. We consider an adversary A that aims at

distinguishing XMAC1[P] from a random function R : {0, 1}∗ → {0, 1}n. A is
allowed to unlimited computational power but can make at most q queries to its
oracle, each query being at most ` blocks, and the total number of blocks of all
queries being at most σ. Without loss of generality, A is assumed to be deter-
ministic and never to repeat a query. The main game is presented in Fig. 3 and
codes of the four cases are given in Fig. 4, Fig. 5 and Fig. 6 respectively. Depend-
ing on the behavior after bad events, this game can simulate either XMAC1[P]
or a random function R. These two games are identical until bad events occur,
so by the fundamental lemma of game-playing [5] we have

Pr[AXMAC1[P](·) ⇒ 1]− Pr[AR(·) ⇒ 1] ≤ Pr[AR(·) sets bad].

Note that in the game simulating random function R, the respond returning to
the adversary is always a random n-bit string, unrelated to adversary’s query
or the setting of bad. Thus even if A prepares all of its queries M1, . . . ,Mq in
advance, the probability that A sets a bad flag is not made smaller, therewith
the interaction being vacuous in this game. We write bad events in more detail:

Pr[A sets bad]

=

q∑
i=1

(
Pr[ximi

/∈ Dom(P) ∧ uimi
/∈ Dom(P ′)] · Pr[A sets bad | Case A]

+ Pr[ximi
∈ Dom(P) ∧ uimi

/∈ Dom(P ′)] · Pr[A sets bad | Case B]

+ Pr[ximi
/∈ Dom(P) ∧ uimi

∈ Dom(P ′)] · Pr[A sets bad | Case C]

+ Pr[ximi
∈ Dom(P) ∧ uimi

∈ Dom(P ′)] · Pr[A sets bad | Case D]
)

≤
q∑
i=1

Pr[A sets bad | Case A] +

q∑
i=1

Pr[ximi
∈ Dom(P)] · Pr[A sets bad | Case B]

+

q∑
i=1

Pr[uimi
∈ Dom(P ′)] · Pr[A sets bad | Case C]

+

q∑
i=1

Pr[ximi
∈ Dom(P) ∧ uimi

∈ Dom(P ′)].

These four terms are relevant to four cases and will be bounded in following
subsections.

5.2 Analysis of Case A

We handle this case via the technique of fair sets developed by Lucks [17], which
has also been used in proofs of SUM-ECBC [25] and PMAC Plus [26].

9

1: for i = 1 to q do
2: ximi

← P (ximi−1)⊕Mi[mi]
3: ui

mi
← P ′(ui

mi−1)⊕Mi[mi]
4: if ximi

/∈ Dom(P) and ui
mi

/∈ Dom(P ′) then
5: go to Case A
6: end if
7: if ximi

∈ Dom(P) and ui
mi

/∈ Dom(P ′) then
8: go to Case B
9: end if

10: if ximi
/∈ Dom(P) and ui

mi
∈ Dom(P ′) then

11: go to Case C
12: end if
13: if ximi

∈ Dom(P) and ui
mi
∈ Dom(P ′) then

14: go to Case D
15: end if
16: end for

Fig. 3: We omit the internal computations and present the computation on the
last input of permutation P and P ′ at each query. ximi

and uimi
respectively

denote the last input to P and P ′ at i-th query. ximi−1 and uimi−1 respectively
denote (mi − 1)-th input to P and P ′ at i-th query.

Lemma 1. In Case A, we have

q∑
i=1

Pr[A sets bad | Case A] ≤ 4σ2q

22n
,

for σ ≤ 2n−1.

1: Choose a fair set U ⊂ Ran(P)× Ran(P ′) XMAC1[P]/ R
2: (yimi

, wi
mi

)
$← Ran(P)× Ran(P ′)

3: if (yimi
, wi

mi
) /∈ U then

4: bad←true (yimi
, wi

mi
)

$← U

5: end if
6: Ti ← yimi

⊕ wi
mi

7: return Ti

Fig. 4: Case A

Proof. We consider the game as described in Fig. 4. The code without the boxed
statement faithfully simulates P (ximi

) ⊕ P ′(uimi
) for 1 ≤ i ≤ q, while the code

with boxed statement always returns a n-bit random string Ti. We choose
a fair set U as follows. Enumerate Ran(P) as {y1, . . . , yα} and Ran(P ′) as

10

{w1, . . . , wβ}. For each yi ∈ {y1, . . . , yα} and wj ∈ {w1, . . . , wβ}, we choose arbi-

trarily representatives (y′i, w
′
j) ∈ Ran(P)×Ran(P ′) such that y′i ⊕w′j = yi ⊕wj

for 1 ≤ i ≤ α and 1 ≤ j ≤ β. We remove these αβ pairs (y′i, w
′
j) from

Ran(P)× Ran(P ′) and obtain U . For each value T ∈ {0, 1}n, we have

|{(y, w) ∈ U | y ⊕ w = T}| = 2n − α− β,

i.e., the chance to induce T from U is equal. Let αi and βi respectively denote
the number of new defined domain points of P and P ′ at i-th query. Then

q∑
i=1

Pr[A sets bad | Case A]

≤
q∑
i=1

|(Ran(P)× Ran(P ′)) \ U |
|Ran(P)× Ran(P ′)|

=

q∑
i=1

(α1 + · · ·+ αi − 1)(β1 + · · ·+ βi − 1)

(2n − α1 − · · · − αi + 1)(2n − β1 − · · · − βi + 1)

≤
q∑
i=1

σ2

(2n − σ)2
≤ 4σ2q

22n

under the condition σ ≤ 2n−1 and concludes the proof of Lemma 1.

5.3 Analysis of Case B

In this case, ximi
collides with previous inputs to P . The output string is Ti =

yimi
⊕ wimi

. That is, either yimi
or wimi

being random may make Ti a random
string. Our goal is to bound the probability that ximi

collides with previous
inputs of P and subsequently wimi

deviates from a random n-bit string.
We first use the following full collision probability lemma proved in [3,4,14]

to bound the probability of ximi
colliding with previous inputs of P . For any two

prefix-free messages Mi and Mj , the full collision probability FCPn(Mi,Mj) is
the probability of the event xjmj

∈ {xi1, . . . , ximi
,

xj1, . . . , x
j
mj−1} where for each b ∈ {i, j}, we have xbk = P (xbk−1) ⊕ Mb[k] for

2 ≤ k ≤ mb and xb1 = Mb[1].

Lemma 2 (Full Collision Probability). For any two prefix-free messages
Mi ∈ {0, 1}min and Mj ∈ {0, 1}mjn, we have

FCPn(Mi,Mj) ≤
3(mi +mj)

2n −mi −mj
+

(mi +mj)
4

22n
.

Remark on This Lemma. The full collision probability lemma is first proved
by Bellare et al. in [3] and then refined in its full version [4]. Recently Jha and
Nandi [14] pointed out a flaw in the previous proof.

11

We denote by FCPn(∅,M1) the probability of the special case x1m1
∈ {x11, . . . , x1m1−1}

and it is easily seen that FCPn(∅,M1) ≤ 3m1

2n−m1
+

m4
1

22n . Then at i-th query, we
have

Pr[ximi
∈ Dom(P)] ≤

i−1∑
j=1

FCPn(Mj ,Mi).

We next utilize game-playing techniques to examine the randomness of string

wimi
. Note that if we pick wimi

as wimi

$← {0, 1}n, then the distribution of
Ti = yimi

⊕wimi
would be uniformly random. We consider the game presented in

Fig. 5. The code with the boxed statement is the simulation of P (ximi
)⊕P ′(uimi

)
while the code without boxed statement corresponds to a random function. With-
out a bad event occurring, the responses that A receives from the oracle are uni-
form and independent binary strings. We see that the bad event occurs with a
probability of |Ran(P ′)|/2n for each sampling operation, which is at most σ/2n.

1: yimi
← P (ximi

) XMAC1[P] /R

2: wi
mi

$← {0, 1}n
3: if wi

mi
∈ Ran(P ′) then

4: bad←true wi
mi

$← Ran(P ′)

5: end if
6: Ti ← yimi

⊕ wi
mi

7: return Ti

Fig. 5: Case B

Let M1,M2, . . . ,Mq be a sequence of messages, then

q∑
i=1

Pr[ximi
∈ Dom(P)] · Pr[A sets bad | Case B]

≤
q∑
i=1

Pr[ximi
∈ Dom(P)] · |Ran(P ′)|

2n

≤ σ

2n
·

FCPn(∅,M1) +

q∑
i=2

i−1∑
j=1

FCPn(Mj ,Mi)


≤ σ

2n
·

6m1

2n
+
m4

1

22n
+

q∑
i=2

i−1∑
j=1

(
6(mi +mj)

2n
+

(mi +mj)
4

22n
)


≤ σ

2n
·
(

12σq

2n
+

16σq`3

22n

)
≤ 28σ2q

22n
,

12

if ` ≤ 2n/3.

5.4 Analysis of Case C

The analysis of Case C is identical to Case B since P and P ′ are two independent
random permutations. We obtain the same upper bound in this case:

q∑
i=1

Pr[uimi
∈ Dom(P ′)] · Pr[A sets bad | Case C] ≤ 28σ2q

22n
,

if ` ≤ 2n/3.

5.5 Analysis of Case D

In this case, yimi
and wimi

both have appeared before and Ti is not a random
string anymore. As shown in Fig.6, we always set bad flag in this case. The code
with boxed statements simulates P (ximi

)⊕P ′(uimi
) for 1 ≤ i ≤ q while the code

without boxed statements is the simulation of a random function.

1: Ti
$← {0, 1}n XMAC1[P] /R

2: bad←true

yimi
← P (ximi

)
wi

mi
← P (ui

mi
)

Ti ← yimi
⊕ wi

mi

3: return Ti

Fig. 6: Case D

Let M1, . . . ,Mq be a sequence of messages, then by using Lemma 2, we have

q∑
i=1

Pr[ximi
∈ Dom(P) ∧ uimi

∈ Dom(P ′)]

≤FCPn(∅,M1)2 +

q∑
i=2

i−1∑
j=1

i−1∑
k=1

FCPn(Mj ,Mi) · FCPn(Mk,Mi)

≤
(

6m1

2n
+
m4

1

22n

)2

+

q∑
i=2

i−1∑
j=1

i−1∑
k=1

(
6(mi +mj)

2n
+

(mi +mj)
4

22n

)
·
(

6(mi +mk)

2n
+

(mi +mk)4

22n

)

≤144σq2`

22n
+

384σq2`4

23n
+

256σq2`7

24n
≤ 784σq2`

22n
,

if ` ≤ 2n/3.

13

5.6 Summation

Finally we sum up the probabilities over above four cases and obtain

Pr[AR(·) sets bad]

≤4σ2q

22n
+

28σ2q

22n
+

28σ2q

22n
+

784σq2`

22n

≤844σq2`

22n

under the condition ` ≤ 2n/3, which completes the proof of Theorem 1.

6 Security of XMAC5

M [1]

P

P ′

M [2] M [3]

⊕

P

⊕

P ′

⊕

P

⊕

P ′

L1 · u

L2 · u

⊕ T M [1]

P

P ′

M [2] M [3]10∗

⊕

P

⊕

P ′

⊕

P

⊕

P ′

L1 · u2

L2 · u2

⊕ T

Fig. 7: Illustration of XMAC5[P]. The left is the case where the message length
is a positive multiple of n while the right is the case where the message length
is not a positive multiple of n. L1 = P (0n) and L2 = P ′(0n), u is some non-zero
constant, and · is field multiplication.

The proof of XMAC5 is similar to the proof of XMAC1 with padding scheme
3 and we only outline their main differences here. We use exactly the same main
game except that we need to set bad flag in following additional events:

– L1 · u = 0n, L2 · u = 0n, L1 · u2 = 0n, L2 · u2 = 0n, i.e., L1 = 0n or L2 = 0n.

Pr[L1 = 0n∨L2 = 0n] = Pr[P, P ′
$← Perm(n) : P (0n) = 0n∨P ′(0n) = 0n] =

2
2n ;

– L1 · u = L1 · u2, L2 · u = L2 · u2, i.e., L1 = constant1, L2 = constant2.

Pr[L1 = constant1 ∨ L2 = constant2] = Pr[P, P ′
$← Perm(n) : P (0n) =

constant1 ∨ P ′(0n) = constant2] = 2
2n .

These account to a term 4
2n . The definitions of four cases (A,B,C,D) are the same

as in Section 5. Note that P (0n) and P ′(0n) have been defined at the beginning

14

and thus P (0n) ∈ Ran(P) and P ′(0n) ∈ Ran(P ′). We always consider a padded
sequence of messages M1, . . . ,Mq, that is, each message has been padded with
10∗ when the length is not a positive multiple of n and further the last block of
each message has been bitwise exclusive-or with either Li ·u or Li ·u2 depending
on the length, and i = 1 when analyzing P , i = 2 when analyzing P ′.

– In the Case A, we have

q∑
i=1

Pr[A sets bad | Case A]

≤
q∑
i=1

|(Ran(P)× Ran(P ′)) \ U |
|Ran(P)× Ran(P ′)|

=

q∑
i=1

(α1 + · · ·+ αi)(β1 + · · ·+ βi)

(2n − α1 − · · · − αi)(2n − β1 − · · · − βi)

≤
q∑
i=1

σ2

(2n − σ)2
≤ 4σ2q

22n

under the condition σ ≤ 2n−1.

– In the Case B, the probability that ximi
collides with the values in Dom(P)

would be slightly enlarged as Mi may be a prefix of previous messages (we
consider the messages list that after padded with 10∗ when the length is not
a positive multiple of n and further the last block of each message has been
bitwise exclusive-or with either L1 · u or L1 · u2 depending on the length
of message). The probability of Mi being a prefix of previous messages or
Mi = 0n is at most i

2n , as if Mi is a prefix of Mj for 1 ≤ j ≤ i−1 or Mi = 0n:

• mi = mj , then we have Mi[mi]⊕L1 ·u = Mj [mj]⊕L1 ·u2, which happens
with probability of 1

2n ;

• if mi < mj , then we have Mi[1]‖ . . . ‖Mi[mi−1] = Mj [1]‖ . . . ‖Mj [mi−1]
and Mi[mi] ⊕ L1 · u = Mj [mi] (or Mi[mi] ⊕ L1 · u2 = Mj [mi]), which
happens with probability of 1

2n ;

• if mi > mj , then it is impossible;

• if Mi = 0n, then Mi[1] ⊕ L1 · u = 0n (or Mi[1] ⊕ L1 · u2 = 0n), which
happens with probability of 1

2n .

15

Let M0 = 0n and M1, . . . ,Mq be a sequence of messages, then

q∑
i=1

Pr[ximi
∈ Dom(P)] · Pr[A sets bad | Case B]

≤
q∑
i=1

Pr[ximi
∈ Dom(P)] · |Ran(P ′)|

2n

≤ σ

2n
·

 q∑
i=2

Pr[Mi is a prefix ∨Mi = 0n] +

q∑
i=1

i−1∑
j=0

FCPn(Mj ,Mi)


≤ σ

2n
·

 q∑
i=1

i

2n
+

q∑
i=1

i−1∑
j=0

(
6(mi +mj)

2n
+

(mi +mj)
4

22n
)


≤ σ

2n
·
(
q(q + 1)

2n+1
+

12σq

2n
+

16σq`3

22n

)
≤ 29σ2q

22n
,

if ` ≤ 2n/3.
– In the Case C, the analysis is exactly the same as in the Case B, and thus

q∑
i=1

Pr[uimi
∈ Dom(P ′)] · Pr[A sets bad | Case C] ≤ 29σ2q

22n
,

if ` ≤ 2n/3.
– In the Case D, we have

q∑
i=1

Pr[ximi
∈ Dom(P) ∧ uimi

∈ Dom(P ′)]

≤
q∑
i=1

 i

2n
+

i−1∑
j=0

FCPn(Mj ,Mi)

 ·(i

2n
+

i−1∑
k=0

FCPn(Mk,Mi)

)

≤
q∑
i=1

i−1∑
j=0

i−1∑
k=0

FCPn(Mj ,Mi) · FCPn(Mk,Mi)

+
2q

2n

q∑
i=1

i−1∑
j=0

FCPn(Mj ,Mi) +

q∑
i=1

i2

22n

≤
q∑
i=1

i−1∑
j=0

i−1∑
k=0

(
6(mi +mj)

2n
+

(mi +mj)
4

22n

)
·
(

6(mi +mk)

2n
+

(mi +mk)4

22n

)

+
2q

2n

q∑
i=1

i−1∑
j=0

(
6(mi +mj)

2n
+

(mi +mj)
4

22n
) +

q(q + 1)2

3 · 22n

≤784σq2`

22n
+

2q

2n
·
(

12σq

2n
+

16σq`3

22n

)
+
q(q + 1)2

3 · 22n
≤ 841σq2`

22n

16

Table 2: Impact of XORing of two MACs on ISO/IEC 9797-1:2011

MAC Algorithm #keys Padding Security XORing Security.

1 1 2 0 O(σ2/2n) App. A

1 1 3 O(`q2/2n) [3] O(σq2`/22n) Sec. 5

2 2 2 O(q2/2n)[20] O(q3`3/22n)[25]

2 2 3 O(q2/2n)[20] O(q3`3/22n)[25]

3 2 2 O(q2/2n)[20] O(q3`3/22n)[25]

3 2 3 O(q2/2n)[20] O(q3`3/22n) [25]

4 3 2 O(q2/2n)[20] O(q3`3/22n)[25]

4 3 3 O(q2/2n)[20] O(q3`3/22n)[25]

5 1 4 O(σq/2n)[18] O(σq2`/22n) Sec. 6

6 2 2 O(q2/2n)[20] O(q3`3/22n) [25]

6 2 3 O(q2/2n)[20] O(q3`3/22n) [25]

if ` ≤ 2n/3.

Summing up the above possibilities, the PRF-security bound of XMAC5 can be
bounded by

Advprf
XMAC5[P](q, `, σ) ≤ 4

2n
+

58σ2q

22n
+

841σq2`

22n
.

7 Impact of XORing on ISO/IEC 9797-1:2011

We briefly discuss the impact of XORing of two MACs on ISO/IEC 9797-1:2011
in this section and the results are illustrated in Table 2. One can easily obtain
the provable-security bounds of XORing of any two MACs by using the similar
proof techniques in this paper and we omit the details here. To be consistent with
previous notations, we denote by XMACi the XORing of two MAC Algorithm i.
Note that we only consider the XORing of a MAC Algorithm with two different
keys here since using two different MAC Algorithms to authenticate a message
is relatively inefficient and unpractical.

MAC Algorithm 1 XMAC1 can resist to length-extension attack and achieve
birthday bound security with padding scheme 2; with padding scheme 3, the
security of XMAC1 is lifted up to beyond birthday bound.

MAC Algorithm 2 The security of XMAC2 is lifted to beyond birthday bound
for both padding scheme 2 and 3. The proof can be found in [25].

MAC Algorithm 3 As discussed in [23], by replacing the last two permutation
calls P ◦P ′ with another random permutation P ′′, this algorithm is same as
MAC Algorithm 2 in the information-theoretic setting. Hence this algorithm
enjoys the same bounds as MAC Algorithm 2.

17

MAC Algorithm 4 As discussed in [23], in the information-theoretic setting,
the first and second permutation can be reversed and then one makes the first
permutation public. In this sense, this algorithm enjoys the same security
guarantees as MAC Algorithm 2.

MAC Algorithm 5 The security of XMAC5 will be lifted up to beyond birth-
day bound.

MAC Algorithm 6 This algorithm is same as EMAC except just saving one
block cipher call at the final iteration. The security of XMAC6 will be lifted
up to beyond birthday bound and the proof is exactly the same as SUM-
ECBC[25].

8 Conclusion

In this paper, we prove that XMAC1 can achieve either beyond birthday bound
security or birthday bound security depending on padding methods. We also
prove that XMAC5 can achieve 2n/3-bit security. Our results imply that XORing
of any two CBC-like MACs in ISO/IEC 9797-1:2011 can lift up the security
bound to a higher level. It seems unlikely that O(22n/3) is a tight bound for
either XMAC1 or XMAC5. A future work is to further improve the provable-
security bounds of these constructions.

Acknowledgments

We would like to thank anonymous reviewers for their helpful suggestions.

References

1. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In Advances in Cryptology - CRYPTO ’96, 16th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 18-22,
1996, Proceedings, pages 1–15, 1996.

2. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci., 61(3):362–399, 2000.

3. M. Bellare, K. Pietrzak, and P. Rogaway. Improved security analyses for CBC macs.
In Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings,
pages 527–545, 2005.

4. M. Bellare, K. Pietrzak, and P. Rogaway. Improved security analyses for cbc macs.
https://cseweb.ucsd.edu/~mihir/papers/cbc-improved.pdf, 2005.

5. M. Bellare and P. Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Advances in Cryptology - EUROCRYPT 2006,
25th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings,
pages 409–426, 2006.

18

https://cseweb.ucsd.edu/~mihir/papers/cbc-improved.pdf

6. K. Bhargavan and G. Leurent. On the practical (in-)security of 64-bit block ciphers:
Collision attacks on HTTP over TLS and openvpn. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, pages 456–467, 2016.

7. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: an ultra-lightweight block cipher.
In Cryptographic Hardware and Embedded Systems - CHES 2007, 9th International
Workshop, Vienna, Austria, September 10-13, 2007, Proceedings, pages 450–466,
2007.

8. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen,
G. Leander, V. Nikov, C. Paar, C. Rechberger, et al. Prince–a low-latency block
cipher for pervasive computing applications. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 208–225.
Springer, 2012.

9. S. Chen, R. Lampe, J. Lee, Y. Seurin, and J. P. Steinberger. Minimizing the two-
round even-mansour cipher. In Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I, pages 39–56, 2014.

10. S. Chen and J. P. Steinberger. Tight security bounds for key-alternating ciphers.
In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, pages 327–350, 2014.

11. M. Dworkin. Nist special publication 800-38b. NIST special publication,
800(38B):38B, 2005.

12. ISO/IEC:Information technology – Security techniques – Message Authentication
Codes (MACs) – Part 1: Mechanisms using a block cipher. Iso/iec 9797-1:1999,
1999.

13. ISO/IEC:Information technology – Security techniques – Message Authentication
Codes (MACs) – Part 1: Mechanisms using a block cipher. Iso/iec 9797-1:2011,
2011.

14. A. Jha and M. Nandi. Revisiting structure graph and its applications to CBC-MAC
and EMAC. IACR Cryptology ePrint Archive, 2016:161, 2016.

15. A. Joux. Multicollisions in iterated hash functions. application to cascaded con-
structions. In Advances in Cryptology - CRYPTO 2004, 24th Annual International
CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004, Pro-
ceedings, pages 306–316, 2004.

16. A. Joux, G. Poupard, and J. Stern. New attacks against standardized macs. In
Fast Software Encryption, 10th International Workshop, FSE 2003, Lund, Sweden,
February 24-26, 2003, Revised Papers, pages 170–181, 2003.

17. S. Lucks. The sum of prps is a secure PRF. In Advances in Cryptology - EURO-
CRYPT 2000, International Conference on the Theory and Application of Crypto-
graphic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding, pages 470–484,
2000.

18. M. Nandi. Improved security analysis for OMAC as a pseudorandom function. J.
Mathematical Cryptology, 3(2):133–148, 2009.

19. J. Patarin. A proof of security in o(2n) for the xor of two random permutations.
In Information Theoretic Security, Third International Conference, ICITS 2008,
Calgary, Canada, August 10-13, 2008, Proceedings, pages 232–248, 2008.

20. K. Pietrzak. A tight bound for EMAC. In Automata, Languages and Program-
ming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, Part II, pages 168–179, 2006.

19

21. B. Preneel and P. C. van Oorschot. Mdx-mac and building fast macs from hash
functions. In Advances in Cryptology - CRYPTO ’95, 15th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 27-31, 1995, Pro-
ceedings, pages 1–14, 1995.

22. B. Preneel and P. C. van Oorschot. On the security of iterated message authenti-
cation codes. IEEE Trans. Information Theory, 45(1):188–199, 1999.

23. P. Rogaway. Evaluation of some blockcipher modes of operation. Cryptography
Research and Evaluation Committees (CRYPTREC) for the Government of Japan,
2011.

24. M. N. Wegman and L. Carter. New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.

25. K. Yasuda. The sum of CBC macs is a secure PRF. In Topics in Cryptology
- CT-RSA 2010, The Cryptographers’ Track at the RSA Conference 2010, San
Francisco, CA, USA, March 1-5, 2010. Proceedings, pages 366–381, 2010.

26. K. Yasuda. A new variant of PMAC: beyond the birthday bound. In Advances in
Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2011. Proceedings, pages 596–609, 2011.

27. L. Zhang, W. Wu, H. Sui, and P. Wang. 3kf9: Enhancing 3gpp-mac beyond the
birthday bound. In Advances in Cryptology - ASIACRYPT 2012 - 18th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Beijing, China, December 2-6, 2012. Proceedings, pages 296–312, 2012.

A Security of XMAC1 with Padding Scheme 2

M [1]

P

P ′

M [2] M [3] M [4]10∗

⊕

P

⊕

P ′

⊕

P

⊕

P ′

⊕

P

⊕

P ′

⊕ T

Fig. 8: Illustration of XMAC1[P] with padding scheme 2 for M =
M [1]‖M [2]‖M [3]‖M [4], where |M [1]| = |M [2]| = |M [3]| = n and 0 ≤ |M [4]| ≤
n− 1.

We always consider the messages list after padded with padding scheme 2,
i.e., Mi = pad2(Mi) and denote the message length mi = |pad2(Mi)|. Note
that padding scheme 2 is not a prefix-free encoding, and if the adversary asks a
long message M1 = M2‖∗ then asks M2 a prefix of M1, the internal values during

20

computing M2 have all been defined before. Hence we cannot use the same proof
methods in section 5 or section 6. In this section, we resort to the well-known
H-coefficient technique [10,19] and prove that XMAC1[P] with padding scheme
3 is a O(2n/2)-secure PRF.

A.1 Double Collision Attack

For the sake of completeness, we sketch the double collision attack [16] here for
XMAC1 with padding scheme 2. First we search for two one-block messages
M1 and M2 that yield the same tag T = EK1

(M1) ⊕ EK2
(M1) = EK1

(M2) ⊕
EK2

(M2). Then we compute the tag values for two one block longer messages of
the form M1‖A and M2‖B for random A,B. If it holds that A⊕B = EK1

(M1)⊕
EK1(M2) = EK2(M1)⊕EK2(M2), then we get collisions for both the upper chain
and lower chain and thus a collision on the MAC values of these two extended
messages. We can check this kind of double collisions by adding a same block
at the end of both extended messages and the resulting messages still collide.
This attack requires about 21+n/2 MAC computations. However, such a attack
does not work out for either XMAC5 or XMAC1 with padding scheme 3, as the
padded messages list is always prefix-free except with a negligible probability.

A.2 The H-coefficient Technique

We briefly introduce the H-coefficient technique [10,19] here as the following part
of this section adopts this method. A view ν is the query-response tuples that A
receives when interacting with either F [P] (real world) or R (ideal world). We
denote Xre, resp. Xid, the probability distribution of the ν when A interacts with
F [P], resp. R. We also denote Θ = {ν |Pr[Xid = ν] > 0} the set of all attainable
views ν while A interacting with R. The H-coefficient technique evaluates the
upper bound of Advprf

F [P](A) by using the following lemma. The proof of this

lemma can be found in [9,10].

Lemma 3. Let Θgood and Θbad be two disjoint subsets of Θ satisfying Θ =
Θgood tΘbad. If there exists ε1 such that Pr[Xid ∈ Θbad] ≤ ε1 and for each view
ν ∈ Θgood, it has

Pr[Xre = ν]

Pr[Xid = ν]
≥ 1− ε2.

Then Advprf
F [P](A) ≤ ε1 + ε2.

A.3 Preparations for the H-coefficient Technique

We replace P and P ′ in XMAC1[P] by random functions F and F ′, respectively.
We write the resulting algorithm as XMAC1[R]. Using the PRP/PRF switching
lemma [5], we obtain

Advprf
XMAC1[P](q, `, σ) ≤ σ2

2n
+ Advprf

XMAC1[R](q, `, σ).

21

We define the following functions from F, F ′, randi and rand′i, where randi, rand
′
i

$←
{0, 1}n for 1 ≤ i ≤ `− 1:

Q1,1(X) = F (X)⊕ rand1
Q1,i(X) = F (X ⊕ randi−1)⊕ randi for 2 ≤ i ≤ `− 1
Q1,`(X) = F (X ⊕ rand`−1)
Q2,1(X) = F ′(X)⊕ rand′1
Q2,i(X) = F ′(X ⊕ rand′i−1)⊕ rand′i for 2 ≤ i ≤ `− 1
Q2,`(X) = F ′(X ⊕ rand′`−1)

We write Q for the set of these functions. Let Gi,j be 2` independent random
functions, for 1 ≤ i ≤ 2 and 1 ≤ j ≤ `. We write G for the set of these functions.
For an adversary B, we define

Advprf
Q (B)

def
= Pr[BQ(·) ⇒ 1]− Pr[BG(·) ⇒ 1],

where in the right-hand side of the equation, the first probability is taken over
F, F ′, randi, rand

′
i and B’s coin, and the second one is over random functions in

G and B’s coin. B makes queries of the form (i, j,X) ∈ {1, 2} × {1, 2, · · · , `} ×
{0, 1}n, and receives Qi,j(X) or Gi,j(X). We prove that Q is indistinguishable
from G by the following lemma.

Lemma 4. Let B be an adversary that makes at most q queries. Then we have
Advprf

Q (B) ≤ 0.5q2/2n.

Proof. When B interacts with the oracle Q, we define two sets. I1 is the set
of input values of F in Q1,i and I2 is the set of input values of F ′ in Q2,i, for
1 ≤ i ≤ `. We set a bad flag if I1 has a collision or I2 has a collision. The code
with boxed statements simulates Q while the code without boxed statements
simulates G. By the fundamental lemma of game-playing [5], we have

Advprf
Q (B) ≤ Pr[BG(·) sets bad].

Before bad event occurs, B learns nothing from the values returned by the
oracle except a random n-bit string. Hence We only need to consider a fixed
sequence of queries made by B. Suppose that B makes total q1 queries to Q1,i

and makes total q2 queries to Q2,i for 1 ≤ i ≤ `. I1 has a collision if and only
if X = X ′ ⊕ randi or X ⊕ randi = X ′ ⊕ randj for 1 ≤ i, j ≤ `− 1. Since randi is
a random string, we have Pr[I1 has a collision] ≤ 0.5q21/2

n. Similarly, Pr[I2 has
a collision] ≤ 0.5q22/2

n. Therefore, we can bound the overall probability of bad
event occurring as

Pr[BG(·) sets bad] ≤ 0.5q21
2n

+
0.5q22

2n
≤ 0.5q2

2n
,

which concludes the proof.

22

Initialization: Oracle G/ Oracle Q
1: bad←false; I1, I2 ← ∅
Procedure: O(i, j,X):

2: Ti,j
$← {0, 1}n

3: if i = 1 then
4: if j = 1 then
5: if X ∈ I1 then

6: bad←true ,Ti,j ← Q1,1(X)

7: else
8: I1 ← I1 ∪ {X}
9: end if

10: else
11: if X ⊕ randj ∈ I1 then

12: bad←true ,Ti,j ← Q1,j(X)

13: else
14: I1 ← I1 ∪ {X ⊕ randj}
15: end if
16: end if
17: end if
18: if i = 2 then
19: if j = 1 then
20: if X ∈ I2 then

21: bad←true ,Ti,j ← Q2,1(X)

22: else
23: I2 ← I2 ∪ {X}
24: end if
25: else
26: if X ⊕ rand′j ∈ I2 then

27: bad←true ,Ti,j ← Q2,j(X)

28: else
29: I2 ← I2 ∪ {X ⊕ rand′j}
30: end if
31: end if
32: end if
33: return Ti,j

Fig. 9: Game used to prove Lemma 4

We consider an algorithm XMAC1[Q], manipulating messages based on Q. Its
definition is presented in Fig. 10. We can see that XMAC1[Q] is exactly the same
as XMAC1[R] since all the internal values randi and rand′i are canceled during
the computation. We next consider another algorithm XMAC1[G] based on G.
Its definition is presented in Fig. 11. It is obtained from XMAC1[Q] by replacing
Qi,j with Gi,j , for i ∈ {1, 2} and 1 ≤ j ≤ `. By using the Lemma 4, we have

Advprf
XMAC1[R](q, `, σ) = Advprf

XMAC1[Q](q, `, σ) ≤ Advprf
XMAC1[G](q, `, σ) +

σ2

2n
.

23

1: Mi[1]‖ . . . ‖Mi[mi]
n← pad2(Mi)

2: yi0 ← 0n

3: wi
0 ← 0n

4: for j = 1 to mi do
5: yij = Q1,j(y

i
j−1 ⊕Mi[j])

6: wi
j = Q2,j(w

i
j−1 ⊕Mi[j])

7: end for
8: Ti ← yimi

⊕ wi
mi

9: return Ti

Fig. 10: Definition of XMAC1[Q](Mi)

To upper bound Advprf
XMAC1[G](q, `, σ), we next resort to the H-coefficient tech-

nique [10,19], which has been briefly introduced in Sect. A.2.

M [1]

G1,1

G2,1

M [2] M [3] M [4]10∗

⊕

G1,2

⊕

G2,2

⊕

G1,3

⊕

G2,3

⊕

G1,4

⊕

G2,4

⊕ T

Fig. 11: Definition of XMAC1[G], Gi,j are independent random functions for
i ∈ {1, 2} and 1 ≤ j ≤ 4.

A.4 Analysis of Bad Views

In the real world, the corresponding oracle is XMAC1[G] while in the ideal world
it is a random function. We note that the adversary A can make at most q queries
to its oracle, each query being at most ` blocks, the total number of blocks of
queries being at most σ, and outputs a single bit. Let a view

ν = ((M1, T1), . . . , (Mq, Tq))

be a list of queries and corresponding answers. We start by defining bad views
and good views.

Definition 1. A bad view is an attainable view ν = ((M1, T1), . . . , (Mq, Tq))
that there exists a collision in ν such that

Ti = Tj , where 1 ≤ i < j ≤ q.

24

Otherwise, we call it a good view. We denote Θbad the set of bad views and Θgood

the set of good views.

Now we upper bound the probability to get a bad view in the ideal world.

Lemma 5. For any integer q, we have

Pr[Xid ∈ Θbad] ≤ 0.5q2

2n
.

Proof. In the ideal world, Ti is simply a random n-bit string and Pr[Ti = Tj] =
1
2n for any i 6= j. Thus,

Pr[Xid ∈ Θbad] ≤
(
q

2

)
1

2n
≤ 0.5q2

2n
.

A.5 Analysis of Good Views

We now analyze good views and prove the following lemma.

Lemma 6. For any good view ν, we have

Pr[Xre = ν]

Pr[Xid = ν]
≥ 1− 2σq

2n
.

Proof. Let ν = ((M1, T1), . . . , (Mq, Tq)) be a good view. Since in the ideal world
the oracle is a random function, we simply have

Pr[Xid = ν] =
1

2qn
. (1)

Now we proceed to lower bound the probability of obtaining ν in the real world.
The key point is to count the number of functions that induce ν. From the
definition, we have

Pr[Xre = ν] =
#functions inducing ν

#total functions
.

For a message Mi = Mi[1]‖ · · · ‖Mi[mi], we denote xij and yij the input and

corresponding output of G1,j , u
i
j and wij the input and corresponding output of

G2,j in XMAC1[G] for 1 ≤ i ≤ mi. Since our goal is to compute the lower bound
of Pr[Xre = ν], we can ignore some troublesome functions and merely count the
number of ones that induce ν and satisfy the following condition to ease the
analysis:

if Mi[1]‖ · · · ‖Mi[t] 6= Mj [1]‖ · · · ‖Mj [t], then xit 6= xjt and uit 6= ujt .

We denote σi the number of messages that have block length at least i. We first
compute the probability of G1,1 and G2,1 satisfying the requirements. We divide
these q messages into several groups according to the first block. Messages in each
group have the identical first block. After such a classification, we will obtain r

25

groups. Assume the ith group contains qi messages and denote M i
j(1 ≤ j ≤ qi)

the jth message in ith group, then we have q1 + q2 + · · ·+ qr = σ1. By abusing
notation, in the ith group, we denote xi1 and yi1 the input and output of G1,1,
ui1 and wi1 the input and output of G2,1. We note that if there exists a message
in the ith group outputting a tag Ti after computation of the first block, then
there is a relation between yi1 and wi1 as yi1 ⊕ wi1. Note that each group has at
most one relation, otherwise this group has a pair of identical messages. Then
we count the number of choices yi1 and wi1 in ith group for 1 ≤ i ≤ r in turn,
which will be affected by whether there exists a relation in this group or not:

– For the first group,

• no relation: there are both 2n possibilities for y11 and w1
1, thus total (2n)2;

• a relation: there are 2n possibilities for y11 and once y11 is determined so
does w1

1 as w1
1 = T1 ⊕ y11 .

– For the 2nd group, once y11 and w1
1 are fixed,

• no relation: due to the additional condition, we have y21 ⊕ M2
j [2] 6=

y11 ⊕M1
i [2] and w2

1 ⊕M2
j [2] 6= w1

1 ⊕M1
i [2] for 1 ≤ i ≤ q1 and 1 ≤ j ≤ q2.

Therefore, there are both at least 2n − q1q2 possibilities for y21 and w2
1,

thus total at lest (2n − q1q2)2.

• a relation: there are at least 2n−2q1q2 possibilities for y21 as y21⊕M2
j [2] 6=

y11⊕M1
i [2] and y21⊕T2⊕M2

j [2] = w2
1⊕M2

j [2] 6= w1
1⊕M1

i [2] for 1 ≤ i ≤ q1
and 1 ≤ j ≤ q2.

– . . .

– For the k-th group, once y11 , . . . , y
k−1
1 and w1

1, . . . , w
k−1
1 are fixed,

• no relation: due to the additional condition, we have yk1 ⊕ Mk
j [2] 6=

yt1⊕M t
i [2] and wk1⊕Mk

j [2] 6= wt1⊕M t
i [2] for 1 ≤ t ≤ k−1, 1 ≤ i ≤ qt and

1 ≤ j ≤ qk. Therefore, there are both at least 2n−qk(q1+q2+ · · ·+qk−1)
possibilities for yk1 and wk1 , thus total at least (2n − qk(q1 + q2 + · · · +
qk−1))2.

• a relation: there are at least 2n−2qk(q1 +q2 + · · ·+qk−1) possibilities for
yk1 since yk1 ⊕Mk

j [2] 6= yt1 ⊕M t
i [2] and yk1 ⊕ Tk ⊕Mk

j [2] = wk1 ⊕Mk
j [2] 6=

wt1 ⊕M t
i [2] for 1 ≤ t ≤ k − 1, 1 ≤ i ≤ qt and 1 ≤ j ≤ qk.

Hence, the number of tuples (y11 , w
1
1, . . . , x

r
1, w

r
1) is at least

r∏
i=1

Ci

where for 1 ≤ i ≤ r, either Ci = (2n − qi(q1 + · · · + qi−1))2 ≥ (2n − qiq)2 ≥
2n(2n − 2qiq) without a relation, or Ci = 2n − 2qi(q1 + · · · + qi−1) ≥ 2n − 2qiq
with a relation. We denote s the total number of relations among these r groups,

26

then the probability that G1,1 and G2,1 meet the requirements is at least

r∏
i=1

Ci((2n)2
n−r)2

((2n)2n)2
=

r∏
i=1

Ci

22n

≥ 1

2ns

r∏
i=1

(1− 2qiq

2n
)

≥ 1

2ns
(1− 2σ1q

2n
).

Then we proceed to analyze the remaining blocks and apply the same analysis
to the rest of random functions G1,i and G2,i as they are independent from each
other for 1 ≤ i ≤ `. There are at most ` pairs of (G1,i, G2,i), so the probability
of inducing ν in the real world can be bounded by

Pr[Xre = ν] ≥
∏̀
i=1

1

2ns
(1− 2σiq

2n
)

=
1

2nq

∏̀
i=1

(1− 2σiq

2n
)

≥ 1

2nq
(1− 2σq

2n
). (2)

Combining (1) and (2) together, we obtain

Pr[Xre = ν]

Pr[Xid = ν]
≥ 1− 2σq

2n
, (3)

and this completes the proof of Lemma 6.

Following Lemma 3 and using the results of Lemma 5 and Lemma 6, we have

Advprf
XMAC1[G](q, `, σ) ≤ 2σq

2n
+

0.5q2

2n
. (4)

Finally we obtain the claimed bound in Theorem 2 as

Advprf
XMAC1[P](q, `, σ) ≤ σ2

2n
+
σ2

2n
+

2σq

2n
+

0.5q2

2n

≤ 2σ2

2n
+

2σq

2n
+

0.5q2

2n
. (5)

We emphasize that this bound is tight up to a constant factor due to the double
collision attack as mentioned in Appendix A.1 for XMAC1 with padding scheme
2.

27

	ISO/IEC 9797-1 Revisited: Beyond Birthday Bound
	Introduction
	Preliminaries
	Notation
	Security Notions

	Forgery Attacks on The Concatenation of Two MACs in ISO/IEC 9797-1:2011
	Main Results on XMAC1 and XMAC5
	Security of XMAC1 with Padding Scheme 3
	Main Ideas
	Analysis of Case A
	Analysis of Case B
	Analysis of Case C
	Analysis of Case D
	Summation

	Security of XMAC5
	Impact of XORing on ISO/IEC 9797-1:2011
	Conclusion
	Security of XMAC1 with Padding Scheme 2
	Double Collision Attack
	The H-coefficient Technique
	Preparations for the H-coefficient Technique
	Analysis of Bad Views
	Analysis of Good Views

