
Privacy-preserving Multi-hop Locks for
Blockchain Scalability and Interoperability∗

Giulio Malavolta†
Friedrich-Alexander-University

Erlangen-Nürnberg
malavolta@cs.fau.de

Pedro Moreno-Sanchez†‡
TU Wien

pedro.sanchez@tuwien.ac.at

Clara Schneidewind
TU Wien

clara.schneidewind@tuwien.ac.at

Aniket Kate
Purdue University
aniket@purdue.edu

Matteo Maffei
TU Wien

matteo.maffei@tuwien.ac.at

Abstract— Tremendous growth in cryptocurrency usage
is exposing the inherent scalability issues with permis-
sionless blockchain technology. Payment-channel networks
(PCNs) have emerged as the most practically deployed
solution to mitigate the scalability issues, allowing the bulk
of payments between two users to be carried out off-chain.
Unfortunately, as reported in the literature and further
demonstrated in this paper, current PCNs do not provide
meaningful security and privacy guarantees.

In this work, we study and design secure and privacy-
preserving PCNs. We start with a security analysis of
existing PCNs, reporting a new attack that applies to all
major PCNs, including the Lightning Network, and allows
an attacker to steal the fees from honest intermediaries
in the same payment path. We then formally define
privacy-preserving multi-hop locks (PrivMuLs), a novel
cryptographic primitive that serves as a cornerstone for the
design of secure and privacy-preserving PCNs. We present
several provably secure cryptographic instantiations that
make PrivMuLs compatible with the vast majority of
cryptocurrencies. In particular, we show that (linear) homo-
morphic one-way functions suffice to construct PrivMuLs
for PCNs supporting such functions in their script language
(e.g., Ethereum). We also propose a construction based
on ECDSA signatures that does not require scripts, thus
solving a prominent open problem in the field. PrivMuLs
constitute a generic primitive whose usefulness goes beyond
multi-hop payments in a single PCN and we show how
to realize atomic swaps and interoperable PCNs from
this primitive. Finally, our performance evaluation on a
commodity machine finds that PrivMuLs operations can be
performed in less than 100 milliseconds and require less
than 500 bytes of communication overhead, even in the
worst case. In fact, after acknowledging our attack, the
Lightning Network developers are right now integrating

∗This is a draft (revision October 23, 2018)
†Both authors contributed equally and are considered to be co-first

authors.
‡ This work was done while this author was at Purdue University.

ECDSA-based PrivMuLs into their PCN. This demon-
strates the practicality of our approach and its impact
on the security, privacy, interoperability, and scalability
of today’s cryptocurrencies.

I. INTRODUCTION

Cryptocurrencies are growing in popularity and are
playing an increasing role in the worldwide financial
ecosystem. In fact, the number of Bitcoin transactions
grew by approximately 30% in 2017, reaching a peak
of more than 420, 000 transactions per day in December
2017 [2]. This striking increase in demand has given
rise to scalability issues [20], which go well beyond the
rapidly increasing size of the blockchain. For instance,
the permissionless nature of the consensus algorithm
used in Bitcoin today limits the transaction rate to
tens of transactions per second, whereas other payment
networks such as Visa support peaks of up to 47,000
transactions per second [54].

Among the various proposals to solve the scalabil-
ity issue [22], [23], [38], [49], payment-channels have
emerged as the most widely deployed solution in prac-
tice. In a nutshell, two users open a payment channel by
committing a single transaction to the blockchain, which
is meant to lock their bitcoins in a deposit secured by a
Bitcoin (smart) contract. These users can then perform
several payments between each other without the need
for additional blockchain transactions, by simply locally
agreeing on the new deposit balance. A transaction is
required only at the end in order to close the payment
channel and unlock the final balances of the two parties,
thereby drastically reducing the transaction load on the
blockchain. Further research has proposed the concept
of payment-channel network [49] (PCN), where two

users not sharing a payment channel can still pay each
other using a path of open channels between them.
Unfortunately, as we discuss below in detail, current
PCNs fall short of providing adequate security, privacy,
and interoperability guarantees.

A. State-of-the-art in PCNs

Several practical deployments of PCNs exist today [6],
[10], [11] based on a common reference description
for the Lightning Network (LN) [8]. Unfortunately, this
proposal is neither privacy-preserving, as shown in recent
works [30], [40], nor secure, which stays in contrast to
what until now was commonly believed, as we show in
this work. In fact, we present a new attack, the wormhole
attack, which applies not only to the LN, the most
widely deployed PCN, but also other PCNs based on the
same cryptographic lock mechanism, such as the Raiden
Network [9].

PCNs have attracted plenty of attention also from
academia. Malavolta et al. [40] proposed a secure
and privacy-preserving protocol for multi-hop payments.
However, this solution is expensive as it requires non-
trivial amount of data (i.e., around 5 MB) to be ex-
changed between the users in the payment path and
it also hinders interoperability as it requires the Hash
Time-Lock Contract (HTLC) to be available in the
cryptocurrency.

Green and Miers presented BOLT, a hub-based
privacy-preserving payment for PCNs [30]. BOLT re-
quires cryptographic primitives only available in Zcash
and it cannot be seamlessly deployed in Bitcoin. More-
over, this approach is limited to paths with a single
intermediary and the extension to support of arbitrary
length remains an open problem.

The rest of the existing PCN proposals suffer from
similar drawbacks. Apart from not formalizing provable
privacy guarantees, they are restricted to a setting with
a trusted execution environment [36] or with a Turing
complete scripting language [25], [26], [33], [43] so that
they cannot seamlessly work with prominent cryptocur-
rencies today (except for Ethereum).

Poelstra introduced the notion of scriptless scripts,
a modified version of a digital signature scheme so
that a signature can only be created faithfully fulfilling
a cryptographic condition [48]. The resulting signature
is verifiable following the unmodified digital signature
scheme. When applied to script-based systems like
Bitcoin or Ethereum, they are accompanied by core
scripts (e.g., script to verify the signature itself). This
approach reduces the space required for cryptographic
operations in the script, saving thus invaluable bytes in

the blockchain. Moreover, it improves upon the fungibil-
ity of the cryptocurrency as transactions from payment
channels no longer require a script different from other
payments.

Although interesting, current proposals [48] lack for-
mal security and privacy treatment and are based only
on the Schnorr signature scheme, therefore being in-
compatible with major cryptocurrencies like Bitcoin. In
fact, there are early proposals for Schnorr adoption in
Bitcoin [55], but it is unclear if and when they will be
realized.

In summary, existing proposals are neither generically
applicable nor interoperable, since they rely on specific
features (e.g., contracts) of individual cryptocurrencies
or trusted hardware. Furthermore, there seems to be a
gap between secure realization of PCNs and what is
developed in practice, as we demonstrate with our attack,
which affects virtually all PCNs deployed in practice.

B. Our contributions

In this work, we contribute to the rigorous understand-
ing of PCNs and present the first interoperable, secure,
and privacy-preserving cryptographic construction for
PrivMuLs. Specifically,
• We analyze the security of existing PCNs, reporting

a new attack (the wormhole attack) which allows
dishonest users to steal the payment fees from honest
users along the path (Section III). This attack applies
to the LN, as well as any decentralized PCN where
the sender does not know in advance the intermediate
users along the path to the receiver. We communicated
the attack to the LN developers, who acknowledged
the issue.

• In order to construct secure and privacy-preserving
PCNs, we introduce a novel cryptographic primitive
called privacy-preserving multi-hop lock (PrivMuL).
We model the security of such a primitive in the
UC framework [19] to inherit the underlying com-
posability guarantees (Section IV). Then we show
that PrivMuLs can be generically combined with any
blockchain to construct a fully-fledged PCN.

• As a theoretical insight emerging from the wormhole
attack, we establish a lower bound on the communi-
cation complexity of secure PCNs that follow our UC
definition: Specifically, we show that an extra round
of communication to determine the path is necessary
to have a secure transaction.

• We show how to realize PrivMuLs in different set-
tings (Section V). In particular, we demonstrate that
(linearly) homomorphic operations suffice to build any
script-based PrivMuL. Furthermore, we show how to

2

realize PrivMuLs in a scriptless setting. This approach
is of special interest because it reduces the transaction
size, and, consequently, the blockchain load. We give a
concrete construction based on the ECDSA signature,
solving a prominent problem in the literature [48]. This
makes PrivMuLs compatible with the vast majority of
cryptocurrencies (including Bitcoin and Ethereum). In
fact, PrivMuLs are being implemented right now in
the LN [7], [28].

• We implemented our cryptographic constructions and
show that they require at most 60 milliseconds to be
computed and a communication overhead of less than
500 bytes in the worst case (Section VI). These results
demonstrate that PrivMuLs are practical and ready to
be deployed. In fact, PrivMuLs can be leveraged to de-
sign atomic swaps and interoperable (cross-currency)
PCNs as well (Section VII).

II. CONTEXT: PAYMENT CHANNEL NETWORKS

A. Payment Channels

A payment channel allows two users to exchange
bitcoin without committing every single payment to the
Bitcoin blockchain. For that, users first publish an on-
chain transaction to deposit bitcoin into a multi-signature
address controlled by both users. Such deposit also
guarantees that all bitcoin are refunded at a possibly
different but mutually agreed time if the channel expires.
Users can then perform off-chain payments by adjusting
the distribution of the deposit (that we will refer to as
balance) in favor of the payee. When no more off-chain
payments are needed (or the capacity of the payment
channel is exhausted), the payment channel is closed
with a closing transaction included in the blockchain.
This transaction sends the deposited bitcoin to each
user according the most recent balance in the payment
channel. We refer the reader to [22], [23], [41], [49] for
further details.

B. A Payment Channel Network (PCN)

A PCN can be represented as a directed graph G =
(V,E), where the set V of vertices represents the Bitcoin
accounts and the set E of weighted edges represents the
payment channels. Every vertex U ∈ V has associated
a non-negative number that denotes the fee it charges
for forwarding payments. The weight on a directed edge
(U1, U2) ∈ E denotes the amount of remaining bitcoin
that U1 can pay to U2.

A PCN is used to perform off-chain payments between
two users with no direct payment channel between
them but rather connected by a path of open payment
channels. For that, assume that S wants to pay α bitcoin

to R, which is reachable through a path of the form
S → U1 → . . . → Un → R. For their payment to be
successful, every link must have a capacity γi ≥ α′i,
where α′i = α−

∑i−1
j=1 fee(Uj) (i.e., the initial payment

value minus the fees charged by intermediate users in
the path). If the payment is successful, edges from S
to R are decreased by α′i. Importantly, to ensure that R
receives exactly α bitcoin, S must start the payment with
a value α∗ = α +

∑n
j=1 fee(Uj). We refer the reader

to [30], [40], [41], [49] for further details.
The concepts of payment channels and PCNs

have already attracted considerable attention from
academia [23], [30], [31], [35], [40], [41], [43]. In
practice, the Lightning Network (LN) [8], [49] has
emerged as the most prominent example. Currently, there
exist several independent implementations of the LN
for Bitcoin [6], [10], [11]. Moreover, the LN is also
considered as a scalability solution in other blockchain-
based payment systems such as Ethereum [9].

C. Multi-Hop Payments Atomicity

A fundamental property that multi-hop payments have
to fulfill is atomicity: Either the capacity of all channels
in the path is updated or none of the channels is changed.
Partial updates can lead to coin losses for the users on
the path. For instance, a user could pay a certain amount
of bitcoin to the next user in the path but never receive
the corresponding bitcoin from the previous neighbour.
The LN tackles this challenge by relying on a smart
contract called Hash Time-Lock Contract (HTLC) [49].
This contract locks x bitcoin that can be released only
if the contract’s condition is fulfilled. The contract is
defined in terms of a hash value y := H(R) where R
is chosen uniformly at random, the amount of bitcoin x,
and a timeout t, as follows:

HTLC (Alice, Bob, y, x, t):
1) If Bob produces the condition R∗ such that H(R∗) =
y before t days, Alice pays Bob x bitcoin.
2) If t days elapse, Alice gets back x bitcoin.

Alice Bob Carol Dave Edward

2. HTLC(A, B, y, 13, 4)

1. y := H(R)

6. R

3. HTLC(B, C, y, 12, 3) 4. HTLC(C, D, y, 11, 2) 5. HTLC(D, E, y, 10, 1)

9. R

20 / 7 50 / 38 12 / 1 15 / 5

7. R 8. R

Fig. 1: Illustrative example of a payment from Alice to Edward
for value 10 using HTLC contract. Non bold (bold) numbers
represent the capacity of payment channels before (after) the
payment. We assume all users to charge a fee of 1 bitcoin.

3

We depict in Fig. 1 an illustrative example of the use
of HTLC in a payment. For ease of exposition, we as-
sume that every user charges a fee of one bitcoin and the
payment amount is 10 bitcoin. In this payment, Edward
first sets up the payment by creating a random value
R and sending H(R) to Alice. Then, the commitment
phase starts by Alice. She first sets on hold 13 bitcoin
and then successively every intermediate user sets on
hold the received amount minus his/her own fee. After
Dave set 10 coins on hold with Edward, the latter knows
that the corresponding payment amount is on hold at
each channel and he can start the releasing phase. For
that, he reveals the value R to Dave allowing him to
fulfill the HTLC contract and settle the new capacity
at the payment channel. The value R is then passed
backwards in the path allowing the settlement of each
payment channel in the path.

Privacy issues in PCNs. Recent works in the litera-
ture [30], [40] show that the current use of HTLC leaks
a common identifier along the payment path (i.e., the
condition H(R∗)) that can be used by an adversary
to tell who pays to whom. Current solutions to this
privacy issue are expensive in terms of computation
and communication [40] or incompatible with major
cryptocurrencies deployed today [30]. This calls for a
more in-depth study of this crucial cryptographic tool.

III. WORMHOLE ATTACK IN EXISTING PCNS

In a nutshell, the wormhole attack allows two colliding
users on a payment path to exclude intermediate users
from participating in the successful completion of a
payment, thereby stealing the payment fees which were
intended for honest path nodes.

In more detail, assume a payment path (U0, . . . , Ui,
. . . , Uj , . . . Un) used by U0 to pay an amount α+

∑
k γk

to Un, where γk = fee(Uk) denotes the fee charged
by the intermediate user Uk as a reward for enabling
the payment. Further assume that Ui and Uj are two
adversarial users that may deviate from the protocol
if some economic benefit is at stake. The adversarial
strategy is as follows.

In the commitment phase, every user behaves honestly.
This, in particular, implies that every honest user has
locked a certain amount of coins in the hope of getting
rewarded for this. In the releasing phase, honest users
Uj+1, . . . , Un correctly fulfill their HTLC contracts and
settle the balances and rewards in their corresponding
payment channels.

The user Uj behaves honestly with Uj+1 effectively
settling the balance in their payment channel. On the

Alice Bob Carol Dave Edward

2. HTLC(A, B ,y ,13 ,4)

1. y := H(R)

6. R

3. HTLC(B, C, y, 12, 3) 4. HTLC(C, D, y, 11, 2) 5. HTLC(D, E, y, 10, 1)

7. R 8. R

20 / 7 50 / 50 12 / 12 15 / 5

Fig. 2: Illustrative example of the attack in the LN. For
simplicity, we assume that each intermediate node charges a
payment fee of 1 bitcoin. Here, Bob and Dave are colluding.
Dave and Bob exclude Carol from the successful completion
of the payment, effectively stealing her payment fee.

other hand, Uj waits until the timeout set in the HTLC
with Uj−1 is about to expire and then agrees with Uj−1
to cancel the HTLC and set the balance in their payment
channel back to the last agreed one. Note that from
Uj−1’s point of view, this is a legitimate situation (e.g.,
there might not be enough coins in a payment channel at
some user after Uj and the payment had to be canceled).
Moreover, the channel between Uj−1 and Uj does not
need to be closed, it is just rolled back to a previous
balance, a feature present in the Lightning Network.

As Uj−1 believes that the payment did not go through,
she also cancels the HTLC with Uj−2, who in turns
cancels the HTLC with Uj−3 and so on. This process
continues until Ui is approached by Ui+1. Here, Ui
cancels the HTLC with Ui+1. However, Ui gets the
releasing condition R from Uj and can use it to fulfill the
HTLC with Ui−1 and therefore settle the new balance
in that payment channel. Therefore, from the point
of view of users U1, . . . , Ui−1, the payment has been
successfully carried out. An illustrative example of this
attack in the Lightning Network is shown in Fig. 2.
Discussion. An adversary controlling users Ui and Uj
in a payment path that carries out the attack described
in this section gets an overall benefit of

∑j
k=i+1 γk

bitcoins instead of only γi + γj bitcoins in the case he
behaves honestly. We make several observations here.
First, the impact of this attack grows with the number
of intermediate users between Ui and Uj as well as
the number of payments that take both Ui and Uj in
their path. Second, honest intermediate users cannot
trivially distinguish the situation in which they are under
attack from the situation where the payment is simply
unsuccessful (e.g., there are not enough coins in one
of the channels or one of the users is offline). In both
cases, the view for the honest users is that the timeout
established in the HTLC is reached, the payment failed
and they get their initially committed coins reimbursed.
In short, the wormhole attack allows an adversary to
steal the fees from intermediate honest users without

4

leaving a inculpatory trace to them. Third, fees are
the main incentive for users to act as intermediaries.
The wormhole attack takes away this crucial benefit. In
fact, this attack not only makes honest users lose their
fees, but also incur collateral costs: Coins locked for
the payment under attack cannot be used for another
(possibly successful) payment simultaneously.

Fourth, while the Lightning Network is at its in-
fancy, other well-established networks such as Ripple
use paths with multiple intermediaries. For instance, in
the Ripple network, more than 27% of the payments use
more than two intermediaries [44]. Actually, paths with
three intermediaries (e.g., sender → bank → currency-
exchange→ bank→ receiver) are essential for currency
exchanges, a key use case in LN itself [1]. When the
LN grows to the scale of Internet, routes may consist of
several intermediaries as in Internet today. Given these
evidences, we expect to have long paths in the LN.
Responsible Disclosure. We notified this attack to the
LN developers and they have acknowledged this issue.
They are currently implementing our proposed solution
to overcome the wormhole attack [28].
(In)evitability of the Wormhole Attack. The wormhole
attack is not restricted to the LN, but generally applies
to PCNs with multi-hop payments that involve only two
rounds of communication. We assume a communication
round to consist of traversing the payment path once,
either forth (e.g., for setting up the payment) or back
(e.g., for releasing the money). Additionally, we assume
that in PCNs the communication between nodes is re-
stricted to their direct neighbors, so in particular, there
is no broadcast.1 Consequently, using two rounds of
communication for a payment implies that the payment
is not preceded by a routing phase in which path-specific
information is sent to nodes in the path. Under these
assumptions, we state the lower bound in Theorem 1
and, due to the lack of space, we defer the proof to the
extended version of the paper [5].

Theorem 1 (Inevitability of the wormhole attack). For
all two-round (without broadcast channels) multi-hop
payment protocols there exists a path prone to the
wormhole attack.

In this work we show that adding an additional round
of communication suffices to overcome this impossibil-
ity result. In particular, with one additional round of
communication, the sender of a payment can communi-
cate path-specific secret information to the intermediate

1This is the case in the setting of off-chain protocols where users
not sharing a payment channel do not communicate with each other.

nodes. This information can then be used to make the re-
lease keys unforgeable for an attacker. The cryptographic
protocols we introduce in the remainder of this paper
adopt this approach.

IV. DEFINITION

In the following we introduce a new cryptographic
primitive called privacy-preserving multi-hop lock (Priv-
MuL). This primitive generalizes the locking mecha-
nism used for payments in state-of-the art PCNs such
as the Lightning Network. In Section VII we show
that PrivMuLs are the only cryptographic component
required to construct fully-fledged PCNs. As motivated
in the previous section, we model the primitive such
that it allows for an initial setup phase in which the
first node of the path provides the other nodes on the
path with some secret (path-specific) state. Formally, a
PrivMuL is defined with respect to a universe of users
U and it is a five-tuple of PPT algorithms and protocols
L = (KGen,Setup, Lock,Rel,Vf) defined as follows:

Definition 1. A PrivMuL L = (KGen,Setup,
Lock,Rel,Vf) consists of the following efficient algo-
rithms:
{(ski, pk), (skj , pk)} ← 〈KGenUi

(1λ),KGenUj
(1λ)〉 :

On input the security parameter 1λ the key generation
protocol returns a shared public key pk and a secret key
ski (skj , respectively) to Ui and Uj .

{sI0, . . . , (sIn, kn)} ← 〈SetupU0
(1λ, U1, . . . , Un) . . .

SetupUn
(1λ)〉 : On input a set of identities (U1, . . . , Un)

and the security parameter 1λ, the setup protocol re-
turns, for i ∈ [0, n], a state si to each party Ui. The
receiver Un additionally receives a key kn.

{(`, sRi), (`, sLi+1)} ← 〈LockUi
(sIi , ski, pk),

LockUi+1
(sIi+1, ski+1, pk)〉 : On input two initial

states sIi and sIi+1, two secret keys ski and ski+1, and a
public key pk, the locking protocol is executed between
two parties (Ui, Ui+1) and returns a lock ` and a right
state sRi to Ui and the same lock ` and a left state sLi+1

to Ui+1.

k′ ← Rel(k, (sI , sL, sR)) : On input an opening key k
and a set of states (sI , sL, sR), the release algorithm
returns a new opening key k′.

{0, 1} ← Vf(`, k) : On input a lock ` and a key k the
verification algorithm returns a bit b ∈ {0, 1}.

Correctness. A PrivMuL is correct if the verification
algorithm Vf always accepts a honestly generated lock-
key pair. For a more detailed and formal correctness def-
inition, we refer the reader to the extended version [5].

5

⊥ sI
0

sR
0

sL
1

sI
1

sR
1 sL

n−1
sI
n−1

sR
n−1 sLn sIn ⊥

Lock ,U0 U1

ℓ0 ℓn−1

kn−1

ℓn−2

kn−2 Release Release

(,… ,)SetupU0
U1 Un

U1U0 Un−1 Un

ℓ1

⋯

Lock ,Un−1 Un

Lock ,U1 U2 Lock ,Un−2 Un−1

k1k0 Release kn

Fig. 3: Illustration of the usage of the PrivMuL primitive. It is assumed that links between the users on the path have been
created upfront using the KGen algorithm and that the resulting public and secret keys are implicitly given as argument to the
corresponding executions of the Lock protocol. Otherwise, the inputs (outputs) to (from) the Lock protocol and the Rel algorithm
are indicated by blue (orange) arrows.

Key Ideas. Fig. 3 illustrates the usage of the different
protocols underlying the PrivMuL primitive: We assume
an initial phase where a network of users is generated
using the (interactive) KGen protocol for establishing
pairwise links between users. Consequently, all users in
this network are assumed to hold a secret key and a
shared public key for each link that they created. We
recreate thereby the opening of payment channels that
compose the PCN.

In the setup phase (depicted in green), the sender U0

decides upon a path of users (U0, . . . , Un) and executes
the Setup protocol with the nodes of the path. Each user
Ui on the path learns its initial state sIi and the receiver
Un additionally learns the initial opening key kn. The in-
troduction of the initial state at each intermediate user is
crucial for security and privacy. As shown in Section III,
the lack of initial state at intermediate users inevitably
enables the wormhole attack. Intuitively, we can use this
initial state as “rerandomization factor” to ensure that
locks in the same path are unlinkable for the adversary.

Next, in the locking phase, each pair of users jointly
executes the pairwise Lock protocol, starting from U0.
Two users Ui and Ui+1 run the Lock protocol on
their initial states sIi and sIi+1 to generate a lock `i.
The creation of this lock represents the commitment
from Ui to perform an application-dependent action if
a cryptographic problem is solved by Ui+1. In the case
of LN, this operation represents the commitment of Ui
to pay a certain amount of coins to Ui+1 if Ui+1 solves
the cryptographic condition. Each user also learns some
secret information sRi (resp. sLi+1) that will be needed
for releasing the lock later on. As the locks are directed,
the usage of this information will differ depending on
whether it was gained while creating a lock with a
preceding (left) or with a subsequent (right) neighbor
on the path: As Ui creates a lock with its right neighbor,

it learns the state sRi denoting the state of its right lock.
Correspondingly, Ui+1 learns the state sLi denoting the
state of its left lock. While these extra states are not
present in the LN (i.e., every lock is based on the same
cryptographic puzzle H(R)), having them is crucial for
security. They make the releasing of different locks in the
path independent from each other and therefore ensure
that a lock `i can only be released if `i+1 has been
released before.

Finally, after the entire path is locked, the receiver Un
can use the information it received during the setup phase
(kn and sIn) together with the information it learned from
creating its left lock (sLn) to generate a key for releasing
its left lock. In the same fashion each intermediate node
can use its state (containing the initial state as well as
the states from locking) to derive a valid key for its
left lock from a valid key for its right lock using the
Rel algorithm. This last phase resembles the opening
phase of the LN where each pair of users settles the
new balances for their deposit at each payment channel
in the payment path.

A. Security and Privacy Definition

To model security and privacy in the presence of
concurrent executions we resort to the universal compos-
ability framework from Canetti [19]. We allow thereby
the composition of PrivMuLs with other application-
dependent protocols while maintaining security and pri-
vacy guarantees. We model the players in our protocol
as interactive Turing machines that communicate with
a trusted functionality F via secure and authenticated
channels. We model the attacker A as a PPT machine
that corrupts a subset of users prior the execution of the
interaction. Upon corruption of a user U , the attacker is
provided with the internal state of U and the incoming
and outgoing communication of U is routed through A.

6

KeyGen(Uj , {L,R})
Upon invocation by Ui:
send (Ui, {L,R}) to Uj
receive b from Uj

if b = ⊥ send ⊥ to Ui and abort
if L insert (Ui, Uj) into U and send (Ui, Uj) to Ui
if R insert (Uj , Ui) into U and send (Uj , Ui) to Ui

Lock(lid)
Upon invocation by Ui:
if getStatus(lid) 6= Init or getLeft(lid) 6= Ui then abort
send (lid, Lock) to getRight(lid)
receive b from getRight(lid)
if b = ⊥ send ⊥ to Ui and abort
updateStatus(lid, Lock)
send (lid, Lock) to Ui

GetStatus(lid)
Upon invocation by Ui:
return (lid, getStatus(lid)) to Ui

Setup(U0, . . . , Un)
Upon invocation by U0:
if ∀i ∈ [0, n− 1] : (Ui, Ui+1) /∈ U then abort

∀i ∈ [0, n− 1]: lidi ←$ {0, 1}λ

insert (lid0, U0, U1, Init, lid1), (lidn−1, Un−1, Un, Init,⊥)
into L
send (⊥, lid0,⊥, U1, Init) to U0

send (lidn−1,⊥, Un−1,⊥, Init) to Un
∀i ∈ [1, n− 1]: insert (lidi, Ui, Ui+1, Init, lidi+1) into L

send (lidi−1, lidi, Ui−1, Ui+1, Init) to Ui

Release(lid)
Upon invocation by Ui:
if getRight(lid) 6= Ui or getStatus(lid) 6= Lock or

getStatus(getNextLock(lid)) 6= Rel

and getNextLock(lid) 6= ⊥ then abort
updateStatus(lid, Rel)
send (lid,Rel) to getLeft(lid)

Fig. 4: Ideal functionality for PrivMuLs

Let EXECτ,A,E be the ensemble of the outputs of the
environment E when interacting with the adversary A
and parties running the protocol τ (over the random coins
of all the involved machines).

Definition 2 (Universal Composability). A protocol τ
UC-realizes an ideal functionality F if for any PPT ad-
versaryA there exists a simulator S such that for any en-
vironment E the ensembles EXECτ,A,E and EXECF,S,E
are computationally indistinguishable.

Ideal Functionality. We formally define the ideal world
functionality F for PrivMuLs in the following. For a
more modular treatment, our UC definition models only
the cryptographic lock functionality, rather than aiming
at a comprehensive characterization of PCN. In Sec-
tion VII we show how one can construct a full PCN (e.g.,
as defined in [40]) by composing this functionality with
time locks, balance updates, and on-chain channel man-
agement. For ease of exposition we assume that each
pair of users establishes only a single link per direction.
The model can be easily extended to handle the more
generic case. F works in interaction with a universe of
users U and initializes two empty lists (U ,L) := ∅,
which are used to track the users and the locks, re-
spectively. The list L represents a set of lock chains.

The entries are of the form (lidi, Ui, Ui+1, f, lidi+1)
where lidi is a lock identifier that is unique even among
other lock chains in L, Ui and Ui+1 are the users
connected by the lock, f ∈ {Init, Lock,Rel} is a flag
that represents the status of the lock, and lidi+1 is
the identifier of the next lock in the path. For sake
of better readability, we define functions operating on
L extracting lock-specific information given the lock’s
identifier, such as the lock’s status (getStatus(·)), the
nodes it is connecting (getLeft(·), getRight(·)), and the
next lock’s identifier (getNextLock(·)). In addition we
define an update function updateStatus(·, ·) that changes
the status of lock to a new flag.

The interfaces of the functionality F are specified
in Fig. 4. The KeyGen interface allows a user to establish
a link with another user (specifying whether it wants
to be the left or the right part of the link). The Setup
interface allows a user U0 to setup a path (starting
from U0) along previously established links. The Lock
interface allows a user to create a lock with its right
neighbor on a previously created path and the Release
algorithm allows a user to release the lock with its left
neighbor, in case that the user is either the receiver
or its right lock has been released before. Finally, the
GetStatus interface allows one to check the current

7

status of a lock, i.e., whether it is initialized, locked or
released. Internally, the locks are modeled by identifiers
that are unique across all paths that have been created.
Consequently, each lock identifier also identifies the path
along which it was established.

B. Discussion

We discuss how the security and privacy properties
of interest for PrivMuLs are modeled by the ideal
functionality.
Atomicity. Loosely speaking, atomicity means that
every user in a path is able to release its left lock in
case that his right lock was already released. This is
enforced by F as i) it is keeping track of the chain of
locks and their current status in the list L and ii) the
Release interface of F allows one to release a lock lid
(changing the flag to Rel) if lid is locked and the follow-
up lock (getNextLock(lid)) was already released.
Consistency. A PrivMuL is consistent if no attacker can
release his left lock without its right lock being released
before. This prevents scenarios where some PrivMuL
is released before the receiver is reached and, more
generically, the wormhole attack described in Section III.
To see why our ideal functionality models this property,
observe that the Release interface allows a user to release
the left lock only if the right lock has already been
released or the user itself is the receiver. In this context,
no wormhole attack is possible as intermediate nodes
cannot be bypassed.
Relationship Anonymity. Relationship anonymity [13]
requires that each intermediate node does not learn any
information about the set of users in a PrivMuL beyond
its direct neighbors. This property is satisfied by F as
the lock identifiers are sampled at random and during the
locking phase a user only learns the identifiers of its left
and right lock as well as its left and right neighbor. We
further discuss this privacy notion in the full version [5].

V. CONSTRUCTIONS

A. Cryptographic Building Blocks

Throughout this work we denote by λ ∈ N+ the
security parameter. Given a set S, we denote by x←$S
the sampling of an element uniformly at random from S,
and we denote by x← A(in) the output of the algorithm
A on input in. We denote by min(a, b) the function that
takes as input two integers and returns the smaller of the
two. In the following we briefly recall the cryptographic
building blocks of our schemes.
Homomorphic One-Way Functions. A function g :
D → R is one-way if, given a random element x ∈ R,

it is hard to compute a y ∈ D such that g(y) = x.
We say that a function g is homomorphic if D and R
define two abelian groups and for each pair (a, b) ∈ D2

it holds that g(a ◦ b) = g(a) ◦ g(b), where ◦ denotes the
group operation. Throughout this work we denote the
corresponding arithmetic group additively.
Commitment Scheme. A commitment scheme COM
consists of a commitment algorithm (decom, com) ←
Commit(1λ,m) and a verification algorithm {0, 1} ←
Vcom(com, decom,m). The commitment algorithm al-
lows a prover to commit to a message m without
revealing it. In a second phase, the prover can convince
a verifier that the message m was indeed committed by
showing the unveil information decom. The security of
a commitment scheme is captured by the standard ideal
functionality Fcom [19].
Non-Interactive Zero-Knowledge. Let R be an NP
relation and let L be the set of positive instances, i.e.,
L := {x | ∃w s.t. R(x,w) = 1}. A non-interactive
zero-knowledge proof [16] scheme NIZK consists of
an efficient prover algorithm π ← PNIZK(w, x) and
an efficient verifier {0, 1} ← VNIZK(x, π). A NIZK
scheme allows the prover to convince the verifier about
the existence of a witness w for a certain statement
x without revealing any additional information. The
security of a NIZK scheme is modeled by the following
ideal functionality FNIZK: On input (prove, sid, x, w) by
the prover, check if R(x,w) = 1 and send (proof, sid, x)
to the verifier if this is the case.
Homomorphic Encryption. One of the building blocks
of our work is the additive homomorphic encryption
scheme HE := (KGenHE,EncHE,DecHE) from Pail-
lier [45]. The scheme supports homomorphic opera-
tion over the ciphertexts of the form EncHE(pk,m) ·
EncHE(pk,m′) = EncHE(pk,m + m′). We assume
that Paillier’s encryption scheme satisfies the notion of
ecCPA security, as defined in the work of Lindell [37].
ECDSA Signatures. Let G be an elliptic curve group of
order q with base point G and let H : {0, 1}∗ → {0, 1}|q|
be a collision resistant hash function. The key generation
algorithm KGenECDSA(1λ) samples a private key as a
random value x←$Zq and sets the corresponding public
key as Q := x · G. To sign a message m, the signing
algorithm SigECDSA(sk,m) samples some k←$Zq and
computes e := H(m). Let (rx, ry) := R = k · G,
the algorithm computes r := rx mod q and s := e+rx

k
mod q. The signature consists of (r, s). The verification
algorithm VfECDSA(pk, σ,m) recomputes e = H(m)
and returns 1 if and only if (x, y) = e

s · G + r
s · Q

and r = x mod q. It is a well known fact that

8

for every valid signature (r, s), also the pair (r,−s)
is a valid signature. To make the signature strongly
unforgeable we augment the verification equation with
a check that s ≤ q−1

2 . We assume the existence of
an interactive protocol ΠECDSA

KGen executed between two
users where the one receives (x0, Q, sk), where sk is
a Paillier secret key and Q = x0 · x1 · G, whereas the
other obtains (x1, Q,EncHE(pk, x0 ·x1)), where pk is the
corresponding Paillier public-key. An efficient protocol
that fits these requirements has been recently proposed
by Lindell [37].

Anonymous Communication. We assume an anony-
mous communication channel Πanon available among
peers of the network, which is modelled by the ideal
functionality Fanon which anonymously delivers mes-
sages to users in the network (e.g., the onion routing
functionality as described in [18]).

B. Generic Construction

An interesting question related to PrivMuLs is under
which class of hard problems such a primitive exists.
A generic construction using trapdoor permutation was
given (implicitly) in [40]. Here we propose a scheme
from any homomorphic one-way function. Examples of
homomorphic one-way functions include discrete log-
arithm and the learning with error problem [50]. Let
g : D → R be a homomorphic one-way function,
and let Πanon be an anonymous communication channel.
The algorithms of our construction are given in Fig. 5.
Note that the key generation algorithm simply returns
the identities of the users and therefore it is omitted.

In the setup algorithm, the user U0 initializes the
PrivMuL by sampling n values (y0, . . . , yn−1) from
the domain of g. Then it sends (via Πanon) a triple
(g(
∑i−1
j=0 yj), g(

∑i
j=0 yj), yi) to each intermediate user.

The intermediate user Ui can then check that the triple is
well formed using the homomorphic properties of g. Two
contiguous users Ui and Ui+1 can agree on the shared
value of `i := Yi = g(

∑i
j=0 yj) by simply comparing

the second and first element of their triple, respectively.
Note that publishing a valid opening key k such that
g(k) = ` corresponds to inverting the one-way function
g. The opening of the locks can be triggered by the last
node in the chain Un: The initial key kn :=

∑n−1
i=0 yi

consists of a valid pre-image of `n−1 := Yn−1. As soon
as the “right” lock is released, each intermediate user
Ui has enough information to release its “left” lock. To
see this, observe that g(ki+1−yi) = g(

∑i
j=0 yi−yi) =

g(
∑i−1
j=0 yi) = Yi−1. For the security of the construction,

we state the following theorem. Due to space constraints,
the proof is deferred to the extended version [5].

Theorem 2. Let g be a homomorphic one-way function
and let Πanon be an anonymous communication channel,
then the construction in Fig. 5 UC-realizes the ideal
functionality F .

The generic construction presented here requires a
cryptocurrency supporting scripts that define (linearly)
homomorphic operations. This construction is therefore
of special interest in blockchain technologies such as
Ethereum [4] and Hyperledger Fabric [12], where any
user can freely deploy a smart contract without re-
strictions in the cryptographic operations available. We
stress that any function with homomorphic properties
is suitable to implement our construction. For instance,
lattice-based functions (e.g., from the learning with er-
rors problem) can be used for applications where post-
quantum cryptography is required. However, many cryp-
tocurrencies, led by Bitcoin, do not support unrestricted
scripts and the deployment of generic PrivMuLs requires
non-trivial changes (i.e., a hard fork). To overcome this
challenge, we turn our attention to scriptless PrivMuLs,
where a signature scheme can simultaneously be used
for authorization and locking.

C. Scriptless Schnorr-based Construction

The crux of a scriptless locking mechanism is that the
lock can consist only of a message m and a public key
pk of a given signature scheme and can be released only
with a valid signature σ of m under pk. Scritpless locks
stem from an idea of Poelstra [47], who proposed a way
to embed contracts into Schnorr signatures. In this work
we cast Poelstra’s informal idea in our framework and we
formally characterize its security and privacy guarantees.
We further optimize this scheme in order to save one
round of communication.

Recall that a public key in a Schnorr signature consists
of an element Q := x ·G and a signature σ := (k ·G, s)
on a message m is generated by sampling k←$Zq ,
computing e := H(Q‖k ·G‖m), and setting s := k−xe.
On a very high level, the locking mechanism consists
of an “incomplete” distributed signing of some message
m: Two users Ui and Ui+1 agree on a randomly cho-
sen element R0 + R1 using a coin tossing protocol,
then they set the randomness of the signature to be
R := R0 +R1 +Yi. Next they jointly compute the value
s := r0 + r1 + e · (x0 + x1) as if Yi was not part of
the randomness, where e is the hash of the transcript
so far. The resulting (R, s) is not a valid signature on
m, since the additive term y∗ (where y∗ · G = Yi) is

9

SetupUi
(1λ) SetupU0

(1λ, U1, . . . , Un) SetupUn
(1λ)

y0 ←$D
Y0 := g(y0)

∀i ∈ [1, n− 1] : yi ←$D
if Yi 6= Yi−1 + g(yi) then abort(Yi−1, Yi, yi)←−−−−−−−− Yi := Yi−1 + g(yi) (Yn−1,kn:=

∑n−1
i=0 yi)−−−−−−−−−−−−−−→

return (Yi−1, Yi, yi) return y0 return ((Yn−1, 0, 0), kn)

LockUi(s
I
i , ski, pk) LockUi+1(s

I
i+1, ski+1, pk)

parse sIi as (Y ′i , Yi, yi) Yi−−−−−−−−→parse si+1 as (Y ′i+1, Yi+1, yi+1)

if Yi 6= Y ′i+1 then abort
return (Yi,⊥) return (Yi,⊥)

Rel(k, (sI , sL, sR))

parse sI as (Y ′, Y, y)

return k − y

Vf(`, k)

return g(k) = `

Fig. 5: Algorithms and protocols for the generic construction

missing from the computation of s. However, once the
discrete logarithm of Yi is revealed, a valid signature m
can be computed by Ui+1. Leveraging this observation,
we can enforce an atomic opening: The subsequent
locking (between Ui+1 and Ui+2) is conditioned on some
Yi+1 = Yi + yi+1 · G. This way, the opening of the
right lock reveals the value y∗ + yi+1 and Ui+1 can
immediately extract y∗ and open its left lock with a valid
signature on m. We defer the formal description and the
analysis of the scheme to the extended version [5].

D. Scriptless ECDSA-based Construction

The Schnorr-based scheme is limited to cryptocur-
rencies that use Schnorr signatures to authorize trans-
actions and thus is not compatible with those systems,
prominently Bitcoin, that implement ECDSA signatures.
Therefore, an ECDSA-based scriptless PrivMuL is in-
teresting both from a practical and a theoretical per-
spective as to whether it can be done at all. Prior to
our work, the existence of such a construction was
regarded an open question [48]. The core difficulty is
that the Schnorr-based construction exploits the linear
structure of the signature, whereas the ECDSA signing
algorithm completely breaks this linearity feature (e.g.,
it requires to compute multiplicative shares of a key and
inverse of elements within a group). In the following,
we show how to overcome these problems, introducing
an ECDSA-based construction for PrivMuLs: Locks are
of the form (pk,m) and can only be opened with an
ECDSA signature σ on m under pk.

Let G be an elliptic curve group of order q with
base point G and let H : {0, 1}∗ → {0, 1}|q| be a
hash function. The ECDSA-based construction is shown
in Fig. 6. Each pair of users (Ui, Uj) generates a shared
ECDSA public key pk = (xi · xj) · G via the ΠECDSA

KGen

protocol. Additionally, Ui receives his share x0 and a
Paillier secret key, whereas and Uj receives the share x1
and an encryption c of x0 · x1. The corresponding key
generation protocol is fully described in [37].

The setup of a PrivMuL is very similar to the setup of
the generic construction in Fig. 5 except that the one-way
function g is now instantiated with discrete logarithm
over elliptic curves. Each intermediate user Ui receives
a triple (Yi−1, Yi, yi) such that Yi := Yi−1 +yi ·G, from
Πanon. For technical reasons, the initiator of the PrivMuL
also includes a proof of wellformedness for each Yi.

The locking algorithm is initiated by two users Ui
and Ui+1 who agree on a message m (which encodes a
unique id) and on a value Yi := y∗ ·G of unknown dis-
crete logarithm. The two parties then run a coin tossing
protocol to agree on a randomness R = (r0 · r1) · Yi.
When compared to the Schnorr instance, the crucial
technical challenge here is that the randomnesses are
composed multiplicatively due to the structure of the
ECDSA signature and therefore, the trick applied in
the Schnorr construction no longer works here. R is
computed through a Diffie-Hellman-like protocol, where
the parties exchange r0 · Yi and r1 · Yi and locally
recompute R. As before, the shared ECDSA signature
is computed by “ignoring” the term Yi, since the parties
are unaware of its discrete logarithm. The corresponding
tuple

(
rx, s

′ := rx·(xi·xi+1)+H(m)
r0·r1

)
is jointly computed

using the encryption of xi · xi+1 and the homomorphic
properties of Paillier encryption. This effectively means
that (rx, s

′) = (rx, s
∗ · y∗), where (rx, s

∗) is a valid
ECDSA signature on m. In order to check the validity
of s′, the parties additionally need to exchange the value
R∗ := (r0 · r1) ·G = (y∗)−1 ·R. The computation of R∗

(together with the corresponding consistency proof) is
piggybacked in the coin tossing. Given R∗, the validity

10

SetupUi
(1λ) SetupU0

(1λ, U1, . . . , Un) SetupUn
(1λ)

y0 ←$Zq; Y0 = y0 ·G
∀i ∈ [1, n− 1] : yi ←$Zq
Yi := Yi−1 + yi ·G

stmti := {∃y s.t. Yi = y ·G} stmti := {∃y s.t. Yi = y ·G}

b← VNIZK(stmti, πi) (Yi−1,Yi,πi)←−−−−−−−− πi ← PNIZK

(∑i
j=0 yj , stmti

)
(Yn−1,kn:=

∑n−1
i=0 yi)−−−−−−−−−−−−−−→

if b = 0 then abort
Yi := Yi−1 + yi ·G
return (Yi−1, Yi, yi) return y0 return ((Yn−1, 0, 0), kn)

LockUi(s
I
i , ski, pk) LockUi+1(s

I
i+1, ski+1, pk)

parse sIi as (Y ′0 , Y0, y0) parse sIi+1 as (Y ′1 , Y1, y1)

parse ski as (x0, skHE) parse ski as (x0, skHE)

r0 ←$Zq; R0 := r0 ·G; R′0 := r0 · Y0 r1 ←$Zq; R1 := r1 ·G; R′1 := r1 · Y ′1
stmt0 := {∃r0 s.t. R0 = r0 ·G and R′0 = r0 · Y0} stmt1 := {∃r1 s.t. R1 = r1 ·G and R′1 = r1 · Y ′1}
π0 ← PNIZK(r0, stmt0) π1 ← PNIZK(r1, stmt1)

com←−−(decom, com)← Commit(1λ, (R1, R
′
1, π1))

(R0,R
′
0,π0)−−−−−−−→if VNIZK(stmt0, π0) 6= 1 then abort

(rx, ry) := R = r1 ·R′0; ρ←$Zq2
if Vcom(com, decom, (R1, R

′
1π1)) 6= 1 then abort (decom,R1,R

′
1,π1,c

′)
←−−−−−−−−−−−−−c

′ := crx(r1)
−1

· EncHE(pk, H(m)(r1)
−1 + ρq)

if VNIZK(stmt1, π1) 6= 1 then abort
s← DecHE(skHE, c

′)

(rx, ry) := R = r0 ·R′1
if s ·R1 6= rx · pk+H(m) ·G then abort s′:=s·r−1

0 mod q
−−−−−−−−−−→if s′ · r1 ·R0 6= rx · pk+H(m) ·G then abort

return ((m, pk), (s′,m, pk)) return ((m, pk), (rx, s
′))

Rel(k, (sI , sL, sR))

parse sI as (Y ′, Y, y), k as (r, s), sL as (w0, w1), sR as (s′,m, pk)

t := w1 · (s
′

s
− y)−1; t′ := w1 · (− s

′

s
− y)−1

if VfECDSA(pk, (w0,min(t,−t)),m) = 1 return (r,min(t,−t))
if VfECDSA(pk, (w0,min(t′,−t′)),m) = 1 return (r,min(t′,−t′))

Vf(`, k)

parse ` as (m, pk)

parse k as (r, s)

return 1 iff (r, ·) = H(m)
s
·G+ r

s
·pk and s ≤ q−1

2

Fig. 6: Algorithms and protocols for the ECDSA-based construction.

of s′ can be easily verified by both parties by recomput-
ing it “in the exponent”.

From the perspective of Ui+1, releasing his left lock
without a key for his right lock implies solving the
discrete logarithm of Yi. On the converse, once the
right lock is released, the value y∗ + yi+1 is revealed
(where yi+1 is part of the state of Ui+1) and a valid
signature can be computed as

(
rx,

s′

y∗

)
. The security of

the construction is established by the following theorem
(see [5] for a full proof).

Theorem 3. Let COM be a secure commitment scheme,
let NIZK be a non-interactive zero knowledge proof, let

ΠECDSA
KGen be a secure shared key generation protocol, and

let Πanon be an anonymous communication channel. If
ECDSA signatures are strongly existentially unforgeable
and Paillier encryption is ecCPA secure, then the con-
struction in Fig. 6 UC-realizes the ideal functionality F .

E. Hybrid PrivMuLs

We observe that, when instantiated over the same
elliptic curve G, the setup protocols of the Schnorr and
ECDSA constructions are identical. This means that the
initiator of the lock does not need to know whether
each intermediate lock is computed using the ECDSA
or Schnorr method. This opens the doors to hybrid

11

PrivMuLs: Given a unified setup, the intermediate pair of
users can generate locks using an arbitrary locking proto-
col. The resulting PrivMuL is a chaining of (potentially)
different locks and the release algorithm needs to be ad-
justed accordingly. For the case of ECDSA-Schnorr the
user needs to extract the value y∗ from the right Schnorr
signature (R∗, s∗) and his state sR := s′ = s∗−y∗+yi+1

and sI := (Yi, Yi+1, yi+1). Given y∗, he can factor it out
of its left state sL = ((r, s · y∗),m, pk) and recover a
valid ECDSA signature.

The complementary case (Schnorr-ECDSA) is han-
dled mirroring this algorithm. Similar techniques also
apply to the generic construction, when the one-way
function is instantiated appropriately (i.e., with discrete
logarithm over the same curve). This flexibility enables
atomic swaps and cross-currency payments (see Sec-
tion VII). The security for the hybrid PrivMuLs follows
similar to the standard case.

VI. PERFORMANCE ANALYSIS

A. Implementation Details

We have developed a prototypical Python implemen-
tation to demonstrate the feasibility of our construction
and evaluated its performance in terms of computation
time, computation cost, and communication overhead.
We have used the Charm library [3] for the cryptographic
operations. We have instantiated ECDSA signatures over
the elliptic curve secp256k1 (the one used in Bitcoin)
and we have implemented the homomorphic one-way
function with the discrete logarithm function g(x) :=
x · G over the same curve. Zero-knowledge protocols
for discrete logarithms have been implemented using Σ
protocols [21] and made non-interactive using the Fiat-
Shamir heuristic [27]. For a commitment scheme we
have used SHA-256 modeled as a random oracle [14].

B. Evaluation

Testbed. We conducted our experiments on a machine
with an Intel Core i7, 3.1 GHz and 8 GB RAM. We con-
sider the following four algorithms: Setup, Lock,Rel,Vf.
We do not consider KGen as we use off-the-shelf algo-
rithms without modification. Moreover, the key genera-
tion is executed only once upon creating a link and thus
does not affect the online performance of PrivMuLs. We
refer to [37] for a detailed performance evaluation of the
ECDSA key generation. The results of our performance
evaluation are shown in Table I.
Computation Time. We measure the computation time
required by the users to perform the different algorithms.
For the case of two-party algorithms (e.g., Setup and

Generic Schnorr ECDSA
Setup Time (ms) 0.3 · n 1 · n 1 · n

Comm (bytes) 96 · n 128 · n 128 · n
Lock Time (ms) – 2 60

Comm (bytes) 32 256 416
Rel Time (ms) – 0.002 0.02

Comm (bytes) 0 0 0
Vf Time (ms) – 0.6 0.06

Comm (bytes) 0 0 0
Comp Cost (gas) 350849 · n 0 0
Lock size (bytes) 32 32 + |m| 32 + |m|
Open size (bytes) 32 64 64

TABLE I: Comparison of the resources required to execute
the algorithms for the different PrivMuLs. We denote by n
the length of the path. We denote the negligible computation
times by – (e.g., single memory read). We denote the size of
an application-dependent message by |m| (e.g., a transaction
in a payment-channel network).

Lock) we consider the time for the two users together.
We make two main observations: First, the script-based
construction based on discrete logarithm is faster than
scriptless PrivMuLs. Second, all the algorithms require
computation time of at most one millisecond on a
commodity hardware.

Communication Overhead. We measure the communi-
cation overhead as the amount of information that users
need to exchange during the execution of interactive
protocols, in particular, Setup and Lock. As expected,
the generic construction based on discrete logarithm re-
quires less communication overhead than scriptless con-
structions. The scriptless construction based on ECDSA
requires a higher communication overhead. The higher
communication overhead required by the ECDSA ap-
proach is mainly due to having the signing key dis-
tributed multiplicatively and a more complex structure
of the final signature when compared to the Schnorr
approach.

Computation Cost. We measure the computation cost
in terms of the gas required by a smart contract im-
plementing the corresponding algorithm in Ethereum.
Naturally, we consider this cost only for the generic
approach based on discrete logarithm. We observe that
setting up the corresponding contract requires 350849
unit of gas per hop. At the time of writing, each PrivMuL
therefore costs considerably less than 0.01 USD.

Application Overhead. We measure the overhead
incurred by the application in terms of the memory
required to handle application-dependent data, i.e., infor-
mation defining the lock and the opening. In tune with
the rest of measurements, the generic construction based
on discrete logarithms requires the smallest amount of

12

memory, both for lock and opening information. The
different scriptless approaches require the same amount
of memory from the application.

Scalability. We study the running time and communi-
cation overhead required by each of the roles in a multi-
hop lock protocol (i.e., sender, receiver and intermediate
user). We consider only the generic approach and the
ECDSA construction as representative of the scriptless
approach. In the absence of significant metrics from
current PCNs, we consider a path length of ten hops
is suggested for similar payment networks such as the
Ripple credit network [39].

Regarding the computation time, the sender requires
3 ms with the generic approach and 10 ms with the
ECDSA scriptless approach. The computation time at
intermediate users remain below 1 ms for ECDSA and
negligible with the generic approach as they only have to
check the consistency of the locks with the predecessor
and the successor, independently of the length of the
path. Similarly, the computation overhead of the receiver
remains below 1 ms as she only checks if a given key is
valid to open the lock according to the verify algorithm.
In summary, a non-private payment over a path of 5 users
takes over 600 ms as reported in [40]. Extending it with
the constructions presented in this work provides formal
privacy guarantees at virtually no overhead.

Regarding the communication overhead, the sender
must send a message of about 960 bytes for the generic
approach while about 1280 bytes are required instead
if ECDSA scriptless locks are used. Since Sphinx,
the anonymous communication network used in the
LN, requires padded messages at each node to ensure
anonymity, we foresee that every intermediate user must
forward a message of the same size.

Comparing these results with other multi-hop and
privacy-preserving PCNs available in the literature, we
make the following observations. First, the overhead for
the constructions presented in this work are in tune
with TeeChain [36], where the overhead per hop is
about 0.4 ms in a setting where cryptographic operations
required for the multi-hop locks have been replaced by a
trusted execution environment. Second, our constructions
significantly reduce the communication and computation
overhead required by multi-hop HTLC [40]: While a
payment using multi-hop HTLC requires approximately
5 seconds and 17MB of communication, our approach
requires only few milliseconds and less than 1MB.

In summary, the evaluation results show that even with
an unoptimized implementation, our constructions offer
significant improvements on computation and communi-

cation overhead and are ready to be deployed in practice.

VII. APPLICATIONS

A. Payment-Channel Networks

PrivMuLs can be generically combined with a
blockchain B to construct a fully-fledged PCN. Loosely
speaking, the transformation works as follows: In the
first round the sender sets up the locks running the Setup
algorithm, then each pair of intermediate users executes
the Lock protocol and establishes the following PrivMuL
contract.

PrivMuL (Alice, Bob, `, x, t):
1) If Bob produces the condition k such that Vf(`, k) =
1 before t days, Alice pays Bob x coins.
2) If t days elapse, Alice gets back x coins.

Where ` is the output lock and x and t are chosen as
specified in Section II. Note that we have to assume
that B supports the Vf algorithm in its script language.
The rest of the payment is unchanged except that the
intermediate users execute the Rel algorithm to extract a
valid key k to claim the corresponding payment. In the
extended version [5], we provide the exact description
of the algorithms and we prove the following theorem.

Theorem 4 (Informal). Let B a secure blockchain and
let L be a secure PrivMuL, then we can construct a
secure PCN (as defined in [40]).

This shows that PrivMuLs are the only cryptographic
primitive (except for the blockchain) needed to construct
PCNs. The only limitation is that the blockchain needs
support the verification of the corresponding contract
in their scripting language (see the discussion above).
For this reason, the scriptless-construction are preferred
for those blockchains where the scripting language does
not support the evaluation of a homomorphic one-way
function (such as Bitcoin).

Application to the Lightning Network. When applied
to the LN, the ECDSA PrivMuL construction conveys
several advantages: First, it eliminates the security issues
existing in the current LN due to the use of the HTLC
contract. Second, it reduces the transaction size as a
single signature is required per transaction. This has the
benefit of lowering the communication overhead, the
transaction fees, and the blockchain memory require-
ments for closing a payment channel. In fact, we have
received initial feedback from the LN community indi-
cating the suitability of our ECDSA-based construction
and that initial implementation and testing has begun.

13

The applicability of our proposals are not restricted
to the LN or Bitcoin: There exist other PCNs that
could similarly take advantage of the scriptless PrivMuLs
presented in this work. For instance, the Raiden Net-
work has been presented as a payment channel network
for the scalability issue in Ethereum. The adoption of
our ECDSA scriptless PrivMuLs would bring the same
benefits to the Raiden Network as it would to the LN.

B. Atomic Swaps

Assume two users U0 and U1 holding coins in two
different cryptocurrencies that want to exchange them.
An atomic swap protocol ensures that either the coins
are swapped or the balances are untouched, i.e., the ex-
change must be performed atomically. The widely used
protocol for atomic swaps described in [17] leverages
the HTLC contract to perform the swap. In a nutshell,
an atomic swap can be seen as a multi-hop payment
over a path of the form (U0, U1, U0). This approach
inherits the security concerns of HTLC contract. Script-
less PrivMuLs also enhance this application domain with
formally proven security guarantees.

Additionally, our constructions contribute to the fun-
gibility of the coins, a crucial aspect of any currency and
therefore also of cryptocurrencies. Current protocols rely
on transactions that are clearly distinguishable from reg-
ular payments (i.e., one-to-one payments). In particular,
atomic swap transactions contain the HTLC contract, in
contrast with regular transactions. Scriptless PrivMuLs
eliminate this issue since even atomic swaps transactions
only require a single signature from a public key, making
them indistinguishable from regular payments. Similar
arguments also apply for multi-hop payments in PCNs.

C. Interoperable PCNs

In the plethora of cryptocurrencies existing today,
an interesting problem consists of performing a multi-
hop payment where each link represents a payment
channel defined in a different cryptocurrency. In this
manner, a user with a payment channel funded in a
given cryptocurrency can use it to pay to another user
with a payment channel in a different cryptocurrency.
Currently, the InterLedger protocol [53] tackles this
problem and proposes a mechanism to perform cross-
currency multi-hop payments. This protocol relies on the
HTLC mechanism, aiming to ensure the atomicity of the
payment across different hops.

However, apart from the already discussed issues as-
sociated with HTLC, the InterLedger protocol mandates
that all cryptocurrencies implement HTLC contracts.
This obviously hinders the deployment of this approach.

Instead, it is possible to use the different PrivMuL
constructions presented in this work on a single path,
as described in Section V-E, therefore expanding the
domain of cross-currency multi-hop payments.

VIII. RELATED WORK

A recent work [24] shows a protocol to compute
an ECDSA signature using multi-party computation.
However, it is not as efficient as Lindell’s approach [37].

There exists extensive literature proposing construc-
tions for payment channels [22], [23], [35], [49]. These
works focus on a single payment channel, and their
extension to PCNs remain an open challenge. Tum-
bleBit [31] and Bolt [30] support off-chain payments
while achieving payment anonymity guarantees. How-
ever, the privacy guarantees of these approaches are
restricted to single-hop payments and their extension to
support multi-hop payments remains an open challenge.

State channels [25], [33], [43] and state channel net-
works [26] cannot work with prominent cryptocurrencies
except from Ethereum. TeeChain [36] requires the avail-
ability of a trusted execution environment at each user.
Instead, our proposal can be seamlessly deployed today
in virtually all cryptocurrencies, including Ethereum.

The LN has emerged as the most promising ap-
proach for PCN in practice. Its current description [8]
is being followed by several implementations [6], [10],
[11]. However, these implementations suffer from the
security and privacy issues with PCNs as described in
this work. Instead, we provide several constructions for
PrivMuLs that can be leveraged to have secure and
privacy-preserving multi-hop payments.

Malavolta et al. [40] propose a protocol for secure and
privacy-preserving multi-hop payments compatible with
the current LN. Their approach, however, imposes an
overhead of around 5 MB for the nodes in the network,
therefore hindering its deployability. Here, we propose
several efficient constructions that require only a few
bytes of communication.

In the recent literature, we can find proposals for
secure and privacy-preserving atomic swaps. Tesser-
act [15] leverages trusted hardware to perform real
time cryptocurrency exchanges. The Merkleized Abstract
Syntax Trees (MAST) protocol has been proposed as a
privacy solution for atomic swaps [34]. However, MAST
relies on scripts that are not available in the major
cryptocurrencies today. Moreover, specific contracts for
atomic swaps hinder the fungibility of the currency:
An observer can easily differentiate between a regular
payment and a payment resulting from an atomic swap.

14

IX. CONCLUSION

We rigorously study the cryptographic core function-
ality for security, privacy, and interoperability guarantees
in PCNs, presenting a new attack on today’s PCNs (the
wormhole attack) and proposing a novel cryptographic
construction (PrivMuLs). We instantiate PrivMuLs in
two settings: script-based and scriptless. In the script-
based setting, we demonstrate that PrivMuLs can be
realized from any (partially) homomorphic operation.
In the scriptless setting, we propose a construction
based on ECDSA, thereby catering the vast majority of
cryptocurrencies deployed today. Our performance eval-
uation shows that PrivMuLs are practical: All operations
take less than 100 milliseconds to run and introduce a
communication overhead of less than 500 bytes.

We show that PrivMuLs can be combined in a single
path and are of interest in several applications apart from
PCNs, such as atomic swaps and interoperable PCNs. In
the future, we plan to devise cryptographic instantiations
of PCNs for the few cryptocurrencies that are not yet
covered, most notably Monero.

Acknowledgements. The authors would like to thank
Elizabeth Stark (CEO of Lightning Network Labs) for
insightful discussions on the writeup of this paper.

REFERENCES

[1] “5 potential use cases for bitcoin’s lightning network,” https://
tinyurl.com/y6u4tnda.

[2] “Blockchain explorer information,” https://blockchain.info/.
[3] “Charm: A framework for rapidly prototyping cryptosystems,”

https://github.com/JHUISI/charm.
[4] “”ethereum website”,” https://www.ethereum.org/.
[5] “Extended version of this paper,” https://sites.google.com/site/

multihoplock/home/main.pdf.
[6] “Lightning network daemon,” https://github.com/

lightningnetwork/lnd.
[7] “Lightning network developers mailing list,” url omitted to main-

tain the anonymity of the authors.
[8] “Lightning network specifications,” https://github.com/

lightningnetwork/lightning-rfc.
[9] “Raiden network,” http://raiden.network/.

[10] “A scala implementation of the lightning network,” https://github.
com/ACINQ/eclair.

[11] “c-lightning – a lightning network implementation in c,” Acceses
in May 2018, https://github.com/ElementsProject/lightning.

[12] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Chris-
tidis, A. D. Caro, D. Enyeart, C. Ferris, G. Laventman,
Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi,
G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukolic,
S. W. Cocco, and J. Yellick, “Hyperledger fabric: A distributed
operating system for permissioned blockchains,” CoRR, vol.
abs/1801.10228, 2018.

[13] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Moham-
madi, “Anoa: A framework for analyzing anonymous communi-
cation protocols,” in CSF, 2013, pp. 163–178.

[14] M. Bellare and P. Rogaway, “Random oracles are practical: A
paradigm for designing efficient protocols,” in CCS, 1993.

[15] I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach,
P. Daian, and A. Juels, “Tesseract: Real-time cryptocurrency
exchange using trusted hardware,” in ePrint Archive, 2017, p.
1153. [Online]. Available: http://eprint.iacr.org/2017/1153

[16] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-
knowledge and its applications,” in Symposium on Theory of
Computing, 1988, pp. 103–112.

[17] S. Bowe and D. Hopwood, “Hashed time-locked contract transac-
tions,” Bitcoin Improvement Proposal, https://github.com/bitcoin/
bips/blob/master/bip-0199.mediawiki.

[18] J. Camenisch and A. Lysyanskaya, “A formal treatment of onion
routing,” in Annual International Cryptology Conference, 2005.

[19] R. Canetti, “Universally composable security: A new paradigm
for cryptographic protocols,” in FOCS, 2001, pp. 136–.

[20] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. Gün Sirer, D. Song, and
R. Wattenhofer, “On Scaling Decentralized Blockchains,” in FC,
2016, pp. 106–125.

[21] I. Damgård, “On σ-protocols,” Lecture Notes, University of
Aarhus, Department for Computer Science, 2002.

[22] C. Decker, R. Russel, and O. Osuntokun, “eltoo: A simple layer2
protocol for bitcoin,” https://blockstream.com/eltoo.pdf.

[23] C. Decker and R. Wattenhofer, “A fast and scalable payment
network with bitcoin duplex micropayment channels,” in Stabi-
lization, Safety, and Security of Distributed Systems, 2015.

[24] J. Doerner, Y. Kondi, E. Lee, and a. shelat, “Secure two-party
threshold ecdsa from ecdsa assumptions,” in S&P, 2018.

[25] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun:
Virtual payment hubs over cryptocurrencies,” in ePrint Archive,
2017. [Online]. Available: https://eprint.iacr.org/2017/635

[26] S. Dziembowski, S. Faust, and K. Hostakova, “Foundations
of state channel networks,” in ePrint Archive, 2018. [Online].
Available: https://eprint.iacr.org/2018/320

[27] A. Fiat and A. Shamir, “How to prove yourself: Practical solu-
tions to identification and signature problems,” in Conference on
the Theory and Application of Cryptographic Techniques, 1986.

[28] C. Fromknecht, “Instantiating scriptless 2p-ecdsa: fungible 2-of-
2 multisigs for bitcoin today,” https://tokyo2018.scalingbitcoin.
org/transcript/tokyo2018/scriptless-ecdsa, 2018, accessed: 2018-
10-12.

[29] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature
scheme secure against adaptive chosen-message attacks,” SIAM
Journal on Computing, vol. 17, no. 2, pp. 281–308, 1988.

[30] M. Green and I. Miers, “Bolt: Anonymous payment channels for
decentralized currencies,” in CCS, 2017.

[31] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Gold-
berg, “TumbleBit: An untrusted bitcoin-compatible anonymous
payment hub,” in NDSS, 2017.

[32] M. Jakobsson and A. Juels, “Millimix: Mixing in small batches,”
DIMACS Technical report 99-33, Tech. Rep., 1999.

[33] R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain
payment networks,” in CCS, 2017, pp. 439–453.

[34] J. Lau, “Merkelized abstract syntax tree,” Bitcoin Improvement
Proposal, https://tinyurl.com/yc9jh6lv.

[35] J. Lind, I. Eyal, P. R. Pietzuch, and E. G. Sirer, “Teechan:
Payment channels using trusted execution environments,” 2016,
http://arxiv.org/abs/1612.07766.

[36] J. Lind, O. Naor, I. Eyal, F. Kelbert, P. R. Pietzuch, and E. G.
Sirer, “Teechain: Reducing storage costs on the blockchain with
offline payment channels,” in Systems and Storage Conference,
2018, p. 125.

[37] Y. Lindell, “Fast Secure Two-Party ECDSA Signing,” in
CRYPTO, 2017, pp. 613–644.

[38] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and
P. Saxena, “A secure sharding protocol for open blockchains,” in
CCS, 2016, pp. 17–30.

15

https://tinyurl.com/y6u4tnda
https://tinyurl.com/y6u4tnda
https://blockchain.info/
https://github.com/JHUISI/charm
https://www.ethereum.org/
https://sites.google.com/site/multihoplock/home/main.pdf
https://sites.google.com/site/multihoplock/home/main.pdf
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lightning-rfc
https://github.com/lightningnetwork/lightning-rfc
http://raiden.network/
https://github.com/ACINQ/eclair
https://github.com/ACINQ/eclair
https://github.com/ElementsProject/lightning
http://eprint.iacr.org/2017/1153
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://blockstream.com/eltoo.pdf
https://eprint.iacr.org/2017/635
https://eprint.iacr.org/2018/320
https://tokyo2018.scalingbitcoin.org/transcript/tokyo2018/scriptless-ecdsa
https://tokyo2018.scalingbitcoin.org/transcript/tokyo2018/scriptless-ecdsa
https://tinyurl.com/yc9jh6lv
http://arxiv.org/abs/1612.07766

[39] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei,
“SilentWhispers: Enforcing security and privacy in credit net-
works,” in NDSS, 2017.

[40] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and
S. Ravi, “Concurrency and privacy with payment-channel net-
works,” in CCS, 2017.

[41] P. McCorry, M. Möser, S. F. Shahandashti, and F. Hao, “Towards
bitcoin payment networks,” in ACISP, 2016.

[42] S. Micali, K. Ohta, and L. Reyzin, “Accountable-subgroup mul-
tisignatures,” in CCS, 2001, pp. 245–254.

[43] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry,
“Sprites: Payment channels that go faster than lightning,”
CoRR, vol. abs/1702.05812, 2017. [Online]. Available: http:
//arxiv.org/abs/1702.05812

[44] P. Moreno-Sanchez, N. Modi, R. Songhela, A. Kate, and
S. Fahmy, “Mind your credit: Assessing the health of the ripple
credit network,” in WWW, 2018, pp. 329–338.

[45] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in International Conference on the Theory
and Applications of Cryptographic Techniques, 1999, pp. 223–
238.

[46] A. Pfitzmann and M. Hansen, “A Terminology
for Talking about Privacy by Data Minimization:
Anonymity, Unlinkability, Undetectability, Unobservability,
Pseudonymity, and Identity Management,” https://dud.inf.tu-
dresden.de/literatur/Anon Terminology v0.34.pdf, Aug. 2010,
v0.34.

[47] A. Poelstra, “Lightning in scriptless scripts,” Mailing list post,
https://lists.launchpad.net/mimblewimble/msg00086.html.

[48] ——, “Scriptless scripts,” Presentation slides, https:
//download.wpsoftware.net/bitcoin/wizardry/mw-slides/
2017-05-milan-meetup/slides.pdf.

[49] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable
off-chain instant payments,” Technical Report, https://lightning.
network/lightning-network-paper.pdf.

[50] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” Journal of the ACM, vol. 56, no. 6, p. 34,
2009.

[51] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling
payments fast and private: Efficient decentralized routing for
path-based transactions,” in NDSS, 2018.

[52] C.-P. Schnorr, “Efficient signature generation by smart cards,”
Journal of cryptology, vol. 4, no. 3, pp. 161–174, 1991.

[53] E. S. Stefan Thomas, “A Protocol for Interledger Payments,”
Whitepaper, https://interledger.org/interledger.pdf.

[54] M. Trillo, “Stress test prepares visanet for
the most wonderful time of the year,”
http://www.visa.com/blogarchives/us/2013/10/10/
stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/
index.html, 2013, accessed: 2017-08-07.

[55] P. Wuille, “Schnorr Bitcoin Improvement Proposal,” https://
github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki.

APPENDIX

A. Wormhole Attack

In this section, we first describe generically the worm-
hole attack. We then formally prove that no two-round
multi-hop payment in a payment-channel network is
robust against this attack.

For describing the essence of the wormhole attack,
we use an abstract view on payments in PCNs where we
assume them to consist of a commitment phase and a re-
leasing phase. In the commitment phase, pairwise locks

(e.g. HTLCs) between the parties along the payment path
are created in pairwise locking protocols between the
neighboring nodes. In the releasing phase, starting from
the payment’s receiver, keys for ’opening’ the locks are
released (as the condition R in the lightning network).
These keys should satisfy the property that each path
node can – given a valid key for an outgoing lock –
derive a key for it’s incoming lock. Note that we assume
communication to be restricted to nodes connected by a
direct link in the PCN. This prevents that besides the
specified messages in the releasing phase, keys can be
sent to previous nodes in the path (e.g., via broadcast).

Figure 7 shows the payment from Alice to Edward in
the abstract setting. Initially, Edwards gives a trapdoor t
to Alice. Using this, Alice starts the commitment phase
by creating the lock `A,B with Bob. To this end, Alice
and Bob might use their secret local states sA and sB .
In the same fashion all following pairwise locks are
created in the commitment phase till reaching Edward.
Edward then starts the releasing phase by using the
trapdoor he initially sent to Alice for creating the key
kD,E for opening lock `D,E . From this key (and the
information learned in the commitment phase), Dave can
derive key kC,D. In this fashion the whole lock chain can
be released.

Note that in the setting of only two rounds of com-
munication, the initial secret local states of the users
involved in a payment are completely independent from
the payment path and consequently from the local states
of the other nodes in the path. This is as none of the
users received any path-specific information upfront.

As a consequence, two nodes ui and uj (with 1 <
i+ 1 < j) on a payment path can exclude intermediate
nodes uk (with i < k < j) from taking part in
the releasing phase as follows: After completing the
commitment phase in an honest fashion, the releasing
phase proceeds honestly till reaching uj . At this point
uj can derive a key kj−1,j for releasing the lock `j−1,j
with (honest) user uj−1. Instead of releasing this lock,
uj forwards kj−1,j to ui which again can use this key for
producing a valid key for lock `i−1,i with its predecessor

Alice
) (sA

Bob
() sB

Carol
() sC

Dave
() sD

Edward
() sE

2. ℓA,B

1. t

9. kA,B 8. kB,C 7. kC,D 6. kD,E

3. ℓB,C 4. ℓC,D 5. ℓD,E

Fig. 7: Illustration of the abstract locking mechanism underly-
ing payments in PCNs

16

http://arxiv.org/abs/1702.05812
http://arxiv.org/abs/1702.05812
https://lists.launchpad.net/mimblewimble/msg00086.html
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://interledger.org/interledger.pdf
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki
https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki

ui−1. This is possible as no secret information from the
nodes {uk}i<k<j is required for generating a valid key
for li−1,i. Otherwise also opening the final lock would
already require secret information from some intermedi-
ate nodes. As these pieces of secret information from the
intermediate nodes are however completely unrelated to
the path and consequently from the trapdoor t even the
receiver could not earn the necessary knowledge from the
trapdoor for opening the last lock. So finally, node ui can
release lock `i−1,i and consecutively all remaining locks
can be released without contacting nodes {uk}i<k<j at
all. Together with the assumption that nodes {uk}i<k<j
cannot receive information through other channels than
the direct communication with their immediate neighbors
in the path and the fact that keys for locks can only be
derived from the initial key, there is no way for nodes
{uk}i<k<j to open the locks with their successors in the
path.

1) Inevitability of wormhole attacks in one-round pay-
ment protocols: In PCNS, payments that only encompass
two rounds of communication are inevitably vulnerable
to wormhole attacks. 2 More specifically, this means that
when no path-specific information was communicated
to the intermediate nodes of the payment path before
performing the payment, nodes located between two
corrupted users in the path can always be bypassed in
the releasing phase. This situation occurs in cases where
the path is not known upfront, but routing is performed
dynamically (e.g., [51]).

We characterize this generic property of payments in
PCNS in Theorem 1. In the following, we formally prove
this theorem.

Proof. Assume a payment along the path u1 → u2 →
· · · → un with u1 being the sender and un being the
receiver. Without loss of generality, assume two nodes
ui and uj with i < j being controlled by the attacker and
all other nodes on the path being honest. We show that
the view of honest nodes ul with l < i or l > j in the
scenario of ui and uj performing a wormhole attack on
a successful payment don’t differ from the view in the
scenario of a successful payment. In addition, we show
that the view of honest nodes um with i < m < j in
the scenario of the wormhole attack do not differ from
their view in the scenario of an unsuccessful payment. To
this end, we first show how an attacker can simulate the

2Note that we assume here PCNs of the previously described
structure hence requiring that payments encompass a commitment
and a revealing phase and communication to be restricted to direct
neighbors.

behavior of the nodes ui+1, . . . , uj−1 without changing
the view of the honest nodes ul with l < i or l > j.

In the commitment phase, the locks along the path
u1 → u2 → · · · → ul have been created correctly.
In the locking protocol between ul and ui, ui behaves
honestly and consequently ul’s view is the same as in the
honest case. In parallel to starting the locking protocol
between ui and ui+1, the attacker locally simulates
the locking protocols for the user’s ui+1, . . . , uj and
creates simulated locks `i+1, . . . , `j . This is possible as
by sampling random local states for those nodes, the
attacker can run the locking protocol locally. Finally, uj
can continue the commitment phase in an honest manner
using as own local state the one resulting from the
simulated commitments. This cannot be distinguished by
node uj+1 as it’s own local state is unrelated to the local
states of the other intermediate nodes.

As we consider the case of a successful payment, the
releasing phase will be performed honestly by nodes
un, . . . uj+1. When uj+1 releases the lock between uj
and uj+1 with key kj , then the attacker can simulate
releasing the locks `j−1, . . . , `i locally without pub-
lishing the corresponding keys. This is possible as the
attacker can use the local states of the intermediate nodes
ui+1, . . . , uj−1 from the simulated commitment phase
for deriving keys kj−1, . . . , ki−1. As ki−1 is hence also a
valid key for the honestly created lock li−1, the releasing
phase can from this point be concluded in an honest
manner.

Finally, we can observe that nodes ui+1, . . . , uj−1 are
not contacted at all in the releasing phase of the payment
which is the same as in the case that the payment was
unsuccessful, i.e., the releasing phase was not initiated
by the receiver at all.

B. PrivMuLs Correctness
In this section, we define the notion of correctness for

PrivMuLs.

Definition 3 (Correctness of PrivMuLs). Let L
be a PrivMuL, λ ∈ N+ and n ∈ poly(λ).
Let (U0, . . . , Un) ∈ Un be a vector of users,
(sk0, . . . , skn−1) and (sk∗1, . . . , sk

∗
n) two vectors of pri-

vate keys and (pk0, . . . , pkn−1) a vector of shared public
keys such that for all 0 ≤ i < n, it holds that

{(ski, pki), (sk
∗
i+1, pki)} ← 〈KGenUi

(1λ),KGenUi+1
(1λ)〉.

Let (sI0, . . . , s
I
n) be vector of initial states and kn be a

key such that for all 0 ≤ i < n

{sI0, . . . , (sIn, kn)} ←

〈
SetupU0

(1λ, U1, . . . , Un)
. . .

SetupUn
(1λ)

〉

17

Furthermore, let (`0, . . . , `n−1) be a vector of locks,
(sL1 , . . . , s

L
n) and (sR0 , . . . , s

R
n−1) vectors of states, and

(k0, . . . , kn−1) a vector of keys such that for all 0 ≤ i <
n, it holds that

{(`i, sRi), (`i, s
L
i+1)} ←

〈
LockUi(s

I
i , ski, pki)

LockUi+1(s
I
i+1, sk

∗
i+1, pki)

〉
and

ki ← Rel(ki+1, (s
I
i+1, s

L
i+1, s

R
i+1))

where sRn is ⊥. We say that L is correct if there exists
a negligible function negl such that for all 0 ≤ i < n it
holds that

Pr [Vf(`i, ki) = 1] ≥ 1− negl(λ).

C. Schnorr-based Scriptless Construction

In the following we cast the idea of Poelstra [47] in
our framework.
Schnorr Signatures. Let G be an elliptic curve group
of order q with base point G and let H : {0, 1}∗ →
{0, 1}|q| be a collision resistant hash function (modeled
as a random oracle). The key generation algorithm
KGenschnorr(1

λ) of a Schnorr signature [52] samples
some x←$Zq and sets the corresponding public key as
Q := x ·G. To sign a message m, the signing algorithm
Sigschnorr(sk,m) samples some k←$Zq , computes e :=
H(Q‖k·G‖m), sets s := k−xe, and returns σ := (R, s),
where R := k · G. The verification Vfschnorr(pk, σ,m)
returns 1 if and only if s · G = R + H(Q‖R‖m) · Q.
Schnorr signatures are known to be strongly unforgeable
against the discrete logarithm assumption [29]. We as-
sume the existence of a 2-party protocol Πschnorr

KGen where
the two players, on input x0 and x1, set a shared public
key Q := (x0 +x1) ·G. Such a protocol can be realized
using standard techniques [42].
Description. Let G be an elliptic curve group of order
q with base point G and let H : {0, 1}∗ → {0, 1}|q| be
a hash function. The Schnorr-based construction is for-
mally described in Fig. 8. The key generation algorithm
consists of an execution of the Πschnorr

KGen protocol. At the
end of a successful run, Ui receives (xi, pk) whereas Uj
obtains (xj , pk), where pk := (xi+xj) ·G. The setup of
a PrivMuL is identical to the ECDSA-based construction
and can be found in Fig. 6.

Prior to the locking phase, two users Ui and Ui+1

(implicitly) agree on the value Yi and on a message m
to be signed. Each message is assumed to be unique for
each session (e.g., contains a transaction identifier). The
locking algorithm consists of an “incomplete” distributed
signing of m. First, the two parties agree on a randomly

chosen element R0 + R1 using a standard coin tossing
protocol, then they set the randomness of the signature to
be R := R0 +R1 +Yi. Note that at this point the parties
cannot complete the signature since they do not know the
discrete logarithm of Yi. Instead, they jointly compute
the value s := r0+r1+e ·(x0+x1) as if Yi was not part
of the randomness, where e is the hash of the transcript
so far. The resulting (R, s) is not a valid signature on
m, since the additive term y∗ (where y∗ · G = Yi) is
missing from the computation of s. However, rearranging
the terms, we have that (R, s+ y∗) is a valid signature
on m. This implies that, once the discrete logarithm of
Yi is revealed, a valid signature m can be computed by
Ui+1. Leveraging this observation, Ui+1 can enforce an
atomic opening: The subsequent locking (between Ui+1

and Ui+2) is conditioned on some Yi+1 = Yi + yi+1 ·G.
This way, the opening of the right lock reveals the value
y∗+yi+1 and Ui+1 can immediately extract y∗ and open
its left lock with a valid signature on m. The security of
the construction is shown by the following theorem. We
refer the reader to Appendix E for a full proof.

Theorem 5. Let COM be a secure commitment scheme,
let NIZK be a non-interactive zero knowledge proof, let
Πschnorr

KGen be a secure shared key generation protocol, and
let Πanon be an anonymous communication channel. If
Schnorr signatures are strongly existentially unforgeable,
then the construction in Fig. 8 UC-realizes the ideal
functionality F .

D. Comparison of Privacy Notions and Guarantees

In this section we discuss our notion of relationship
anonymity as the privacy notion of interest for PCNs and
compare it with other possible privacy notions described
in the literature related to PCN.

Our privacy model faithfully captures the reality of
currently deployed PCN. In particular, Malavolta et
al. [40] showed that it captures the well established no-
tion of relationship anonymity. In a nutshell, relationship
anonymity [46] requires that, given two simultaneous
successful payment operations between sender{0,1} and
receiver{0,1} that share the same path with at least one
honest intermediate user, corrupted intermediate users
cannot determine the correct pair (senderb, receiverb) for
a given payment with probability better than 1/2 (i.e.,
guessing). Note that this holds only for payments for
the same value, since such an information it is trivially
leaked to intermediate users, i.e., each users can monitor
how adjacent links evolve and infer the amount that was
transferred.

18

LockUi(s
I
i , ski, pk) LockUi+1(s

I
i+1, ski+1, pk)

parse sIi as (Y ′0 , Y0, y0) parse sIi+1 as (Y ′1 , Y1, y1)

r0 ←$Zq r1 ←$Zq
R0 := r0 ·G R1 := r1 ·G
π0 ← PNIZK(r0, {∃r0 s.t. R0 = r0 ·G}) π1 ← PNIZK(r1, {∃r1 s.t. R1 = r1 ·G})

com←−−(decom, com)← Commit(1λ, (R1, π1))
(R0,π0)−−−−−→b1 ← VNIZK({∃r0 s.t. R0 = r0 ·G}, π0)

if b1 = 0 then abort
e := H(pk‖R0 +R1 + Y ′1‖m)

if Vcom(com, decom, (R1, π1)) 6= 1 then abort (decom,R1,π1,s)←−−−−−−−−−−s := r1 + e · ski+1 mod q
b0 ← VNIZK({∃r1 s.t. R1 = r1 ·G}, π1)

if b0 = 0 then abort
e := H(pk‖R0 +R1 + Y0‖m)

if s ·G 6= R1 + e · (pk− ski ·G) then abort

s′ := s+ r0 + e · ski mod q s′−→if s′ ·G 6= R0 +R1 + e · pk then abort
return ((m, pk), s′) return ((m, pk), (R0 +R1 + Y ′1 , s

′))

Rel(k, (sI , sL, sR))

parse sI as (Y ′, Y, y)

parse k as (R, s)

parse sL as (W0, w1)

w := w1 + s− (sR + y)
mod q

return (W0, w)

Vf(`, k)

parse ` as (m, pk)

parse k as (R, s)

e := H(pk‖R‖m)

return s ·G = R+ e · pk

Fig. 8: Algorithms and protocols for the Schnorr-based construction. The Setup protocol is as defined in Fig. 6.

An alternative privacy notion is described in
BOLT [30]. There, authors propose payment anonymity.
Intuitively, payment anonymity requires that the mer-
chant, even in collaboration with a set of malicious
customers, learns nothing about a customer’s spending
pattern beyond the information available outside the
payment protocol.

While this privacy notion additionally hides the value
that is transacted, it is restricted to single-hop payments
and does not consider the crucial aspect of conditional
payment required when more than one intermediate user
takes part in the payment. As discussed in Section III,
many well-established networks use paths with multiple
intermediaries and it is reasonable to expect long paths
also in the LN. To obtain the best of both worlds,
one could envision a protocol where private one-hop
payments are performed “at the edges” (i.e., between
sender and first hop as well as between last hop and the
receiver) while the rest of intermediate users carry out a
multi-hop payment á la LN.

However, this approach raises several questions. First,

it is unclear whether the hypothetical resulting privacy
guarantees are stronger or weaker than those presented
in this work. It is possible that the naı̈ve combination
of the two systems would completely break down the
guarantees of both schemes. Techniques presented in
both works might be required to develop a new system.
Second, BOLT requires a blockchain supporting a reach
scripting language and it is therefore not compatible
with prominent cryptocurrencies (such as Bitcoin). Thus,
making this system Bitcoin-compatible would require
fundamentally new techniques.

In summary, although it seems to be an interesting
research direction, further work is required to study this
approach and its privacy properties.

E. Security Analysis

Throughout the analysis we denote by poly(λ) any
function that is bounded by a polynomial in λ. We
denote any function that is negligible in the security
parameter by negl(λ). We say that an algorithm is PPT
if it is modelled as a probabilistic Turing machine whose

19

running time is bounded by some function poly(λ). In
the following we elaborate on the security analysis of
our constructions.

We shall point out that in this analysis we model a
very strong variant of anonymous communication, which
might not always be reasonable to assume. More realistic
privacy guarantees are captured by onion routing [18]
functionalities or mix networks [32]. For ease of expo-
sition we stick to our simplistic model, noting that our
proof is completely parametric and one can switch to a
less idealized functionality in a modular manner.

1) Generic Construction: Here we elaborate the proof
of Theorem 2.

Proof. We define the following sequence of hybrids,
where we gradually modify the initial experiment.

H0 : Is identical to the protocol as described in Sec-
tion V-B.

H1 : Instead of sending messages through the Πanon

channel, the parties communicate in interaction with the
ideal functionality Fanon.

Anon(m, Ui)
Upon invocation Uj on input (m, Ui):
send (m, Ui) to Ui

H2 : Consider the following ensemble of variables in
the interaction with A: A honest user Ui, a key pair
(ski, pk), a state sI , a tuple (`i, `i+1, s

L, sR) such that

{·, (`i, sL)} ← 〈·, LockUi
(sI , ski, pk)〉

and

{(`i+1, s
R), ·} ← 〈LockUi

(sI , ski, pk), ·〉.

If, for any set of these variables, the adversary
returns some k such that Vf(`i+1, k) = 1 and
Vf(`i,Rel(k, (s

I , sL, sR))) 6= 1, then the experiment
aborts.

H3 : Consider the following ensemble of variables in
the interaction with A: A pair of honest users (U0, Ui)
a set of (possibly corrupted) users (U1, . . . , Un), a key
pair (ski, pk), a set of initial states

(sI0 . . . , s
I
n)←

〈
SetupU0

(1λ, U1, . . . , Un), . . . ,
SetupUn

(1λ)

〉
,

and a pair of locks (`i−1, `i) such that

{·, (`i−1, ·)} ← 〈·, LockUi
(sIi , ski, pk)〉

and
{(`i, ·), ·} ← 〈LockUi

(sIi , ski, pk), ·〉.

If, for any set of these variables, the adversary returns
some ki−1 such that Vf(`i−1, ki−1) = 1 before the user
Ui outputs a key ki such that Vf(`i, ki) = 1, then the
experiment aborts.

H4 : Let S = (U0, . . . , Um) be an ordered set of
(possibly corrupted) users. We say that that an ordered
subset A = (U1, . . . , Uj) is adversarial if Ui is honest
and (Ui+1, . . . , Uj) are corrupted. Note that every set of
users can be expressed as a concatenation of adversarial
subsets, that is S = (A1|| . . . ||Am′), for some m′ ≤ m.
Whenever a honest user is requested to set up a lock
for a certain set S = (A1|| . . . ||Am′), it initializes
an independent lock for each subset (Ai, A

0
i+1), where

A0
i+1 is the first element of the (i+ 1)-th set, if present.

Whenever some A0
i+1 is requested to release the key for

the corresponding lock (recall that all A0
i+1 are honest

nodes) it releases the key for the fresh lock (Ai, A
0
i+1)

instead.

S : The interaction of the simulator is identical to H4

except that the actions of S are dictated by the interaction
with F . The simulator reads the communication of A
with the honest users via Fanon and is queried by F on
the following set of inputs.

1) (·, ·, ·, ·, Init): The simulator reconstruct the adver-
sarial set (defined above) from the ids and sets up
a fresh lock chain.

2) (·, Lock): The simulator initiates the locking proce-
dure with the adversary and replies with ⊥ if the
execution is not successful.

3) (·,Rel) The simulator releases the key of the corre-
sponding lock and publishes it.

If A interacts with a honest user (e.g., by releasing a
lock) the simulator queries the corresponding interface
of F .

Note that the simulator is efficient and interacts as
the adversary with the ideal world. Furthermore, the
simulation is always consistent with the ideal world, i.e.,
if the adversary’s action is not supported by the interfaces
of F the simulation aborts. What is left to be shown is
that the neighboring hybrids are indistinguishable to the
eyes of the environment E .

Lemma 1. For all PPT distinguishers E it holds that

EXECH0,A,E ≈ EXECH1,A,E .

Proof. Follows directly from the security of Πanon.

Lemma 2. For all PPT distinguishers E it holds that

EXECH1,A,E ≡ EXECH2,A,E .

20

Proof. Follows from the homomorphic property of the
function g: Recall that a key-lock pair (k, `) is valid if
and only if g(k) = `. Let (ki, `i) be the output of A, by
construction we have that `i = `i−1 + g(yi), for some
(`i−1, yi), which is part of the state of the honest node.
Since the release algorithm computes ki − yi we have
that

g(ki − yi) = g(ki)− g(yi)

= `i − g(yi)

= `i−1 + g(yi)− g(yi)

= `i−1

with probability 1, by the homomorphic property of g.

Lemma 3. For all PPT distinguishers E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. Let q ∈ poly(λ) be a bound on the number
of interactions. Recall that H2 and H3 differ only
for the case where the adversary outputs a key for a
honestly generated lock before the trapdoor is released.
Assuming towards contradiction that the probability that
this event happens is non-negligible, we can construct
the following reduction against the one-wayness of g:
On input some Y ∗ ∈ R, the reduction guesses a session
j ∈ [1, q] and some index i ∈ [1, n]. The setup algorithm
of the j-th session is modified as follows: Yi is set to be
Y ∗. Then, for all ι ∈ [i− 1, 0], the setup samples some
yι ∈ D and returns (Yι = Yι+1 − g(yι), Yι+1, yι). The
setup samples a random yi ∈ D and sets Yi+1 = g(yi).
Then, for ι ∈ [i + 1, n − 1], the setup samples yι ∈ D
returns (Yι, Yι + g(yι), yι). The nodes (U1, . . . , Un−1)
are given the corresponding output (except for Ui) and
Un is given (Yn−1,

∑n−1
j=i yj). If the node Ui is requested

to release the lock, the reduction aborts. At some point
of the execution the adversary A outputs some y∗, and
the reduction returns y∗ + yi−1.

The reduction is clearly efficient and, whenever j and
i are guessed correctly, the reduction does not abort.
Since the group defined by g is abelian, the distribution
induced by the modified setup algorithm is identical to
the original (except for the initial state of U1). Also note
that, whenever j and i are guessed correctly, the user
Ui is honest and therefore the adversary does not not
see the corresponding internal state. It follows that the
reduction is identical to H2, to the eyes of the adversary.
Finally, whenever the adversary outputs some valid ki−1

for `i−1, then it holds that g(ki−1) = `i−1. Substituting
we have that

g(ki−1) = `i−1

g(y∗) = Yi−1

g(y∗) = Y ∗ − g(yi−1)

g(y∗) + g(yi−1) = Y ∗

g(y∗ + yi−1) = Y ∗.

It follows that the reduction is successful with probability
at least 1

q·n·poly(λ) . This proves our statement.

Lemma 4. For all PPT distinguishers E it holds that

EXECH3,A,E ≡ EXECH4,A,E .

Proof. Recall that adversarial sets are always interleaved
by a honest node. Therefore in H3 for each adversarial
set starting at index i there exists a y such that Yi =
Yi−1 + g(y) and A is not given y. Since y is randomly
sampled from D we have that Yi−1 + g(y) ≡ Y ′, for
some Y ′ sampled uniformly from R, which corresponds
to the view of A in H4.

Lemma 5. For all PPT distinguishers E it holds that

EXECH4,A,E ≡ EXECF,S,E .

Proof. The changes between the two experiments are
only conceptual and the equivalence of the views fol-
lows.

This concludes our analysis.

2) Schnorr-based Construction: Here we prove The-
orem 5.

Proof. We define the following sequence of hybrids,
where we gradually modify the initial experiment.
H0 : Is identical to the protocol as described in Ap-
pendix C.
H1 : Instead of sending messages through the Πanon

channel, the parties communicate in interaction with the
ideal functionality Fanon.

Anon(m, Ui)
Upon invocation Uj on input (m, Ui):
send (m, Ui) to Ui
H2 : All the calls to the commitment scheme are
replaced with interactions with the ideal functionality
Fcom, defined in the following.

Commit(sid,m)
Upon invocation by Ui (for i ∈ {0, 1}):
record (sid, i,m) and send (com, sid) to U1−i

if some (sid, ·, ·) is already stored ignore the message

21

Decommit(sid)
Upon invocation by Ui (for i ∈ {0, 1}):
if (sid, i,m) is recorded then send (decom, sid,m) to U1−i

Instead of calling the Commit algorithm on some mes-
sage m, the parties sent a message of the form Com-
mit(sid, m) to the ideal functionality, and the decommit-
ment algorithm is replaced with a call to Decommit(sid).
The verifying party simply records messages from Fcom.
H3 : All the calls to the NIZK scheme are replaced with
interactions with the ideal functionality FNIZK:

Prove(sid, x, w)
Upon invocation by Ui (for i ∈ {0, 1}):
if R(x,w) = 1 then send (proof, sid, x) to U1−i

Instead of running the proving algorithm in input (x,w),
the proving party queries the functionality on Prove(sid,
x, w). The verifier records the messages from FNIZK.
H4,H5,H6,S : The subsequent hybrids are defined as
H2,H3,H4,S, respectively, in Theorem 2.
As argued before, the simulator is efficient and the
interaction is consistent with the inputs of the ideal
functionality. In the following we prove the indistin-
guishability of the neighboring experiments.

Lemma 6. For all PPT distinguishers E it holds that

EXECH0,A,E ≈ EXECH1,A,E .

Proof. Follows directly from the security of Πanon.

Lemma 7. For all PPT distinguishers E it holds that

EXECH1,A,E ≈ EXECH2,A,E .

Proof. Follows directly from the security of the commit-
ments scheme COM.

Lemma 8. For all PPT distinguishers E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. Follows directly from the security of the non-
interactive zero-knowledge scheme NIZK.

Lemma 9. For all PPT distinguishers E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. In order to show this claim, we introduce an
intermediate experiment.
H∗3 : The key generation and locking algorithms are
substituted with the interaction with the functionality
Fschnorr, which provides any two users with the interfaces
specified below. Note that the signing interface is called
by both parties on input m and y =

∑i
j=0 yj , where i

is the position of the lock in the chains and the yj are
defined as in the original protocol.

KeyGen(G, G, q)
Upon invocation by both U0 and U1 on input (G, G, q):
sample x←$Zq and compute Q = x ·G
set skU0,U1 = x

sample x0 and x1 randomly

sample a hash function H : {0, 1}∗ → {0, 1}|q|

send (x0, Q) to U0 and (x1, Q) to U1

ignore future calls by (U0, U1)

Sign(m, y)
Upon invocation by both U0 and U1 on input (m, y):
compute (R, s) = Sigschnorr(skU0,U1 ,m)

return (R, s− y)
We defer the indistinguishability proof to lemma 10.
Let cheat by the event that triggers an abort of
the experiment in H4, that is, the adversary re-
turns some k such that Vf(`i+1, k) = 1 and that
Vf(`i,Rel(k, (s

I , sL, sR))) 6= 1. Assume towards con-
tradiction that Pr [cheat | H∗3] ≥ 1

poly(λ) , then we can
construct the following reduction against the strong-
existential unforgeability of Schnorr signatures: The re-
duction receives as input a public key pk and samples
an index j ∈ [1, q], where q ∈ poly(λ) is a bound on the
total amount of interactions. Let Q be the key generated
in the j-th interaction, the reduction sets Q = pk. All
the calls to the signing algorithm are redirected to the
signing oracle. If the event cheat happens, the reduction
returns corresponding (k∗, `∗) = (σ∗, (m∗, pk∗)), other-
wise it aborts.

The reduction is clearly efficient. Assume for the
moment that j is the index of the interaction where cheat
happens, and let i+1 be the index that identifies the lock
`∗ in the corresponding chain. Note that in case the guess
of the reduction is correct we have that pk∗ = pk. Since
cheat happens we have that Vfschnorr(pk∗,m∗, σ∗) = 1
and the release fails, i.e., Vf(`i,Rel(k, (sIi , s

L
i , s

R
i)) 6= 1

(where `i is the lock in the previous position as `∗

in the same chain). Recall that the release algorithm
parses sLi as (Wi,0, wi,1) and σ∗ as (R∗, s∗) and returns
(Wi,0, wi,1 + s∗ − (sRi + yi)). Substituting with the
corresponding values(
Wi,0, wi,1 + s∗ − (sRi + yi)

)
=

Ri,
si − i−1∑

j=0

yj

+ s∗ −

sj − i∑
j=0

yj

− yi


= (Ri, si + s∗ − sj) ,

22

where sj is the answer of the oracle on the j-th session
on input mj . This implies that s∗ 6= sj , otherwise
(Ri, si) would be a valid signature since it is an output of
the signing oracle. Since each message uniquely identi-
fies a session (the same message is never queried twice to
the interface Sign(m,y)) this implies that (σ∗, (m∗, pk∗))
is a valid forgery. By assumption this happens with
probability at least 1

q·poly(λ) , which is a contradiction
and proves that Pr [cheat | H∗3] ≤ negl(λ). Since the
experiments H3 and H4 differ only when cheat happens
(and H4 aborts), we are only left with showing the
indistinguishability of H3 and H∗3.

Lemma 10. For all PPT distinguishers E it holds that

EXECH3,A,E ≈ EXECH∗3 ,A,E .

Proof. The proof consists of the description of the sim-
ulator for the interactive lock algorithm. The simulator
for the key generation phase is trivial and therefore it
is omitted. We describe two simulators depending on
whether the honest adversary is playing the role of
the ”left” or ”right” party. For each proof, both the
simulators implicitly check that the given witness is valid
and abort if this is not the case.

1) Left corrupted: Prior to the interaction the simulator
is sent (Y, y, (prove, {∃y∗ s.t y∗ · G = Y }, y∗)),
which is the state corresponding to the execution
of the lock. After agreeing on a message m, the
simulator sends (com, sid) to A, for a random
sid. The simulator also queries the interface Sign
on input m, y∗ and receives a signature σ =
(R, s). At some point of the execution A sends
(R0, (prove, {∃r0 s.t r0 ·G = R0}, r0)). The simu-
lator replies with decom, sid,

R∗ = R− (R0 + Y),(
proof, sid,
{∃r∗ s.t r∗ ·G = R∗}

)
,

R∗, (s− r0 − e · x0)


where e = H(pk‖R∗‖m) and x0 is the value
returned by the key generation to A. The rest of
the execution is unchanged.

2) Right corrupted: Prior to the interaction the simula-
tor is sent (Y, y, (prove, {∃y∗ s.t y∗ ·G = Y }, y∗)),
which is the state corresponding to the execution
of the lock. After agreeing on a message m, the
simulator is given(
com, sid,

(
R1,

prove, sid,
{∃r1 s.t r1 ·G = R1}, r1

))
by A. The simulator then queries the interface
Sign on input m, y∗ and receives a signature σ =

(R, s). The simulator sends (R∗ = R − (R1 +
Y), (proof, sid, {∃r∗ s.t r∗ · G = R∗})) to A and
receives ((decom, sid), s∗) in response. The sim-
ulator checks whether s∗ = r1 + e · x1, where
e = H(pk‖R∗‖m), and returns s if this is the case.

Both simulators are obviously efficient and the distribu-
tions induced by the simulated views are identical to the
ones of the original protocol.

This concludes the proof of lemma 9.

Lemma 11. For all PPT distinguishers E it holds that

EXECH4,A,E ≈ EXECH5,A,E .

Proof. Let q ∈ poly(λ) be a bound on the number of
interactions. Let cheat denote the events that triggers an
abort in H5 but not in H4. In the following we are going
to show that Pr [cheat | H4] ≤ negl(λ), thus proving
the indistinguishability of H4 and H5. Assume that the
converse is true, then we can construct the following
reduction against the discrete logarithm problem (which
is implied by the sEUF of Schnorr): On input some
Y ∗ ∈ G, the reduction guesses a session j ∈ [1, q] and
some index i ∈ [1, n]. The setup algorithm of the j-th
session is modified as follows: Yi is set to be Y ∗. Then,
for all ι ∈ [i − 1, 0], the setup samples some yι ∈ Zq
and returns (Yι = Yι+1 − yι · G, Yι+1, yι). The setup
samples a random yi ∈ Zq and sets Yi+1 = yi ·G. Then,
for ι ∈ [i+ 1, n− 1], the setup samples yι ∈ Zq returns
(Yι, Yι+yι ·G, yι). The nodes (U1, . . . , Un−1) are given
the corresponding output (except for Ui) and Un is given
(Yn−1,

∑n−1
j=i yj). If the node Ui is requested to release

the lock, the reduction aborts. At some point of the
execution the adversary A outputs some k∗ = (R∗, s∗).
The reduction parses sR as the updated state of Ui and
returns s∗ + yi−1 − sR.

The reduction is clearly efficient and, whenever j and
i are guessed correctly, the reduction does not abort.
Since the group G is abelian and the Ui is honest, the
distribution induced by the modified setup algorithm is
identical to the original to the eyes of the adversary.
Recall that cheat happens only in the case where k∗

is a valid opening for `i and the release algorithm
is successful on input k∗ (if the last condition is not
satisfied both H4 and H5 abort). Substituting, we have
that sR is of the form r0+r1+e ·(x0+x1)−y = s′−y,
for some y ∈ Zq . Since the release is successful, then it
must be the case that (R′ = (r0 + r1) ·G+ Yi−1, s

′) is
a valid Schnorr signature on the message mi−1 (agreed
by the two parties in the locking algorithm for `i−1),
which implies that y · G = Yi−1. As argued in the

23

proof of lemma 9, if s∗ 6= s′, then we have an attacker
against the strong unforgeability of the signature scheme.
It follows that s∗ = s′ with all but negligible probability.
Substituting we have

(s∗ + yi−1 − sR) ·G = (s∗ + yi−1 − s′ + y) ·G
= (yi−1 + y) ·G
= yi−1 ·G+ y ·G
= yi−1 ·G+ Yi−1

= yi−1 ·G+ (Y ∗ − yi−1 ·G)

= Y ∗

as expected. Since, by assumption, this happens with
probability at least 1

q·n·poly(λ) we have a successful
attacker against the discrete logarithm problem. This
proves our statement.

Lemma 12. For all PPT distinguishers E it holds that

EXECH5,A,E ≡ EXECH6,A,E .

Proof. Recall that adversarial sets are always interleaved
by a honest node. Therefore in H5 for each adversarial
set starting at index i there exists a y such that Yi =
Yi−1 + y ·G and A is not given y. Since y is randomly
sampled from Zq we have that Y +i− 1+y ·G ≡ Y ′, for
some Y ′ sampled uniformly from G, which corresponds
to the view of A in H6.

Lemma 13. For all PPT distinguishers E it holds that

EXECH6,A,E ≡ EXECF,S,E .

Proof. The change is only syntactical and the indistin-
guishability follows.

This concludes our analysis.

3) ECDSA-based Construction: In the following we
prove Theorem 3.

Proof. The sequence of hybrids that we define is iden-
tical to the one described in the proof of Theorem 5.
In the following we prove the indistinguishability of
neighboring experiments only for the cases where the
argument needs to be modified. If the argument is
identical, the proof is omitted.

Lemma 14. For all PPT distinguishers E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. In order to show this claim, we introduce an
intermediate experiment.

H∗3 : The key generation and locking algorithms are
substituted with the interaction with the functionality
FECDSA, which provides any pair of users with the in-
terfaces specified below. Note that the locking algorithm
is called by both parties on input m and y =

∑i
j=0 yj ,

where i is the position of the lock in the chains and the
yj are defined as in the original protocol.

KeyGen(G, G, q)
Upon invocation by both U0 and U1 on input (G, G, q):
sample x←$Zq and compute Q = x ·G
sample x0 and x1 randomly

sample a hash function H : {0, 1}∗ → {0, 1}|q|

sample a key pair (skU0,U1 , pkU0,U1
)← KGenHE(1

λ)

compute c← EncHE(pk, r̃) for a random r̃

send (x0, Q,H, sk) to U0 and (x1, Q,H, c) to U1

ignore future calls by (U0, U1)

Sign(m, y)
Upon invocation by both U0 and U1 on input (m, y):
compute (r, s) = SigECDSA(skU0,U1 ,m)

return (r,min(s · y,−s · y))
The indistinguishability proof of H3 and H∗3 is for-
mally shown in lemma 15. Let cheat by the event that
triggers an abort of the experiment in H4, that is, the
adversary returns some k such that Vf(`i+1, k) = 1
and Vf(`i,Rel(k, (s

I , sL, sR))) 6= 1. Assume towards
contradiction that Pr [cheat | H∗3] ≥ 1

poly(λ) , then we
can construct the following reduction against the strong-
existential unforgeability of ECDSA signatures: The
reduction receives as input a public key pk and samples
an index j ∈ [1, q], where q ∈ poly(λ) is a bound on the
total amount of interactions. Let Q be the key generated
in the j-th interaction, the reduction sets Q = pk. All
the calls to the signing algorithm are redirected to the
signing oracle. If the event cheat happens, the reduction
returns corresponding (k∗, `∗) = (σ∗, (m∗, pk∗)), other-
wise it aborts.

The reduction runs in polynomial time. Assume for
the moment that j is the index of the interaction where
cheat happens, and let i+ 1 be the index that identifies
the lock `∗ in the corresponding chain. Note that in
case the guess of the reduction is correct we have
that pk∗ = pk. Since cheat happens we have that
VfECDSA(pk∗,m∗, σ∗) = 1 and the release fails, i.e.,
Vf(`i,Rel(k

∗, k∗, (sIi , s
L
i , s

R
i))) 6= 1 (where `i is the

lock in the previous position as `∗ in the same chain). Re-
call that the release algorithm parses sLi as (wi,0, wi,1),
σ∗ as (r∗, s∗), and sRi as (s′,m, pk) and computes
t = w1 · (s

′

s∗ − y)−1 and t′ = w1 · (− s′

s∗ − y)−1. Then
it returns either (wi,0,min(t,−t)) or (wi,0,min(t′,−t′))

24

depending on which verifies as a valid signature on m
under pk. Substituting with the corresponding values (for
the case t is the lower term)

(wi,0, t) =

(
ri, wi,1 ·

(
s′

s∗
− y
)−1)

=

ri, si · i−1∑
j=0

yj ·

(
sj ·

∑i
j=0 yj

s∗
− yi

)−1
where sj is the answer of the oracle on the j-th session
on input the corresponding message mj . If we set s∗ =
sj then we have

(wi,0, t) =

ri, si · i−1∑
j=0

yj ·

 i∑
j=0

yj − yi

−1


= (ri, si)

which is a valid signature on mi (since it is the output of
the signing oracle) and the release would be successful.
So this cannot happen and we can assume that s∗ 6=
sj . A similar argument (substituting t with t′) can be
used to show that it must be the case that s∗ 6= −sj .
Since each message uniquely identifies a session (the
same message is never queried twice to the interface
Sign(m,y)) this implies that (σ∗, (m∗, pk∗)) is a valid
forgery. By assumption this happens with probability at
least 1

q·poly(λ) , which is a contradiction and proves that
Pr [cheat | H∗3] ≤ negl(λ). Since the experiments H3

and H4 differ only when cheat happens (and H4 aborts),
we are only left with showing the indistinguishability of
H3 and H∗3.

Lemma 15. For all PPT distinguishers E it holds that

EXECH3,A,E ≈ EXECH∗3 ,A,E .

Proof. The proof consists of the description of the sim-
ulator for the interactive lock algorithm. The simulator
for the key generation phase is identical as the one
described in the work of Lindell [37]. In the following
we describe the two simulators for the locking protocol
depending on whether the honest adversary is playing
the role of the ”left” or ”right” party. For each zero-
knowledge proof, both the simulators implicitly check
that the given witness is valid and abort if this is not the
case.

1) Left corrupted: Prior to the interaction the simulator
is sent (Y, y, (prove, {∃y∗ s.t y∗ · G = Y }, y∗)),
which is the state corresponding to the execution of
the lock. After agreeing on a message m, the sim-
ulator sends (com, sid) to A, for a random sid. The

simulator also queries the interface Sign on input
m, y∗ and receives a signature σ = (r, s). The sim-
ulator sets R = H(m)

s ·G+ r
s ·pk. At some point of

the execution A sends (R0, R
′
0, (prove, {∃r0 s.t r0 ·

G = R0 and r0 · Y = R′0}, r0)). Then the sim-
ulator samples a ρ ← Zq2 and computes c′ ←
EncHE(pk, s ·r0 +ρq). Then it provides the attacker
with

decom,
sid,

R∗ = (r0)−1 ·R,R1 = y−1 ·R∗,
proof, sid,{
∃r∗ s.t r∗ ·G = R1

and r∗ · Y = R∗

} ,

R1, R
∗, c′


and the rest of the execution is unchanged.

The executions are identical except for the way c′ is
computed. In order to show the statistical proximity we
invoke a the following helping lemma.

Lemma 16. [37] For all (r, s, p) ∈ Zq and for a random
ρ ∈ Zq2 , the distributions EncHE(pk, r · s mod q + pq +
ρq) and EncHE(pk, r · s mod q + ρq) are statistically
close.

In the real world c′ is computed as EncHE(pk, r ·
s mod q + pq + ρq), for some p which is bounded by
q since the only operation performed without modular
reduction are one multiplication and one addition, which
cannot increase the result by more than q2. Since the
distribution EncHE(pk, r · s mod q + ρq) is identical to
the simulation, the indistinguishability follows.

2) Right corrupted: Prior to the interaction the simula-
tor is sent (Y, y, (prove, {∃y∗ s.t y∗ ·G = Y }, y∗)),
which is the state corresponding to the execution
of the lock. After agreeing on a message m, the
simulator is given

com, sid, R1, R
′
1,

prove, sid,{
∃r1 s.t r1 ·G = R1 and
r1 · Y = R′1

}
,

r1


by A. The simulator then queries the interface
Sign on input m, y∗ and receives a signature
σ = (r, s). Then it sets R = H(m)

s · G +
r
s · pk and R∗ = R − (R1 + Y) and sends
(R0 = y−1 · R∗, R∗, (proof, sid, {∃r∗ s.t r∗ · G =
R0 and r∗ · Y = R∗})) to A. The attacker sends
((decom, sid), c′) in response. The simulator checks

DecHE(sk, c′) = r̃ · r · (r1)−1 +H(m) · r−11 mod q,

25

where r̃ was sampled in the key generation algo-
rithm. If the check holds true, the simulator sends
s to A.

The distributions induced by the simulator is identical to
the real experiment except for the way c is computed. To-
wards showing indistinguishability, consider the follow-
ing modified simulator, that is given the oracleO(c′, a, b)
as defined in the following security experiment of the
Paillier encryption scheme.
Exp− ecCPAAHE(λ) :

(sk, pk)← KGenHE(1
λ)

(w0, w1)←$Zq
Q = w0 ·G
b←$ {0, 1}
c← EncHE(pk, wb)

b′ ← A(pk, c, Q)O(·,·,·)

where O(c′, a, b) returns 1 iff DecHE(sk, c′) = a+ b · wb
return 1 iff b = b′

Instead of performing the last check, the simulator
queries the oracle on input (c′, a = H(m) · r−11 , b =
r · (r1)−1). It is clear that the modified simulator
accepts if and only if the simulator described above
accepts. Assume towards contradiction that the modified
simulator can be efficiently distinguished from the real
world experiment. Then we can reduce to the security
of Paillier as follows: On input (pk, c,Q), the reduction
simulates the inputs of A as described in the modified
simulator using the input pk, Q, and c as the corre-
sponding variables. It is easy to see that the reduction
is efficient. Note that if b = 0 then we have that
c = EncHE(pk, w0) and Q = w0 · G, which is identical
to the real world execution. On the other hand if b = 1
then it holds that c = EncHE(pk, w1) and Q = w0 · G,
where w1 is uniformly distributed in Z − q, which is
identical to the (modified) simulated experiment. This
implies that the modified simulation is computationally
indistinguishable from the real world experiment. Since
the modified simulation and the simulation (as described
above) are identical to the eyes of the adversary, the
validity of the lemma follows.

This concludes the proof of lemma 14.

Lemma 17. For all PPT distinguishers E it holds that

EXECH4,A,E ≈ EXECH5,A,E .

Proof. Let q ∈ poly(λ) be a bound on the number of
interactions. Let cheat denote the event that triggers an
abort in H5 but not in H4. In the following we are going
to show that Pr [cheat | H4] ≤ negl(λ), thus proving

the indistinguishability of H4 and H5. Assume that the
converse is true, then we can construct the following
reduction against the discrete logarithm problem (which
is implied by the sEUF of ECDSA): On input some
Y ∗ ∈ G, the reduction guesses a session j ∈ [1, q] and
some index i ∈ [1, n]. The setup algorithm of the j-th
session is modified as follows: Yi is set to be Y ∗. Then,
for all ι ∈ [i − 1, 0], the setup samples some yι ∈ Zq
and returns (Yι = Yι+1 − (yι) · G, Yι+1, yι). The setup
samples a random yi ∈ Zq and sets Yi+1 = yi ·G. Then,
for ι ∈ [i + 1, n − 1], the setup samples yι ∈ Zq and
returns (Yι, Yι+yι·G, yι). The nodes (U1, . . . , Un−1) are
given the corresponding output (except for Ui) and Un is
given (Yn−1,

∑n−1
j=i yj). If the node Ui is requested to re-

lease the lock, the reduction aborts. At some point of the
execution the adversary A outputs some k∗ = (r∗, s∗).
The reduction parses sR = (s′,m, pk) as the updated
state of Ui then checks the following:

1)
(
s
s∗ + yi−1

)
·G = Y ∗

2) −
(
s′

s∗ + yi−1

)
·G = Y ∗

and returns the LHS term of the equation that satisfies
the relation.

The reduction is clearly efficient and, whenever j
and i are guessed correctly, the reduction does not
abort. Since the G is abelian and the Ui is honest, the
distribution induced by the modified setup algorithm is
identical to the original to the eyes of the adversary.
Recall that cheat happens only in the case where k∗

is a valid opening for `i and the release algorithm
is successful on input k∗ (if the last condition is not
satisfied both H4 and H5 abort). Substituting, we have
that s′ is of the form x0·x1·rx+H(m)

r0·r1 = s̃ · y, where
R′ = r0 · r1 · Yi−1 = (rx, ry), for some y ∈ Zq . Since
the release is successful, then it must be the case that
(rx, s̃) is a valid ECDSA signature on the message mi−1
(agreed by the two parties in the locking algorithm for
`i−1). This implies that y ·G = Yi−1. As argued in the
proof of lemma 14, if s∗ 6= s̃ and s∗ 6= s̃, then we
have an attacker against the strong unforgeability of the
signature scheme. It follows that s∗ = s̃ or s∗ = −s̃

26

with all but negligible probability. Substituting we have(
s′

s∗
+ yi−1

)
·G =

(
s̃ · y
s∗

+ yi−1

)
·G

=
s̃ · y
s∗
·G+ yi−1 ·G

= y ·G+ yi−1 ·G
= Yi−1 + yi−1 ·G
= (Y ∗ − yi−1 ·G) + yi−1 ·G
= Y ∗

which implies that condition (1) holds if s∗ = s̃. For the
other case

−
(
s′

s∗
+ yi−1

)
·G = −

(
s̃ · y
s∗

+ yi−1

)
·G

= − s̃ · y
s∗
·G+ yi−1 ·G

= y ·G+ yi−1 ·G
= Yi−1 + yi−1 ·G
= (Y ∗ − yi−1 ·G) + yi−1 ·G
= Y ∗

which means that condition (2) is satisfied if s∗ = −s̃.
Since, by assumption, this happens with probability at
least 1

q·n·poly(λ) we have a successful attacker against the
discrete logarithm problem. This proves our statement.

This concludes our proof.

F. PCNs from Multi-Hop Locks

In this section we show that PrivMuLs are sufficient
to construct a full-fledged PCN that satisfy the standard
security definition from Malavolta et al. [40].

1) Ideal Functionalities: We assume an ideal realiza-
tion of PrivMuLs in the form of an ideal functionality
FL as described in Fig. 4. That is, all parties have oracle
access to FL through the specified interfaces.

Furthermore, we assume the existence of a blockchain
B that we model as a trusted append-only bulletin board:
The corresponding ideal functionality FB maintains B
locally and updates it according to the transactions
between users. At any point in the execution, anyone
can send a distinguished message read to FB, who
sends the whole transcript of B to U . We denote the
number of entries of B by |B|. We assume that users can
specify arbitrary contracts, i.e., transactions in B may
be associated with arbitrary conditions which require to
be me in order to make the transaction effective. FB is
entrusted to enforce that a contract is fulfilled before the
corresponding transaction is executed.

We model time as the number of entries of the
blockchain B, i.e., time t is whenever |B| = t. Note
that we can artificially elapse time by adding dummy
entries to B and that the current time is available to all
parties by simply reading B and counting the number of
entries.

2) System Assumptions: We assume that every user
in the PCN is aware of the complete network topology,
that is, the set of all users and the existence of a payment
channel between every pair of users. We further assume
that the sender of a payment chooses a payment path to
the receiver according to her own criteria.

The current value on each payment channel is not
published but instead kept locally by the users sharing a
payment channel. The two users U0 and U1 are assumed
to maintain locally the capacity of their channel, denoted
by cap(U0, U1). We further assume that every user is
aware of the payment fees charged by each other user in
the PCN. For ease of exposition we define the predicate
fee(Ui) to return the fee charged by the user Ui. We
assume that pairs of users sharing a payment channel
communicate through secure and authenticated channels
(such as TLS), which is easy to implement given that
every user is uniquely identified by a public key.

3) Our System: In the following we describe the three
operations (open channel, close channel, and payment)
that constitute the core of our system. For the sake of
simplicity we restrict each pair of user to at most one
channel, however our construction can be easily extended
to support multiple channels per pair.

OPEN CHANNEL. The open channel protocol generates
a new payment channel between users U1 and U2. The
user U1 invokes FL on input (U2, L), depending on the
direction of the channel, which returns the users identi-
fiers (U1, U2) if the operation was successful. Then the
users create an initial blockchain deposit that includes
the following information: Their addresses, the initial
capacity of the channel, the channel timeout, and the fee
charged to use the channel agreed beforehand between
both users. After the deposit has been successfully added
to the blockchain, the operation returns 1. If any of the
previous steps is not carried out as defined, the operation
returns 0.

CLOSE CHANNEL. The close channel protocol is run by
two users U1 and U2 sharing an open payment channel to
close it at the state defined by v and accordingly update
their bitcoin balances in the Bitcoin blockchain. From
this point on, U1 and U2 ignore all the requests from FL
relative to their link.

27

contract(Alice, Bob, lid, x, t)

1) If GetStatus(lid) = Rel before t days,
then Alice pays Bob x coins.

2) If t elapse, then Alice gets back x coins.

PAYMENT. A payment operation transfers a value v from
a sender (U0) to a receiver (Un+1) through a path of
open payment channels between them (U0, . . . , Un+1).
The sender (prot. 1) first computes the cost of sending
v coins to the receiver as v1 := v +

∑n
i=1 fee(Ui), and

the corresponding cost at each of the intermediate hops
in the payment path. Then it setups up a PrivMuL by
calling the ideal functionality FL on the set of identifiers
of the intermediate users. Finally, it sends each user
the corresponding value to be transferred and a timeout
information ti.

Each intermediate user (prot. 3) checks whether the
capacity of the channel is high enough to support the
transfer of the coins and whether the timeouts give by the
sender are consistent, i.e., ti+1 = ti −∆ for some fixed
∆. Starting from (U0, U1), each pair of users query the
ideal functionality FL on the Lock interface using the lid
received in the previous phase. If the ideal functionality
signals to proceed, then the two users establish a contract
specified in the following.

The contract is authenticated by both users and can be
uploaded to B by either of them at any time. If every user
in the path locks the corresponding lid, eventually the
receiver (prot. 2) is reached. Un+1 checks whether the
transacted value is what it expects, and whether the latest
timeout tn+1 is well-formed. If both conditions hold,
the receiver releases the lock lidn by querying the ideal
functionality. This triggers a cascade of release calls in
the path from the sender to the receiver, thereby enabling
the left user in the link to pull the payment (using the
previously established contract). If for some reason one
of the intermediate links is not released, then all of the
previous contracts are voided after the corresponding
timeout.

4) Analysis: In the following we argue that the system
as described above ideally realizes the functionality
FPCN as defined in [40], assuming oracle access to FL
and FB.

Theorem 6. The system described above UC-realizes
FPCN in the (FL,FB)-hybrid model.

Proof. The proof consists of the observation that the
ideal functionality FL enforces balance security and
satisfies relationship anonymity (as defined in [40]). A

Algorithm 1: Payment routine for the sender
Input : (U0, . . . , Un+1, v)

1 v1 := v +
∑n
i=1 fee(Ui)

2 if v1 ≤ cap(U0, U1) then
3 query FL on Setup(U0, . . . , Un+1)
4 FL returns (⊥, lid0,⊥, U1, Init)
5 cap(U0, U1) := cap(U0, U1)− v1
6 t0 := tnow + ∆ · n
7 forall i ∈ {1, . . . , n}
8 vi := v1 −

∑i−1
j=1 fee(Uj)

9 ti := ti−1 −∆
10 send ((Ui−1, Ui+1, vi+1, ti, ti+1), fwd) to Ui
11 end for
12 send (Un, vn+1, tn+1) to Un+1

13 query FL on Lock(lid0)
14 if FL returns (lid0, Lock)
15 contract(U0, U1, lid0, v1, t1)
16 else
17 abort
18 end if else
19 abort
20 end if

Algorithm 2: Payment routine for the receiver
Input : (Un, vn+1, tn+1, v)

1 FL returns (lidn,⊥, Un,⊥, Init)
2 if (tn+1 > tnow + ∆) ∧ (vn+1 =

v) ∧ (GetStatus(lidn) = Lock) then
3 query FL on Release(lidn)
4 send ok to Un
5 else
6 send ⊥ to Un
7 end if

subtlety is that now all users have access to a GetStatus
interface and they might be able to query FL on a
certain lid and learn its status even when they are not
involved in the generation of such a lock. However one
can easily show that this happen only with negligible
probability since it require guessing lid, which is a string
sampled uniformly at random. It is also easy to see that
FL does not allow one to perform wormhole attacks,
by construction. What is left to be shown is that the
rest of the information exchanged by the machines does
not break any of these properties. Note that the only
information that is sent outside FL consists of user
identifiers, timeouts, and values to lock. The first are
already known by the intermediate users, whereas the

28

Algorithm 3: Payment routine for the i-th inter-
mediate user

Input : (m, decision)
1 if decision = fwd then
2 parse m as (Ui−1, Ui+1, vi+1, ti, ti+1)
3 FL returns (lidi−1, lidi, Ui−1, Ui+1, Init)
4 if (vi+1 ≤ cap(Ui, Ui+1)) ∧ (ti+1 =

ti −∆) ∧ (GetStatus(lidi−1) = Lock) then
5 cap(Ui, Ui+1) := cap(Ui, Ui+1)− vi+1

6 query FL on Lock(lidi)
7 if FL returns (lidi, Lock)
8 contract(Ui, Ui+1, lidi, vi+1, ti+1)
9 else

10 send ⊥ to Ui−1
11 end if
12 else
13 send ⊥ to Ui−1
14 else if decision = ⊥ then
15 cap(Ui, Ui+1) := cap(Ui, Ui+1) + vi+1

16 send ⊥ to Ui−1
17 else if (decision = ok) ∧GetStatus(lidi) = Rel

then
18 query FL on Release(lidi−1)
19 send ok to Ui−1
20 else
21 send ⊥ to Ui−1
22 end if

rest of the items are chosen exactly as described in
FPCN . This concludes our argument.

29

	Introduction
	State-of-the-art in PCNs
	Our contributions

	Context: Payment Channel Networks
	Payment Channels
	A Payment Channel Network (PCN)
	Multi-Hop Payments Atomicity

	Wormhole Attack in Existing PCNs
	Definition
	Security and Privacy Definition
	Discussion

	Constructions
	Cryptographic Building Blocks
	Generic Construction
	Scriptless Schnorr-based Construction
	Scriptless ECDSA-based Construction
	Hybrid PrivMuLs

	Performance Analysis
	Implementation Details
	Evaluation

	Applications
	Payment-Channel Networks
	Atomic Swaps
	Interoperable PCNs

	Related Work
	Conclusion
	References
	Appendix
	Wormhole Attack
	Inevitability of wormhole attacks in one-round payment protocols

	PrivMuLs Correctness
	Schnorr-based Scriptless Construction
	Comparison of Privacy Notions and Guarantees
	Security Analysis
	Generic Construction
	Schnorr-based Construction
	ECDSA-based Construction

	PCNs from Multi-Hop Locks
	Ideal Functionalities
	System Assumptions
	Our System
	Analysis

