
Minimising Communication in Honest-Majority
MPC by Batchwise Multiplication Verification

Peter Sebastian Nordholt1 and Meilof Veeningen2

1 Alexandra Institute
peter.s.nordholt@alexandra.dk

2 Philips Research (formerly)
meilof@gmail.com

Abstract. In this paper, we present two new and very communication-
efficient protocols for maliciously secure multi-party computation over
fields in the honest-majority setting with abort. Our first protocol im-
proves a recent protocol by Lindell and Nof. Using the so far overlooked
tool of batchwise multiplication verification, we speed up their tech-
nique for checking correctness of multiplications (with some other im-
provements), reducing communication by 2× to 7×. In particular, in the
3PC setting, each party sends only two field elements per multiplication.
We also show how to achieve fairness, which Lindell and Nof left as an
open problem. Our second protocol again applies batchwise multiplica-
tion verification, this time to perform 3PC by letting two parties perform
the SPDZ protocol using triples generated by a third party and verified
batchwise. In this protocol, each party sends only 4

3
field elements during

the online phase and 5
3

field elements during the preprocessing phase.

Full version (with appendix) of paper published at ACNS 2018.

1 Introduction

Multi-party computation (MPC) allows a number of parties to compute a func-
tion on their respective sensitive inputs without leaking anything but the com-
putation result. Recently, there has been a lot of interest in concretely efficient
actively secure MPC in the honest-majority setting with abort, in which fewer
than n/2 out of n parties may be corrupted. In this setting, very efficient solu-
tions are known and it is also possible to achieve fairness, i.e., either all parties
learn the result or none do, which is not possible without a honest majority.

A number of recent works have achieved particularly striking performance
numbers. Binary circuits can be evaluated at a cost of sending 10 bits per AND
gate for three parties due to [FLNW17], and arithmetic circuits can be evaluated
at a cost of sending 4 (for n = 3), 5(n−1), or 42 field elements per multiplication
due to [LN17]. However, this still leaves at least a factor four communication
increase compared to passive security. Moreover, these best known protocols
unfortunately do not satisfy fairness (unlike other honest-majority protocols).

In this work, we improve on the state-of-the-art of concretely efficient honest-
majority MPC by further decreasing communication complexity, while also sup-
porting fairness. Concerning communication complexity, we decrease communi-
cation in the three main variants of the protocol of Lindel and Nof by factors of
approximately 2, 5, and 7, respectively. In all cases, the gap between passive and
active security becomes only a factor 2. Moreover, in the three-party setting,
the best protocol now requires sending just two messages per party per multi-
plication. Some of this improvement comes from better use of PRNGs; a more
significant improvement comes from applying the tool of batchwise multiplication
verification [BFO12], a technique that allows to check that many multiplications
have been performed correctly by essentially checking a single multiplication.

We additional provide a novel three-party protocol, based on the SPDZ pro-
tocol [DPSZ12], that reduces online communication from 2 in our protocol de-
scribed above to 4

3 messages per party per multiplication. This comes at the
expense of requiring a preprocessing phase with 5

3 messages per party per multi-
plication. Our SPDZ-based protocol also makes heavy use of PRNGs and batch-
wise multiplication verification, but additionally incorporates the idea of taking
a two-party protocol in the preprocessing model, and replacing the distributed
preprocessing protocol by in-the-plain preprocessing by a third party. This idea
was known before but, as far as we know, has never been applied; we extend
this idea by allowing the preprocessing to be spread evenly between the three
parties. By way of comparison, in the two-party dishonest majority setting, a
recent SPDZ variant by Keller et. al [KPR17] requires the equivalent of around
130 field elements to be sent per party, highlighting the communication gap
between the honest- and dishonest-majority settings.

In both our Lindell-Nof and our SPDZ based protocol, the decrease in com-
munication implies an increase in computation, but we show that in many prac-
tical settings, communication is still the bottleneck.

Finally, we show how to add fairness both of our constructions. We employ
general principles to achieve fairness such as using signature-based broadcast
for agreement and MACs or signatures to prevent output manipulation. Our
solutions are especially crafted to ensure that they add as little practical overhead
as possible; in particular, they do not affect the above communication complexity
results. This means that communication-efficient, actively secure MPC is possible
in practice without having to sacrifice fairness.

1.1 Outline

We discuss preliminaries in Sections 2, before presenting our Lindell-Nof-based
and SPDZ-based constructions in Sections 3 and 4, respectively. We give a brief
performance analysis in Section 5.

1.2 Related Work

Several recent works are closely related to this paper. Concerning efficient honest-
majority MPC, the most relevant work is the framework for communication-

2

efficient MPC from [LN17] that forms the basis of our first protocol. It is also
the closest competitor in terms of overall communication complexity that we are
aware of. Another recent honest-majority MPC framework is due to [DOS17].
Although their construction is quite a bit less communication-efficient than ours,
it does work for arbitrary rings as opposed to just fields. They also provide a
(less efficient) construction for fairness largely based on the same principles as
ours.

Concerning the technique of batchwise multiplication verification, the ground-
work was laid out in several earlier works. Ben-Sasson et al. [BFO12] first pro-
posed batchwise multiplication verification. As discussed below, there it was used
to get an asymptotic result; we are not aware of works using it to improve prac-
tical performance. Works such as the Pinocchio verifiable computation system
[PHGR13] and the Trinocchio protocol that combines it with MPC [SVdV16]
were a main inspiration to start seeing batchwise multiplication verification also
as a tool that may deliver practical efficiency. Corrigan-Gibbs and Boneh [CB17]
first proposed to use batchwise multiplication verification where one party pro-
vides data and a number of other parties verify it, as in our SPDZ-based protocol;
but there it is not for performing the MPC but for checking its inputs.

2 Preliminaries

In this section, we present our notation and the security model for honest-
majority MPC with abort, and the main technique we will use to minimise
its communication: batchwise multiplication verification.

2.1 Notation and Security Model

The protocols in this paper are for n parties P = {P1,P2, . . . ,Pn}, where an
adversary may statically corrupt a minority of up to t parties, i.e., 2t < n. We
generally work in the field Zp for some prime p > 2σ, where σ is a statistical
security parameter. We use [x] to denote a Shamir secret sharing of x; JxK to
denote an additive sharing; and 〈x〉 = (JxK , JαxK) to denote a SPDZ sharing
consisting of an additive sharing of the value and its MAC. [x]i, JxKi, 〈x〉i refer
to shares held by party Pi. We heavily use pseudorandom number generators
(PRNGs) to sample random data. For a pseudorandom number generator prng
we use the notation r ← prng to indicate sampling r uniformly at random (from
the relevant domain). [a, b] denotes the interval [a, a+ 1, . . . , b].

We define security in the traditional standalone security model from [Can00]
as adapted in [LN17]. Security in this model is captured by demanding indis-
tinguishability of the real-world protocol execution to an ideal-world execution
with a trusted third party. In the real-world model, the protocol is run between
honest parties in the presence of a non-uniform probabilistic polynomial time ad-
versary A that acts on behalf of the corrupted parties. We assume a synchronous
network with pairwise private channels and a rushing adversary (that receives
its messages in each round before it sends them). A party may abort, meaning

3

it sends a special abort message to all parties, who abort in the next round. An
execution of a protocol π in this model with inputs x1, . . . , xn, adversarial aux-
iliary input z and security parameter κ is denoted Realπ,A(z),C(x1, . . . , xn, κ).
This is a tuple containing the outputs of the honest parties and an arbitrary
output chosen by the adversary.

The ideal-world model defines how an idealised protocol execution looks like
in which the computation is performed by an incorruptible trusted party execut-
ing a certain functionality. The functionality defines the exact security guaran-
tees; we will define variants with and without fairness. In the ideal-world model,
the trusted party executes the functionality in the presence of the honest parties
and a non-uniform probabilistic polynomial time adversary S.

The functionalities for fair and non-fair MPC both start with each party Pi
sending its input xi to the trusted party. The adversary may choose an arbitrary
input for corrupted parties and may also provide ⊥ to indicate an abort. The
trusted party computes output y as specified by f , or sets y = ⊥ if the adversary
supplied ⊥. In the fair variant, the trusted party sends the outputs to all of the
parties. In the non-fair variant, the trusted party sends y to the adversary who
returns c ∈ {>,⊥}n. For each party Pi, if ci = > the trusted party sends y
to Pi, otherwise it sends ⊥. Ideal-world executions with these functionalities
are denoted Idealf,S(z),C(x1, . . . , xn, κ) or Idealfairf,...(. . .): a tuple containing the
outputs of the honest parties and an arbitrary output chosen by the adversary.

Security is defined as indistinguishability between real-world and ideal-world
executions. Precisely, we say that a protocol π securely computes f with statis-
tical security parameter σ for honest majority if, for every adversary A, there
exists a simulator S such that, for all xi, z, C with |C| ≤ t, the distinguishing
probability between Idealf,S(z),C(x1, . . . , xn, κ) and Realπ,A(z),C(x1, . . . , xn, κ) is
at most 2−σ + µ(κ) for some µ negligible in κ. Protocol π fairly computes f
with statistical security parameter σ for honest majority if the same holds with
respect to Idealfairf,...(. . .). Security can also be defined more generally for any
functionality F. As is well-known, we can design protocols containing calls to
an ideal functionality F (in the so-called F-hybrid model) and then replace the
ideal functionality by a secure protocol implementing it [Can00].

The above model describes standalone executions with synchronous commu-
nication, but we believe that neither limitation is inherent to our protocol. In
asynchronous models, unlike above, there is no global round clock. In general,
synchronous protocols can be made asynchronous by having each party con-
firm to all other parties that it has received all messages for round t, and only
proceeding to send messages for round t + 1 after receiving all confirmations
[KLR06], but this is of course costly. We expect that such confirmations are
only necessary at a few points in our protocol. In composable models, unlike
the standalone model above, protocols are proven secure also in the presence
of simultaneous other protocols and protocol instances. Here, we note that we
use only black-box non-rewinding simulators, so adding “start synchronisation”
should be enough to achieve composability [KLR06]. We leave details for future
work.

4

2.2 Batchwise Multiplication Verification

Batchwise multiplication verification was introduced in [BFO12] to improve the
asymptotic complexity of verifying preprocessed multiplication triples over small
fields. Standard multiplications checks, e.g. based on sacrificing, scale with the
security parameter (which is larger than the field size), but using batchwise
multiplication verification, these costs can be spread over a batch.

In particular, given secret-shared values [a1], . . ., [aN], [b1], . . ., [bN], [c1], . . .,
[cN], the goal is to verify that ci = ai · bi for all i. This is done by translating
these N equalities of field elements into a single equality of polynomials, and
verifying this equality based on the Schwartz-Zippel lemma [Zip79,Sch80]. Fix
nonzero ω1, . . . , ω2N−1, and let A(x), B(x) be of degree ≤ N − 1 such that
for i ∈ [1, N], A(ωi) = ai and B(ωi) = bi. If we let C(x) = A(x)B(x), then
obviously C(ωi) = ci for i ∈ [1, N], but the converse is also true: if there exists a
polynomial C(x) of degree ≤ 2N−1 such that C(x) = A(x)B(x) and C(ωi) = ci
for i ∈ [1, N], this implies ci = ai · bi.

In batchwise multiplication verification, first, C(x) is constructed by com-
puting C(ωj) = A(ωj) ·B(ωj), j ∈ [N + 1, 2N − 1] using passively secure MPC
and deriving its coefficients by interpolation. Then, A, B, and C are evaluated
in a random point s 6∈ {ω1, . . . , ω2N−1}. This can be done with local linear op-
erations given shares of the ai, bi, ci, and C(ωj). Finally, a multiplication check
protocol is run to check that A(s) · B(s) = C(s). The Schwartz-Zippel lemma,
states that for a non-zero degree d polynomial, P , over field F of and a random
r ∈ S for a finite S ⊆ F the probability that P (r) = 0 is at most d/|S|. Thus if
A(s)·B(s) = C(s) then with high probability, A(x)·B(x) = C(x) as polynomials
and hence ai · bi = ci. Note that for each triple, an additional passively secure
multiplication is needed, but the multiplication check is performed only once per
batch, giving the asymptotic advantage.

In [CB17], the above idea is used in a different setting: some party provides
inputs to MPC, and we want to verify that inputs satisfy a certain property. This
property is phrased in terms of a number of multiplications of linear combinations
of inputs, and the multiplications are checked similarly to above. In this case,
the inputter determines and provides the “witness” values C(ωj) proving that
the multiplications are correct, and the computing parties again use a simple
protocol to check that A(s) ·B(s) = C(s). It is also shown there that the various
polynomial computations can be performed efficiently using FFTs.

3 Lindell-Nof with Fewer Messages and More Fairness

In this section, we show how to reduce the communication complexity of the
Lindell-Nof protocol for honest-majority MPC [LN17] and how to add fairness.
We outline their construction (Section 3.1); plug in batchwise multiplication
verification (Section 3.2); analyse and further reduce communication complexity
(Section 3.3); finally, we show how to achieve fairness and discuss two other
improvements (Section 3.4).

5

3.1 The Lindell-Nof Construction

Lindell and Nof present a framework for efficient actively secure MPC with a
honest majority [LN17]. The basic observation underlying this framework is that
many passively secure MPC protocols are “actively secret”, essentially meaning
that an active attack can break correctness of the computation, but not privacy.
Hence, to perform a computation in an actively secure way, one can simply
perform the computation using a passively secure protocol and, prior to opening
the result, retrospectively check that all multiplications, as these are the only
operations that require interaction, have been performed correctly.

In slightly more detail, the Lindell-Nof construction uses of t-out-of-n secret
sharing, such as Shamir secret sharing or replicated secret sharing. The protocol
starts with all parties secret-sharing their inputs, and checking whether they
are “correct”, in the sense that the shares of all honest parties reconstruct to a
unique value. Next, a passively secure MPC is executed, with linear operations
performed locally on shares and multiplication using known protocols for Shamir
by Gennaro et al. [GRR98], Damg̊ard and Nielsen [DN07] and for replicated se-
cret sharing by Araki et. al [AFL+16]. We will refer to these three multiplication
methods as GRR, DN and AFL+ respectively. Finally, the correctness of the per-
formed multiplications is checked using one of two possible methods, and if this
check passes, the secret shares of the output are reconstructed to obtain the
output. Overall, this gives active security without fairness with relatively little
communication.

3.2 Plugging in Batchwise Multiplication Verification

We now show how batchwise multiplication verification can be used to efficiently
implement the multiplication check in the Lindell-Nof protocol. As discussed
above, the multiplication check is called at the end of the protocol to check
correctness of a number of passively secure multiplications performed before.

Our protocol performing this multiplication check is shown in Fig. 1. The
protocol uses functionalities FRand for generating share r for random r ∈ Zp and
FCoin for generating a public field element r ∈ Zp \ {0} known to all parties as
described in [LN17]. Moreover, it uses a passively secure multiplication protocol
that, as described by Lindell and Nof [LN17], needs to be “secure up to additive
attacks”, meaning that the adversary can manipulate its result only by adding
an additive offset to its result. The GRR, DN and AFL+ protocols mentioned
above all meet this requirement.

Our multiplication protocol follows the basic idea of [BFO12], but avoids its
actively secure A(s) ·B(s) = C(s) check. We add a random multiplication triple
(aN , bN , cN) to the batch of triples and choose s uniformly at random from Zp.
Then, the values of A(s), B(s), C(s) are uniformly random and can be opened
so that the check A(s) · B(s) = C(s) can be performed in the plain. (Note that
this option was not available to the authors of [BFO12] since they need s from
an extension field so A(s), B(s), C(s) are not uniform.)

6

Protocol: Batchwise multiplication check for Lindell-Nof (batch size N):

Inputs: The parties hold a list of triples ([ai], [bi], [ci])
N−1
i=1 they want to verify.

1. Generate random [aN], [bN] with FRand and together compute [cN]← [aN] · [bN]
2. Let A(x), B(x) be of degree ≤ N − 1 such that A(ωi) = ai; B(ωi) = bi for

i ∈ [1, N]. Using [ai] and [bi], locally compute [aj] = [A(ωj)], [bj] = [B(ωj)] for
j ∈ [N + 1, 2N − 1]

3. Together compute [cj]← [aj] · [bj] for j ∈ [N + 1, 2N − 1]
4. Generate random s with FCoin. Repeat until s /∈ {0, ω1, . . . , ω2N−1}.
5. Let C(x) be of degree ≤ 2N−2 such that C(ωi) = ci for i ∈ [1, 2N−1]. Locally

compute [A(s)], [B(s)] and [C(s)] as linear combinations of ([ai])
N
i=1, ([bi])

N
i=1

and ([ci])
2N−1
i=1 respectively

6. Exchange secret shares [A(s)], [B(s)] and [C(s)] between all parties. Output
accept if the shares are correct and A(s)B(s) = C(s).

Fig. 1. Batchwise multiplication check for Lindell-Nof

We now prove correctness of our multiplication check. In Lindell-Nof, cor-
rectness of their multiplication check is shown in [LN17, Lemma 3.9]. We prove
that the same result holds for our multiplication check, implying that it can be
used as a drop-in replacement in their protocol. Actually, our result is slightly
more complete since we do not just prove correctness but also privacy of the mul-
tiplication check. In the appendix, we use this result for a self-contained proof
of an optimised version of the Lindell-Nof protocol.

Proposition 1. Suppose shares ([ai], [bi])
N−1
i=1 are correct and ([ci])

N−1
i=1 are valid,

and that [·]← [·]·[·] is a multiplication protocol secure up to additive attack. There
exists a simulator that, on input ∆i := ci − (ai · bi) and the shares held by the
corrupted parties, simulates an execution of the protocol from Fig. 1 with respect
to an active adversary corrupting a minority of parties with statistical distance at
most negligibly greater than (2N − 2)/(|Zp| − 2N). In particular, if any ∆k 6= 0,
then the honest parties output accept with at most this probability; if all ∆k = 0
then honest parties fail or succeed at the will of the adversary.

Proof. The simulator proceeds as follows. The simulator first simulates the gener-
ation of random [aN] and [bN] and the computation of [cN], [aN+1], . . . , [a2N−1],
[bN+1], . . . , [b2N−1], [cN+1], . . . , [c2N−1], learning the errors ∆N , . . . ,∆2N−1 to
the ci introduced by the adversary (which is possible since the protocol is se-
cure up to additive attack). Simulate the generation of s and the computa-
tion of [A(s)], [B(s)], and [C(s)]. Let D(x) be of degree ≤ 2N − 2 such that
D(ω1) = ∆1, . . . , D(ω2N−1) = ∆2N−1. If (∆1, . . . ,∆2N−1) 6= 0 but D(s) = 0,
abort. Generates random A(s) and B(s), and let C ′(s) = A(s) · B(s) and
C(s) = C ′(s) + D(s). Simulate the opening of [A(s)] to A(s), [B(s)] to B(s),
and [C(s)] to C(s). Let the honest parties output success if D(s) = 0 and the
adversary provides the correct shares of [A(s)], [B(s)], [C(s)] and fail otherwise.

We argue that this simulation is indeed indistinguishable. For this, we need
to check that the view of the adversary and the outputs of the honest parties

7

in the simulation are indistinguishable from a real execution. Concerning the
view of the adversary, note that the values A(s) and B(s) that are opened are
uniformly random because of the inclusion of the random [aN], [bN]. Given these
values A(s) and B(s), C ′(s) = A(s) ·B(s) is the value that is opened for [C(s)]
if all multiplications are correct. By linearity of the computation of C(s), given
A(s) and B(s) the value the adversary expects for [C(s)] is C ′(s)+D(s). Hence,
the simulation of the multiplication check is indistinguishable to the adversary
and its success implies (∆1, . . . ,∆c1) = 0, unless (∆1, . . . ,∆2N−1) 6= 0 and
D(s) = 0. But D(s) is the evaluation of a polynomial of degree at most 2N − 2
in a random point from Zp\{0, ω1, . . . ω2N−1}, so by the Schwartz-Zippel lemma,
if (∆1, . . . ,∆c1) 6= 0 then D(s) = 0 with probability (2N−2)/(|Zp|−2N). Hence,
except with this probability, the adversary cannot make wrong multiplications
pass the check, so also the honest parties’ outputs are indistinguishable. ut

Corollary 1 (Informal). The protocol for computing an arithmetic circuit over
a finite field from [LN17] with the batchwise multiplication check from Fig. 1
computes any n-party functionality f with computational security in the presence
of a malicious adversary controlling up to t < n/2 corrupted parties.

In Appendix A, we present an optimised and slightly simplified version of
the Lindell-Nof protocol and prove its security in detail.

3.3 Performance Analysis and Optimisation with PRNGs

Table 1 shows how the amount of communication in the Lindell-Nof protocol
is reduced by batchwise multiplication verification, and how it can be further
reduced with PRNGs. As mentioned above Lindel and Nof give three concrete
instantiations of their protocol based on the GRR, DN and AFL+ multiplica-
tion protocols respectively [GRR98,DN07,AFL+16]. (The exact variants of the
protocols used for this comparison are given in Appendix A.) They instantiate
three core operations, multiplying, opening shared values and generating a ran-
dom shared value, and use them in two multiplication checks. The first check
uses 2 multiplications, 2 random values and 3 openings; the second check uses
6 multiplications and 3 random values. In GRR, the first check is used; in DN,
the second check is used; and in AFL+, a slight optimisation of the first check
is used, leading to the given performance in Table 1.

As shown, using batchwise multiplication verification, checking a multipli-
cation requires essentially one additional multiplication. As a result, using it
instead of either of the Lindell-Nof multiplication checks reduces communica-
tion by a factor 2 to 3.5. The constant cost of the check (hidden behind the &
symbol in the table) is spread over the triples in a batch but pretty small: e.g.,
for ≤ 10 parties the batch size needed to make the overhead less than one is
always less than 50 and to make it less than 0.1 it is less than 500. As shown in
Section 5, this is possible without affecting computational complexity too much.

Using PRNGs, we can reduce communication in the GRR and DN construc-
tions even further. For instance, consider the re-sharing of values that takes place

8

Operation GRR GRR-
PRNG

DN DN-
PRNG

AFL+

Random value 0 0 . 2 . 1 0
Opening n− 1 n− 1 n− 1 n− 1 1
Passive mult. n− 1 n− t− 1 . 6 . 3 1
LN mul + check 5(n− 1) 6(n− t− 1) . 42 . 18 4
Batch mul + check & 2(n− 1) & 2(n−t−1) & 12 & 6 & 2

Table 1. Field elements sent per party for the Lindell-Nof protocol instantiated with
GRR, DN (both with or without PRNG optimizations) and AFL+ (with PRNG opti-
mization). The number of parties and the threshold is denoted by n and t respectively
(generally n ≈ 2t). Grey areas are our results

in GRR multiplication: instead of sending shares to each party, the dealing party
can simply set the shares of t parties by pairwise PRNGs between him and the
recipients so that he only needs to send n − t − 1 shares, halving communica-
tion if n = 2t + 1. This idea is of course not new, but it is still important for
us since applying it reduces communication in the Shamir constructions by an
additional factor of at least two. In particular, using PRNGs, the Shamir-based
construction with GRR becomes as communication-efficient as the PRNG-based
construction. Details appear in Appendix A.

3.4 Further Improvements

Adding Fairness To achieve fairness, we first let the parties reach agreement on
whether to produce an output. Once there is agreement, we let the parties derive
the output in such a way that the adversary cannot force a failure anymore.

To reach agreement, we use detectable broadcast [FGMvR02]. Detectable
broadcast lets a party send a message to all parties so that either all parties
receive the same message, or all parties agree that the broadcast has failed. In our
case, the adversary may cause this failure after seeing the value to be broadcast.
Unlike full broadcast, it can be achieved over private channels without set-up
assumptions. Essentially, [FGMvR02] achieves detectable broadcast by letting
each party once pick and distribute a public key, and performing a pairwise
check if all parties consistently sent out their keys. After this setup, broadcasts
are performed with the standard Dolev-Strong protocol [DS83]. In our protocol,
parties detectably broadcast their shares of A(s), B(s), and C(s) in the last
round of the multiplication check; the parties decide to produce an output only if
all parties have successfully broadcast a value; all shares consistently reconstruct
to some values A(s), B(s), and C(s); and A(s) ·B(s) = C(s).

To derive the output, we need to ensure that honest parties can detect wrong
values sent by corrupted parties. If there are only few parties, each party Pi can
input a random information-theoretic MAC key αi, βi into the MPC (with PRSS,
this requires no communication) and the parties compute MAC αi · x + βi on
output x. After the multiplication check, all parties send their shares of x and
αix + βi to Pi, who selects whichever reconstructed x has a correct MAC. For

9

many parties, this technique is not secure since it costs log((t + 1)
(
n−1
t

)
) ≈ n

bits security; for that case see Appendix A.3.

Efficient inner products One particularly appealing property of MPC based
on secret sharing schemes like Shamir and replicated secret sharing, is that they
allow inner products [c] =

∑l
i=1[ai] · [bi] to be computed at the cost of a single

multiplication. Such multiplication protocols first locally perform the multiplica-
tion (turning t-out-of-n shared inputs into a 2t-out-of-n sharing of the product)
and then re-share the result (turning the product from a 2t-out-of-n sharing back
into a t-out-of-n sharing). To compute an inner product, several local multipli-
cations are first summed up and then the result is re-shared.

We can make such inner product computations actively secure by generalising
batchwise multiplication verification to verify many inner products of the same
length. Instead of generating two random values and computing their product,
we generate 2l random values and compute their inner product. We then define
polynomials (Ai(x))li=1, (Bi(x))li=1, C(x) in the natural way; exchange shares of

(Ai(s))
l
i=1, (Bi(s))

l
i=1, C(s); and check whether

∑l
i=1Ai(s)Bi(s) = C(s). This

gives the same security guarantees as batchwise multiplication verification.

Smaller fields Because of the false positive rate of the Schwartz-Zippel lemma,
our construction requires a field of size at least 2N · 2σ, where σ is the sta-
tistical security parameter. When working over a smaller field, the multiplica-
tion check can be performed repeatedly. This way, statistical security can be
boosted arbitrarily: repeating the check k times increases statistical security
from log((|Zp|−2N)/(2N−2) to log(

(|Zp|−2N
k

)
/
(
2N−2
k

)
) bits. Note that repeated

checking can be done more efficiently than by just repeating the full check as
follows. Instead of adding one random triple to a batch of multiplications, we
add k of them; and instead of generating one random challenge s, we generate
k challenges si and evaluate A(si), B(si), and C(si) for i = 1, . . . , k. (These can
be opened because of the inclusion of the k random triples.)

4 SPDZ with an Untrusted Dealer

In this section, we present a protocol for honest-majority 3PC. The main con-
tribution is a communication efficient protocol implementing the preprocessing
phase for the 2PC SPDZ protocol using batchwise multiplication verification to
check the correctness of Beaver triples generated locally by a third party dealer
P3. In the online phase two parties P1,P2 use the preprocessed values in the
regular two party SPDZ3 to compute the desired function. Using a small addi-
tion to the online SPDZ protocol, based on ideas from [JNO14], we can allow
the dealer to provide input to and receive output from the 2PC protocol, thus
giving an actively secure 3PC protocol in the honest-majority setting. We leave
these modifications as an exercise.

3 The version by Damg̊ard et. al refered to as SPDZ-2 [DKL+13]

10

We note that, the resulting 3PC protocol is highly asymmetric; in the pre-
processing phase the P3 is doing most of the work while in the online phase
P1,P2 do all the work. To better utilise resources across all three parties, we
also develop a load balanced version of the protocol. This works by letting each
of party play the role of the dealer in separate runs of the preprocessing phase.
In the online phase, we then partition the multiplications to be performed into
three sets to be evaluated by each pair of parties in a 2PC fashion. The overall
communication per multiplication required in both versions is 5 field elements
for the preprocessing phase and 4 field elements in the online phase (as per the
regular 2PC SPDZ protocol). Thus using the load balanced version of the proto-
col we get 4/3 and 5/3 fields elements an average per party in the preprocessing
and online phases respectively. We defer the load balancing version of the proto-
col to the appendix, and in this section we focus on our protocol for the SPDZ
preprocessing phase.

We note that, compared to our Lindell-Nof based protocol, the protocol pre-
sented in this section does communicate three additional field elements per mul-
tiplication. However, the online phase communicates two field elements less than
the Lindell-Nof based protocol. Thus the setting were preprocessing is available
our SPDZ-based protocol is preferable.

4.1 Data Needed for the Online Phase

Before we describe our protocol for the preprocessing phase we here first sum-
marise the data that should be generated: We use 〈a〉 = (JaK , JαaK) to denote
a SPDZ sharing of a ∈ Zp, where the sharing is between the parties P1,P2.
Here α ∈ Zp is a random MAC key fixed at initialisation and unknown to both
P1,P2, but which they share additively. The shared value αa of is an information
theoretic MAC on a, which is used in the online phase to ensure active security.

The online phase of SPDZ needs preprocessed multiplication triples and input
masks. A multiplication triple is SPDZ sharings (〈a〉 , 〈b〉 , 〈c〉) where a, b ∈ Zp are
random values and c = ab. In the online phase each multiplication will consume
one triple. An input mask is a pair (r, 〈r〉) for a random value r ∈ Zp known
to, say, P1. In the online phase each input provided by P1 consumes one such
mask. For security in the online phase we require that the preprocessed data
should be correct in the sense that the shared values and their MACs should
obey the correllations described above. Furthermore, the shared values should be
unknown and random in the view of any corrupt party participating in the online
phase (i.e., either P1 or P2). We more formally describe the ideal functionality
in FDeal in Section B.1

4.2 Preprocessing Phase

The basic idea of our protocol is to let P3 generate the all the preprocessed
data locally, and send the appropriate shares to P1,P2. Batchwise multiplication
verification is then used to check that P3 generated the multiplication triples
correctly, and a separate check is used to check that the MACs are correct. To

11

save communication our protocol heavily relies on joint PRNGs prngi,j between
each pair of parties Pi,Pj in order to non-interactively share values.

Our protocol ΠDeal implementing the preprocessing phase is described in
detail in Fig. 2 and Fig. 3. In Fig. 2 we show how the protocol is initialised
by using the joint PRNGs to sample a random MAC key α in such a way that
α is unknown to all parties but is additively secret shared between each pair
of parties Pi,Pj , denoted JαK

i,j
i , JαK

i,j
j . Additionally, P1 and P2 use prng1,2 to

sample a challenge s1,2 used for multiplication checks.

In Fig. 2 we also describe two subprotocols which will be used through out the
ΠDeal protocol. These protocols use the PRNGs to non-interactively generate
a random additive sharing JrK between P1,P2, where r is known to P3 (4a of
Fig. 2), and given any such shared r an additive sharing of JαrK between all the
parties (4b of Fig. 2). Note, that this means that by sending P3’s share JαrK3
of αr to, say, P1 we can trivially compute a SPDZ sharing 〈r〉 by adding JαrK3
to JαrK1. In the protocol we slightly abuse notation in this case by saying that
P1 updates her share JαrK1 = JαrK1 + JαrK3. Note that this requires P3 so send
exactly one field element per SPDZ sharing.

In Fig. 3 we describe how to generate and verify the actually preprocessed
data to be used in the online phase. Multiplication triples are generated by first
using the 4a and 4b subprotocols to generate 〈a〉 and 〈b〉 as described above. P3

then computes c = ab and additively shares it among the parties, using 4b on c
we get its MAC. This requires P3 to send four field elements.

For a batch of triples (〈ai〉 , 〈bi〉 , 〈ci〉)N−1i=1 the multiplicative property aibi =
ci is verified using batch multiplication verification similar to the Lindell-Nof
case above. In this case we let the dealer P3 compute and additively share (with-
out MACs) the values cN+1 = C(ωN+1), . . . , c2N−1 = C(ω2N−1), as in [CB17].
P1,P2 verify the multiplications by checking the polynomials evaluated in the
challenge point s generated at initialisation. Again we can open A(s), B(s), C(s)
by sacrificing one triple. The check requires a single field element sent per triple
and an additional element per batch of N − 1 triples. Overall, a total of 5 field
elements are sent to generate each multiplication triples and verify the multi-
plicative property plus one additional field element per batch.

Input masks are simply generated by first using the 4a and 4b subprotocols
to generate 〈r〉, and then letting P3 send the value r to the party using the input
mask. This requires sending two field elements for each input mask.

Finally, P1,P2 must check that all the MACs resulting from invocations of
the 4b subprotocol are correct. We do this using protocol similar to the MAC
check subprotocol of the regular SPDZ protocol. Essentially, the parties take a
pseudorandom linear combination of all the shared values generated, and check
that the MACs a consistent with the result. This takes constant communication.

The intuition for security of the protocol goes as follows. Consider first a
corrupt Pi for i ∈ {1, 2}, i.e., one of the parties that will run the online phase. In
this case, the dealer P3 is honest, and only deals correct random additive shares,
which does not reveal information on the shared values. Furthermore, since Pi
only sends messages in the protocols checking correctness of the dealt shares, Pi

12

Protocol ΠDeal

Inputs: The amount of multiplication triples M , random input masks I1, I2 and a
batch size N .

1. (PRNG setup) Each pair of parties Pi,Pj sets up joint PRNG prngi,j (one
party generates it and sends it to the other)

2. (MAC key generation) The parties generate a random secret MAC key α, ad-
ditively shared between each pair of parties:
(a) Let α1, α2 ← prng1,3; α3, α4 ← prng1,2; α5, α6 ← prng2,3
(b) Parties P1,P2 set JαK1,21 = α1 + α2 + α3, JαK1,22 = α4 + α5 + α6

(c) Parties P1,P3 set JαK1,31 = α3 + α4 + α1, JαK1,33 = α5 + α6 + α2

(d) Parties P2,P3 set JαK2,32 = α3 + α4 + α5, JαK2,33 = α1 + α2 + α6

3. (Sample Challenge) P1,P2 sample s1,2 ∈ Zp \ {0, ω1, . . . , ω2N−1} using prng1,2
4. (Subprotocols) Throughout the parties use two subprotocols to non-interactively

generate random value r known by P3 and secret-shared between P1,P2 and a
corresponding MAC secret shared among all three parties:

(a) (Random) Let JrK1 ← prng1,3; JrK2 ← prng2,3. P3 sets r = JrK1 + JrK2.
(b) (Additive MAC shares) Let δ1,3 ← prng1,3; δ2,3 ← prng2,3; δ1,2 ← prng1,2.

For an additively shared JrK as above
P1 sets JαrK1 = JαK1,31 · JrK1 + δ1,2 − δ1,3.
P2 sets JαrK2 = JαK2,32 · JrK2 + δ2,3 − δ1,2.
P3 sets JαrK3 = JαK1,33 · JrK1 + JαK2,33 · JrK2 + δ1,3 − δ2,3.

(continued in Fig. 3)

Fig. 2. Protocol ΠDeal

can only influence the protocol by making it abort (which we allow anyway), but
cannot influence the values of any of the shared values. Thus the preprocessed
data will be correct and Pi will not get information on the shared values. Con-
sider then a corrupt dealer P3. By the security of the multiplication verification
and MAC check, if the protocol does not abort, then with overwhelming prob-
ability the preprocessed data will be correct. P3 will learn all values shared in
the preprocessing phase, but since these are independent of the parties’ input to
the online phase and since P3 does not directly participate in the online phase
of the protocol, this does not leak any private information.

In Appendix B we prove security more formally, giving this result:

Corollary 2 (Informal). Combining the ΠDeal with the 2PC online phase of
SPDZ and the outsourced MPC additions of [JNO14] leads to an over all protocol
that computes any 3-party functionality f with computational security in the
presence of a malicious adversary controlling at most one corrupted party.

4.3 Variants and Extensions

Fairness Fairness is easily achieved in the load-balanced variant of the protocol
described in the appendix, similarly to the Lindell-Nof case. Essentially, each

13

Protocol ΠDeal (continued from Fig. 2)

5. (Triple generation) Generate M multiplication triples in M/(N − 1) batches
(〈ai〉 , 〈bi〉 , 〈ci〉)N−1

i=1 of size N − 1:

(a) Generate N multiplication triples by doing the following for each i ∈
[1, . . . , N]:

i. (Shares of ai, bi) Repeat 4a twice to get JaiK, JbiK.
ii. (Shares of ci) Let δ2,3 ← prng2,3, δ1,2 ← prng1,2. P3 sets ci ← ai·bi, and

sends ci−δ2,3 to P1. P1,P2 set JciK1 = (ci−δ2,3)+δ1,2, JciK2 = δ2,3−δ1,2
respectively.

iii. (MAC shares) Repeat 4b to get JαaiK , JαbiK , JαciK shared between
the three parties. P3 sends JαaiK3 to P1, who updates his MAC share
JαaiK1 = JαaiK1 + JαaiK3; and similarly for JαbiKk, JαciKk sent to P2.

(b) Check correctness of (〈ai〉 , 〈bi〉 , 〈ci〉)N−1
i=1 by sacrificing (〈aN 〉 , 〈bN 〉 , 〈cN 〉):

i. P3 computes cj = C(ωj) for j ∈ [N + 1, 2N − 1] where C(x) =
A(x)B(x); A(x), B(x) of degree ≤ N − 1 s.t. A(ωi) = ai, B(ωi) = bi

ii. P3 secret-shares (cj)
2N−1
j=N+1 by sampling JcjK2 ← prng2,3 and sending

JcjK1 = cj − JcjK2 to P1

iii. P1,P2 compute JA(s1,2)K, JB(s1,2)K, JC(s1,2)K linearly from
(JaiK , JbiK , JciK)

N
i=1 and (JciK)

2N−1
i=N+1

iv. P1 sends JA(s1,2)K1, JB(s1,2)K1, JC(s1,2)K1 to P2. P2 reconstructs
A(s1,2), B(s1,2), and C(s1,2), and aborts if A(s1,2) ·B(s1,2) 6= C(s1,2)

6. (Input generation) To generate an input mask (r, 〈r〉) for party Pi the parties
run 4a and 4b. Without loss of generality assume i = 1. P3 sends r and JαrK3
to P1 who updates his MAC share JαrK1 = JαrK1 + JαrK3.

7. (MAC check) The parties check all the MACs on all the generated sharings
(input masks and triples). Denote these (JaiK)

L
i=1 for L = I1 + I2 + 3M :

(a) Repeat 4a,4b to get random 〈aL+1〉 known by P3 and shared between
P1,P2. P3 sends JαaL+1K3 to P1, who updates his MAC share JαaL+1K1 =
JαaL+1K1 + JαaL+1K3

(b) P1,P2 sample PRNG seed s ← prng1,2. Both send s to P3, who aborts if
inconsistent. All three generate r1, . . . , rL+1 from the PRNG with seed s.

(c) P3 computes S =
∑L+1

i=1 riai and sends S to P1

(d) P1 computes JσK1 ← (
∑L+1

i=1 ri JαaiK1)− S · JαK1,21 and sends S, JσK1 to P2

(e) P2 computes JσK2 ← (
∑L+1

i=1 ri JαaiK2)−S ·JαK1,22 , aborts if JσK1 +JσK2 6= 0

8. Finally, each party returns its preprocessed MAC key, masks, and triples.

Fig. 3. Protocol ΠDeal

party Pi inputs MAC key αi, βi and mask δi (for which we can use input masks).
Then, αix + βi and x + δi are opened to the other two parties. These values
are checked with the SPDZ MAC check and then provided to Pi. The SPDZ
MAC check needs to be performed such that everybody agrees on its result,
which essentially means that we need to compute a sum

∑
JσK1 + JσK2 + JσK3

in a fair way. This can be done by letting each party secret-share its summand
in a digitally signed way and the other parties forwarding these secret shares,
similarly to Dolev-Strong broadcast. We omit the details because of space.

14

Preprocessing other material Apart from multiplication triples, other random
data can be preprocessed in order to speed up specific computations in the SPDZ
online phase. For example, Damg̊ard et. al [DKL+13] show how to preprocess
random square pairs 〈a〉 ,

〈
a2
〉

for random a. In the online phase 〈z〉 =
〈
x2
〉

can

be computed from 〈x〉 by revealing ε = x−a and setting 〈z〉 = 2ε 〈x〉+
〈
a2
〉
−ε2,

which requires only half the communication of regular online multiplications. Our
dealer based protocol allows such material to be generated very efficiently.

To preprocess N − 1 pairs of squares (〈ai〉 ,
〈
a2i
〉
)N−1i=1 , we run the protocol

for generating multiplication triples as above, except the dealer sets all bi = ai
(including bN in the triple to be sacrificed). Note that in this case B(s) = A(s)
does not need to be computed or exchanged separately.

Damg̊ard et. al also preprocess random bits, i.e., values 〈x〉 so that x ∈ {0, 1}.
Such preprocessed values are useful to speed up the online computation of e.g.
comparisons [LT13]. To preprocessed random bits 〈x1〉 , . . . , 〈xN−1〉, we run the
protocol for generating multiplication triples as above, except the dealer sets all
ai = xi and bi = 1− xi (implying ci = 0). If we use (〈aN 〉 , (1− 〈aN 〉), 〈aN 〉 (1−
〈aN 〉) for random aN as the extra multiplication triple to be sacrificed, we have
B(x) = 1−A(x) so B(s) does not need to be computed or exchanged. Thus the
preprocessing of both a square pair and a bit requires communicating one less
field element than a multiplication.

Similarly, we can compute other useful preprocessed material by having
the dealer prove the appropriate multiplicative relations using the batchwise
multiplication check. For example, random values with their negative powers
〈r〉 ,

〈
r−1
〉
, . . . ,

〈
r−k

〉
are useful to compute

〈
x2
〉
, . . . ,

〈
xk
〉

from 〈x〉 by opening

(rx) and taking
〈
xi
〉

= (rx)i
〈
r−i
〉

(e.g., for secure equality [LT13]). Correct-

ness is verified from triples 〈a1〉 = 〈r〉 , 〈b1〉 = r−1, 〈c1〉 = 1, 〈ai〉 =
〈
r−1
〉
,

〈bi〉 =
〈
r−i+1

〉
, 〈ci〉 =

〈
r−i
〉
, i = 2, . . . , k.

Secret-shared random matrix products can be used to efficiently compute
matrix products [MZ17]: given random matrices 〈U〉, 〈V〉, and 〈W〉 = 〈U ·V〉 of
the correct size, matrix product 〈Z〉 = 〈X ·Y〉 is computed by opening 〈X−U〉
and 〈Y−V〉 and letting

〈Z〉 = (X−U) · (Y−V) + (X−U) · 〈V〉+ (Y−V) · 〈U〉+ 〈W〉 .

To preprocess a random matrix product, the dealer provides secret shares of all
Ui,j , Vj,k and products Ui,j · Vj,k, and proves their correctness. The elements of
W are computed as linear combinations of these products. Preprocessing in this
case reduces overall communication, e.g., by a factor 1.5 for 2 × 2 matrices or
a factor 2.5 for 10 × 10 matrices. Similarly, in the common case of multiplying
value (i.e., 1-by-1 matrix) 〈x〉 with each element in vector (i.e., 1-by-n matrix)
〈y〉, online communication halves and overall communication decreases by 33%.

Smaller fields As in the Lindell-Nof case, we need a field of size at least 2N · 2σ,
but as there, we can enhance the statistical security of ΠDeal by repeating the
multiplication check. Of course, for an overall secure protocol for fields smaller
than 2σ, also modifications to the SPDZ online phase are needed, cf. [DPSZ12].

15

2 4 6 8

5.0 × 106
1.0 × 107
1.5 × 107
2.0 × 107
2.5 × 107
3.0 × 107

Mul checks /s (64-bit prime)

2 4 6 8

2 × 106

4 × 106

6 × 106

8 × 106

Mul checks /s (128-bit prime)

50 Mbps WAN

1 Gbps LAN

2 Gbps LAN

Computation

Fig. 4. Number of Lindell-Nof multiplications that can be checked for correctness per
second based on the given network capacity or computation effort, with batches of size
21, . . . , 29 for a 64-bit prime (left) or 128-bit prime (right)

5 Performance Evaluation

In this section we present performance estimates suggesting that, despite the
computations in our protocols, communication is often still the main bottleneck.

5.1 Implementation Details

To estimate the computation effort of our protocol, we have implemented batch-
wise multiplication verification both in the Lindell-Nof and the SPDZ setting.
In both cases, we implemented only computation (including PRNG evaluation,
secret sharing, reconstruction, and the MAC check) and not communication. For
the PRNG, we used the SPDZ-2 implementation based on AES-NI4.

We implemented the batch check in batch sizes of 2k using fields Zp that allow
efficient modular arithmetic and efficient FFTs for those batch sizes (batches
do not need to be completely filled up). Batch verification relies heavily on
performing FFTs of the size of the batch for performing interpolation; with batch
size 2k, we can use the efficient Cooley-Tukey FFT algorithm. This requires
a (2k)th root of unity in Zp, or equivalently, 2k|p − 1. To have fast modular
arithmetic, we use pseudo-Mersenne primes p = 2s−2l+1; note that if k ≤ l then
2k|2l|p− 1. (We cannot use regular Mersenne primes 2s− 1 since 2k - 2s− 1.) In
particular, we use our own modular arithmetic/FFT implementation for primes
264− 210 + 1 and 2128− 254 + 1, allowing batches up to 29, and 253, respectively.

To estimate communication complexity, we compute the number of bits that
each party needs to send to check correctness of one multiplication. For Lindell-
Nof, this is the same for each party; for SPDZ, we use load-balancing so that
communication is also evenly spread. The number of multiplications per second
is computed as the bandwidth divided by that amount of bits.

5.2 Evaluation Results

Fig. 4, estimates the number of multiplications that can be checked in the Lindell-
Nof protocol using Shamir secret sharing, GRR multiplication, and our batchwise

4 https://github.com/bristolcrypto/SPDZ-2/

16

https://github.com/bristolcrypto/SPDZ-2/

3 4 5 6 7 8 9

5.0 × 106

1.0 × 107

1.5 × 107

Trips /s (64-bit prime)

3 4 5 6 7 8 9

2 × 106

4 × 106

6 × 106

8 × 106

1 × 107
Trips /s (128-bit prime)

50 Mbps WAN

1 Gbps LAN

2 Gbps LAN

Computation

Fig. 5. Number of SPDZ multiplication triples that can be preprocessed per second
based on the given network capacity or computation effort (excluding online phase),
with batches of size 22, . . . , 29 for a 64-bit prime (left) or 128-bit prime. (right).

check. (Note that this does not include the multiplication to be checked itself.)
We show, for different batch sizes 2k, how many checks are allowed by the band-
width of a 50 Mbps WAN, a 1 Gbps LAN, and a 2 Gbps LAN. We also show,
on a single core of a Amazon M4.large machine (a 2.3/2.4 GHz Intel Xeon E5),
how many checks can be handled by the processor. As expected, larger batches
are good for communication complexity but bad for computation complexity.
With a 1 Gbps LAN and a single core, computation quickly becomes the bot-
tleneck, but still it is possible to process check around 5 million multiplications
per second for 64-bit primes and 2 million for 128-bit primes. Note that batch-
wise verification is trivially parallelizable by checking each batch on a different
core, so the number of checks per second can easily be increased by increasing
the number of cores. With less than 1 Gbps available, communication quickly
becomes the bottleneck rather than computation. We did not run experiments
for more than three parties, but in general, the amount of computation should
stay roughly the same (since it is dominated by the FFTs) whereas the amount
of communication increases as shown in Table 1.

Fig. 5 similarly estimates the number of multiplication triples per second of
our SPDZ preprocessing, load-balanced between the three parties. As above, for
different batch sizes 2k, we plot the number of triples that can be generated on a
50 Mbps WAN, a 1 Gbps LAN, and a 2 Gbps LAN; and a single Amazon M4.large
core. Note that SPDZ has less communication than Lindell-Nof for small batch
sizes; this is because the constant overhead of the SPDZ batch check is very
small (just a few field elements). However, for larger batches, Lindell-Nof has
less communication (each party sends one field element per check vs. the dealer
sends five field elements for one third of the checks). In SPDZ, on a 1Gbps
network with a single core, computation is the bottleneck, and around 5 million
triples per second are possible for a 64-bit primes or around 2 million triples for
a 128-bit prime; with two to four cores, it is possible to reach around 10 million
triples for a 64-bit prime or 5 million triples for a 128-bit prime.

Acknowledgements We thank the anonymous reviewers for their useful sugges-
tions. This work has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement #731583 (SODA).

17

References

AFL+16. T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput
semi-honest secure three-party computation with an honest majority. In
Proceedings of CCS ’16. ACM, 2016.

BFO12. E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-
secure multiparty computation with a dishonest minority. In Proceedings
of CRYPTO, 2012.

Can00. R. Canetti. Security and Composition of Multi-Party Cryptographic Pro-
tocols. Journal of Cryptology, 13(1):143–202, 2000.

CB17. H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable com-
putation of aggregate statistics. In Proceedings of NSDI, 2017.

DKL+13. I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart.
Practical covertly secure MPC for dishonest majority - or: Breaking the
SPDZ limits. In Proceedings of ESORICS, 2013.

DN07. I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multi-
party computation. In Proceedings of CRYPTO, 2007.

DOS17. I. Damg̊ard, C. Orlandi, and M. Simkin. Yet another compiler for active
security or: Efficient MPC over arbitrary rings. Cryptology ePrint Archive,
Report 2017/908, 2017. http://eprint.iacr.org/2017/908.

DPSZ12. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computa-
tion from somewhat homomorphic encryption. In Proceedings of CRYPTO,
2012.

DS83. D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agree-
ment. SIAM J. Comput., 12(4):656–666, 1983.

FGMvR02. M. Fitzi, N. Gisin, U. M. Maurer, and O. von Rotz. Unconditional byzan-
tine agreement and multi-party computation secure against dishonest mi-
norities from scratch. In Proceedings of EUROCRYPT, 2002.

FLNW17. J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein. High-throughput secure
three-party computation for malicious adversaries and an honest majority.
In Proceedings of EUROCRYPT, 2017.

GRR98. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fact-track
multiparty computations with applications to threshold cryptography. In
Proceedings of PODC, 1998.

JNO14. T. P. Jakobsen, J. B. Nielsen, and C. Orlandi. A framework for outsourcing
of secure computation. In Proceedings of CCSW ’14, 2014.

KLR06. E. Kushilevitz, Y. Lindell, and T. Rabin. Information-theoretically secure
protocols and security under composition. In Proceedings of STOC ’06,
2006.

KPR17. M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making SPDZ great
again. Cryptology ePrint Archive, Report 2017/1230, 2017. https://

eprint.iacr.org/2017/1230.

LN17. Y. Lindell and A. Nof. A framework for constructing fast MPC over arith-
metic circuits with malicious adversaries and an honest-majority. In Pro-
ceedings of CCS’17. ACM, 2017.

LT13. H. Lipmaa and T. Toft. Secure equality and greater-than tests with sub-
linear online complexity. In Proceeings of ICALP, 2013.

MZ17. P. Mohassel and Y. Zhang. SecureML: A system for scalable privacy-
preserving machine learning. In Proceedings of S&P, 2017.

18

http://eprint.iacr.org/2017/908
https://eprint.iacr.org/2017/1230
https://eprint.iacr.org/2017/1230

PHGR13. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly prac-
tical verifiable computation. In Proceedings of S&P, 2013.

Sch80. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, 1980.

SSW17. P. Scholl, N. P. Smart, and T. Wood. When it’s all just too much:
Outsourcing MPC preprocessing. Cryptology ePrint Archive, Report
2017/262, 2017. http://eprint.iacr.org/2017/262.

SVdV16. B. Schoenmakers, M. Veeningen, and N. de Vreede. Trinocchio: Privacy-
preserving outsourcing by distributed verifiable computation. In Proceed-
ings of ACNS, 2016.

Zip79. R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings
of EUROSAM ’79, 1979.

A Security Proof for our Lindell-Nof Instantiation

In this section, we provide a full specification and security proof for the main
protocol from Section 3: our optimised version of the Lindell-Nof protocol with
Shamir secret-sharing, our PRNG optimisations, and our batchwise technique for
multiplication verification, where we assume the number of parties is n = 2t+15.
Note that, while Lindell and Nof do prove some important facts about their
construction, such a comprehensive proof is not given in [LN17]. By focussing on
this particular case, we can provide such a proof reasonably easily (in particular,
using Shamir with n = 2t+ 1 will allow us to deal easily with incorrect shares);
moreover, considering this particular instantiation is sufficient since, as shown
in Table 1, it covers all our important performance improvements. Due to space
constraints, we omit the security proof for our fair protocol variants.

A.1 The protocol

As discussed, the protocol achieves security by combining well-known passively
secure implementations of MPC operations with an (in our case, batchwise)
multiplication check. For these subroutines, we define few-party variants Fig. 6
and many-party variants in Fig. 7. In any case, we use PRSS, which requires
a Setup step (see Fig. 8) that sets up PRNG keys between each pair of parties
and between each size-(t+ 1) subset of parties (only for the few-parties variant).
The operations are along the lines of Lindell-Nof, except that we use PRNGs to
save on communication for inputting (and so also few-party multiplication and
many-party random shared value generation) and many-party multiplication.

The complete actively secure MPC protocol based on the Lindell-Nof frame-
work and our batchwise multiplication check is shown in Fig. 8. Note that we can
skip the Lindell-Nof input correctness check essentially because n = 2t + 1 (as
we show below). To get active security, computations are performed using the
above passively secure building blocks; and the batchwise multiplication check
is used to verify that the result was correct, as discussed in Section 3.2.

5 Note that this is also the optimal case because choosing t to be lower will only lessen
the privacy and correctness guarantees of the protocol.

19

http://eprint.iacr.org/2017/262

Basic subroutines for Shamir-based t-out-of-n MPC (few parties)

Input: Party Pi inputs value x into the computation as follows:

1. Parties Pj , j ∈ [i+ 1, i+ t] set [x]j ← prng{Pi,Pj}
2. Party Pi computes [x]j ← prng{Pi,Pj} for j ∈ [i+ 1, i+ t] using its PRNGs

and [x]i, [x]i+t+1, . . . , [x]i+2t such that they form a consistent sharing of x.
Party Pi sends [x]j to Pj for j ∈ [i+ t+ 1, i+ 2t]

Add/multiply by constant: To compute [z] = [x] + y, [z] = [x] + [y], or [z] =
α[x], the parties proceed as follows:

1. Pi sets [z]i = [x]i + y, [z]i = [x]i + [y]i, or [z]i = α · [x]i

Random shared value: To generate random [r], the parties proceed as follows:

1. Party Pi computes rS ← prngS for each size-(t + 1) subset Pi ∈ S ⊂
{P1, . . . ,Pn}, lets [rS]i be the unique share of rS consistent with [rS]j = 0
for all j /∈ S, and lets [r]i =

∑
S [rS]i.

Multiply: To compute [z] = [x] · [y], the parties proceed as follows:

1. Pi computes zi = [x]i · [y]i and inputs zi to the computation
2. Each party sets [z]i =

∑n
j=1 λj [zj]i for degree-2t Lagrange coefficients λj

Open: To open a secret-shared value [x] to party Pj , the parties proceed as follows:

– Each party Pi sends its share [x]i to Pj

– Pj reconstructs x based on shares [x]1, . . . , [x]t+1. It checks if any share
[x]t+2, [x]n is inconsistent with this. If so, it aborts; otherwise it returns x.

Fig. 6. Basic subroutines for Shamir-based t-out-of-n MPC (few parties)

A.2 Security proof

Theorem 1. Let N be an integer, and let f be a function given by an arithmetic
circuit over Zp, where p > 2N · 2σ. Assuming secure PRNGs, the protocol in
Fig. 8 with batch size N securely computes f with statistical security parameter
σ for honest majority.

Proof. Given adversary A we need to construct simulator S that simulates a
real-world execution of the protocol with respect to A in the ideal-world model.
For simplicity, let us assume that parties P1, . . . ,Pd are corrupted, where d ≤
t < n

2 . We divide the parties into corrupted parties P1, . . . ,Pd, redundant parties
Pd+1, . . . ,Pt, and essential parties Pt+1, . . . ,Pn. It is easy to generalize this since
the protocol is completely symmetric apart from the use of PRNGs in the input
phase, for which it is easy to see that our proof generalises.

The simulator simulates an execution of the protocol with respect to the
adversary (controlling the corrupted parties P1, . . . ,Pd), as well as with respect
to the redundant parties Pd+1, . . . ,Pt (whose shares are redundant with respect
to the shares of the essential parties Pt+1, . . . ,Pn). For each share [s], it keeps
track of shares of the first t parties [s]1, . . . , [s]t that are consistent with the
shares of essential parties [s]t+1, . . . , [s]n (without needing to know the values
of these latter shares). For redundant parties Pd+1, . . . ,Pt, it also keeps track
of the shares [s]′d+1, . . . , [s]

′
t that they actually hold during the simulated pro-

tocol execution (which may not be the same in case the adversary distributed

20

Basic subroutines for Shamir-based t-out-of-n MPC (many parties)

All steps as in the few-party variant, except:

Random shared value: To generate a batch of t + 1 random values [ri], the
parties proceed as follows:

1. Party Pi generates random r′i and inputs it into the multi-party computa-
tion

2. Each party sets ([r1], . . . , [rt+1]) = M ·([r′1], . . . , [r′n])T , with M a (t+1)×n
Vandermonde matrix.

Multiply: To compute [z] = [x] · [y], the parties proceed as follows:

1. The parties generate random doubly shared value ([r], JrK). This is done in
batches of t+ 1 with the following subroutine:

(a) Party Pi generates random r′i and inputs it into the multi-party com-
putation. Parties Pi, Pj (i 6= j) set Jr′iKj ← prng{Pi,Pj} and Pi turns

it into an additive sharing of r′i by setting Jr′iKi = r′i −
∑

j 6=i Jr
′
iKj .

(b) Set ([r1], . . . , [rt+1]) = M · ([r′1], . . . , [r′n])T and (Jr1K , . . . , Jrt+1K) =
M · (Jr′1K , . . . , Jr′nK)T with M a (t+ 1)× n Vandermonde matrix.

2. All Pi compute JsKi = λi · [x]i · [y]i − JrKi and send it to designated Pj

3. Party Pj computes s =
∑

i JsKi and inputs it into the computation
4. Set [z] = [s] + [r]

Fig. 7. Basic subroutines for Shamir-based t-out-of-n MPC (many parties)

Protocol for efficient Shamir-Based actively secure t-out-of-n MPC

Inputs: each party has a respective number of inputs to the MPC

1. (Setup) Set up joint PRNGs between the parties as follows:
(a) Each size-2 subset S ⊂ {P1,P2, . . . ,Pn} sets up a joint PRNG prngS : one

party generates the key and sends it to the other party
(b) (Only for few parties) Each size-(t+1) subset S ⊂ {P1,P2, . . . ,Pn} sets up

a joint PRNG prngS : one party proposes a key, the others echo and check
2. (Function evaluation, including inputs) The parties evaluate the function using

the subroutines from Fig. 6 or Fig. 7 to input values, apply linear operations,
multiply values, and generate secret random values

3. (Verification stage) The parties check that all multiplications [c] = [a] · [b] in
the computation have been performed correctly, in batches ([ai], [bi], [ci])

N−1
i=1 ,

as shown in Fig. 1.
4. (Output reconstruction) The parties open output [y] by opening [y] to each of

the parties as in Fig. 6 (in particular, aborting in case of inconsistencies)

Fig. 8. Efficient Shamir-Based actively secure t-out-of-n MPC

inconsistent sharings). Finally, it keeps track of the additive error ∆s made to
essential shares [s]t+1, . . . , [s]n due to the last layer of multiplications used to
compute it (again, without needing to know the value of s itself).

21

For instance, to simulate input by an honest party: for each corrupted party,
if its share is defined by the PRNG, set [x]i accordingly; otherwise, generate [x]i
randomly and send it to the adversary. For each redundant party, set [x]i = [x]′i
randomly. Set ∆x = 0. In case a corrupted party provides input, for each honest
party (essential or redundant), determine share [x]′i according to the protocol,
i.e., either by generating it from a PRNG or by receiving it from the adversary.
Compute x by reconstructing it from [x]′t+1, . . . , [x]′n, and from this, compute
shares [x]d+1, . . . , [x]t such that together with the essential shares [x]′t+1, . . . , [x]′n
they consistently reconstruct to x. Set ∆x = 0 and provide x to the trusted party.

To simulate multiplication in the few-party variant, simulate the input by
each party as above. After this simulation, we have shares [zj]i consistent with
essential shares (i ∈ [1, t], j ∈ [1, n]); shares [zj]

′
i held by simulated redundant

parties (i ∈ [d + 1, t], j ∈ [1, n]); and values zj input by corrupted parties
(j ∈ [1, d]). Set [z]i =

∑
j [zj]i; [z]′i =

∑
j [zj]

′
i; and ∆z =

∑
j(zj − [x]j [y]j) +∑

j([x]′j [y]′j − [x]j [y]j). Other operations are simulated along similar lines.
To simulate verification, use the simulator from Proposition 1. To simulate

output reconstruction, receive output y from the trusted party. Simulate opening
y to all parties. Send (ct+1, . . . , cn) to the trusted party, where ci = ⊥ iff the
simulated Pi has aborted. Return what the adversary returns.

We need to show that an ideal-world execution with the above simulator is
indistinguishable from a real-world execution with the protocol. As a first step,
we can ignore the use of PRNGs between the honest parties (otherwise we could
distinguish PRNG-generated data from random), as we have been doing implic-
itly. Next, one checks that the basic subroutines are simulated in a statistically
indistinguishable way and preserve the invariants claimed before: namely, that
[x]1, . . . , [x]d are the shares that the adversary would get from following the com-
putation steps;∆x is the error in the value that would be reconstructed by parties
Pt+1, . . . ,Pn; and [x]′d+1− [x]d+1, . . . , [x]′t− [x]t is the deviation from the shares
of Pd+1, . . . ,Pt that would be consistent with the shares from Pt+1, . . . ,Pn. For
the multiplication check, this follows from Proposition 1.

Now, for outputting, if the multiplication check succeeded, we simulate open-
ing the computation result to the value y received from the trusted party. As
argued above, success in the multiplication check means ∆v = 0 for all mul-
tiplications performed in the protocol, so that in the corresponding real-world
execution, [y]t+1, . . . , [y]n are a sharing of the actual function result y. Hence,
both in the real-world and ideal-world executions, the honest parties either abort
or return y. Since we have simulated the adversary in a statistically indistinguish-
able way, also the adversary’s output is statistically indistinguishable between
the real- and ideal-world executions. This completes the proof. ut

A.3 Fairness for Many-Party Lindell-Nof

As remarked, the approach for fairness presented before does not work if there
are many parties. This is because both the advantage of the adversary is ex-
ponential in the number of parties (and so is its computation complexity). As
an alternative, inside the multi-party computation, we can compute an “inner”

22

Shamir sharing [x1], . . . , [xn] of the value x, similarly to [DOS17]. Then, each
party sends it share of [xi], digitally signed, to party Pi. Party Pi checks that
all received shares consistently recombine to one single value (and if this is the
case, it can prove this fact to the others), and aborts if they do not. All of this
is done before the multiplication check so that, in particular, the multiplication
check will not succeed (and hence output reconstruction will not happen) if not
all parties have successfully reconstructed their inner share.

B Security Proof of the SPDZ Preprocessing Protocol

In this section, we define ideal functionality FDeal for SPDZ preprocessing (Sec-
tion B.1), and prove that ΠDeal protocol in Fig. 2 and Fig. 3 securely implements
it (Section B.2). Actually, since we want to use the FDeal in our load-balanced
version of the SPDZ protocol, we describe a generalized FDeal where each party
P1,P2,P3 can play the role of the dealer.

We then show that FDeal is implemented by a “load-balanced version” of the
ΠDeal protocol. In this version, the PRNG setup and MAC key generation are
performed once, but the other steps are performed three times: once for each pair
of parties. Input masks in this setting do not require communication: it is suffi-
cient to just use a the random mask as generated by steps 4a and 4b from Fig. 2
as an input mask for P3, and similarly for the other parties (where the MAC
is additively shared between the three parties). Apart from this, the protocol
without load balancing is just a special case of the load-balanced protocol.

B.1 The FDeal Functionality

The FDeal ideal functionality is shown in Fig. 9. This model is an adaptation
of the normal SPDZ dealer functionality (e.g., [DKL+13,SSW17]) to our setting
where one party knows each generated triple. In the normal functionality, the
trusted party generates MAC keys, multiplication triples, and masks in such a
way the adversary chooses the shares of the corrupted parties, but does not learn
the values. In our case, as usual an adversary controlling one of the recipients of
a triple can choose its shares of preprocessed values; but an adversary controlling
its dealer can choose the values of multiplication triples and masks as long as
they are correct, i.e., the triples contain products, the MACs are correct with
respect to the MAC key, and the mask values correspond to their secret sharings.

B.2 Security Proof for the Preprocessing Protocol

We now show security of the load-balanced version of ΠDeal in Fig. 2 and Fig. 3.
We provide a simulator SDeal that simulates a real-world execution of ΠDeal

with a given adversary A in the ideal-world model with access to the FDeal

functionality. For concreteness, assume that P1 is corrupted by A; as before, re-
place the use of PRNGs between P2,P3 by real randomness in a computationally
indistinguishable way.

23

Multiplication triples (dealer Pk corrupted): To generate multiplication
triple (〈a〉 = (JaK , JαaK), 〈b〉 = (JbK , JαbK), 〈c〉 = (JcK , JαcK)):

– Get JaKi , JaKj , JbKi , JbKj , JcKi from A
– Compute a, b, c = a · b, JcKj = c− JcKi; randomly share JαaK , JαbK , JαcK

Multiplication triples (dealer Pk honest): To generate multiplication triple
(〈a〉 = (JaK , JαaK), 〈b〉 = (JbK , JαbK), 〈c〉 = (JcK , JαcK)):

– Generate random a, b and compute c = a·b. For each sharing JaK, JαaK, JbK,
JαbK, JcK, JαcK: if Pi,Pj are honest, generate random sharing; otherwise,
get corrupted share from A and compute other share

Random mask (dealer corrupted): To generate random mask r known by cor-
rupted Pk and additively shared between Pi,Pj :

– Get r, JαrKk from A
– Generate random shares JrK·, JαrKi, JαrKj reconstructing to r, αr

Random mask (dealer honest): To generate random mask r known by honest
Pk and additively shared between Pi,Pj :

– Generate random r. For r, JαrK: if Pi,Pj are honest, generate random shar-
ing, otherwise, get corrupted shares from A and compute other shares

Functionality FDeal: To deal a given number of multiplication triples and masks:

1. (MAC key generation) Generate random α ∈ Z∗p. For each pair of par-
ties Pi,Pj : if both honest, generate random sharing JαK; otherwise, get

corrupted share JαKi,j from A and compute other one
2. Generate the requested number of multiplication triples and random masks
3. For each honest Pi, receive vi from the adversary. If vi = >, send Pi’s

material (MAC shares JαKi; triple shares J·Ki, Jα·Ki of obtained triples and
J·Kj , J·Kk of dealt triples; random mask shares JrKi, JαrKi and random masks
r) to Pi, else send “abort”

Fig. 9. The FDeal functionality

Simulate Setup by computing shares JαK
1,2
1 , JαK

1,3
1 that P1 gets and providing

these to the trusted party. Also simulate the sampling of s1,2, s1,3.

Simulate the generation of a batch of multiplication triples dealt by cor-
rupted P1, where Pi = P2 and Pj = P3, as follows. For each triple, get JalK2,
JalK3, JblK2, JblK3, JαalK1, JαblK1 from simulating the 4a and 4b subprotocols.
Reconstruct al, bl and set cl = al · bl. Compute JclK3 using the PRNG, receive
JclK2 from the adversary, and reconstruct these values to obtain c′l. Send the
relevant values to the trusted party. Set δcl = c′l − cl. Compute the values
JαalK1 , JαblK1 , JαclK1 that P1 is supposed to send, and set δαal , δαbl , δαcl based
on the values that P1 actually sends. Simulate batchwise multiplication verifica-
tion by computing the values cN+1, . . . , c2N−1 that P1 is supposed to provide,
receiving JcN+1K2 , . . . , Jc2N−1K2 and setting δcN+1

, . . . , δc2N−1
accordingly. Sim-

ulate an abort if any of δc1 , . . . , δc2N−1
is nonzero.

Simulate the generation of a batch of multiplication triples dealt by honest
P2 where Pi = P1 and Pj = P3, as follows. For each triple, simulate gen-
eration of JalK , JblK (subprotocol 4a), and send JalK1, JαalK1, JblK1, JαblK1 to
the trusted party. Generate a random JclK1, send JclK1 − δ1,2 to P1, and send

24

JclK1 to the trusted party. Simulate computing JαclK to get JαclK1 (subproto-
col 4b); send random JαalK2 to the adversary and JαclK1 = JαclK1 + JαalK2
to the trusted party. Simulate batchwise multiplication verification by send-
ing random JcN+1K1 , . . . , Jc2N−1K1 to the adversary, and receiving JA(s1,3)K1,
JB(s1,3)K1, JC(s1,3)K1. Recompute the values that the adversary should have
sent and simulate abort in a mismatch. The case when Pi = P3 and Pj = P1 is
similar.

Simulate the generation of random masks similarly to above, namely, by
recomputing the shares that P1 computes using the PRNG and by simulating
the sending of shares to P1 by sending random values. Send the relevant values
to the trusted party.

Simulate the MAC check in case P1 is the dealer by receiving JαaM Kk and
setting δαaM based on the value that P1 should have sent; and by receiving
value S and setting δS based on the value that P1 should have sent. Simulate
an abort if any δαa1 , . . . , δαaM , δS is nonzero. Simulate the MAC check in case
P1 acts as Pi by providing random JαaM Kk to the adversary; computing JσK1
and S that P1 should have sent; and setting δσ and δS accordingly. Simulate
an abort if δσ or δS is nonzero. Simulate the MAC check in case P1 acts as Pj
by recomputing the value JσK1 that the adversary should compute and sending
JσK· = − JσK1 Simulate the overall execution by following the steps of ΠDeal,
checking which honest parties have aborted, and for them sending vi = ⊥ to the
trusted party; and returning as adversary’s output whatever is returned by the
simulated adversary.

Theorem 2. Let N be an integer and let p > 2N ·2σ. Assuming secure PRNGs,
the load-balanced variant of the protocol in Fig. 2, Fig. 3 securely implements
FDeal with statistical security parameter σ for honest majority.

Proof. In checking that the above simulator simulates a real-world execution
in an indistinguishable way, the most difficult part is to check that a simulated
dealer cannot provide wrong products or MACs for multiplication triples. Indeed,
the other parts follow by inspection. For multiplication triples dealt by P1, note
that the simulator simulates an abort at the first attempt of P1 to deal a batch
of triples with (δc1 , . . . , δc2N−1

) 6= 0. In this first attempt, in the real-world
execution P2,P3 compute A(s2,3), B(s2,3), and C(s2,3) +D(s2,3), where C(x) =
A(x)B(x) and D(x) is such that D(ωi) = δci for i = 1, . . . , 2N−1. Equality holds
if and only if D(s2,3) = 0, and since s2,3 is chosen randomly and independently
from the actions of P1, this happens with probability (2n − 2)/(|Zp| − 2n). So
except with this negligible probability, the real-world leads to an abort by the
honest parties as well. So, if there is a first attempt at cheating, simulation is
indistinguishable (and if there is no attempt at cheating at all then simulation
is of course indistinguishable, too).

If P1 acts as party Pi in triple generation and it provides values JA(s1,3)K1 +
δ1, JB(s1,3)K1 + δ2, JC(s1,3)K1 + δ3 with (δ1, δ2, δ3) 6= 0, then the ideal-world
simulator aborts. In the real world, the adversary chooses δ1, δ2, δ3 independently
from the random values A(s), B(s), and this leads to an abort if the polynomial

25

map (A(s), B(s)) 7→ (A(s) + δ1) · (B(s) + δ2)− (A(s)B(s) + δ3) happens to map
to zero. By the Schwartz-Zippel lemma, this happens with at most the negligible
probability 2/ |Zp|, and otherwise the simulation is indistinguishable. If P1 acts
as party Pj , then indistinguishability is also clear since the adversary receives
correct random shares JA(s3,1)K1 , JB(s3,1)K1 , JC(s3,1)K1, and in both cases the
adversary gets to choose whether or not to make the multiplication check fail.

For the MAC check, first consider the case when P1 is the dealer. In this case,
the value that is opened by the MAC check is σ =

∑
rl(αal+δαal)− ((

∑
rlal)+

δS) ·α =
∑
rlδαal−αδS . In the ideal world, the MAC check fails whenever one of

the δ’s is nonzero. In the real world, the MAC check fails whenever σ 6= 0. Now,
suppose some δal is nonzero. The adversary has chosen the δal ’s independently
from the random coefficients rl used (recall that we replaced the PRNG by
random values before), so by the Schwartz-Zippel lemma, the probability that∑
rlδαal is zero is negligible; and if it is nonzero, the probability that it matches

αδS is negligible as well (since the adversary chooses δS independently from the α
used). On the other hand, if all δal and δS are nonzero, then clearly σ 6= 0 as well.
This settles the indistinguishability in this case. Now, consider the case when P1

acts as Pi. In this case, Pj computes σ =
∑
rlαal−S·JαKi,ji −(S+δS)·JαKi,jj +δσ =

δσ − δS · JαKi,jj . In the ideal world, the MAC check fails whenever one of δσ, δS is
nonzero. In the real world, note that the adversary chooses the δ’s independently
from the JαK

i,j
j used. So, except with negligible probability, the MAC check fails

here as well, again establishing indistinguishability. Finally, if P1 acts as Pj then
indistinguishability is clear since the adversary just receives the share it excepts
and can then choose whether or not to let the MAC check succeed.

Overall, we have given a simulator such that an ideal-world execution with
the simulator gives an indistinguishable result from a real-world execution with
the adversary. Hence, the protocol implements FDeal, as we wanted to show. ut

C The Load-Balanced SPDZ Online Phase

We now provide details of our load-balanced SPDZ online phase, where the mul-
tiplications in the computation are evenly divided between the pairs of parties
in order to evenly divide the preprocessing and online work.

Similarly to the normal SPDZ protocol, we make use of additive secret sharing
to share values. However, unlike in SPDZ, a value x can either be additively
shared either between all three parties (i.e., P1 has JxK1, P2 has JxK2, and P3

has JxK3 such that JxK1 + JxK2 + JxK3 = x); or between any pair of them (in
which case the third share, e.g., JxK3, is ⊥ and JxK1 + JxK2 = x. This reflects the
“load-balanced” nature of the protocol, e.g., multiplication using a multiplication
triple from P1 results in a value shared between P2 and P3. Apart from the value
x itself, also an information-theoretic MAC Jα · xK is secret-shared between the
three parties (this value is always shared between all parties). As a result of our
preprocessing, no individual party knows the MAC key α but this key itself is
additively shared between P1,P2 as JαK

1,2
1 , JαK

1,2
2 , and similarly between P1,P3

and between P2,P3. We write 〈x〉 = (JxK , JαxK) for a shared value with its MAC.

26

C.1 Primitive operations

Operations on such secret-shared values such as addition and multiplication are
performed similarly to SPDZ, except that we take into account that different
operands may be secret-shared between different sets of parties.

To let a party Pi input a value x into the multi-party computation, we
consume a random mask from the preprocessing phase: a random value r that
is known by Pi and secret shared as 〈r〉 = (JrK , JαrK) between the other two
parties Pj ,Pk. Party Pi computes ε = x − r and sends it to one of the other
two parties, say, Pj . This becomes a sharing of x between Pi and Pj by setting

〈x〉i = (r, JαrKi + ε · JαKi,ji); 〈x〉j = (ε, JαrKj + ε · JαKi,jj); 〈x〉k = (⊥, JαrKk).
Alternatively, it can become a sharing of x between Pj and Pk by setting 〈x〉i =

(⊥, JαrKi + ε · JαKi,ji); 〈x〉j = (JrKj + ε, JαrKj + ε · JαKi,jj); 〈x〉k = (JrKk , JαrKk).
To perform linear operations such as addition or multiplication by a con-

stant, apply them directly on the sharings, with the convention that α · ⊥ = ⊥
and x+⊥ = x.

To generate random value 〈r〉, consume three random masks: r1 known by
P1 and secret-shared between the other two; r2 known by P2 and r3 known by
P3, and set 〈r〉 = 〈r1〉+ 〈r2〉+ 〈r3〉.

Finally, to perform a multiplication 〈z〉 ← 〈x〉 · 〈y〉 such that the result
〈z〉 is secret-shared between Pi and Pj , use a multiplication triple (〈a〉 , 〈b〉 , 〈c〉)
for Pi and Pj from the preprocessing phase: i.e., secret shares of values a, b, c
such that c = a · b that are secret-shared between Pi and Pj . First, ε = x − a
is opened to Pi and Pj . This costs one round and two messages if x is shared
between Pi and Pj themselves (they can simply exchange their shares of Jx− aK);
two rounds and two messages if x is shared between one of the parties and Pk
(Pk sends JxKk − JaKj to Pj who sends x − a to Pi); or two rounds and three
messages if x is shared between all three parties (the parties use their PRNGs
to re-randomise JxK; Pk sends its share JxKk to Pi or Pj and they exchange their
shares of Jx− aK). Similarly, ρ = y−b is also opened and 〈z〉 is computed linearly

as 〈z〉i = (ερ+ ε · JbKi + ρ · JaKi + JcKi , ερ · JαK
i,j
i + ε · JαbKi + ρ · JαaKi + JαcKi);

〈z〉j = (ερ + ε · JbKj + ρ · JaKj + JcKj , ερ · JαK
i,j
j + ε · JαbKj + ρ · JαaKi + JαcKj);

〈z〉k = (⊥, 0).
Note that, for multiplication, the number of rounds and messages depends

on how the inputs are shared. In the normal SPDZ case, where the inputs are
shared between the same two parties, we get the normal SPDZ costs: one round
and two messages. We need an extra round for inputs from between different
pairs, and also an extra message for inputs shared between all three parties
(e.g., random values). We expect that normal computations can be partitioned
well into groups of operations that can be assigned to pairs of parties, in which
case few extra messages or rounds will be needed.

C.2 Overall Protocol

The overall online phase of our protocol is given in Fig. 10. First, the pre-
processing phase of the protocol (discussed above) is performed to obtain the

27

Load-Balanced SPDZ-Based 1-out-of-3 MPC

Inputs: each party has a respective number of inputs to the MPC

1. (Preprocessing) The parties perform the preprocessing phase of the protocol,
obtaining the appropriate number of multiplication triples and random masks

2. (PRNG setup) Each pair of parties Pi,Pj sets up joint PRNG prngi,j
3. (Function evaluation, including inputs) The parties evaluate the function using

the described ways to input values, apply linear operations, multiply values,
and generate secret random values

4. (Masked opening) For each value 〈y〉 that needs to be output, the parties take
a random mask r that is known by one of the parties Pk and secret-shared
between the other two parties Pi and Pj , and open the value y + r to Pi and
Pj . (If JyKk 6= ⊥, then Pj ,Pk generate δ ← prngj,k and Pk sends JyKk + δ to
Pi; otherwise, set δ = 0. Pi and Pj then exchange JyKi + JrKi + (JyKk + δ) and
JyKj + JrKj − δ. Finally, Pi,Pj reconstruct y′ := y + r)

5. (MAC check) The parties perform a MAC check on all values a1, . . . , aM that
have been opened to a pair of parties in the protocol (including the y′s above):
(a) Jointly generate a random PRNG seed s (see text)
(b) Sample r1, . . . , rM from the PRNG
(c) Party Pi computes JσKi =

∑
l rl · JαalKi −

∑
l rlal · JαK

i,j
i −

∑
l rlal · JαK

i,k
i ,

where the first sum is over all opened values; the second sum is over values
opened to Pi,Pj ; and the third sum is over values opened to Pi,Pk

(d) The parties securely check that JσK1 + JσK2 + JσK3 = 0 (see text)
6. (Output reconstruction) For value JyK to be output that was opened to Pi,Pj :
Pi and Pj send y′ = y+r to Pk and JrK to each other. Pk sends r to Pi and Pj .
Pi and Pj compute y from y′, r and from y′, JrKi , JrKj . Pk computes y from r

and received y′s. Each party accepts y if the values are consistent, else aborts

Fig. 10. Load-Balanced SPDZ-Based 1-out-of-3 MPC

multiplication triples and random masks needed for the computation. Then, the
computation is performed using the operations discussed above. Finally, the out-
put of the computation is determined, with a MAC checking procedure being
used to guarantee that the output values are correct.

Compared to the original SPDZ protocol, we make two changes to the output
procedure. First, making use of our honest majority setting, we can eliminate one
of the MAC checks that SPDZ does. In SPDZ, first a MAC check is performed
on all intermediate values opened during the protocol; only after this check has
succeeded, the output is reconstructed and a final MAC check is performed on
it. The reason this is done is that reconstructing the output before checking the
intermediate values can leak information. In our honest majority setting, we can
avoid this need for two MAC checks by opening a masked output to two parties,
with the mask known by the third party (line 4). After applying the MAC check
to the masked output, each party determines the unmasked output twice: once
with one party and once with the other. If both are the same then, since one
party is honest, the output must be correct (line 6).

28

Our second change to the output procedure is a modified MAC check. In the
MAC check, the parties check the correctness of each opened value a essentially
by comparing the additive shares JαaK of the MAC to a times their additive
shares JαK of the MAC key. The normal MAC check [DKL+13] is between two
parties that both know a number of reconstructed values and have an additive
sharing of their MACs; in our case, two of the three parties know the recon-
structed values but the MAC is shared between three parties. We modify the
procedure so that still, all reconstructed values can be opened in a single check
(line 5).

Apart from this modification, we also modify the methods used in the MAC
check to jointly sample a random PRNG seed and fairly exchange a number
of values that supposedly add up to zero. In the SPDZ protocol, both are done
with a commitment scheme, but in our honest majority setting, we can essentially
replace this with secret sharing. In particular, to jointly sample a random PRNG
seed, each pair of parties Pi,Pj generates si,j ← prngi,j and both send it to
the third party. All parties abort if they receive any inconsistent values, and
otherwise set s := s1,2⊕ s1,3⊕ s2,3. To fairly exchange the values JσK1, JσK2 and
JσK3, the parties first secret-share their values: party P1 additively shares JσK1
between P2,P3 as shares Jσ1K2 and Jσ1K3, and similarly for P2 and P3. Then,
P1 sends (σ1 + Jσ3K1) to P2 and (σ1 + Jσ2K1) to P3; P2 sends (σ2 + Jσ3K2) to P1

and (Jσ1K2 + σ2) to P3; and P3 sends (Jσ2K3 + σ3) to P1 and (Jσ1K3 + σ3) to P2.
Finally, P1 computes σ as σ1 +(σ2 + Jσ3K2)+ Jσ3K1 and σ1 + Jσ2K1 +(Jσ2K3 +σ3)
and aborts if they are different or nonzero. Similarly for P2,P3.

C.3 Security proof

We now prove security of the protocol. We prove that the protocol is secure
in the FDeal-hybrid model; by applying the [Can00] composition theorem, we
obtain that the protocol together with the dealer protocol securely computes f .

We present an ideal-world simulator simulating a real-world protocol execu-
tion in the presence of an adversary A actively corrupting one party, say, P1.
The simulator interacts with the trusted party and simulates calls to FDeal with
respect to A. Moreover, for each sharing JxK it keeps track of the shares of the
corrupted party, and for each opened value x it keeps track of the simulated
opened value and the error ∆x introduced to this value by the adversary.

To simulates the adversary’s call to FDeal, receive the information that the
adversary provides: MAC shares JαK1, JαK1; dealt multiplication triple shares
JaK2, JaK3, JbK2, JbK3, JcK2; received multiplication triple shares JaK1, JbK1, JcK1,
JaK1, JbK1, JcK1, JαaK1, JαbK1, JαcK1; dealt random masks r, JαrK1; and received
random masks JrK1 , JαrK1. Also, receive instructions on whether to provide the
preprocessed data to the honest parties P2,P3; if not, simulate an abort.

To simulate input x by P1, receive ε from A, compute x = ε + r based on
pre-dealt value r and provide x to the trusted party. To simulate input x by
a honest party for which the corrrupted party is supposed to receive a value
ε, generate random ε and send it to A. In both cases, compute share JxK of
the corrupted party. To simulate linear operations, compute corrupted share JzK

29

locally. To simulate multiplication, simulate opening of ε = x− a and ρ = y− b:
compute what the corrupted party should have sent, and set errors ∆ε, ∆ρ based
on the values actually sent. Send random values for the honest parties.

To simulate a MAC check on opened values a1, . . . , aM , simulate obtaining a
random seed s (details left out because of space). Generate coefficients r1, . . . , rM
using the PRNG with seed s. Abort if ∆ai 6= 0 for some ai but

∑
riai = 0. If

∆ai 6= 0 for some ai, generate random nonzero σ, otherwise, set σ = 0. Simulate
the secure check whether JσK1 + JσK2 + JσK3 (details left out because of space)
and abort the simulation if σ 6= 0 but σ 6= 0 but σ +∆σ = 0.

To simulate output where Pk = P1, simulate opening y′ to P2,P3, giving
error ∆y′ , and simulate the MAC check as above. Receive output y from the
trusted party, compute y′ = y + r and send it to the adversary on behalf of
P2,P3. Check whether A provides correct r on behalf of P1 and, based on this,
instruct the trusted party on whether or not to provide output to P2,P3.

To simulate output where Pi = P1 and e.g. Pj = P2, generate random y′

and simulate opening to that value, giving error ∆y′ , and simulate the MAC
check as above. Receive y from the trusted party, and send values r, JrK such
that y+ r = y+ JrK1 + JrK2 = y′. Receive values from A on behalf of the honest
parties and instruct the trusted party on whether to provide output to the honest
parties based on whether or not the adversary provides the expected values.

Theorem 3. Let N be an integer, and let f be a function given by an arithmetic
circuit over Zp, where p > 2σ. Assuming secure PRNGs, the protocol in Fig. 10
securely computes f with statistical security parameter σ for honest majority in
the FDeal-hybrid model.

Proof. We have to show indistinguishability of the joint honest and adversarial
outputs between the real-world and ideal-world executions.

For the computation itself (i.e., input, linear operation, multiplication, and
output), observe that we can indeed simulate all exchanged values by random
values. For input, exchanged value x − r is random to P1 because the random
mask r. For multiplication, when opening x− a and y− b, this is by inclusion of
the uniformly random value JaK·; if the input is additionally shared between the
three parties, this is because JxKk is masked by random δ, and the other values
contain the uniformly random value JaK·. Similarly, for outputting, as a result
of masks δ and JrKi we can simulate the exchanged values by random values.

Now, consider the MAC check. Recall that the ideal-world simulator aborts
if ∆ai 6= 0 for some ai but

∑
riai = 0. Suppose the adversary can let this

happen with probability at least 1/|Zp| + µ(κ), where µ is nonnegligible in the
security parameter. Note that if the coefficients ri are generated uniformly at
random, the probability that the simulator fails is 1/|Zp|. This is because the
mapping (r1, . . . , rM) 7→

∑
i ri∆ai = 0 is a nonzero linear mapping which has

a null space of dimension M − 1, so randomly generated coefficients have prob-
ability |Zp|M−1/ZMp = 1/|Zp| of ending up in the null space. Hence, we can
make a distinguisher for the PRNG by receiving coefficients r1, . . . , rM gener-
ated either uniformly at random or from the PRNG; simulating the protocol

30

to obtain ∆a1 , . . . ,∆aM and outputting whether
∑
i ri∆ai = 0. Since the ad-

versary chooses ∆ai independently of the seed generated in the protocol, the
distinguisher has advantage µ(κ), contradicting security of the PRNG. So from
now on, we can assume that ∆ai 6= 0 for all i if and only if

∑
ri∆ai = 0.

Now, in the real-world execution, the value opened by the MAC check is
σ =

∑
rlαal −

∑
rl(al + ∆al)α + ∆σ = ∆σ − α

∑
rl∆al . Since the adversary

does not have any information about α, α
∑
rl∆al can be simulated by a random

nonzero value if any ∆ai 6= 0 or by zero otherwise, as happens in the simulation.
Also, in both the real-world and ideal-world simulation, fair opening to σ +∆σ

is simulated. Now, the ideal-world simulator aborts if σ 6= 0 but σ + ∆σ = 0.
Note that, since the adversary has to choose ∆σ completely independently from
σ, this happens with negligible probability. Hence also this second failure of the
ideal-world simulator happens only with negligible probability, so actually, the
simulator provides an indistinguishable simulation of the MAC check.

We have established so far that the simulator simulates protocol execution
with respect to the adversary in an indistinguishable way. Moreover, the honest
parties return the output given by the real-world protocol (i.e., they do not
abort) if and only if they return the output computed by the trusted party in
the ideal-world simulation. Now, note that the parties provide an output in the
simulation only if δa = 0 for all values a opened during the computation (during
multiplication and output). But in this case, the adversary has not introduced
any errors into the computation, hence the values output by the honest parties in
the real-world protocol execution are equal to function result, which is what the
trusted party computes and the honest parties return in the ideal-world protocol
execution. This concludes the proof. ut

31

	Minimising Communication in Honest-Majority MPC by Batchwise Multiplication Verification

