
CONJUGACY SEPARATION PROBLEM IN BRAIDS:

AN ATTACK ON THE ORIGINAL COLORED BURAU KEY

AGREEMENT PROTOCOL

MATVEI KOTOV, ANTON MENSHOV, ALEXEY MYASNIKOV,
DMITRY PANTELEEV, AND ALEXANDER USHAKOV

Abstract. In this paper, we consider the conjugacy separation search
problem in braid groups. We deeply redesign the algorithm presented
in [18] and provide an experimental evidence that the problem can be
solved for 100% of very long randomly generated instances. The lengths
of tested randomly generated instances is increased by the factor of two
compared to the lengths suggested in the original proposal for 120 bits
of security.

An implementation of our attack is freely available in CRAG, [6].
In particular, the implementation contains all challenging instances we
had to deal with on a way to 100% success. We hope it will be useful
to braid-group cryptography community.

Keywords. Algebraic eraser, braid group, colored Burau presentation,
conjugacy problem, conjugacy separation, key agreement, cryptography.
2010 Mathematics Subject Classification. 03D15, 20F65, 20F10.

1. Introduction

The Anshel–Anshel–Goldfeld–Lemieux key agreement protocol (or col-
ored Burau KAP, CBKAP, see [2]) was proposed to be used on low-cost
platforms that constraint the use of computational resources. The core of
the protocol is the concept of an Algebraic EraserTM(abbreviated AE) which
was claimed to be a suitable primitive for use within lightweight cryptogra-
phy. The AE primitive is based on an idea of using an action of a semidirect
product of groups on a (semi)group to obscure involved algebraic structures.
The underlying motivation for CBKAP is the need to secure networks that
deploy Radio Frequency Identification (RFID) tags used for identification,
authentication, tracing and point-of-sale applications.

1.1. Previous attacks. There are three attacks on CBKAP. The attack
described in [18] was designed to solve the conjugacy separation problem for
public data generated by the third trusted party (TTP) for Alice and Bob.
Breaking the data generated by TTP allows to use a linear algebra attack
to find the shared key as described in [2, Section 6]. The attack worked for

Date: May 22, 2018.
The second author was supported by Russian Science Foundation (project N16-11-

10002).
1

relatively short keys and failed for the parameters suggested for practical
use.

KTT attack [11] used linear algebra and attempted to determine a part
of the private key data. According to [10] KTT just described a class of
weak keys, that would not be used and by choosing the private key data in
a specific way, this attack can be defeated.

Recently, the paper [5] improved the KTT attack. The new attack recon-
structs the shared secret using all of the public information and performing a
large precomputation. It is claimed in [3] that time complexity necessary for
the attack to complete grows very fast for appropriately chosen parameters.

1.2. Our contribution. In this paper we deeply revise the attack proposed
in [18] that operated based on geodesic-braid approximation only. We use
ideas of geometric and computational group theory to defeat the TTP algo-
rithm and solve the related conjugacy separation problem with 100% success
rate for instances twice as long as originally proposed instances. Our algo-
rithm does not use any specific assumptions on the given input except those
described in the original paper [2].

2. Preliminaries: group of braids

In this section we follow the exposition of [17, Section 5.1]. A braid is
obtained by laying down a number of parallel pieces of strands and inter-
twining then, without loosing track of the fact that they run essentially in
the same direction. In our pictures the direction is horizontal. We number
strands at each horizontal position from the top down. See Figure 1 for
example.

1

2

3

4

Figure 1. A 4-strand braid.

If we put down two braids u and v in a row so that the end of u matches
the beginning of v we get another braid denoted by uv, i.e., concatenation
of n-strand braids is a product. We consider two braids equivalent if there
exists an isotopy between them, i.e., it is possible to move the strands of
one of the braids in space (without moving the endpoints of strands and
moving strands through each other) to get the other braid. We distinguish
a special n-strand braid which contains no crossings and call it a trivial
braid. Clearly the trivial braid behaves as left and right identity relative to
the defined multiplication. The set Bn of isotopy classes of n-strand braids
has a group structure, because if we concatenate a braid with its mirror
image in a vertical plane the result is isotopic to the trivial braid.

2

x1 x2 x3 x1 x2 x3
-1-1 -1

Figure 2. Generators of B4 and their inverses.

~~ ~~

x1 x2x3 x1x3 x1 x1 x2x1x2

Figure 3. Typical relations in braids.

Each braid is uniquely defined by a sequence of strand crossings. A cross-
ing is called positive if the front strand has a positive slope, otherwise it is
called negative. There are exactly n− 1 crossing types for n-strand braids,
we denote them by x1, . . . , xn−1, where xi is a positive crossing of ith and
i+ 1st strands. See Figure 2 for an example for B4. Since, as we mentioned
above, any braid is a sequence of crossings, the set {x1, . . . , xn−1} generates
Bn. It is easy to see that crossings x1, . . . , xn−1 are subject to the relations

[xi, xj] = 1

for every i, j such that |i− j| > 1 and

xixi+1xi = xi+1xixi+1

for every i such that 1 ≤ i ≤ n− 2. The corresponding braid configurations
are shown in Figure 3. It is more difficult to prove that these two types of
relations actually describe the equivalence on braids, i.e., the braid group
Bn has the following (Artin) presentation:

Bn =

〈
x1, . . . , xn−1

∣∣∣∣ xixjxi = xjxixj if |i− j| = 1
xixj = xjxi if |i− j| > 1

〉
.

A word w = w(x1, . . . , xn−1) in the generators of Bn and their inverses is
called a braid word. Length |w| of a braid word w is the number of letters
in w.

From this description, one easily sees that there are many pairs of com-
muting subgroups in Bn, which makes it possible to use Bn as the platform
group for protocols. For example, Ko, Lee et al. [14] used the following two
commuting subgroups: Ln = 〈x1, . . . , xdn

2
e−1〉 and Un = 〈xdn

2
e+1, . . . , xn−1〉.

3

2.1. Dehornoy handle-free form. Let w be a word in generators of Bn.
An xi-handle is a subword of w of the form

x−εi w(x1, . . . , xi−2, xi+1, . . . , xn)xεi ,

where ε = ±1. Schematically, an xi-handle can be shown as in Figure
4. An xi-handle x−εi wxεi where w = w(x1, . . . , xi−2, xi+1, . . . , xn) is called

xi xi
-1

Figure 4. A handle.

permitted if w does not contain xi+1-handles. We say that the braid word
v′ is obtained from the braid word v by a one step handle reduction if some
subword of v is a permitted xi-handle x−εi wxεi and v′ is obtained from v by

applying the following substitutions for all letters in a handle x−εi wxεi :

x±1
j →

1 if j = i,
xεi+1x

±1
i xεi+1 if j = i+ 1,

x±1
j if j < i or j > i+ 1.

Schematically, a reduction of an xi-handle can be shown as in Figure 5. We

Figure 5. Removing a permitted xi-handle.

say that the braid word v′ is obtained from the braid word v bym step handle
reduction if there exists a sequence of m + 1 words v = v0, v1, . . . , vm =
v′ each of which is obtained from the previous one by a one step handle
reduction. A braid word is called handle-free if it contains no handles. The
next theorem describes the main properties of handle reduction.

Theorem ([7]). Let v be a braid word. The following holds:
4

• Any sequence of handle reductions applied to v eventually stops and
produces a handle-free braid word v′ (which in general depends on
a particular sequence of reductions) representing the same element
of the braid group as v.
• The word v represents identity of a braid group if and only if any

sequence of handle reductions applied to v produces the trivial word.

Remark 2.1 (Complexity estimates). Even though the handle reduction
procedure in practice is very efficient and most of the time works in linear
time in terms of the length of a braid word, there is no good theoretical
complexity estimate. For more on strategies for handle reduction and the
the related discussion on complexity issues see [8, Section 3.3].

2.2. Garside normal form. The group Bn has a cyclic center generated
by the element ∆2, where ∆ is the element called the half twist and can be
expressed in the generators of Bn as follows:

∆ = (x1 . . . xn−1) · (x1 . . . xn−2) · . . . · (x1).

Any element g ∈ Bn can be uniquely represented in the form

∆pξ1 . . . ξp

where ξ1, . . . , ξp are permutation braids satisfying certain conditions, called
the left Garside normal form. For more detail see [9, Chapter 9].

2.3. Geodesic braid approximation. Let w be a word in generators of
Bn. The problem of computing a geodesic word for words in B∞ is known
to be NP-complete (see [19]). It is known however (see e.g. [20, 12, 13]) that
many NP-complete problems have polynomial time generic- or average-case
solutions or have good approximate solutions.

The following algorithm tries to minimize the given braid word. It exploits
the property of Dehornoys form that for a “generic” braid word w one has
|D(w)| < |w|.

Algorithm 2.2 (Braid Minimization).
Input. A word w = w(x1, . . . , xn−1) in generators of the braid group Bn.
Output. A word w′ such that |w′| ≤ |w| and w′ = w in Bn.
Initialization. Put w0 = w and i = 0.
Computations.

(1) Increment i.
(2) Put wi = D(wi−1).
(3) If |wi| < |wi−1| then:

(a) Put wi = w∆
i

(b) Goto (1).
(4) If i is even then output w′ = w∆

i+1.
(5) If i is odd then output w′ = wi+1.

The method was introduced in paper [15, 16] where it was successfully
used to break protocols [1, 14].

5

2.4. Colored Burau group. Fix a prime p and denote by Rn be the ring
of Laurent polynomials in n variables {t1, . . . , tn} with coefficients in Fp. Let
GLn(Rn) be the group of invertible matrices over Rn. The symmetric group
Sn naturally acts on GLn(Rn) by permuting the variables {t1, . . . , tn}. The
result of action of σ ∈ Sn on M ∈ GLn(Rn) is denoted by Mσ. Recall that
a semidirect product of GLn(Rn) and Sn is a group

GLn(Rn) o Sn = {(M,π) |M ∈ GLn(Rn) and π ∈ Sn},

equipped with the operation

(M1, σ1) · (M2, σ2) = (M1M
σ1
2 , σ1σ2).

Define n− 1 n× n-matrices over polynomials in variables t = {t1, . . . , tn}:

C1(t1) =

 −t1 1 0
0 1 0
0 0 In−2

 and Ci(ti) =

Ii−2 0 0 0 0

0 1 0 0 0
0 ti −ti 1 0
0 0 0 1 0
0 0 0 0 In−i−1

for 2 ≤ i ≤ n− 1.

Lemma. A map ϕ on the generators x1, . . . , xn−1 of Bn:

xi
ϕ7→ (Ci(ti), πi),

where πi = (i, i+ 1) ∈ Sn, extends into a group homomorphism.

The group 〈(C1(t1), π1), . . . , (Cn−1(tn−1), πn−1)〉 is called the colored Bu-
rau representation of Bn and is denoted by CBn.

2.5. Action of CBn on a certain finite set. Fix n nontrivial elements
τ1, . . . , τn ∈ Fp termed t-values and define a group homomorphism

ε : GLn(Rn)→ GLn(Fp),

that for each i replaces ti with the value τi. For (m,σ) ∈ GLn(Fp)×Sn and
(C, ρ) ∈ CBn define

(m,σ) ? (C, ρ) = (m · ε(Cσ), σρ),

which defines an action of CBn on GLn(Fp) × Sn and, hence, an action of
Bn on GLn(Fp)×Sn. We say that (m1, t1) and (m2, t2) in CBn ?-commute
if the equality

(ε(m1), s1) ? (m2, s2) = (ε(m2), s2) ? (m1, s1)

holds.
6

3. The protocol

Before the parties perform actual transmissions the following data is being
prepared by the Third Trusted Party (TTP).

• A matrix m0 ∈ GLn(Fp) which has an irreducible characteristic
polynomial over Fp. The choice of m0 is not relevant for the purposes
of this paper, we refer the reader to [2] for more information on how
m0 can be generated randomly.
• ?-commuting subgroups A = 〈w1, . . . , wγ〉 and B = 〈u1, . . . , uγ〉 of

the group CBn. We want to point out that the elements wi and
vj are given to us as products of generators of CBn and there in-
verses, i.e., as formal words in group alphabet {g1, . . . , gn−1}. We
prefer this form because it allows us to avoid time consuming matrix
multiplication in GLn(Rn).

Both the matrix m0 and subgroups A and B can be chosen only once. Now,
the public and private keys are chosen as follows:
Alice’s Private Key: is a pair which consists of a matrix of the form

na = l1m
α1
0 + l2m

α2
0 + . . .+ lrm

αr
0 ∈ GLn(Fp)

(where l1, . . . , lr ∈ Fp and r, α1, . . . , αr ∈ Z+) and a random sequence
wε1i1 , . . . , w

εm
im

of generators of A and their inverses.
Alice’s Public Key: is an element

Apublic = (na, id) ? wε1i1 ? . . . ? w
εm
im
∈ GLn(Fp)× Sn.

Recall that each wik is given as a formal product of the generators of G. To
perform the ?-operation efficiently one should not directly compute wik , but
consequently apply the factors of wik to the argument.
Bob’s Private Key: is a pair which consists of a matrix of the form

nb = l′1m
β1
0 + l′2m

β2
0 + . . .+ l′r′m

βr′
0 ∈ GLn(Fp)

(where l′1, . . . , l
′
r′ ∈ Fp and r′, β1, . . . , βr′ ∈ Z+) and a random sequence

vδ1j1 , . . . , v
δl
jl

of generators of B and their inverses.
Bob’s Public Key: is a pair

Bpublic = (nb, id) ? vδij1 ? . . . ? v
δl
jl
∈ GLn(Fp)× Sn.

Again, each vjk is given as a formal product of the generators of CBn. To
perform the ?-operation efficiently one should not directly compute vjk , but
consequently apply the factors of vjk to the argument.
The shared key: is an element of GLn(Fp)× Sn obtained by Alice in the
form

[(na, id) ·Bpublic] ? wε1i1 ? . . . ? w
εm
im

and by Bob in the form

[(nb, id) ·Apublic] ? vδij1 ? . . . ? v
δl
jl
.

It requires a little work to prove that the obtained elements are indeed equal
in GLn(Fp). We omit the proof.

7

3.1. TTP algorithm. The cornerstone part of the proposed key exchange
is the choice of ?-commuting subgroups of the group CBn. For that one
can generate commuting subgroups A and B in Bn and map them into CBn
using the epimorphism ϕ defined in Section 2.4. The subgroups ϕ(A) and
ϕ(B) commute. Moreover, for any choice of ε the subgroups ϕ(A) and ϕ(B)
?-commute.

Since ∆2 is a central element, it follows that elements u,w commute in
Bn if and only u∆2p and w∆2r do (for any p, r ∈ Z). Hence, we may
always assume that the normal forms of the generators {w1, . . . , wγ} and
{v1, . . . , vγ} have the exponent on ∆ equal to 0 or −1. When we say that
we reduce a braid modulo ∆2 we mean changing the ∆-power of its Garside
normal form to−1 or 0 depending on parity. The algorithm below (originally
proposed in [2]) generates two commuting subgroups in Bn.

Algorithm 3.1. (TTP algorithm)

(1) Choose two secret subsets BL = {xl1 , . . . , xlα}, BR = {xr1 , . . . , xrβ}
of the set of generators of Bn, where |li − rj | ≥ 2 for all 1 ≤ i ≤ lα
and 1 ≤ j ≤ rβ.

(2) Choose a secret element z ∈ Bn.
(3) Choose words {w1, . . . , wγ} of bounded length over the generators

BL.
(4) Choose words {v1, . . . , vγ} of bounded length over the generators BR.
(5) For each i = 1, . . . , γ:

(a) calculate the left normal form of zwiz
−1 and reduce the result

modulo ∆2;
(b) put w′i to be a braid word corresponding to the element calculated

in (a);
(c) calculate the left normal form of zviz

−1 and reduce the result
modulo ∆2;

(d) put v′i to be a braid word corresponding to the element calculated
in (c).

(6) Publish the sets {v′1, . . . , v′γ} and {w′1, . . . , w′γ}.

TTP algorithm produces generators of two commuting subgroups in Bn.
Alice and Bob apply epimorphism ϕ (defined in Section 2.4) to obtain ?-
commuting subgroups.

3.2. Security assumptions. It was noticed in [2] that if the conjugator
z generated randomly by the TTP algorithm is known, then there exists
an efficient linear attack on the scheme which is able to recover the shared
key of the parties. The problem of recovering the exact z seems like a very
difficult mathematical problem because it reduces to solving the system of

8

equations

(1)

w′1 = ∆2p1zw1z
−1

. . .
w′γ = ∆2pγzwγz

−1

v′1 = ∆2r1zv1z
−1

. . .
v′γ = ∆2rγzvγz

−1

which has too many unknowns, since only left hand sides (i.e., elements
w′1, . . . , w

′
γ , v′1, . . . , v

′
γ) are known. Hence, it might be difficult to find the

original z.
It was noticed in [18] that one does need to use exactly the same z to

apply the linear attack [2, Section 6]. In fact, any solution z′ of the problem
stated below plays a role of a conjugator z.

Simultaneous conjugacy separation search problem in Bn (SCSSP).
For tuples {v′1, . . . , v′γ} and {w′1, . . . , w′γ} find any z′ ∈ Bn and

p1, . . . , pγ , r1, . . . , rγ ∈ Z
such that the words

{∆2p1z′−1v′1z
′, . . . ,∆2pγz′−1v′γz

′}
and

{∆2r1z′−1w′1z
′, . . . ,∆2rγz′−1w′γz

′}
can be expressed as words over two disjoint commuting subsets of generators
of Bn.

SCSSP has little in common with the simultaneous conjugacy search prob-
lem often referenced in the papers on the braid group cryptography. The
main difference is that in the conjugacy search problem both conjugate ele-
ments are available and the goal is to recover the secret conjugator. In case
of SCSSP, only the left hand side of the equation is known. The problem
was analyzed in [18] with some limited success.

4. The attack

In this paper we improve the results of [18]. The original form of the attack
is deeply revised to work for very long keys. We updated all key components
to achieve 100% success rate on the tested instances of the protocol. We
also introduced several new components. The new attack works as follows
for the given instance {v′1, . . . , v′γ}, {w′1, . . . , w′γ} of the separation problem:

(1) Multiply each word in the tuples {v′1, . . . , v′γ}, {w′1, . . . , w′γ} by an

anticipated ∆2-power. See Section 4.2 for more detail.
(2) Enumerate conjugates of the instance {v′1, . . . , v′γ}, {w′1, . . . , w′γ} us-

ing length-based heuristic:
(a) On each iteration pick an unchecked instance of the least total

length.
9

(b) Conjugate the instance by all generators x±1
i of Bn and save

new instances (see Sections 4.3 and 4.4).
(c) Termination condition (see Section 4.1):

• Claim success if separated tuples are found.
• Accept failure when can not find separated tuples in an

allocated time (set to 12 hours in our experiments).
(d) If stuck (20 iterations with no length decrease):

• Apply ∆-fix if it is applicable. (see Section 4.5).
• If not, then restart enumeration of conjugates (see Section

4.6).

Below we describe each component of the attack in detail.

4.1. Termination condition. We say that tuples {v1, . . . , vγ} and {w1, . . . , wγ}
are separated if the letters involved in v1, . . . , vγ and the letters involved in
w1, . . . , wγ commute. One can compute the number of occurrences of each
letter in each words and output the result as a table (with the total length
on the right), below is an example for B8 with γ = 3:

v1: [34. 52. 34. 0. 0. 0. 0.] -> 120

v2: [33. 70. 33. 0. 0. 0. 0.] -> 136

v3: [36. 46. 46. 0. 0. 0. 0.] -> 128

w1: [0. 0. 0. 0. 28. 53. 39.] -> 120

w2: [0. 0. 0. 0. 21. 43. 36.] -> 100

w3: [0. 0. 0. 0. 36. 52. 28.] -> 116

It is clear that the tuples with a table as above are separated. Clearly, the
program can declare success and stop when it gets an instance with two
separated tuples.

Unfortunately, this condition turned out to be weak for tuples of long
braid words. We apply braid-minimization to each word that often fails to
remove some letters even when those letter can be removed. The original
attack often was stuck with tuples of the following form:

v1: [0. 0. 0. 0.150.241.157.] -> 548

v2: [0. 0. 0. 0.168.199.125.] -> 492

v3: [0. 0. 0. 0.147.230.153.] -> 530

w1: [139.226.133. 0. 0. 0. 0.] -> 498

w2: [120.245.160. 3. 0. 0. 0.] -> 528

w3: [133.212.151. 0. 0. 0. 0.] -> 496

where the words appear to be “almost separated” with an exception of
a single braid word w2. But, experimenting with braid-minimization we
noticed the following:

• Dehornoy handle-free form D(w) “favors” cancellations of lower-
indexed letters in w;

10

• Dehornoy handle-free form ∆D(∆−1w∆)∆−1 “favors” cancellations
of higher-indexed letters in w.

Our new termination condition uses this observation and checks if the fol-
lowing two conditions hold:

• {D(v1), . . . , D(vγ)} and {∆D(∆−1w1∆)∆−1, . . . ,∆D(∆−1wγ∆)∆−1}
are separated;
• {D(w1), . . . , D(wγ)} and {∆D(∆−1v1∆)∆−1, . . . ,∆D(∆−1vγ∆)∆−1}

are separated.

4.2. Initial ∆2-power guess. Each word v′i = ∆2pizviz
−1 [and wi’ resp.]

is obtained from zviz
−1 [zwiz

−1’ resp.] by multiplying it by a ∆2-power.
The initial step in our attack is an attempt to reconstruct the original values
pi and ri.

There are several tools available for this task. The original paper [18]
used a length-aided heuristic to find the value of the dropped ∆2-power in
vi’s and wi’s. Our new attack uses abelianization of Bn instead. Abelian-
ization can be computed in linear time which is a huge advantage over
braid-minimization. Recall that abelianization of Bn is a homomorphism

α : Bn → Bn/B
′
n = 〈x1, . . . , xn−1 | x1 = . . . = xn−1〉 ' Z,

that in a given braid-word w counts the number of positive letters minus
the number of negative letters. Observe that:

• α(∆2) = n(n− 1).
• α(∆2pzwz−1) = pn(n− 1) + α(w).
• The expected value of the abelianization value is:

E(|α(w)|) ≈
√
|w|,

for a randomly uniformly generated braid-word w.

For instance, if n = 16 and |w| = 1000 we get E(|α(w)|) ≈ 33 and α(∆2pzwz−1) =
240 · p + α(w), which is a sum of the value α(w) (expected to be relatively
small) and a multiple of 240.

Using the observation above, it is natural to define an anticipated ∆2-
power for w′i (and, similarly, for v′i) to be the number p′i that minimizes the
value of the abelianization |pn(n+ 1) +α(w′i)|. Hence, the initial step of the
attack performs the following:

• Compute p′i ∈ Z that minimizes the value |p′in(n + 1) + α(w′i)| and

multiply w′i by ∆2p′i .
• Compute r′i ∈ Z that minimizes the value |r′in(n + 1) + α(v′i)| and

multiply v′i by ∆2r′i .

This procedure works as expected when |α(w′i)|, |α(v′i)| ≤ 1
2n(n − 1). Oth-

erwise it produces a slightly incorrect value (fixed as described in Section
4.5). The chance that the above inequality holds is higher for large values
of the rank n.

11

4.3. Producing new instances. On each iteration the program chooses an
unchecked instance {w1, . . . , wγ} and {v1, . . . , vγ} of the least total length.

The instance is conjugated by generators and their inverses x±1
1 , . . . , x±1

n−1:

{x±1
i w1x

∓1
i , . . . , x±1

i wγx
∓1
i }, {x

±1
i v1x

∓1
i , . . . , x±1

i vγx
∓1
i },

to produce new equivalent instances of the conjugacy separation problem.
The obtained words are minimized using braid-minimization and new in-
stances are saved as unchecked.

4.4. Fast descend for long conjugators z. Each iteration applies braid-
minimization to 2γ · 2(n − 1) braid words (number of words in an instance
times the number of generators and their inverses). For instance, if γ = 10,
n = 16, and |vi| = |wi| = |z| ≈ 1000, then each iteration applies braid-
minimization to 600 words of length at least 1000 which is very time con-
suming. A heuristic search procedure that conjugates an instance by a single
generator is expected to take at least |z| ≈ 1000 steps to reach the answer.

To make search more efficient we use the following trick. For an instance
{w1, . . . , wγ} and {v1, . . . , vγ} we take the terminal segment x of w1 of length
|w1|/10, conjugate by x and add a new instance {xw1x

−1, . . . , xwγx
−1} and

{xv1x
−1, . . . , xvγx

−1} to the set of unchecked instances. This approach often
decreases the total length of the instance by as much as 10–20% on several
iterations in the beginning of heuristic descend.

4.5. Fixing wrong ∆2-powers. As we mentioned in Section 4.2, the initial
∆2-power guess can produce an incorrect value and we do not have any
tools to immediately recognize the mistake. Fortunately, we can recognize
the problem deep inside our enumeration of conjugate instances. But first
we need to introduce concepts of a crossing number and tuples separated
modulo ∆2.

Recall that the crossing number cij of ith and jth strands in a braid w is
the algebraic number of positive crossings of ith and jth strands minus the
negative number of crossings of the same strands. The next lemma allows
to find the value p in a braid of the form w∆2p, where w ∈ 〈x1, . . . , xk〉, by
observing the crossing numbers. Its proof is trivial.

Lemma 4.1. If w ∈ 〈x1, . . . , xk〉, then for w∆2p we have:

(2) cij = 2p for every 1 ≤ i ≤ n and every j ≥ k + 2.

We say that tuples {v1, . . . , vγ} and {w1, . . . , wγ} are separated modulo
∆2 if

vi = ∆2piv∗i and wi = ∆2riw∗i ,

where {v∗1, . . . , v∗γ} and {w∗1, . . . , w∗γ} are separated tuples. Experimenting
with the program, we noticed that length-based search of the conjugator
achieved its goal even when ∆2-powers of some words are incorrect, i.e., the
length-based heuristic separated the tuples modulo ∆2. That allows to use
the formula (2) and reconstruct the original ∆2-powers.

12

This behavior is not surprising since ∆2 is a central element. Multipli-
cation of a word in an instance by ∆2 and conjugating the instance by a
generator are commuting actions, which means that recovery of ∆2-powers
and finding a secret conjugator can be performed in any order.

4.6. Restarting enumeration of conjugates. Testing the program we
found several special instances with correct ∆2-powers that could not be
minimized any further and did not produce separated tuples. Letter-distribution
for those examples looked as in the example below:

[8. 8.192.291.186. 9. 4.] -> 698

[6. 7.194.262.193. 9. 5.] -> 676

[0. 0.196.290.168. 0. 0.] -> 654

[4. 7.173.280.192. 15. 5.] -> 676

[4. 7. 10. 10.163.283.219.] -> 696

[4. 7. 10. 10.173.252.204.] -> 660

Letters in the first tuple concentrate in the middle instead of being concen-
trated on the left or on the right. (Also, we have wrong values of ∆2-powers
in the example above.) This type of distribution could be obtained by con-
jugating the instance by δ (the fundamental braid in Birman-Ko-Lee form).

To solve those instances our current implementation aborts computation,
conjugates the best obtained instance by a random word of length 500, and
starts enumeration of conjugates again.

4.7. Parallel computations. The attack described above operates on tu-
ples of braids. Most stages of the attack can be easily parallelized using
basic tools of the standard C++ library. For instance, the attack per-
forms numerous conjugations of tuples by generators the of Bn followed
by braid-minimization. In our implementation braid-minimization for each
word w1, . . . , wγ , v1, . . . , vγ is run in parallel using std::thread. Using paral-
lel computations we achieved eight-twelve times improved running time for
some stages of the algorithm. See section 5 for effective CPU usage numbers.

5. Experimental results

To test success of our attack we performed series of experiments for ran-
domly generated instances with |vi| = |wi| = |z| ≈ 20, 50, 100, 200, 500, 1000
in braid groups B8, B12, B16, B20 with γ = 10. The program was 100%
successful for each parameter set, see Table 1.

All braids were generated uniformly randomly as braid-words on standard
generators x1...xn−1 and their inverses. (We do not use any particular prop-
erties of braids, such as order of corresponding permutation, hence uniform
approach is fair.) Using an appropriate conjugator, we may always assume
that the sets BL and BR split the set of standard generators in two halves.

Experiments were performed on a machine with two 8-core 3.1 GHz Intel
Xeon CPU E5-2687W and 64GB RAM. On average our implementation was

13

using 3 to 5 cores, with up to 12 cores at its peak. Memory usage was less
than 2 GB for parameters |vi| = |wi| = |z| ≈ 1000 in B20.

B8 B12 B16 B20

|vi| = |wi| = |z| ≈ 20 100% 100% 100% 100%
|vi| = |wi| = |z| ≈ 50 100% 100% 100% 100%
|vi| = |wi| = |z| ≈ 100 100% 100% 100% 100%
|vi| = |wi| = |z| ≈ 200 100% 100% 100% 100%
|vi| = |wi| = |z| ≈ 500 100% 100% 100% 100%
|vi| = |wi| = |z| ≈ 1000 100% 100% 100% 100%

Table 1. Success rate.

Table 2 shows time (in minutes) our program spent on 100 randomly
generated instance of the problem.

Remark 5.1. Numbers in Table 2 require some explanation. In the row
for |vi| = |wi| = |z| ≈ 200 the value for B8 is greater than the values for
B12, B16, B20. It happens because the chance of a wrong ∆2-power guess is
higher for smaller values of the rank n. On the other hand, for |vi| = |wi| =
|z| ≈ 500 complexity of applying braid-minimization overwhelms the time
the program spends to fix wrong ∆2-powers. We observe increasing values
in the corresponding row.

B8 B12 B16 B20

|vi| = |wi| = |z| ≈ 20 2 0.1 0.3 0.2
|vi| = |wi| = |z| ≈ 50 2 1 1 1
|vi| = |wi| = |z| ≈ 100 5 8 6 5
|vi| = |wi| = |z| ≈ 200 42 26 34 16
|vi| = |wi| = |z| ≈ 500 246 387 586 897
|vi| = |wi| = |z| ≈ 1000 1330 3949 5342 9855

Table 2. Time required to solve 100 random instances of
the problem (in minutes). See Remark 5.1 for discussion.

B8 B12 B16 B20

|vi| = |wi| = |z| ≈ 20 3986 6244 9573 12586
|vi| = |wi| = |z| ≈ 50 10005 15842 21968 28576
|vi| = |wi| = |z| ≈ 100 20258 31485 43089 56229
|vi| = |wi| = |z| ≈ 200 41361 64291 86824 110392
|vi| = |wi| = |z| ≈ 500 103100 159551 218255 275611
|vi| = |wi| = |z| ≈ 1000 206835 320829 438238 556195

Table 3. Average total length of an instance after length reduction.

14

B8 B12 B16 B20

|vi| = |wi| = |z| ≈ 20 17708 31392 52102 72553
|vi| = |wi| = |z| ≈ 50 44449 79648 119565 164729
|vi| = |wi| = |z| ≈ 100 90000 158295 234520 324138
|vi| = |wi| = |z| ≈ 200 183754 323233 472556 636368
|vi| = |wi| = |z| ≈ 500 458041 802167 1187895 1588793
|vi| = |wi| = |z| ≈ 1000 918904 1613018 2385195 3206254

Table 4. Average bit-size of instances.

Table 3 shows average total length of the public tuples after length reduc-
tion: |v1|+ . . .+ |vγ |+ |w1|+ . . .+ |wγ |. Table 4 shows average total length
of the public tuples after length reduction: (|v1| + . . . + |vγ | + |w1| + . . . +
|wγ |) · (log2(n) + 1).

6. Conclusion

We showed that 100% of randomly generated instances of the conjugacy
separation problem of length twice as long as originally proposed can be
broken in less than two hours by a heuristic algorithm that operates based
on “geometric tools” such as geodesic-length approximation, abelianization,
and cross-numbers for braids. Our tools are not perfect (especially geodesic-
length approximation that often gives far from optimal results), yet, they
are sufficient for the task. We believe our algorithm has a lot of potential
and can work for much longer instances of conjugacy separation problem (of
course, some sufficient time should allocated to accommodate the increase).
Our algorithm does not use any special assumptions on the given inputs
except those described in the original paper [2]. This shows that the original
protocol described in [2] cannot provide a significant level of security.

Our attack gives a very important tool. Most group-theoretic protocols
(even those that use non-abelian platform groups) require a choice of com-
muting elements (that’s the case for the “ancient” Ko-Lee protocol, for
CBKAP, and for very recent protocols such as Kayawood [4]. Typically,
choice of commuting elements is done by picking two “naturally commuting”
subgroups (Ln and Un in braids) and then conjugating them with some mix-
ing conjugator. “Naturally commuting” subgroups are typically bad as they
nontrivially act on some disjoint spaces and the action of the shared key can
be reconstructed based on public keys (that’s the case for E-multiplication).
Our paper shows that using a mixing conjugator does not help: given two
conjugated (braid-)tuples we can always conjugate them back to “naturally
commuting” subgroups and recover the shared key.

References

[1] I. Anshel, M. Anshel, and D. Goldfeld. An algebraic method for public-key cryptog-
raphy. Math. Res. Lett., 6(3-4):287–291, 1999.

15

[2] I. Anshel, M. Anshel, D. Goldfeld, and S. Lemieux. Key agreement, the algebraic
eraserTM , and lightweight cryptography. In Algebraic Methods in Cryptography, vol-
ume 418 of Contemporary Mathematics, pages 1–34. American Mathematical Society,
2006.

[3] I. Anshel, D. Atkins, D. Goldfeld, and P. Gunnells. Defeating the Ben-Zvi,
Blackburn, and Tsaban Attack on the Algebraic Eraser. preprint. Available at
arXiv:1601.04780v1 [cs.CR], 20126.

[4] I. Anshel, D. Atkins, and P. Goldfeld, D. Gunnels. Kayawood, a Key Agreement
Protocol. Preprint. Available at https://eprint.iacr.org/2017/1162 (version: 30-
Nov-2017), 2017.

[5] A. Ben-Zvi, S. Blackburn, and B. Tsaban. A practical cryptanalysis of the algebraic
eraser. In Advances in Cryptology – CRYPTO 2016, volume 9814 of Lecture Notes
Comp. Sc., pages 179–189, Berlin, 2016. Springer.

[6] CRyptography And Groups (CRAG) C++ Library. Available at https://github.

com/stevens-crag/crag.
[7] P. Dehornoy. A fast method for comparing braids. Adv. Math., 125:200–235, 1997.
[8] P. Dehornoy, I. Dynnikov, D. Rolfsen, and B. Wiest. Why are braids orderable?

Societe Mathematique De France, 2002.
[9] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and

W. P. Thurston. Word processing in groups. Jones and Bartlett Publishers, 1992.
[10] D. Goldfeld and P. Gunnells. Defeating the Kalka-Teicher-Tsaban linear algebra at-

tack on the Algebraic Eraser. preprint. Available at eprint 1202.0598, 2012.
[11] A. Kalka, M. Teicher, and B. Tsaban. Short expressions of permutations as products

and cryptanalysis of the algebraic eraser. Adv. Appl. Math., 49:57–76, 2012.
[12] I. Kapovich, A. G. Miasnikov, P. Schupp, and V. Shpilrain. Generic-case complexity,

decision problems in group theory and random walks. J. Algebra, 264:665–694, 2003.
[13] I. Kapovich, A. Myasnikov, P. Schupp, and V. Shpilrain. Average-case complexity

and decision problems in group theory. Adv. Math., 190:343–359, 2005.
[14] K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang, and C. Park. New public-

key cryptosystem using braid groups. In Advances in Cryptology – CRYPTO 2000,
volume 1880 of Lecture Notes Comp. Sc., pages 166–183, Berlin, 2000. Springer.

[15] A. G. Miasnikov, V. Shpilrain, and A. Ushakov. A practical attack on some braid
group based cryptographic protocols. In Advances in Cryptology – CRYPTO 2005,
volume 3621 of Lecture Notes Comp. Sc., pages 86–96, Berlin, 2005. Springer.

[16] A. G. Miasnikov, V. Shpilrain, and A. Ushakov. Random subgroups of braid groups:
an approach to cryptanalysis of a braid group based cryptographic protocol. In Ad-
vances in Cryptology – PKC 2006, volume 3958 of Lecture Notes Comp. Sc., pages
302–314, Berlin, 2006. Springer.

[17] A. G. Miasnikov, V. Shpilrain, and A. Ushakov. Non-Commutative Cryptography and
Complexity of Group-Theoretic Problems. Mathematical Surveys and Monographs.
AMS, 2011.

[18] A. D. Myasnikov and A. Ushakov. Cryptanalysis of Anshel-Anshel-Goldfeld-Lemieux
key agreement protocol. Groups Complex. Cryptol., 1:263–275, 2009.

[19] M. Paterson and A. Razborov. The set of minimal braids is co-NP-complete. J. Al-
gorithms, 12:393–408, 1991.

[20] J. Wang. Average-case completeness of a word problem for groups. In Proceedings
of the twenty-seventh annual ACM symposium on Theory of computing, STOC ’95,
pages 325–334. ACM, 1995.

16

https://eprint.iacr.org/2017/1162
https://github.com/stevens-crag/crag
https://github.com/stevens-crag/crag

Department of Mathematics, Stevens Institute of Technology, Hoboken,
NJ, USA

E-mail address: mkotov@stevens.edu

Department of Mathematics, Stevens Institute of Technology, Hoboken,
NJ, USA, Institute of Mathematics and Information Technologies, Dosto-
evskii Omsk State University, Omsk, Russia

E-mail address: manton@stevens.edu

Department of Mathematics, Stevens Institute of Technology, Hoboken,
NJ, USA

E-mail address: amyasnik@stevens.edu

Department of Mathematics, Stevens Institute of Technology, Hoboken,
NJ, USA

E-mail address: dpantel1@stevens.edu

Department of Mathematics, Stevens Institute of Technology, Hoboken,
NJ, USA

E-mail address: aushakov@stevens.edu

17

	1. Introduction
	1.1. Previous attacks
	1.2. Our contribution

	2. Preliminaries: group of braids
	2.1. Dehornoy handle-free form
	2.2. Garside normal form
	2.3. Geodesic braid approximation
	2.4. Colored Burau group
	2.5. Action of CBn on a certain finite set

	3. The protocol
	3.1. TTP algorithm
	3.2. Security assumptions

	4. The attack
	4.1. Termination condition
	4.2. Initial 2-power guess
	4.3. Producing new instances
	4.4. Fast descend for long conjugators z
	4.5. Fixing wrong 2-powers
	4.6. Restarting enumeration of conjugates
	4.7. Parallel computations

	5. Experimental results
	6. Conclusion
	References

