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Quantum Attacks on Some Feistel Block Ciphers
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Abstract—Post-quantum cryptography has attracted much attention from worldwide cryptologists. However, most research works are
related to public-key cryptosystem due to Shor’s attack on RSA and ECC ciphers. At CRYPTO 2016, Kaplan et al. breaks many
secret-key (symmetric) systems using quantum period finding algorithm, which arises researcher’s attentions to evaluate the symmetric
systems against quantum attackers.
In this paper, we continue to study the symmetric ciphers against quantum attackers. First, we convert the classical advanced slide
attacks (introduced by Biryukov and Wagner) to a quantum one, that gains an exponential speed-up of the time complexity. Thus, we
could break 2/4K-Feistel and 2/4K-DES in polynomial time. Second, we give a new quantum key-recovery attack on full-round GOST, a
Russian standard, with 2112 Grover iterations, which is faster than a quantum brute force search attack by a factor 216.

Index Terms—Quantum key-recovery attack, GOST, DES, Symmetric cipher, Feistel, Grover.
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1 INTRODUCTION

Post-quantum cryptography studies the security of cryp-
tographic systems against quantum attackers. The most se-
vere and notable quantum attack is Shor’s algorithm [1] that
breaks the most currently used public-key systems, such as
RSA cryptosystem [2] and elliptic curve cryptography. There
were not many known quantum threats against secret-key
(symmetric) systems since then. The common belief was
that quantum attacks on symmetric primitives are of mi-
nor concern, as they mainly consist of employing Grover’s
algorithm [3] to generically speed up search (sub-)problems.

Recently, researchers [4] find that quantum attackers,
who are equipped with quantum computers, could break
several secret-key schemes in polynomial time using super-
position queries, such as Even-Mansour ciphers [5]. These
pioneer works arise the attentions from the world wide
cryptographic researchers to review the symmetric primi-
tives against quantum attackers. To study the security of
more classical and important cryptographic schemes against
quantum attacks is urgently needed. At Asiacrypt 2017,
NIST [6] reports the ongoing competition for post-quantum
cryptographic algorithms, including signatures, encryptions
and key-establishment. The ship for post-quantum crypto
has sailed, cryptographic communities must get ready to
welcome the post-quantum age.

Feistel block ciphers [7], which are important compo-
nents of symmetric ciphers, are observed to be important
and constitute one of the extensively researched crypto-
graphic schemes. Several standard block ciphers, such as
DES, Triple-DES, MISTY1, Camellia, CAST-128 [8] and the
Russian GOST [9], are based on the Feistel design. Classi-
cally, researchers from academy and industry only care for
the security of Feistel block ciphers against attackers who
are only equipped with classical computers. In a quantum
age, the adversaries are more powerful and equipped with
quantum computers. They could make quantum queries on
some superposition quantum states of the relevant cryp-
tosystem, which is the so-called quantum chosen-plaintext
attacks (qCPA) [10]. It is known that Grover’s algorithm [3]
could speed up brute force search. Given a block cipher with
m-bit key, Grover’s algorithm allows to quantum brute-

force search the secret key using O(2m/2) quantum steps.
It seems that doubling the key-length of one block cipher
could achieve the same security against quantum attackers.
However, Kuwakado and Morii [4] identified a new family
of quantum attacks on certain generic constructions of secret
key schemes. They showed that the Even-Mansour ciphers
could be broken in polynomial time by Simon algorithm
[11], which could find the period of a periodic function
in polynomial time in a quantum computer. The following
works by Kaplan et al. [12] revealed that many other secret
key schemes could also be broken by Simon algorithm,
such as CBC-MAC, PMAC, GMAC and some CAESAR
candidates.

Our Contributions

In this paper, we focus on the study of the symmetric
ciphers against quantum attackers. Combining with Simon’s
algorithm [11], we convert the classical advanced slide
attacks (introduced by Biryukov and Wagner [13]) to a
quantum one, that gains an exponential speed-up of the
time complexity. Thus, we could break 2/4K-Feistel block
ciphers and 2/4K-DES block ciphers in polynomial time. On
the other hand, we give a new quantum key-recovery attack
on the full-round GOST, a Russian block cipher standard,
that breaks GOST in 2112 Grover iterations, which is faster
than a quantum brute force search attack by a factor 216.
The results are summarized in Table 1. Our paper alerts the
academy and industry that it is not enough to just double
the key length of the symmetric primitives to stand up to
the attackers from the postquantum world.

2 PRELIMINARIES

2.1 Attack Model

We consider attacks against classical cryptosystems using
quantum resources. This general setting broadly defines the
field of postquantum cryptography. But attacking specific
cryptosystems requires a more precise definition of the op-
erations the adversary is allowed to perform. The simplest
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TABLE 1
Summary of key-recovery attacks on Feistel schemes in classical and quantum-CPA settings

Ciphers Rounds Key bits Best Previous Classical Attacks Quantum Brute-force Search Ours
Date Time Source Time

2K-Feistel ∞ n 20.25n 20.25n [13] 20.5n O(n)
4K-Feistel ∞ 2n 20.25n 20.25n [13] 2n O(n)
2K-DES ∞ 96 232 233 [13] 248 O(1)
4K-DES ∞ 192 232 233 [13] 296 O(1)

GOST 32 256 232 2224 [14], [15] 2128 2112

30 256 232 2224 [16] 2128 2112

b

a b

a U

Fig. 1. Swap Circuit (left) and Controlled-U Gate (right).

setting allows the adversary to perform local quantum com-
putation. For instance, this can be modeled by the quantum
random oracle model, in which the adversary can query the
oracle in an arbitrary superposition of the inputs.

The basic gate used in this paper are the negation (X),
Hadamard (H). The circuits to swap two qubits, i.e., |a, b〉 →
|b, a〉, and the control-U gate are depicted in Figure 1.

2.2 Quantum Algorithms

Our quantum attacks are based on two of the most popular
quantum algorithms, namely Simon’s algorithm [11] and
Grover’s algorithm [3].

Simon’s Problem. Given a Boolean function, f :
{0, 1}n → {0, 1}n, that is observed to be invariant under
some n-bit XOR period a, find a. In other words, find a
when f(x) = f(y)↔ x⊕ y ∈ {0n, a} is given.

The optimal time to solve the problem is O(2n/2). How-
ever, Simon [11] presents a quantum algorithm that pro-
vides exponential speedup and requires onlyO(n) quantum
queries to find a. The algorithm includes five quantum steps
that are as follows:

I. Initialization of two n-bit quantum registers to state
|0〉⊗n|0〉⊗n. Then apply the Hadamard transform to
the first register to attain an equal superposition in the
following manner:

H⊗n|0〉|0〉 =
1√
2n

∑
x∈{0,1}n

|x〉|0〉. (1)

II. A quantum query to the function f maps this to

1√
2n

∑
x∈{0,1}n

|x〉|f(x)〉.

III. While measuring the second register, the first register
is observed to collapse to the following state:

1√
2

(|z〉+ |z ⊕ a〉).

IV. Applying the Hadamard transform to the first register,
we obtain:

1√
2

1√
2n

∑
y∈{0,1}n

(−1)
y·z

(1 + (−1)
y·a

)|y〉.

V. The vectors, y, are selected such that y ·a = 1 depict an
amplitude of zero. Hence, measuring the state yields a
value, y, which depicts that y · a = 0.

Repeat O(n) times, we can obtain a by solving a system of
linear equations.

Kuwakado and Morii [4] used Simon’s algorithm to
break the Even-Mansour (EM) cipher [5]. For a given per-
mutation P , the EM cipher is Enc(x) = P (x ⊕ k1) ⊕ k2.
Classically, an EM cipher is secure for up to 2n/2 queries,
where n is the input size of P . However, using Simon’s
algorithm [11], Kuwakado and Morii [4] presented a quan-
tum key-recovery attack on EM ciphers with a time com-
plexity of O(n). They define f(x) = Enc(x) ⊕ P (x) =
P (x ⊕ k1) ⊕ P (x) ⊕ k2. Clearly, it is a periodic function
that satisfies f(x⊕ k1) = f(x).

Grover’s Algorithm. Given a set, X , in which some ele-
ments are marked, the objective is to find a marked element
from X . We denote the subset of the marked elements by
M ⊆ X . Classically, one can solve the problem in a time of
|X|/|M |. However, in a quantum computer, the problem
is solved with high probability in a time of

√
|X|/|M |

using Grover’s algorithm. The steps of the algorithm are
as follows:

1) Initialization of a n-bit register |0〉⊗n. Apply the
Hadamard transform to the first register to attain an
equal superposition that can be given as follows:

H⊗n|0〉 =
1√
2n

∑
x∈{0,1}n

|x〉 = |ϕ〉. (2)

2) Construct an oracle O: |x〉 → (−1)f(x)|x〉, where
f(x) = 1 if x is the correct state; otherwise, f(x) = 0.

3) Apply Grover’s iteration R ≈ π
4

√
2n times that can be

given as follows:

[(2|ϕ〉〈ϕ| − I)O]R|ϕ〉 ≈ |x0〉.
4) return x0.

Further, Brassard et al. [17] generalized the Grover search
as an amplitude amplification method.

Theorem 1. (Brassard, Hoyer, Mosca and Tapp [17]). Let
A be any quantum algorithm on q qubits that performs no
measurement. Let B : Fq2 → {0, 1} be a function that classifies
the outcomes of A as either good or bad state. Let p > 0 be
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where b ∈ {0, 1}, x ∈ {0, 1}n. The function f can be implemented on efficient
quantum circuits [5]. For arbitrary x ∈ {0, 1}n, we have

f(0‖x) = P (EP
k (x)) ⊕ x

= P (EP
k (x)) ⊕ k ⊕ (x ⊕ k)

= EP
k (P (x ⊕ k)) ⊕ (x ⊕ k)

= f(1‖(x ⊕ k))

= f((0‖x) ⊕ (1‖k)),

thus f has a period 1‖k. Hence we can recover k with Simon’s algorithm (Fig. 7).

Fig. 7. Slide attack against iterated Even-Mansour cipher round keys of which are all
the same.

Remark 4.1. The argument in Sect. 4.1 is not actually complete. Strictly speak-
ing, we should evaluate ε(f ; k1) and apply Proposition 3.1 for calculating the
period k1 of f . Kaplan et al. strictly argued these problems in their paper [5]
and showed that ε(f ; k1) < 1/2 holds for P without any second-order differential
with probability greater than 1/2. Similarly, they strictly argued these problems
also for the quantum slide attack in Sect. 4.2.

5 Quantum Related-Key Attack

Let Ek be a symmetric key block cipher. Assume an adversary is allowed to
access (classical or quantum) oracles Ek, Ek′ , where k and k′ are different secret
keys. A related-key attack is an attack in which the adversary does not know k
and k′ themselves, but knows a relationship that k and k′ satisfy. Denote P an
n-bit public random permutation. Iterated Even-Mansour EP (x; k1, k2, . . . , ki)
is defined as

EP (x; k1, k2, . . . , ki) = (Pki−1
◦ · · · ◦ Pk2

◦ Pk1
)(x) ⊕ ki,

where k1, k2, . . . , ki ∈ {0, 1}n are the secret keys and Pk = P (x ⊕ k). In the
following, we assume that two keys k = (k1, k2, . . . , ki), k

′ = (k′
1, k

′
2, . . . , k

′
i)

satisfy the relationship k′
l = kl+1 (1 ≤ l ≤ i − 1). For i = 2, an iterated Even-

Mansour cipher corresponds to an original Even-Mansour cipher and we can
perform the polynomial time attack described above, so we assume i ≥ 3 in the
following. We also assume that an adversary can query a superposition of inputs
to quantum oracles.

Fig. 2. Slide attack against iterated Even-Mansour cipher round keys of
which are all the same

the initial success probability that the measurement of A|0〉 is
good. Set k = d π4θ e, where θ is defined using sin2(θ) = p.
Furthermore, define the unitary operator Q = −AS0A−1SB,
where the operator SB changes the sign of the good state,

|x〉 7→
{ −|x〉 if B(x) = 1,
|x〉 if B(x) = 0.

Further, S0 changes the sign of the amplitude only in case of
the zero state |0〉. Finally, after performing the computation of
QkA|0〉, the measurement yields a good state with probability a
least max{1-p, p}.

Assume that |ϕ〉 = A|0〉 is the initial vector, whose
projections on the good and the bad subspace are denoted
by |ϕ1〉 and |ϕ0〉, respectively. The state |ϕ〉 = A|0〉 exhibits
an θ with a bad subspace, where sin2(θ) = p. Each Q
iteration increases the angle to 2θ. Hence, after k ≈ π

4θ ,
the angle is observed to be approximately equal to π/2.
Therefore, the state after k iterations is almost orthogonal
to that of the bad subspace. After measurement, it produces
a good vector with high probability.

3 NEW ADVANCED QUANTUM SLIDE ATTACKS

3.1 Slide Attack and Advanced Slide Attack
Slide attack and advanced slide attack were proposed by
Biryukov and Wagner [13], [18]. They are a set of powerful
cryptanalysis tools. Classically, slide attack and advanced
slide attack are launched against block ciphers with expo-
nential time complexity. At CRYPTO 2016, Kaplan et al.
[12] converted the slide attack on iterated Even-Mansour
cipher into a quantum one by applying the slide attack
and Simon’s algorithm, shown in Figure 2. They define
F : {0, 1}n+1 → {0, 1}n as

F (b‖x) =

{
P (EPk (x))⊕ x if b = 0,
EPk (P (x))⊕ x if b = 1,

(3)

where b ∈ {0, 1}, x ∈ {0, 1}n. For arbitrary x ∈ {0, 1}n, we
have

F (0‖x) = P (EPk (x))⊕ x
= EPk (P (x⊕ k))⊕ (x⊕ k) = F (1‖(x⊕ k)).

(4)

Thus, s = 1‖k is the period of F . Finally, they could
retrieve the secret key by applying Simon’s algorithm with
polynomial time complexity.

Feistel ciphers form an important special case for apply-
ing slide attacks. Kaplan et al.’s quantum slide attack against
iterated Even-Mansour cipher could not applied to Feistel
ciphers trivially. Thus, we will give some new quantum
attacks on some Feistel ciphers.
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Fig. 3. Quantum Attacks on 1K-Feistel Block Cipher

In this section, we focus on the 1K-/2K-/4K-Feistel and
2K-/4K-DES block ciphers, which were introduced and
studied by Biryukov and Wagner [13], [18]. They designed a
novel advanced slide attack on these ciphers with exponen-
tial time complexities in classical computers. In this section,
we will give some new advanced quantum slide attacks
on 1K-/2K-/4K-Feistel block ciphers with polynomial time
complexities in quantum computers.

2K-/4K-DES block ciphers are the modified DES exam-
ples given by Biryukov and Wagner [13], [18]. 2K-/4K-
DES use two or four independent 48-bit keys and the key
arrangement is the same with 2K-/4K-Feistel block ciphers.
The total number of rounds of 2K-/4K-DES are 64 or more,
thus they are resists to the conventional differential [19] and
linear attacks [20]. Since 2K-/4K-DES block ciphers are triv-
ially the concrete primitives of 2K-/4K-Feistel block ciphers,
our attacks could be applied to 2K-/4K-DES trivially.

3.2 Advanced Quantum Slide Attack on 1K-Feistel
As shown in Figure 3, 1K-Feistel block cipher adopts repeat-
ing round subkeys and identical round functions f .

We first define the following functions using given ran-
dom constant α:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→
{
EK(x, α)R if b = 0,
EK(α, f(α)⊕ x)L if b = 1,

(5)

where n is the block size of 1K-Feistel block cipher EK ,
EK(·)L and EK(·)R are the left branch (n2 -bit) or right
branch (n2 -bit) of EK(·).

As shown in Figure 3, EK(x, α)R = Y4, EK(X1, Y1)L =
X5 = Y4. X1 = α and Y1 = f(k ⊕ α)⊕ x. Thus,

F (0, x) = EK(x, α)R = EK(α, f(k ⊕ α)⊕ x)L
= F (1, x⊕ f(α)⊕ f(k ⊕ α)).

(6)

So F (b, x) is a function with period s = 1‖f(α)⊕ f(k ⊕
α) and the period could be retrieved by applying Simons
algorithm with polynomial time complexity.
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Fig. 4. Simon’s function for the attack on 1K-Feistel
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Fig. 5. Quantum Attacks on 2K-Feistel Block Cipher to Recover k0

The quantum circuit of F (b, x) is shown in Figure 4. If f
is reversible, such as GOST [9], Camellia [8] etc., it is easy to
get k with the knowledge s. If f is irreversible, it is easy to
get the key by studying the internal structure of f , such as
for DES and its variants.

3.3 Quantum Slide Attack on 2K-Feistel
As shown in Figure 5, 2K-Feistel block cipher adopts round
subkeys (k0, k1) iteratively and identical round function f .

We first define the following functions using given ran-
dom constant α:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→
{
EK(x, α)R if b = 0,
DK(f(α)⊕ x, α)R if b = 1.

(7)

As shown in Figure 5, EK(x, α)R = Y4, DK(Y1, X1)R =
X5 = Y4. Y1 = f(k0 ⊕ α)⊕ x, X1 = α. Thus,

F (0, x) = EK(x, α)R = DK(f(k0 ⊕ α)⊕ x, α)R
= F (1, x⊕ f(α)⊕ f(k0 ⊕ α)).

(8)

b

x
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fU



( )x f 



x
KE

( , )F b x

KD

X

Fig. 6. Simon’s function for 2K-Feistel

f

0k

f

f

f

1X 1Y

Encryption

f

f

f

f

Decryption

1k

0k

1k

1k

0k

1k

0k

2X 2Y

3X 3Y

4X 4Y

5X 5Y

3X 3Y

0X0Y

0X 0Y

1X 1Y

2X 2Y

4Y 4X

x

Fig. 7. Quantum Attacks on 2K-Feistel Block Cipher to Recover k1

So F (b, x) is a function with period s = 1‖f(α)⊕f(k0⊕
α). The quantum circuit of F (b, x) is shown in Figure 6. If f
is reversible, such as GOST [9], Camellia [8], etc., it is easy
to get k0 with the knowledge s. If f is irreversible, it is easy
to get the key by studying the internal structure of f , such
as for DES and its variants. To get k1, we design a similar
quantum period function in Equation (9).

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→
{
DK(α, x)L if b = 0,
EK(α, f(α)⊕ x)L if b = 1.

(9)

As shown in Figure 7, DK(α, x)L = Y4, EK(X1, Y1)L =
X5 = Y4. Y1 = f(k1 ⊕ α)⊕ x, X1 = α. Thus,

F (0, x) = DK(α, x)L = EK(α, f(k1 ⊕ α)⊕ x)L
= F (1, x⊕ f(α)⊕ f(k1 ⊕ α)).

(10)

So F (b, x) is a function with period s = 1‖f(α)⊕f(k1⊕α),
and k1 is got consequently.

3.4 Quantum Slide Attack on 4K-Feistel

As shown in Figure 5, 4K-Feistel block cipher adopts round
subkeys (k0, k1, k2, k3) iteratively and identical round func-
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Fig. 8. Quantum Attacks on 4K-Feistel Block Cipher

tion f . Given arbitrary constant α ∈ Fn/22 , define:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→
{
EK(x, α)R if b = 0,
DK(f(α)⊕ x, α)R if b = 1.

(11)

As shown in Figure 8, EK(x, α)R = Y8, DK(Y1 ⊕
∆, X1)R = X9 = Y8, where ∆ = k1⊕k3. Y1 = f(k0⊕α)⊕x,
X1 = α. Thus,

F (0, x) = EK(x, α)R = DK(f(k0 ⊕ α)⊕ x⊕∆, α)R
= F (1, x⊕ f(α)⊕ f(k0 ⊕ α)⊕∆).

(12)
So, F (b, x) is a function with period s = 1‖f(α) ⊕

f(k0 ⊕ α) ⊕ ∆. Similar to the attack on 2K-Feistel, we
could also design a similar period function, with period
s′ = 1‖f(α)⊕f(k3⊕α)⊕∆′, where ∆′ = k0⊕k2. We follow
the the assumptions made by the 2K-/4K-Feistel’s designer-
s, i.e., Biryukov and Wagner, that the round function f is
simple, just like the round function of GOST [9], Camellia
[8], DES [8], etc. Hence, it is easy to get the secret keys by
the knowledge of s and s′, when look into the details of the
round function.

4 QUANTUM KEY-RECOVERY ATTACK ON GOST
BLOCK CIPHER

4.1 GOST Block Cipher
GOST [9] is a block cipher designed during the 1970’s by
the Soviet Union as an alternative to the American DES.

Similarly to DES, it has a 64-bit Feistel structure, employing
8 S-boxes and is intended for civilian use. Unlike DES, it has
a significantly larger key (256 bits instead of just 56), more
rounds (32 compared with DES’s 16), and it uses different
sets of S-boxes. After the USSR had been dissolved, GOST
was accepted as a Russian standard.

Suppose the input state of i-th round function is
(Xi−1, Yi−1), where Xi−1 and Yi−1 are the left and right
branches of the i-th round function for i = 1, 2, ..., 32. The
first round of GOST is given in Figure 10, the only difference
for each round is the subkeys. The symbols used are

+ modular addition,
− modular subtraction,
⊕ bitwise addition,
<<< j cyclic left rotation by j bits ,
>>> j cyclic right rotation by j bits.
X[i1, .., ij ] the i1, .., ijth least significant bits of

the 32-bit word X .
In the round function, the round key is (modular) added

with 32-bit right branch; then the 32-bit state is substitute
by S, which is composed of 8 4 × 4 s-boxes in parallel;
then rotating left the 32-bit state by 11 bits. It has a simple
key schedule: 256-bit key is divided into eight 32-bit words
k0, k1 · · · , k7 and the sequence of round keys is given as
k0, · · · , k7, k0, · · · , k7, k0, · · · , k7, k7, k6, · · · , k1, k0.
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11
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Fig. 9. The first round of GOST block cipher.

4.2 Quantum Attack on 30-round GOST Block Cipher
We first give some properties of GOST.

Property 1. As shown in Figure 10, for a two round GOST, if we
know (X0, Y0) and (X2, Y2), then k0 = S−1((X0 ⊕X2) >>>
11)− Y0, k1 = S−1((Y0 ⊕ Y2) >>> 11)−X2.

 

 

0X 0Y

11 S

 

 

1X 1Y

11 S

2X 2Y

 

0k

 
 

1k

Fig. 10. 2-round of GOST block cipher

Property 2. (Reflection Property) If the input state of the 25th
round meets condition X24 = Y24, then the last 16-round of
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32-round GOST acts as an identity by ignoring the last swap
function, i.e., the input of 17th round is (X16, Y16), and the
output of 32th round is (X32, Y32) = (Y16, X16).

Proof. As shown in Figure 11, it is easy to see that, X23 =
fk8(Y23)⊕ Y24, Y25 = fk8(Y24)⊕X24. Since X24 = Y24 and
Y23 = X24, we get X23 = Y25. While Y23 = X24 = X25

holds. Thus, we get (X23, Y23)=(Y25, X25).
X22 = fk7(Y22) ⊕ Y23, Y26 = fk7(Y25) ⊕ X25. Since

(X23, Y23)=(Y25, X25) and Y22 = X23, we get X22 = Y26.
While Y22 = X23 = Y25 = X26 holds. Thus, we get
(X22, Y22)=(Y26, X26). Iterating the above procedures, final-
ly, we get the conclusion of Property 2, i.e., (X32, Y32) =
(Y16, X16).
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Fig. 11. Reflection Property of the last 16-rounds GOST block cipher.

In this section, we only consider the last 30-round re-
duced GOST block cipher (from 3th to 32th round), against
quantum attackers. In case of a quantum computer, the
adversaries were able to generate quantum queries on some
superposition quantum states of the relevant cryptosystem,
which is the so-called quantum chosen-plaintext attacks (qC-
PA) [10]. Since the key size of the 30-round GOST block
cipher is 256-bit, if we trivially use quantum brute-force
search (Grover’s algorithm [3]) to find the key, it needs
2128 Grover iterations. In the following, we combine the
reflection property and Grover’s algorithm to attack 30-
round GOST block cipher in 2112 Grover iterations. Note
that the input and output are (X2, Y2) and (X32, Y32). We
first construct the following quantum algorithm A: Prepar-
ing the initial 32× 7-bit register |0〉⊗224. Apply Hadamard
transform H⊗224 to the register to attain an equal superpo-
sition (omitting the amplitudes):∑

X2,k2,k3,...,k7∈{0,1}32
|X2〉|k2, k3, ..., k7〉 = |ϕ〉, (13)

where X2 is the left half of the input of the 30-round GOST;
the right half Y2 is a constant.

According to the Reflection Property 2, when X24 = Y24,
the last 16-round is a identical transformation by ignoring
the last swap function. Thus, given 232 inputs (X2, Y2), it
is expected that there is one (X2, Y2) pair that satisfies the
condition X24 = Y24, then (X16‖Y16) = (Y32‖X32).

Once we get the right (X2, Y2) somehow, we guess
k2, k3, ..., k7, then encrypt for round 3-8 to get the internal
state (X8, Y8), decrypt (X16‖Y16) for round 11-16 to get
(X10, Y10). According to Property 1, we could deduce k0
and k1 from (X8, Y8) and (X10, Y10).

Considering the superposition |ϕ〉, assume that we had a
classifier B : {0, 1}32×7 7→ {0, 1}, which partitions |ϕ〉 into a
good subspace and a bad subspace: |ϕ〉 = |ϕ1〉+|ϕ0〉, where
|ϕ1〉 and |ϕ0〉 denotes the projection onto the good subspace
and bad subspace, respectively. In the good subspace |ϕ1〉,
(X2, Y2) meets the Reflection Property and k2, k3, ..., k7 are
the right subkeys. For the good state |x〉, B(x) = 1.

We construct the quantum classifier B. Define
B : {0, 1}32×7 7→ {0, 1} that maps (X2, k2, k3, ..., k7) 7→
{0, 1}:

1) For (X2, Y2), derive (X32, Y32) from the 30-round en-
cryption oracle, note that Y2 is a random given constant.

2) Use (k2, k3, ..., k7), (X2, Y2) and (X32, Y32) to derive
k0, k1 from Property 1.

3) Check the derived (k0, k1, k2, ..., k7) by 5 plaintext-
ciphertext pairs using the 30-round encryption oracle.
If the check is right, output 1. Else ouput 0.

We classify a state |X2〉|k2, k3, ..., k7〉 is a good state if
and only if B(X2, k2, k3, ..., k7) = 1. The classifier B outputs
good under two conditions:
a) Condition 1. (X2, Y2) meets the Reflection Property. Ac-

cording to the above cryptanalysis, it is right with a
probability of 2−32.

b) Condition 2. k2, k3, ..., k7 are the right subkeys. It is right
with a probability 2−192.
If we measure |φ〉, it produces the good state with

probability p:

p = Pr[|X2〉|k2, k3, ..., k7〉 is good]
= Pr[B(X2, k2, k3, ..., k7) = 1]
= Pr[Condition 1] · Pr[Condition 2]
≈ 2−32 × 2−32×6 = 2−224.

(14)

Our classifier B defines a unitary operator SB that condition-
ally change the sign of the quantum state |X2〉|k2, k3, ..., k7〉:

{ − |X2〉|k2, .., k7〉 if B(X2, k2, .., k7) = 1
|X2〉|k2, .., k7〉 if B(X2, k2, .., k7) = 0

(15)

The complete amplification process is realized by re-
peatedly for t times applying the unitary operator Q =
−AS0A−1SB to the state |ϕ〉 = A|0〉, i.e. QtA|0〉.

Initially, the angle between |ϕ〉 = A|0〉 and the bad
subspace |ϕ0〉 is θ, where sin2(θ) = p = 〈ϕ1|ϕ1〉. When
p is smaller enough, θ ≈ arcsin(

√
p) ≈ 2−

224
2 . According

to Theorem 1, after t = d π4θ e = d π

4×2− 224
2
e ≈ 2112 Grover

iterations Q, the angle between resulting state and the bad
subspace is roughly π/2. The probability Pgood that the
measurement yields a good state is about sin2(π/2) = 1.
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Fig. 12. Attack on 30-round reduced GOST
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Fig. 13. Attack on the Full-round GOST

The whole attack needs 224 qubits and 2112 Grover
iterations, which is more efficient than the trivial quantum
search (256 qubits and 2128 Grover iterations).

4.3 Quantum Attack on Full-round GOST Block Cipher

Property 3. (Fixed Point Property) As shown in Figure 13,
assume that when we encrypt a 64-bit plaintext P =(X0, Y0),
we obtain (X8, Y8)=(X0, Y0) after 8 encryption rounds. Since
rounds 9-16 and 17-24 are identical to rounds 1-8, we obtain
P after 16 and 24 encryption rounds as well. In rounds 25-32,
the round keys k0, ..., k7 are applied in the reverse order, and we
obtain some arbitrary ciphertext C = (X32, Y32). The knowledge
of P and C immediately gives us the two input-output pairs of
the first 8-round, i.e., (P, P ) = (X0‖Y0, X0‖Y0) and (C̄, P̄ ) =
(Y32‖X32, Y0‖X0). The probability to get a fix point of the first
8 rounds is 2−64.

Proof. As shown in Figure 13, once we get a input-output
pair (P, P ) = (X0‖Y0, X0‖Y0) for the rounds 1-8, we get
the input-output pair (P,C) for rounds 25-32. We focus on
rounds 25-32 shown in Figure 11, different from rounds 1-8,
the subkeys are in inverse order. If we consider rounds 25-32
in inverse direction, i.e., from 32th round to 25th round, the
only difference from rounds 1-8 is that there is an additional
swap function is in the first round but not in the last round.
So, (C̄, P̄ ) = (Y32‖X32, Y0‖X0) is also a input-output pair
for rounds 1-8.

Property 4. As shown in Figure 14, if we know two valid input-
output pairs of the 3-round GOST, i.e., (X5‖Y5, X8‖Y8) and
(X ′5‖Y ′5 , X ′8‖Y ′8), then we can easily determine the three subkeys
k5, k6, k7.

Proof. As shown in Figure 14, we get

(S(Y5+k5) <<< 11)⊕X5 = (S(X8+k7) <<< 11)⊕Y8, (16)

(S(Y ′
5 +k5) <<< 11)⊕X ′

5 = (S(X ′
8+k7) <<< 11)⊕Y ′

8 . (17)

We rewrite Equation (16), as S(Y5 + k5) ⊕ S(X8 + k7) =
(X5 ⊕ Y8) >>> 8. Note that S is composed of 8 4×4 s-
boxes in parallel, we first guess the 4 least significant bits of
k5, i.e., k5[3, 2, 1, 0], then compute s0(Y5[3, .., 0]+k5[3, .., 0]),
where s0 is the s-box applied to the 4 least significant bits of
Y5 + k5, thus we could determine X8[3, .., 0] + k7[3, .., 0]
and get k7[3, .., 0] by (modular 24) subtract X8[3, .., 0].
Similarly, by Equation (17), we could also derive another
value of k7[3, .., 0], if they are not equal, then the guessing

of k5[3, 2, 1, 0] is wrong. After we determine a right can-
didate k5[3, 2, 1, 0] and k7[3, 2, 1, 0], we could continue to
guess and determine k5[7, 6, 5, 4] and k7[7, 6, 5, 4]. Finally,
we are expected to get the right candidate k5, k7. Then
we compute Y6 = (S(Y5 + k5) <<< 11) ⊕ X5. Thus we
get k6 = S−1((Y5 ⊕ X8) >>> 11) − Y6. Totally, we only
use 8 × 24 × 2 + 2 × 8 = 272 s-boxes operations, which
approximates one encryption of GOST (it needs 8×32 = 256
s-boxes operations).
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Fig. 14. 3-round GOST.

In our quantum attack on full-round GOST, we first
construct the following quantum algorithmA: Preparing the
initial 32× 7-bit register |0〉⊗224. Apply Hadamard trans-
form H⊗224 to the register to attain an equal superposition
(omitting the amplitudes):∑
X0,Y0,k0,k1,...,k4∈{0,1}32

|X0, Y0〉|k0, k1, ..., k4〉 = |ϕ〉. (18)

According to Property 3, once we get the right
P =(X0, Y0) that meet the fix point property, we get two
input-output pairs of the first 8 rounds.

Considering the superposition |ϕ〉, assume that we had
a classifier B : {0, 1}32×7 7→ {0, 1}, which partitions |ϕ〉
into a good subspace and a bad subspace: |ϕ〉 = |ϕ1〉 +
|ϕ0〉, where |ϕ1〉 and |ϕ0〉 denotes the projection onto the
good subspace and bad subspace, respectively. In the good
subspace |ϕ1〉, P = (X0, Y0) meets the fixed point property
and k0, k1, ..., k4 are the right subkeys. For the state |x〉 in
the good subspace, B(x) = 1.
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We construct the quantum classifier B. Define
B : {0, 1}32×7 7→ {0, 1} that maps (X0, Y0, k0, k1, ..., k4) 7→
{0, 1}:

1) For (X0, Y0), derive (X32, Y32) from the encryption
oracle of GOST.

2) Suppose (X0, Y0) meet the fix point property, use
(k0, k1, ..., k4) to derive k5, k6, k7 from Property 4.

3) Check the derived (k0, k1, k2, ..., k7) by 5 plaintext-
ciphertext pairs using the GOST encryption oracle. If
the check is right, output 1. Else ouput 0.

We classify a state |X0, Y0〉|k0, k1, ..., k4〉 is a good if and
only if B(X0, Y0, k0, k1, ..., k4) = 1. The classifier B outputs
good under two conditions:
a) Condition 1. (X0, Y0) meets the Property 3. It is right

with a probability of 2−64.
b) Condition 2. k0, k1, ..., k4 are the right subkeys. It is right

with a probability 2−160.
If we measure |φ〉, it produces the good state with

probability p:

p = Pr[|X0, Y0〉|k0, k1, ..., k4〉 is good]
= Pr[B(X0, Y0, k0, k1, ..., k4) = 1]
= Pr[Condition 1] · Pr[Condition 2]
≈ 2−64 × 2−32×5 = 2−224.

(19)

Our classifier B defines a unitary operator SB that
conditionally change the sign of the quantum state
|X0, Y0〉|k0, k1, ..., k4〉:{ −|X0, Y0〉|k0, k1, ..., k4〉 if B(X0, Y0, k0, k1, ..., k4) = 1
|X0, Y0〉|k0, k1, ..., k4〉 if B(X0, Y0, k0, k1, ..., k4) = 0

(20)
The complete amplification process is realized by re-

peatedly for t times applying the unitary operator Q =
−AS0A−1SB to the state |ϕ〉 = A|0〉, i.e. QtA|0〉.

Initially, the angle between |ϕ〉 = A|0〉 and the bad
subspace |ϕ0〉 is θ, where sin2(θ) = p = 〈ϕ1|ϕ1〉. When
p is smaller enough, θ ≈ arcsin(

√
p) ≈ 2−

224
2 . According

to Theorem 1, after t = d π4θ e = d π

4×2− 224
2
e ≈ 2112 Grover

iterations Q, the angle between resulting state and the bad
subspace is roughly π/2. The probability Pgood that the mea-
surement yields a good state is about sin2(π/2) = 1. The
whole attack needs 224 qubits and 2112 Grover iterations.

5 CONCLUSION

In this paper, we have studied several Feistel block ciphers
against quantum attackers, including the attacks on 2/4K-
Feistel and 2/4K-DES in polynomial time and the attacks
on GOST which is faster than a quantum brute force search
attack by a factor 216. Our paper alerts the academy and
industry that it is not enough to just double the key length
of the symmetric primitives to stand up to the attackers from
the post-quantum world.
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