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Abstract: Different transforms used in binding a secret key to correlated physical-identifier outputs1

are compared. Decorrelation efficiency is the metric used to determine transforms that give2

highly-uncorrelated outputs. Scalar quantizers are applied to transform outputs to extract uniformly3

distributed bit sequences to which secret keys are bound. A set of transforms that perform well4

in terms of the decorrelation efficiency is applied to ring oscillator (RO) outputs to improve the5

uniqueness and reliability of extracted bit sequences, to reduce the hardware area and information6

leakage about the key and RO outputs, and to maximize the secret-key length. Low-complexity7

error-correction codes are proposed to illustrate two complete key-binding systems with perfect8

secrecy, and better secret-key and privacy-leakage rates than existing methods. A reference hardware9

implementation is also provided to demonstrate that the transform-coding approach occupies a small10

hardware area.11

Keywords: key agreement; physical unclonable functions; transform coding; privacy leakage;12

hardware implementation13

1. Introduction14

Secret keys stored in a device can provide intellectual property protection, and device15

authentication and identification. Non-volatile memory (NVM) is the traditional storage medium for16

secret keys. Securing the NVM is expensive due to its susceptibility to physical attacks [3]. A cheap17

and safe alternative to the NVM is to use physical identifiers as a source of randomness by applying18

the concept of one-way functions [4] to physical systems.19

Invasive (physical) attacks to physical identifiers permanently change the identifier output so that20

an attacker cannot learn the secret key by using an invasive attack [4]. This property eliminates the21

need for continuous hardware protection [5]. Physical identifiers like physical unclonable functions22

(PUFs), e.g., the random start-up value of an uninitialized static random access memory (SRAM) [6]23

or fine variations of ring oscillator (RO) outputs [7], are considered to be random sources with high24

entropy [8]. Thus, we can use PUFs for low-complexity key storage in, e.g., internet of things (IoT)25

applications like securing a surgical robot against hacking.26

There are multiple key-generation, or generated-secret (GS), and key-binding, or chosen-secret (CS),27

methods to reconstruct secret keys from noisy PUF outputs, where the key is generated from the PUF28
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outputs or bound to them, respectively. Code-offset fuzzy extractors [9] are examples of key-generation29

methods and the fuzzy commitment scheme [10] is a key-binding method. Code constructions based30

on Wyner-Ziv (WZ) coding are illustrated in [11] to asymptotically achieve the information-theoretic31

limits for the GS and CS models. These constructions might have high complexity, which is undesired32

for, e.g., IoT applications. In addition, since a key should be stored in a secure database for both models,33

it is more practical to allow a trusted entity to choose the secret key bound to a PUF output. Thus, in34

this paper, we aim at further improving reliability, privacy, secrecy, and hardware cost performance of35

a transform-coding algorithm, explained next, that is applied to PUF outputs in combination with the36

fuzzy commitment scheme.37

PUFs have similar features to biometric identifiers like fingerprints. Both identifier types have38

correlated and noisy outputs due to surrounding environmental conditions [12]. Correlation in39

PUF outputs leaks information about the secret key, which causes secrecy leakage, and about the40

PUF output, causing privacy leakage [13–15]. Moreover, noise reduces reliability of PUF outputs41

and error-correction codes are needed to satisfy the reliability requirements. The transform-coding42

approach [16,17] in combination with a set of scalar quantizers has made its way into secret-key43

binding with continuous-output biometric and physical identifiers, as they allow reducing the output44

correlation and adjusting the effective noise at the PUF output. For instance, the discrete cosine45

transform (DCT) is the building block in [17] to generate a uniformly distributed bit sequence from RO46

outputs under varying environmental conditions. Efficient post-processing steps are applied to obtain47

more reliable PUF outputs rather than changing the hardware architecture, so standard components48

can be used. This transform-coding approach improves on the existing approaches in terms of the49

reliability under varying environmental conditions and maximum key length [17,18]. We apply this50

algorithm to PUF outputs with further significant improvements by designing the transformation and51

error-correction steps jointly.52

Information-theoretic limits for the fuzzy commitment scheme are given in [19]. We use these53

information-theoretic limits to compare error-correction codes proposed for the transform-coding54

algorithm with the limits. Similar analyses were conducted for biometric identifiers in [20], but their55

assumptions such as independent and identically distributed (i.i.d.) identifier outputs and maximum56

block-error probability constraint PB =10−2 are not realistic. We therefore consider highly correlated57

RO outputs with the constraint PB≤10−9, which are realistic for security applications that use PUFs58

[21].59

1.1. Summary of Contributions and Organization60

We improve the DCT-based algorithm of [17] by using different transforms and reliability metrics.61

We also propose error-correction codes that achieve better (secret-key, privacy-leakage) rate tuples62

than previous code designs. A summary of the main contributions is as follows.63

• We compare a set of transforms to improve the performance of the transform coding algorithm64

in terms of the maximum secret-key length, decorrelation efficiency, uniqueness and security of65

the extracted bit sequence, and computational complexity.66

• Two quantization methods with different reliability metrics are proposed to address multiple67

design objectives for PUFs. One method aims at maximizing the length of the bit sequence68

extracted from a fixed number of ROs, whereas the second method provides reliability guarantees69

for each output in the transform domain by fixing the decoding capability of a decoder used for70

error correction.71

• We give a reference hardware design for the transform with the smallest computational72

complexity, among the set of transforms considered, in combination with the second quantization73

method to illustrate that our algorithm occupies a small hardware area. Our results are74

comparable to hardware area results of previous RO PUF designs.75

• Error-correction codes that satisfy the block-error probability constraints for practical PUF76

systems are proposed for both quantization methods to illustrate complete key-binding systems77
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with perfect secrecy. The proposed codes operate at better rate tuples than previously proposed78

codes for the fuzzy commitment scheme. Our quantizer designs also allow us to significantly79

reduce the gap to the optimal (secret-key, privacy-leakage) rate point achieved by the fuzzy80

commitment scheme.81

This paper is organized as follows. In Section 2, we define the fuzzy commitment scheme that uses82

PUF outputs as the randomness source. The transform-coding algorithm proposed to extract a reliable83

bit sequence from RO PUFs is explained in Section 3. We propose two different quantization methods84

with different reliability metrics in Section 4. In Section 5, we illustrate the small hardware area of the85

proposed algorithm with a reference hardware design, and the gains in terms of reliability, security,86

and maximum secret-key length as compared to the existing methods. Our proposed error-correction87

codes, and their secrecy and privacy performance are described in Section 6. Section 7 concludes the88

paper.89

1.2. Notation90

Upper case letters represent random variables and lower case letters their realizations. A letter91

with superscript denotes a string of variables, e.g., XN =X1 . . . Xi . . . XN , and a subscript denotes the92

position of a variable in the string. A random variable X has probability mass PX or probability density93

fX. Calligraphic letters such as X denote sets, and set sizes are denoted as |X |. Bold letters such as94

H represent matrices. Enc(·) is an encoder mapping and Dec(·) is a decoder mapping. X − Y − Z95

indicates a Markov chain. Hb(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function. The96

∗-operator is defined as p ∗ x = p(1− x) + (1− p)x. The operator ⊕ represents the element-wise97

modulo-2 summation. A binary symmetric channel (BSC) with crossover probability p is denoted98

by BSC(p). Xn ∼ Bernn(α) denotes that Xn is an i.i.d. binary sequence of random variables with99

Pr[Xi = 1] = α for i = 1, 2, . . . , n. Unif [1 : |X |] represents a uniform distribution over the integers from100

1 to |X |. A linear error-correction code C with parameters (n, k, d) has block length n, dimension k,101

and minimum distance d so that it can correct up to b d−1
2 c errors. .102

2. System Model and the Fuzzy Commitment Scheme103

Consider a RO as a source that generates a symbol x̃. Systematic variations in RO outputs in a104

two-dimensional array are less than the systematic variations in one-dimensional ROs [22]. We thus105

consider a two-dimensional RO array of size L = r×c and represent the array as a vector random106

variable X̃L. Suppose there is a single PUF circuit, i.e., a single two-dimensional RO array, in each107

device with the same circuit design, and it emits an output X̃L according to a probability density fX̃L .108

Each RO output is disturbed by mutually-independent additive white Gaussian noise (AWGN) and109

the vector noise is denoted as Z̃L. Define the noisy RO outputs as ỸL = X̃L+Z̃L. Observe that X̃L
110

and ỸL are correlated. A secret key can thus be agreed by using these outputs of the same RO array111

[13,14,23,24].112

One needs to extract random sequences with i.i.d. symbols from X̃L and ỸL to employ available113

information-theoretic results for secret-key binding with identifiers. We propose an algorithm that114

extracts nearly i.i.d. binary and uniformly distributed random vectors
(

XN, YN
)

from X̃L and ỸL,115

respectively. For such XN and YN , we can define a binary error vector as EN =XN⊕YN . The random116

sequence EN corresponds to a sequence of i.i.d. Bernoulli random variables with parameter p, i.e.,117

EN ∼ Bernn(p). The channel PY|X is thus a BSC(p).118

The fuzzy commitment scheme reconstructs a secret key by using correlated random variables119

without leaking any information about the secret key [10]. The fuzzy commitment scheme is depicted120

in Fig. 1, where an encoder Enc embeds a secret key, uniformly distributed according to Unif [1 : |S|],121

into a binary codeword CN that is added modulo-2 to the binary PUF-output sequence XN during122

enrollment. The resulting sequence is the public helper data M, which is sent through an authenticated123

and noiseless channel. The modulo-2 sum of the helper data M and YN gives the result124
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Figure 1. The fuzzy commitment scheme.

RN = M⊕YN = CN⊕ EN (1)

which is later mapped to an estimate Ŝ of the secret key by the decoder Dec during reconstruction.125

Definition 1. A secret-key vs. privacy-leakage rate pair (Rs , Rl) is achievable by the fuzzy commitment scheme126

with perfect secrecy, i.e., zero secrecy leakage, if, given any ε>0, there is some N≥1 and an encoder and decoder127

for which Rs =
log2 |S|

N
and128

Pr[S 6= Ŝ] ≤ ε (reliability) (2)

I (S; M)=0 (perfect secrecy) (3)
1
N

I
(

XN ; M
)
≤ Rl + ε (privacy). (4)

Theorem 1 ([19]). The achievable secret-key vs. privacy-leakage rate region for the fuzzy commitment scheme129

with a channel PY|X that is a BSC(p), uniformly distributed X and Y, and zero secrecy leakage is130

R={ (Rs, Rl) : 0 ≤ Rs ≤ 1− Hb(p), Rl ≥ 1−Rs}. (5)

The region R suggests that any (secret-key, privacy-leakage) rate pair that sums up to 1131

bit/source-bit is achievable with the constraint that the secret-key rate is at most the channel capacity132

of the BSC. Furthermore, smaller secret-key rates and greater privacy-leakage rates than these rates are133

also achievable.134

The fuzzy commitment scheme is a particular realization of the CS model. The regionRcs of all135

achievable (secret-key, privacy-leakage) rate pairs for the CS model with a negligible secrecy-leakage136

rate, where a generic encoder is used to confidentially transmit an embedded secret key to a decoder137

that observes YN and the helper data M, is given in [13] as138

Rcs=
⋃

PU|X

{
(Rs, Rl) : 0 ≤ Rs ≤ I(U; Y), Rl ≥ I(U; X)− I(U; Y)

}
(6)
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Figure 2. Transform-coding steps.

where U − X − Y forms a Markov chain and the alphabet U of the auxiliary random variable139

U can be limited to have the size |U | ≤ |X |+ 1. The fuzzy commitment scheme is optimal, i.e., it140

achieves a boundary point of Rcs, for a BSC PY|X with crossover probability p, only at the point141

(R∗s , R∗l ) = (1−Hb(p), Hb(p)) [19]. This point corresponds to the highest achievable secret-key rate.142

Note that the regionRcs gives an outer bound for the perfect-secrecy case (see [13] for discussions).143

3. Transform Coding Steps144

The aim of transform coding is to reduce the correlations between RO outputs by using a linear145

transformation. We propose a transform-coding algorithm that extends the work in [16] and [17].146

Optimizations of the quantization and error-correction parameters to maximize the security and147

reliability performance, and a simple method to decrease storage are its main steps. The output of148

these post-processing steps is a bit sequence XN (or its noisy version YN) used in the fuzzy commitment149

scheme. We consider the same post-processing steps for the enrollment and reconstruction with the150

exception that during enrollment the design parameters are determined by the device manufacturer151

depending on the source statistics. It thus suffices to discuss only the enrollment steps. Fig. 2152

shows the post-processing steps that include transformation, histogram equalization, quantization, bit153

assignment, and bit-sequence concatenation.154

RO outputs X̃L in an array are correlated due to, e.g., the surrounding logic [25]. A transform155

Tr×c(·) of size r×c is applied to an array of RO outputs to reduce correlations. Decorrelation156

performance of a transform depends on the source statistics. We model each output T in the transform157

domain, called transform coefficient, obtained from a RO-output dataset in [26] by using the corrected158

Akaike information criterion (AICc) [27] and the Bayesian information criterion (BIC) [28]. These159

criteria suggest that a Gaussian distribution can be fitted to each transform coefficient T for the discrete160

cosine transform (DCT), discrete Walsh-Hadamard transform (DWHT), discrete Haar transform (DHT),161

and Karhunen-Loève transform (KLT), which are common transforms considered in the literature for162

image processing, digital watermarking, etc. [29]. We use maximum-likelihood estimation [30] to163

derive unbiased estimates for the parameters of Gaussian distributions.164

The histogram equalization step in Fig. 2 converts the probability density of the i-th coefficient165

Ti into a standard normal distribution such that T̂i = Ti−µi
σi

, where µi is the mean and σi is the166

standard deviation of the i-th transform coefficient for all i = 1, 2, . . . , L. Quantization steps for167

all transform coefficients are thus the same. Without histogram equalization, we need a different168

quantizer for each transform coefficient. Therefore, the histogram equalization step reduces the169

storage for the quantization steps. Transformed and equalized coefficients T̂i are independent if170

the transform Tr×c(·) decorrelates the RO outputs perfectly and the transform coefficients Ti are171

jointly Gaussian. One can thus use a scalar quantizer for all coefficients without a performance172

loss. We propose scalar quantizer and bit extraction methods that satisfy the security and reliability173
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requirements of the fuzzy commitment scheme with the independence assumption, in combination174

with a correlation-thresholding approach, as discussed below.175

4. Quantizer and Code Designs176

The aim of the post-processing steps in Fig. 2 is to extract a uniformly-random bit sequence XN .177

We use a quantizer Q(·) with quantization-interval values k = 1, 2, · · · , 2Ki , where Ki is the number of178

bits we extract from the i-th coefficient T̂i for i=1, 2, . . . , L. We have179

Q(t̂i) = k if bk−1< t̂i≤bk (7)

and we choose bk = Φ−1
(

k
2Ki

)
, where Φ−1(·) is the quantile function of the standard normal180

distribution. The quantizer output k is assigned to a bit sequence of length Ki. The chosen permutation181

of assigned bit sequences does not affect the security performance. However, the most likely error182

event when we quantize T̂i is a jump to a neighboring quantization step due to zero-mean noise. We183

thus apply a Gray mapping when we assign bit sequences of length Ki to the integers k = 1, 2, . . . , 2Ki
184

so that neighboring bit sequences change only in one bit position.185

We next propose two different reliability metrics for joint quantizer and code designs. The first186

metric results in BSC measurements of each extracted bit with approximately the same crossover187

probability. This method extracts a different number of bits from each transform coefficient. The188

code design is then done for a fixed crossover probability of the BSCs. The second method fixes the189

maximum number of erroneous transform coefficients and considers an error-correction code that can190

correct all error patterns with up to a fixed number of errors.191

4.1. Quantizer Design with Fixed Measurement Channels192

Observe that with the quantizer in (7) and a Gray mapping, one can model the channel193

between a bit extracted from the enrollment outputs X̃L and the corresponding bit extracted from the194

reconstruction outputs ỸL as a BSC with a fixed average crossover probability pb. Our algorithm thus195

fixes an average crossover probability pb such that the error-correction step in the fuzzy commitment196

scheme can satisfy the maximum block-error probability of 10−9. The algorithm enforces that each197

output t̂i results in an average bit error probability as close as possible to, but not greater than, pb198

by adapting the number of bits Ki(pb) extracted from the i-th coefficient T̂i for all i= 1, 2, . . . , L. We199

use the average fractional Hamming distance D(K) between the quantization intervals assigned to the200

original and noisy coefficients as a metric to determine Ki(pb). Define201

Di(K)=
1
K

∫ ∞

−∞

∫ ∞

−∞

(
2K

∑
k=1

Pr[Q(t̂+n̂) = k]HDk(t̂)

)
· fT̂i

(t̂) fN̂i
(n̂)dt̂dn̂ (8)

where HDk(t̂) is the Hamming distance between the bit sequences assigned to the k-th202

quantization interval and to the interval Q(t̂), and N̂i represents the Gaussian noise in the i-th203

coefficient after histogram equalization. We then determine Ki(pb) as the greatest number of bits204

K such that Di(K)≤ pb.205

The first coefficient, i.e., DC coefficient, T̂1 is not used since its value is a scaled version of the mean206

of the RO outputs in the array, which is generally known by an eavesdropper. Ambient-temperature207

and supply-voltage variations have a highly-linear effect on the RO outputs, so the DC coefficient is208

the most affected coefficient, which is another reason not to use the DC coefficient [18]. Therefore, the209

total number N(pb) of extracted bits from all transform coefficients for a fixed pb is210
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N(pb) =
L

∑
i=2

Ki(pb). (9)

We calculate the maximum secret-key length Smax by using (5) for a BSC(pb) with the maximum211

secret-key rate R∗s =1−Hb(pb) as212

Smax = (1− Hb(pb)) · N(pb) (10)

which is used to compare different transforms and to decide whether one can use an RO PUF213

with fixed number of ROs and pb for secret-key binding. For instance, for the advanced encryption214

standard (AES), the minimum secret-key length is 128 bits. However, the rate regionR in (5) is valid215

for large N. One thus needs to consider the rate loss due to a finite block length for a system design.216

4.2. Quantizer Design with Fixed Number of Errors217

We now propose a conservative approach, based on the assumption that either all bits extracted218

from a transform coefficient are correct or they all flip, to provide reliability guarantees. The correctness219

probability Pc of a transform coefficient is defined to be the probability that all bits associated with220

this coefficient are correct. We use this metric to determine the number of bits extracted from each221

coefficient such that there is an encoder and a bounded minimum distance decoder (BMDD) that222

satisfy the block-error probability constraint PB≤10−9. This approach results in reliability guarantees223

for the random-output RO arrays.224

For a K-bit quantizer and the quantization boundaries bk as in (7) for an equalized (i.e., standard)225

Gaussian transform coefficient T̂, we obtain the correctness probability226

Pc(K)=
2K−1

∑
k=0

bk+1∫
bk

[
Q
( bk− t̂

σn̂

)
−Q

( bk+1− t̂
σn̂

)]
fT̂(t̂)dt̂ (11)

where σ2
n̂ is the noise variance and fT̂ is the probability density of the standard Gaussian227

distribution.228

Suppose our channel decoder can correct all errors in up to Cmax transform coefficients. Suppose229

further that coefficient errors occur independently and that the correctness probability Pc,i(K) of the i-th230

coefficient T̂i for i=1, 2, . . . , L is at least Pc(Cmax). A sufficient condition for satisfying the block-error231

probability constraint PB≤10−9 is that Pc(Cmax) satisfies the inequality232

L

∑
c=Cmax+1

(
L
c

)
(1−Pc(Cmax))

cPc(Cmax)
L−c≤10−9. (12)

We thus determine the number Ki of bits extracted from the i-th transform coefficient as the233

maximum value K such that Pc,i(K) ≥ P̄c(Cmax). Similar to Section 4.1, we choose K1 =0 so that the234

total number N(Cmax) of extracted bits is235

N(Cmax)=
L

∑
i=2

Ki. (13)
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In the worst case, the coefficients in error are the coefficients from which the greatest number of236

bits is extracted. We sort the numbers Ki of bits extracted from all coefficients in descending order such237

that K′i≥K′i+1 for all i=1, 2, . . . , L− 1. The channel decoder thus must be able to correct up to238

e(Cmax) =
Cmax

∑
i=1

K′i (14)

bit errors, which can be satisfied by using a block code with minimum distance dmin≥2e(Cmax)+1.239

Suppose a key bound to physical identifiers in a device is used in the AES with a240

uniformly-distributed secret-key with a length of 128 bits. The block code used in the fuzzy241

commitment scheme should thus have a code length of at most N(Cmax) bits, code dimension of242

at least 128 bits, and minimum distance of dmin≥2e(Cmax) + 1 for a fixed Cmax. The code rate should243

be as high as possible to operate close to the optimal (secret-key, privacy-leakage) rate point of the244

fuzzy commitment scheme. This optimization problem is hard to solve. We illustrate by an exhaustive245

search over a set of Cmax values and over a selection of algebraic codes that there is a channel code246

that satisfies these constraints with a reliability guarantee for each extracted bit. Restricting our search247

to codes that admit low-complexity encoders and decoders is desired for IoT applications, for which248

complexity is the bottleneck.249

Note that the listed conditions are conservative. For a given transform coefficient, the correctness250

probability can be significantly greater than the correctness threshold Pc(Cmax). Secondly, due to Gray251

mapping, it is more likely that less than Ki bits are in error when the i-th coefficient is erroneous.252

Thirdly, it is also unlikely that the bit errors always occur in the transform coefficients from which the253

greatest number of bits is extracted. Therefore, even if a channel code cannot correct all error patterns254

with up to e(Cmax) errors, it can still be the case that the block-error probability constraint is satisfied.255

We illustrate such a case in the next section.256

5. Performance Evaluations257

Suppose the device output X̃L is a vector random variable with the autocovariance matrix CX̃X̃.258

Consider RO arrays of sizes 8×8 and 16×16. Autocovariance matrix elements of such RO array outputs259

and noise are estimated from the dataset in [26]. We compare the DCT, DWHT, DHT, and KLT in terms260

of their decorrelation efficiency, maximum secret-key length, complexity, uniqueness, and security.261

5.1. Decorrelation Performance262

One should eliminate correlations between the RO outputs and make them independent to263

extract uniform bit sequences by treating each transform coefficient separately. We use the decorrelation264

efficiency ηc [31] as a decorrelation performance metric. Consider the autocovariance matrix CTT of the265

transform coefficients, so ηc of a transform is266

ηc = 1−

L
∑

a=0

L
∑

b=0
|CTT(a, b)|1{a 6=b}

L
∑

a=0

L
∑

b=0
|CX̃X̃(a, b)|1{a 6=b}

(15)

where the indicator function 1{a 6= b} takes on the value 1 if a 6= b and 0 otherwise. The267

decorrelation efficiency of the KLT is 1, which is optimal [31]. We list the average decorrelation268

efficiency results of other transforms in Table 1. All transforms have similar and good decorrelation269

efficiency performance for the RO outputs in the dataset in [26]. The DCT and DHT have the highest270

efficiency for 8×8 RO arrays, whereas for 16×16 RO arrays, the best transform is the DWHT. Table 1271

indicates that increasing the array size improves ηc.272
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Table 1. The average RO output decorrelation-efficiency results.

DCT DWHT DHT
ηc for 8× 8 0.9978 0.9977 0.9978

ηc for 16× 16 0.9987 0.9988 0.9986

5.2. Maximum Secret-key Length273

The maximum number of bits extracted with the method given in Section 4.2 depends on the274

fixed number of transform coefficients that are in error. Moreover, the method uses a conservative275

metric. However, for the method given in Section 4.1, we can optimize the number of bits extracted276

from each coefficient to maximize the secret-key length. We therefore consider only the method in277

Section 4.1 for maximum key-length comparisons.278

The secret key S should satisfy the length constraints of the cryptographic primitives that use279

it. Consider again the AES with a 128-bit secret key. We compare different transforms by calculating280

the maximum secret-key lengths Smax, defined in (10), for various crossover probabilities pb that can281

be obtained by applying the post-processing steps in Fig. 2. For RO array dimensions 8×8, we show282

Smax results of the considered transforms in Fig. 3. For pb ≤ 0.05, R∗s is high but N(pb) is small, so283

Smax is mainly determined by N(pb), as depicted in Fig. 3. For pb≥0.07, N(pb) is high but R∗s mainly284

determines Smax, which is small.285

The DHT, DWHT, and DCT have similar Smax results and the KLT has worse performance286

than the others, which is mainly determined by the signal-to-noise ratio (SNR) in the transform287

domain. This illustrates that a transform’s ηc performance for the estimated RO output distribution288

and its Smax performance for the estimated RO output and noise distributions can be different. We289

determine a crossover probability range P=[0.05, 0.07] such that the secret-key length of all transforms290

are close to their maximum and greater than 128. For a BSC with crossover probability p ∈ P ,291

we design error-correction codes such that PB ≤ 10−9 is satisfied. The crossover probability range292

considered in [21] is [0.12, 0.14], while 0.14 is the only value considered in [32] for the same PB constraint.293

Considering a set of crossover values rather than a single value provides more flexibility in designing294

error-correction codes. Our crossover probability range also allows us to use higher-rate codes than295

the codes for the range [0.12, 0.14] since the maximum key rate R∗s of the fuzzy commitment scheme296

increases with decreasing pb. The proposed transform-coding algorithm with the first quantizer297

method is thus beneficial for code design due to smaller crossover probability pb.298

The maximum number of extracted bits, which corresponds to N in (9), for an 8×8 RO array is 16299

bits for the 1-out-of-8 masking scheme [7], 32 bits for the non-overlapping RO pairs [7], and 64 bits for the300

regression-based distillers [33]. Even if one assumes no errors, i.e., R∗s =1, for these methods, their Smax301

results are much smaller than the Smax results of our algorithm, as shown in Fig. 3.302

5.3. Transform Complexity303

We measure the complexity of a transform in terms of the number of operations required to304

compute the transform and the hardware area required to implement it in a field-programmable gate305

array (FPGA). We are first interested in a computational-complexity comparison for RO arrays of306

sizes r= c=8 and r= c=16, which are powers of 2, so that fast algorithms are available for the DCT,307

DWHT, and DHT. We then present an RO PUF hardware design for the transform with the minimum308

computational complexity.309

The computational complexity of the KLT for r = c = N is O(N3), while it is O(N2 log2 N) for310

the DCT and DWHT, and O(N2) for the DHT [29]. There are efficient implementations of the DWHT311

without multiplications [34]. The DWHT is thus a good candidate for RO PUF designs for, e.g., internet312

of things (IoT) applications.313
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Figure 3. The maximum key lengths Smax for 8×8 RO arrays.

We now give a reference FPGA implementation for the DWHT without multiplications to illustrate314

that the hardware area occupied by the transform-coding algorithm is small and the processing time is315

significantly better than previous RO PUF designs.316

5.3.1. FPGA Implementation317

We use a Xilinx ZC706 evaluation board with a Zynq-7000 XC7Z045 system-on-chip (SoC) to318

evaluate our DWHT design. A high level overview of the design is depicted in Fig. 4. The Zynq SoC319

consists of an FPGA part and an ARM Cortex-A9 dual-core processor, connected with memory-mapped320

AXI4 buses [35]. The ARM processor is connected to three components: the RO array, DWHT, and321

quantizer. The RO array is connected via a bi-directional memory-mapped AXI bus, and the other322

components are connected via AXI streaming buses [36]. We first measure RO outputs with counters,323

give the counter values as input to the DWHT, and then quantize the transform coefficients to assign324

bits. This is an implementation of the transform-coding algorithm given in Fig. 2.325

We use a standard RO array of size 16× 16. All ROs in a row are connected to a counter and ROs326

in the same row can be measured serially by using the counter. There is an additional counter that327

stops the counting operations after a specified time. For the FPGA we use, it is practically necessary to328

use at least five inverters for each RO since using three inverters results in oscillation frequencies of329

about 1GHz, which violates the timing constraints of the FPGA. Our RO designs with five inverters330

operate reliably and give oscillation frequencies in the range [400, 500] MHz. Furthermore, we use331

16-bit counters so that the minimum duration Tmin to have an overload in a counter is332

Tmin =
216 − 1

500MHz
= 131µs. (16)

We therefore count each RO output for a duration of 100µs, which is less than Tmin to avoid333

overloads. This results in a total counting duration of 1.6ms for all 16 columns of the RO array, which334

is compared below with the previous RO PUF designs.335

We next implement an extended version of the algorithm, proposed for an 8× 8 array, in [34] to336

calculate the two-dimensional (2D) 16× 16 DWHT without multiplications. The main block we use is337

the 4-point (4P)-2D DWHT [34] that takes four inputs [x0, x1, x2, x3] and calculates338
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Figure 4. Hardware design overview.

[
y0 y1

y2 y3

]
=

1
2

[
x0 + x1 + x2 + x3 x0 − x1 + x2 − x3

x0 + x1 − x2 − x3 x0 − x1 − x2 + x3

]
. (17)

We successively apply the 4P-2D DWHT to the 16× 16 RO array according to an extension of339

the input-selection algorithm proposed in [34]. We implement a finite state machine (FSM) to control340

the input and output AXI streaming interfaces as well as the input-selection algorithm. The building341

blocks of our DWHT implementation is depicted in Fig. 5, which includes342

• a data random access memory (RAM) to store all array elements,343

• a 32-bit index read-only memory (ROM), where each word stores four 8-bit array-element344

addresses,345

• a multiplexer (MUX) to select the RAM address to be accessed,346

• a second MUX to select the ROM input,347

• a register for each input to convey different RAM words to different ports.348

We first store all RO outputs in the data RAM. Then, the first word of the index ROM is fetched.349

This word holds the addresses of four array elements to be loaded. These array elements are passed350

to the 4P-2D DWHT’s input registers by selecting the corresponding port in the address MUX and351

register bank. After evaluating the 4P-2D DWHT, the new array elements [y0, y1, y2, y3] are written352

back to the locations from where the inputs [x0, x1, x2, x3] were fetched. The FSM performs the same353

steps for all remaining ROM words and conveys the 2D DWHT coefficients to the AXI output port.354

The addition and subtraction operations on four numbers in each 4P-2D DWHT evaluation355

requires at most two additional bits, while the subsequent bit shift to implement the division by 2 in356

(17) removes one bit. Since the 4P-2D DWHT is applied in total four times to each RAM location, the357

transform requires 20-bit operations and storage in order to process the 16-bit signed numbers used358

for counter values.359

The quantizer contains AXI stream ports, an FSM, and one ROM. The ROM holds 2Ki − 1360

quantization boundaries for the i-th transform coefficient. We remark that the histogram equalization361

step in Fig. 2 is useful when the number of bits Ki extracted are large, but we choose Ki = K = 1 for all362

used transform coefficients, which is illustrated in combination with an error-correction code design363

in Section 6.2. Therefore, we do not apply the histogram equalization step for this case, so the ROM364

contains 255 words and is of size 638 Bytes (≥ 255 ∗ 20 bits) in total. The FSM compares the quantizer365

input with the corresponding quantization boundary to assign a bit 1 for transform-coefficient values366

greater than the quantization boundary, and the bit 0 otherwise. The assigned bits are then conveyed367

to the output port.368
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5.3.2. Hardware Design Comparisons369

We now compare our results with another RO PUF hardware design given in [21] in terms of the370

hardware area and processing times. The number of LUTs, registers, and MUXs used in [21] are not371

available. However, our results can be compared with their slice-count and processing-delay results372

since the FPGA (Spartan-6) used in [21] also has 4 LUTs, 8 registers and 3 MUXes in each slice, the373

same as the FPGA used in this work. In addition, the quantizer and DWHT clock rate is 54MHz, as in374

[21]. There are alternative RO PUF designs in [37,38], but their secret-key lengths are smaller than 128375

bits, which makes a comparison with our scheme difficult. Therefore, we list in Table 2 the hardware376

area occupied by individual components of our RO PUF design and by the RO PUF design of [21].377

Table 2 illustrates that the RO array causes the highest hardware cost and uses approximately378

82% of all occupied LUTs, 62% of registers, and 86% of slices. We do not include the area for RAMs379

and ROMs, because we use Block RAM slices that are available in the FPGA. However, we include380

the control logic area required to control the Block RAM slices. Our DWHT-based design occupies an381

approximately 11% smaller RO PUF hardware area than the RO PUF design proposed in [21] in terms382

of the number of slices used. This result can be improved if we re-use the same area for different ROs,383

which might increase correlations in the RO outputs. In addition, the DWHT and quantizer constitute384

approximately 14% of the total slice count of our RO PUF design. These results illustrate that the385

transform-coding approach occupies a small hardware area.386

The total counter duration of 1.6ms is a result of the calculation given in (16) to avoid overloads in387

the counters, and the choice of this value depends mainly on the number of inverters used for each RO388

and counter bit width. The overall processing time of the proposed design is approximately 1.68ms,389

which is significantly better than the processing delay of the RO PUF design in [21].390

5.4. Uniqueness and Security391

The bit sequence extracted from a physical identifier should consist of uniformly distributed392

bits so that the rate region R in (5) is valid. A common measure, called uniqueness, for checking393

randomness of a bit sequence is the average fractional Hamming distance between the bit sequences394

extracted from different RO PUFs [17]. We obtain similar uniqueness results for all transforms, where395

the mean Hamming distance is 0.500 and Hamming distance variance is approximately 7×10−4. All396

transforms thus provide close to optimal uniqueness results due to their high decorrelation efficiencies397

and equipartitioned quantization intervals. These results are significantly better than the results 0.462398

[7] and 0.473 [26].399

The National Institute of Standards and Technology (NIST) provides a set of randomness tests400

that check whether a bit sequence can be differentiated from a uniformly random bit sequence [39].401
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Table 2. Hardware area and processing delays for RO PUF designs.

Blocks LUTs Registers MUXes RAM&ROM [Byte] Slices Duration [µs]
Proposed-ROs 1632 397 65 0 729 1600

Proposed-DWHT 326 200 0 1664 99 66
Proposed-Quantizer 43 39 0 638 21 14
Proposed (ROPUF) 2001 636 65 2302 849 1680

PUFKY (ROPUF) [21] n.a. n.a. n.a. n.a. 952 4611

We apply these tests to evaluate the randomness of the generated sequences. We observe that the bit402

sequences generated from ROs in the dataset [26] with the DWHT pass most of the applicable tests for403

short lengths for both reliability metrics, which is considered to be an acceptable result [39]. We also404

conclude that the KLT performs the best due to its optimal decorrelation performance. One can apply405

a thresholding approach such that the reliable transform coefficients from which the bits are extracted406

do not have high correlations, which further improves the security performance [18].407

6. Privacy and Secrecy Analysis of Proposed Error-correction Codes408

Suppose that extracted bit sequences are uniformly distributed so that the secrecy leakage is409

zero. We propose different codes for the transform-coding algorithm according to the two proposed410

reliability metrics.411

6.1. Codes for the Quantizer Design with Fixed Measurement Channels412

For the first quantizer method given in Section 4.1, fix an average crossover probability pb =0.06 to413

obtain the highest maximum secret-key length, as shown in Fig. 3. We illustrate that there are efficient414

error-correction codes for the fuzzy commitment scheme with PB≤10−9 and a small privacy-leakage415

rate. Recall that the code dimension has to be at least 128 bits, a requirement of the AES, so the block416

length is in the short block-length regime for error-correction codes with high rates and k=128. We417

expect a rate loss in our code designs due to the small block-error probability constraint and short block418

length. One needs finite-length bounds for the fuzzy commitment scheme, which are not available in419

the literature. We thus compare the performance of our codes with the regionR given in (5). The basic420

approach to design codes for small block-error probabilities and reasonable decoding complexity is421

to use concatenated codes. Since the hardware complexity of a code design should be small for IoT422

applications, we minimize also the field sizes of the codes.423

Remark 1. It would be natural to use iterative decoders in combination with high-performance codes424

like low density parity check (LDPC) and turbo codes. However, hardware complexity might increase425

and it is a difficult task to simulate these codes for PB ≤ 10−9. We thus use concatenated algebraic426

codes so that we can find analytical bounds on PB without simulations for the outer code.427

The first construction uses a Reed-Muller (RM) code C(32, 6, 16) as the inner code and a428

Reed-Solomon (RS) code C(28, 22, 7) that operates with symbols from the Galois field F26 as the429

outer code of a concatenated code. Every symbol of the RS code can be represented by 6 bits and the430

code takes 22 symbols as input, which corresponds to 132 input bits that is greater than 128 bits. The431

majority logic decoder (MLD) of the inner RM code transforms the BSC with crossover probability432

pb =0.06 into a channel with errors and erasures by declaring an erasure if there are two codewords with433

equal distances to a received vector and makes an error if a wrong codeword is selected. Simulation434

results show that the erasure probability after the MLD of the inner code is about 6.57×10−5 and the435

error probability is about 4.54×10−6. The BMDD for the outer code correctly reconstructs the codeword436

if 2 · e+ν<d, where e is the number of errors and ν is the number of erasures in the received vector437

[40]. The block-error probability after decoding the outer RS code is approximately PB≈1.37×10−11.438

The key and leakage rates of this code are Rs =0.1473 and Rl =0.8527 bits/source-bit, respectively.439
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Figure 6. The correctness probabilities for transform coefficients.

An alternative concatenated code is a binary extended Bose-Chaudhuri-Hocquenghem (BCH)440

code C(256, 132, 36) as the outer code and a repetition code C(3, 1, 3) as the inner code. The441

maximum-likelihood decoder for the inner code transforms the BSC with crossover probability442

pb = 0.06 into a BSC with pb = 0.0104 so that the BMDD for the outer BCH code results in PB =443

3.48×10−10. The key-leakage rate pair (Rs, Rl) for this code is (0.1719, 0.8281) bits/source-bit, which444

gives better rates than the RM+RS concatenation above and the best generalized-concatenated-code445

(GCC) design with the fuzzy commitment scheme in [32] with the key-leakage rate pair (0.1260, 0.8740)446

bits/source-bit, which is shown to be better than the previous results in [21]. The significant447

improvement in the rates with a low-complexity code is due to the decrease in pb by using our448

transform-coding algorithm.449

The fuzzy commitment scheme can asymptotically achieve the maximum secret-key rate R∗s =450

0.6726 bits/source-bit and corresponding minimum privacy-leakage rate R∗l = 0.3274 bits/source-bit451

for a BSC(pb = 0.06). Better key-leakage rate pairs are thus possible, e.g., by using GCCs or by452

improving the decoder for the outer code. However, these constructions would result in increased453

hardware complexity, which is not desired for IoT applications.454

6.2. Codes for the Quantizer Design with Fixed Number of Errors455

We now select a channel code according to Section 4.2 to store a secret key of length 128 bits.456

The correctness probabilities defined in (11) for the transform coefficients T with the three highest457

and three smallest probabilities are plotted in Fig. 6. The indices of the 16× 16 transform coefficients458

follow the order in the dataset [26], where the coefficient index at the first row and first column is 1,459

and it increases columnwise up to 16 so that the second row starts with the index 17, the third row460

with the index 33, etc. The most reliable transform coefficients are the low-frequency coefficients,461

which are in our case at the upper-left corner of the 2D transform-coefficient array with indices such as462

1, 2, 3, 17, 18, 19, 33, 34, 35. The low-frequency transform coefficients therefore have the highest SNRs for463

the source and noise statistics obtained from the RO dataset in [26]. The least reliable coefficients are464

observed to be spatially away from the transform coefficients at the upper-left or lower-right corners465

of the 2D transform-coefficient array. These results indicate that the SNR-packing efficiency, which can466

be defined similarly as the energy-packing efficiency, of a transform follows a more complicated scan467

order than the classic zig-zag scan order used for the energy-packing efficiency metric [41]. Observe468

from Fig. 6 that increasing the number of extracted bits decreases the correctness probability for all469

coefficients since the quantization boundaries get closer so that errors due to noise become more likely,470

i.e., the probability Pc(K) defined in (11) decreases with increasing K.471
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Table 3. Code-parameter constraints.

Cmax 16 17 18 19 20
P̄c 0.9902 0.9889 0.9875 0.9860 0.9844

Kmax 3 3 3 3 3
N 144 224 250 255 259
e 18 20 21 23 25

We fix the maximum number Cmax of transform coefficients T allowed to be in error and calculate472

the correctness threshold Pc(Cmax) using (12), the total number N(Cmax) of extracted bits using (13),473

and the number e(Cmax) of errors the block code should be able to correct using (14). We observe474

that if Cmax≤10, Pc(Cmax) is so large that Pc,i(K=1)≤Pc(Cmax) for all i = 2, . . . , L. If 11≤Cmax≤15,475

N(Cmax) is less than the required code dimension of 128 bits. Increasing Cmax results in a smaller476

correctness threshold Pc(Cmax) so that the maximum of the number Kmax(Cmax) = K′1(Cmax) of bits477

extracted among the L− 1 used coefficients increases. This approach can increase hardware complexity.478

We thus do not consider the cases where Cmax>20. Table 3 shows Pc(Cmax), N(Cmax), and e(Cmax) for479

the remaining range of Cmax values, which are used for channel-code selection.480

Consider again binary (extended) BCH and RS codes, which have good minimum-distance481

properties. An exhaustive search does not provide a code with dimension of at least 128 bits and482

with parameters satisfying any of the (N(Cmax), e(Cmax)) pairs in Table 3. However, the correctness483

threshold analysis leading to Table 3 is conservative. We therefore choose a BCH code with parameters484

as close as possible to a (N(Cmax), e(Cmax)) pair and then prove that even if the number eBCH of errors485

the chosen BCH code can correct is less than e(Cmax), the block-error probability constraint is satisfied.486

Consider therefore the BCH code with the block length 255, code dimension 131, and a capability of487

correcting all error patterns with eBCH = 18 or less errors.488

We now show that the proposed code satisfies the block-error probability constraint. First,489

we impose the condition that exactly one bit is extracted from each coefficient, i.e., Ki = 1 for all490

i=2, 3, . . . , L, so that in total N=L− 1=255 bits are obtained. Note that this results in independent491

bit errors Ei. It follows from this condition that the chosen block code should be able to correct all error492

patterns with up to e = 20 bit errors rather than e(20) = 25 bit errors, which is still greater than the493

error-correction capability eBCH = 18 of the considered BCH code.494

The block error probability PB for the BCH code C(255, 131, 37) with a BMDD corresponds to the495

probability of having more than 18 errors in the codeword, i.e.,496

PB =
255

∑
j=19

[
∑

A∈Fj

∏
i∈A

(1− Pc,i) • ∏
i∈Ac

Pc,i

]
(18)

where Pc,i is the correctness probability of the i-th transform coefficient T̂i defined in (11) for i=497

2, 3, . . . , 256, Fj is the set of all size-j subsets of the set {2, 3, . . . , 256}, and Ac denotes the complement of498

the set A. The correctness probabilities Pc,i are different and they represent probabilities of independent499

events due to the independence assumption for the transform coefficients.500

One needs to consider ∑18
j=0 (

255
j ) ≈ 1.90×1027 different cases to calculate (18), which is not501

practical. We thus use the discrete Fourier transform - characteristic function (DFT-CF) method [42] to502

calculate the block-error probability and obtain the result PB≈ 1.26×10−11 < 10−9. The block-error503

probability constraint is thus satisfied by using the BCH code C(255, 131, 37) with a BMDD although504

the conservative analysis suggests that it would not be satisfied.505

We now compare the BCH code C(255, 131, 37) with previous codes proposed for binding keys506

to physical identifiers with the fuzzy commitment scheme and a secret-key length of 128 bits such507

that PB ≤ 10−9 is satisfied. The (secret-key, privacy-leakage) rate pair for this proposed code is508

(Rs, Rl) = ( 131
255 , 1− 131

255 ) ≈ (0.514, 0.486) bits/source-bit. This pair is significantly better than our509
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Figure 7. The operation point of the proposed BCH code C(255, 131, 37), regions of achievable rate pairs
according to (5) and (6), the maximum secret-key rate point, and a finite-length bound for N = 255 bits,
PB = 10−9, and BSC(0.0097).

previous results in Section 6.1 proposed for a BSC(pb =0.06). The main reason for obtaining a better510

(secret-key, privacy-leakage) rate pair is that the quantizer in Section 4.2 allows us to exploit higher511

identifier-output reliability by decreasing the number of bits extracted from each transform coefficient.512

We compare the secret-key and privacy-leakage rates of the BCH code C(255, 131, 37) with the513

region of all achievable rate pairs for the CS model and the fuzzy commitment scheme for a BSC514

PY|X with crossover probability pb = 1− 1
L−1 ∑L

i=2 Pc,i(Ki = 1)≈ 0.0097, i.e., the probability of being515

in error averaged over all used transform coefficients with the quantizer in Section 4.2. We compute516

the boundary points of the region Rcs by using Mrs. Gerber’s lemma [43], which gives the optimal517

auxiliary random variable U in (6) when PY|X is a BSC. We plot the regions of all rate pairs achievable518

with the fuzzy commitment scheme and CS model, the maximum secret-key rate point, the (secret-key,519

privacy-leakage) rate pair of the proposed code, and a finite-length bound [44] for the block length of520

N = 255 bits and PB =10−9 in Fig. 7.521

The maximum secret-key rate is R∗s ≈ 0.922 bits/source-bit with a corresponding minimum522

privacy-leakage rate of R∗l ≈0.079 bits/source-bit. There is a gap between the secret-key rate of the523

proposed code and the only operation point where the fuzzy commitment scheme is optimal. Part524

of this rate loss can be explained by the short block length of the code and the small block-error525

probability constraint. The finite-length bound given in [44, Theorem 52] establishes that the rate526

pair (Rs, Rl) = (0.691, 0.309) bits/source-bit is achievable by using the fuzzy commitment scheme,527

as depicted in Fig. 7. One can therefore further improve the rate pairs by using better codes and528

decoders with higher hardware complexity, but this may not be possible for IoT applications. Fig. 7529

also illustrates that there exist other code constructions, e.g., the WZ-coding construction in [11], that530

reduce the privacy-leakage rate for a fixed secret-key rate.531

7. Conclusion532

The reliability, uniqueness, security, computational-complexity, and key-length performance of533

various transforms was compared to select the best transforms for reliable secret-key binding for534

RO PUFs by using the fuzzy commitment scheme. The DWHT and DHT perform best in terms of535

computational-complexity, maximum key length, and reliability. All transforms give close to optimal536

uniqueness and good security results. A reference hardware design with the DWHT showed that537

the hardware area required by the transform-coding approach is small and less than required by538
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the existing RO PUF designs. Low-complexity concatenated codes with high secret-key and small539

privacy-leakage rates, which are better than previous results, are proposed for a realistic block-error540

probability of 10−9.541

We further improved the transform-coding algorithm applied to physical identifiers by designing542

quantizers with reliability guarantees. This alternative quantizer converts the block-error probability543

constraint PB≤10−9 into a constraint on the number of transform coefficients allowed to be in error.544

We proposed a BCH code C(255, 131, 37) with a higher code rate than our previously proposed codes.545

Comparisons with the region of all achievable (secret-key, privacy-leakage) rate pairs for the fuzzy546

commitment scheme show that there is still a gap between the optimal rate pairs and the proposed547

code. This gap can be closed by using other channel codes and decoders at the cost of higher hardware548

complexity or by designing codes for other CS model constructions. In future work, we will apply an549

extension of water-filling techniques to the transform-coefficients in order to improve the reliability550

and security performance.551
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