
Fortified Universal Composability: Taking
Advantage of Simple Secure Hardware Modules

Brandon Broadnax1, Alexander Koch1, Jeremias Mechler1, Tobias Müller2, Jörn
Müller-Quade1, Matthias Nagel1

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 FZI Research Center for Information Technology

{brandon.broadnax,alexander.koch,jeremias.mechler,joern.mueller-quade,
matthias.nagel}@kit.edu,tobias.mueller@fzi.de

Abstract. We initiate the study of incorporating remotely unhackable
hardware modules, such as air-gap switches and data diodes, into the
field of multi-party computation. As a result, we are able to construct
protocols with very strong composable security guarantees that cannot
be achieved with adaptive security.
Our application of hardware modules is motivated by the fact that
modules with very limited functionality can be implemented securely as
fixed-function circuits and (formally) verified for correctness. They can
therefore not be hacked remotely.
In comparison to the hardware tokens proposed by Katz at EUROCRYPT
‘07, our hardware modules are based on substantially weaker assumptions.
Our hardware modules may be physically tampered. Hence, they cannot
be passed to another (possibly malicious) party but only used and trusted
by their owner. In particular, our remotely unhackable hardware modules
do not constitute a setup for Universal Composability (UC).
Based on architectures with very few and very simple hardware modules,
we are able to construct protocols that provide security against remote
hacking if the hack occurs after a protocol party received its (first) input.
More specifically, an adversary can neither learn nor change the inputs
and outputs of a remotely hacked party in our constructions unless he has
control over that party before it has received its (first) input (or controls
all parties). In our constructions we assume erasing parties. However, we
also show that this assumption can be substantially weakened.
Since the advantages provided by unhackable hardware modules cannot
be adequately captured in existing composable security frameworks, we
have conceived a new security framework based on the UC framework.
We call our framework Fortified UC.

Keywords: universal composability, secure hardware modules

1 Introduction

In the field of multi-party computation, one distinguishes between static and
adaptive corruptions. In the static setting, parties may only be corrupted prior

to the start of the protocol. In the adaptive corruption model (first proposed
by [CFGN96]), the adversary is able to corrupt parties throughout the protocol
execution. In particular, the adversary learns all secrets of a protocol party even
if a party is corrupted late in the protocol execution.

In practice, however, a protocol party could be isolated from the network
and may therefore not be corruptible at any given moment during the protocol
execution. For instance, a party may use unidirectional channels (data diodes) or
disconnect itself via air-gap switches, making corruption through a remote hack
impossible. To successfully attack, an adversary would have to hack that party
before that party disconnects itself. Furthermore, a party may have additional
hardware modules at its disposal that have very limited functionality (and, in
particular, are not freely-programmable) and can therefore be implemented as
fixed-function circuits and verified for correctness. Such hardware modules are
resilient against remote hacking. They could only be corrupted if the adversary
had direct physical access to them.

We therefore propose a new framework—called “Fortified UC”—based on the
UC framework [Can01] that distinguishes between “corruption” and “hacking”.
By corruption, we mean that a protocol party is under the control of the adversary
before it has received its (first) input. In contrast, we speak of hacking if the
adversary has gained control of a protocol party after that party has received
its (first) input. A protocol party can only be hacked in our framework if it is
currently online. Whether or not a party is currently online is determined by the
current state of its channels, e.g., state of its air-gap switches. We call the set
and structure of the hardware modules of a protocol its architecture.

We show that one can effectively protect against hacking. More specifically,
assuming an appropriate architecture, an adversary who hacks a party cannot
learn the inputs or outputs of that party, nor is he able to change them unless
he has hacked or corrupted all parties. Our protocols require erasure but we
also show how to considerably weaken this assumption using an appropriate
architecture.

Surprisingly, we can achieve these results with only very few simple unhackable
hardware modules such as an encryption device that only implements a specific
public key encryption scheme. Unlike the hardware tokens proposed by [Kat07],
our unhackable hardware modules can be tampered if one has direct physical
access to them. They are only trusted by the party that uses them and are not
passed to other parties. In particular, they cannot be used as a UC-complete setup.
Using these unhackable hardware modules, we are able to protect certain parts
of a protocol party such as its output interface by appropriately modularizing
that party into complex hackable components as well as few simple unhackable
components.

1.1 Our Contribution

We utilize realistic unhackable hardware modules that, to the best of our knowl-
edge, have so far not been used for secure multi-party computation. Our main
contributions are:

2

– New composable security framework for hacking adversaries: We propose
a new security framework that, unlike previous frameworks, captures the
advantages of “fortification” provided by unhackable hardware modules and
isolation. As with UC security, our security notion is universally composable
(cf. Theorem 2). Furthermore, our security notion is equivalent to UC security
for protocols that do not use any unhackable hardware modules. In particular,
UC-secure protocols can be used as building blocks for constructions in our
framework (cf. Theorem 1).

– New protocols that provide security against hacking: Using only very few
simple unhackable hardware modules, we construct protocols with very strong
composable security guarantees which cannot be achieved by adaptive security.
We present a construction for non-reactive functionalities (cf. Theorem 3)
using only two simple unhackable hardware modules (apart from air-gap
switches and data diodes) per party and a protocol for reactive functionalities
(cf. Theorem 5) that uses only one additional simple unhackable hardware
module. Both constructions can be proven secure in our new framework for
adversaries that corrupt or hack all but one parties. We also present an
augmentation of these constructions that allow simulation even in the case
that all parties are corrupted or hacked (cf. Theorem 4 and Theorem 6). For
our constructions we assume erasing parties. However, we later also show
how this assumption can be weakened to assuming that honest parties can
be reset after the protocol execution (cf. Section 6).

1.2 Related Work

Adaptive Security, first proposed in [CFGN96], captures security against adver-
saries that can corrupt participants at any time in the protocol. This notion
has since received considerable attention by the cryptographic community, see
e.g. [CLOS02; IPS08; HLP15; CPV17]. In contrast to adaptive security where an
adversary learns all secrets of a corrupted party, we achieve that hacking a party
after it received its inputs does not leak anything about them at all.

Mobile adversaries [OY91; BDLO14], a notion strictly stronger than adaptive
attacks, models an adversary taking over a participant – similar in spirit to our
framework as “hacks/virus attacks” – and possibly undoing the corruption at a
later point in time.

Concerning the used trusted building blocks, we assume data diodes, which are
channels which allow for communication only in one specified direction. [GIK+15]
analyze the cryptographic power of unidirectional channels as a building block,
whereas we use unidirectional channels as a shield against dangerous incoming
data packets. [AMR14] makes use of other building blocks, such as a secure
equality check hardware module to ensure the correct, UC-secure functioning of
a parallel firewall setup in the case of a malicious firewall.

Tamper-proof hardware tokens, first proposed by [Kat07], are an interesting
research direction for finding plausible and minimal setup assumptions for secure
protocols. Along this line of research, [GIS+10] showed strong feasibility results

3

of what can be done with these tokens. Moreover, [DMMN13] showed that UC
security is possible with a constant number of untrusted and resettable hardware
tokens. Furthermore, [HPV17] constructed constant-round adaptively secure
protocols which allow up to N parties to be corrupted. As discussed above, we
do not make use of tamper-proofness since the trusted hardware stays local to
the participant.

Isolation is a general principle in IT security, with lots of research on software
isolation through virtualization, see e.g. [Nem17]. In a sense, this can be seen
as a software analog of an trusted, remotely unhackable encryption module.
Moreover, there is a wealth of literature on data exfiltration/side channel attacks
to air-gaps including attacks based on acoustic, electromagnetic and thermal
covert channels [cf. ZGL18], which are however, not relevant to our work, because
these isolations are for protecting against outgoing communication from malicious
internal parties, while we use data diodes/air gap switches for the purpose of not
being hackable from the outside network.

2 Fortified UC

In this section, we present our changes to the UC framework. Namely, we
introduce enhanced channels, e.g. unidirectional ones that allow message flow
in one direction only, together with the online-offline state for protocol parties.
Additionally, we introduce a new kind of online corruption, called “hacking”. We
also strengthen the adversary by being notified on immediate communication. In
order to model our guarantees against hacking adversaries, we introduce “fortified
ideal functionalities”.

2.1 Conventions and Notation

We denote the security parameter by n and the number of rounds of a reactive
protocol by R. ≥

UC
denotes UC emulation with respect to adaptive corruption.

2.2 Enhanced Channels and Online-Offline State

In the UC framework, communication is possible via the external write in-
struction, which we shortly introduce. external write takes the sender’s code
and id, the receiver’s code and id, the output tape as well as the message as
arguments. A control function C then decides if the write is allowed or forbidden.
This communication model is (intentionally) abstract and dynamic in the sense
that there are e.g. no fixed, dedicated channels between protocol parties and
additionally allows to capture properties such as trusted communication [Can01].

In order to reason about the online-offline state of a protocol party as well
as being able to model e.g. unidirectional communication, we deviate from this
concept: When the protocol architecture implies possible communication between
two ITMs µ and µ′, we say that there exists a channel between µ and µ′. (Formally,
this means that there is an execution prefix such that the control function C

4

would allow an external write between µ and µ′.) Without loss of generality, we
assume that every channel has a unique identifier.

Enhanced Channels In our framework, we want to capture possible security
gains resulting from being isolated, e.g. by air gaps or by restrictions to the
message flow. We model this by enhancing existing communication channels in
the UC framework. Like those standard channels, enhanced channels can also
be, e.g., between two protocol parties or between a protocol party and an ideal
functionality. Furthermore, delivery can be immediate or non-immediate.

For our constructions, we propose two new kinds of channels:

1. Data diodes that allow communication in one direction only.
2. Air-gap switches that can be connected or disconnected by a protocol party

that uses them. Disconnected air-gap switches allow no data transmissions
at all, connected ones work as usual. For each air-gap switch, the initial
connected / disconnected state must be specified.

As in the UC framework, external write calls are not carried out if the
control function C forbids them. For example, messages sent in the wrong direction
of a data diode are silently dropped.

Input / Output Online State The environment may, upon each activation, deter-
mine the online-offline state of each channel it uses to provide input to or receive
output from protocol parties.

Online State of Parties Each main party is always explicitly connected to
the network, i.e. connections between parties with different main parties, via a
dedicated channel.

Online-offline state of parties A (sub-)party P of protocol π is online via channel
X if

1. it can receive messages from a (sub-)party via X that either has a different
main party or has the same main party as P and is online, or

2. (unless specified otherwise, as in the case of initially offline functionalities, cf.
Page 6) it can receive messages from a multi-party ideal functionality F via
X or

3. it can receive input via X from the environment or give output to the
environment via X and X is not a data diode and (in both cases) the
environment has set X online.

Otherwise, P is offline via X. If P is offline via all its channels, we say that P is
offline. If P is online via some channel X, we say that P is online.

Status report Each time the adversary is activated, he gets the current online /
offline states of all parties, which we call the status.

5

Initially Offline Ideal Functionalities We say that a multi-party ideal functionality
is initially offline if a party that is connected via a standard channel or a
(connected) air-gap switch to that functionality is online via the channel to that
functionality as soon as it has provided input to that functionality, but offline
before doing so. Multi-party ideal functionalities capture the additional security
provided by disconnecting all channels except for the input port prior to receiving
input.

2.3 Corruption Model

In our flavor of the UC framework, we propose a different kind of online corruption
in contrast to the adaptive corruption model, called hacking. The adaptive
corruption model allowed the adversary to corrupt a party at any point of time.
In contrast, hacking can only happen when a party is online or able to receive
messages from an unhackable party that has been tainted (see below).

In our framework, a (sub-)party can be either hackable or unhackable (but
“corruptible”).

The adversary may send (attack, P) to a party P :

Corruption If (attack, P) is sent before protocol invocation (as in the static
corruption model) and P is a main party, then the environment is notified with
“physical access corruption of P ” and the adversary gets control over P and all of
its sub-parties (regardless of whether they are unhackable). Also, he may choose
to ignore enhanced channels of these parties.

If (attack, P) is sent after protocol invocation and P is a main party which
is online, hackable and has not received its (first) input yet, then the environment
is notified with “online-initiated corruption of P” and the adversary gets control
(only) over P . The adversary has to adhere to the communication restrictions
implied by the enhanced channels of P .

In each case, we say that P is corrupted (cf. Appendix D for a motivating
example).

Hacking If P is a hackable and online, the adversary gets control (only) over P
and has to adhere to the communication restrictions implied by the enhanced
channels of P . We then say that P is hacked. If P is a main party that has already
received its (first) input, then the environment is additionally notified with “P
hacked”. If P is unhackable or offline, then nothing happens.

Taint with Cause In order to account for (sub-)parties that are only online via
connections to unhackable sub-parties, we introduce the concept of tainting with
cause. Tainting a sub-party gives no additional power to the adversary over the
tainted party. However, it allows the (attack, P) instruction to pass on as soon as
P with PID pidk can receive messages from the tainted party. Formally, tainting
with cause means that the adversary sends an instruction (taint, T) where T
is a sequence of PIDs (pid1, . . . , pidk). The party with PID pid1 must be online

6

and unhackable. The party P with pidk must be hackable. All other parties must
be unhackable. Moreover, there must be a path from pid1 to pidk such that pidi
and pidi+1 (i = 1, . . . , k − 1) are online over their connection at some point and
pidi−1 and pidi have been already online via their connection (i = 2, . . . , k − 2).
Starting from PID pid1, all parties in T are automatically tainted as soon as
they are able to receive messages from their predecessor in T . (attack, pidk) is
executed as soon as P can receive messages from pidk−1. The adversary may
specify multiple taint with cause instructions at the same time.

2.4 Accounting for Modularization

In our constructions (see Sections 4 and 5), we heavily rely on the modularization
of protocol parties as well as enhanced channels. In order to properly account
for this, protocols are not only specified by their parties’ code, but also by the
protocol architecture.

In the UC framework, the adversary is not activated when immediate com-
munication between sub-parties happens and thus is not able to adaptively hack
them at these points. In our enhanced model, this is undesirable because it
does not appropriately capture our notion of security. Consider, for instance, a
hackable and online party sending a message (containing secret information) to
an unhackable sub-party and erasing the message directly afterwards. As the
message delivery is immediate, the adversary is not activated and thus is unable
to intercept the message before it is erased by the sender even though the sender
has been online all the time. We therefore give additional power to the adversary
by introducing the notify transport mechanism, which notifies and activates the
adversary under certain conditions when immediate message delivery happens.

Notify Transport Let µ, µ′ have different PIDs and be connected via a channel
with immediate delivery.

If µ sends a message to µ′ and µ and µ′ have the same main party or (unless
specified otherwise) µ′ is an ideal functionality, the adversary is sent a notify
transport token consisting of µ′’s PID.

Upon receiving a notify transport token, the adversary can then choose to
either do nothing, or send the token containing µ′’s PID to the environment. Z
may only activate A again which, depending on Z’s answer, may do either nothing
or send an attack or taint instruction. Only if µ′ is then under adversarial
control, A is activated again. Otherwise, µ′ is activated.

Note that, as implied by the definition, no notify transport tokens are issued for
communication with the environment (e.g. when the environment gives inputs).

Interface Parties With respect to the modeling of parties, we deviate from
the UC framework by allowing the main parties to invoke interface parties,
called input interface machines (IIMs) and output interface machines, which are
connected only to their main party and the environment via immediate channels.
They are responsible for providing input resp. output. In the ideal execution,

7

ideal functionalities are responsible for invoking the respective dummy parties
(see Definition 2).

Protocol Architecture The protocol architecture specifies all communication
channels (in particular their types and initial states) between (sub-)parties,
functionalities, the environment as well as to the network. Note that this implies
that each party has an initial online-offline state prior to invocation. The protocol
architecture also specifies which parties are hackable and which are unhackable.

Combination of Parties As in the UC framework, we allow the (formal)
combination of parties P, P ′ if they have the same main party, are connected via
standard connections only and are both either hackable or unhackable.

As in the UC framework, we combine parties by giving them the same PID.
Note that, by definition, no notify transport token is given to the adversary

for communication between combined parties as they have the same PID.
We will later (implicitly) combine dummy parties with their respective calling

party in the constructions presented in this work.

2.5 Fortified UC emulation

We will now define security in our framework in analogy to the UC framework.

Definition 1 (##-Emulation). Denote by Exec##(π,A,Z)(n, a) ∈ {0, 1} the
output of the environment Z on input a ∈ {0, 1}∗ and with security parameter
n ∈ N when interacting with π and A according to the rules of the Fortified UC
framework as specified in Sections 2.2 to 2.4.

Let π and φ be protocols. π is said to emulate φ in the Fortified UC framework,
denoted by π ≥

##
φ, if for every ppt-adversary A there exists a ppt-adversary S

(the “simulator”) such that for every ppt-environment Z there exists negligible
function negl such that for all n ∈ N, a ∈ {0, 1}∗ it holds that

|Pr[Exec##

(
π,A,Z

)
(n, a) = 1]− Pr[Exec##

(
φ,S,Z

)
(n, a) = 1]| ≤ negl(n)

2.6 Fortified Functionalities

In contrast to adaptive corruption, where the adversary may, depending on the
protocol state, change a corrupted party’s input or output, we want to weaken
the implication of being hacked: Unless all N protocol parties are corrupted or
hacked, the adversary does not learn a party’s input or output and may not
change the input or output of a hacked party. The adversary is only given the
possibility to pass on the correct output (which he does not learn) or to abort.
This is modelled by “fortified functionalities” in our framework as follows (note
that G is of the form as in Definition 7 in Appendix B):

8

Definition 2 (Fortified Functionality). Let G be an ideal functionality with
N protocol parties. Define the fortified functionality [G] of G as follows:

– [G] is initially offline
– [G] internally runs G and behaves as follows:

Setup: Set c := 0.
Execution:
• When a party P receives its first input, [G] invokes a dummy output

party. If G is reactive, a dummy input party is also invoked. Subsequent
inputs for P must be provided via that input party (otherwise ignored).
• On input (attack, P): If P has not yet received its first input, forward

(corrupt, P) to G and increment c. Otherwise, only increment c.
• If c = N , send all inputs to the adversary.

Output:
• If c < N and G sends output for party P that has not been corrupted (but
possibly hacked), ask the adversary whether to abort or pass on the correct
output (which is not given to the adversary) via the dummy output party.
• If c = N , the adversary may determine all parties’ outputs.

Any other messages to or from the adversary or the protocol parties are
relayed to or from G.

Furthermore, for communication between the dummy parties and [G], no
notify transport token is issued.

3 Properties of the Framework

As with UC security, our security notion is transitive and closed under general
protocol composition, and the dummy adversary is complete. Furthermore, our
security notion is equivalent to UC security for protocols that do not use any
unhackable hardware modules (for proof sketches, see Appendix E).

Definition 3 (Emulation with Respect to the Dummy Adversary). De-
fine the dummy adversary D as follows:

– When receiving a message (sid, pid,m) from the environment, D sends m to
the party with party identifier pid and session identifier sid.

– When receiving m from the party with party identifier pid and session identi-
fier sid, D sends (sid, pid,m) to the environment.

– When receiving status from the environment, D sends the status to the
environment.

Let π and φ be protocols. π is said to emulate φ with respect to the dummy
adversary in the Fortified UC framework, if there exists a ppt-adversary SD such
that for every ppt-environment Z there exists negligible function negl such that
for all n ∈ N, a ∈ {0, 1}∗ it holds that

|Pr[Exec##

(
π,D,Z

)
(n, a) = 1]− Pr[Exec##

(
φ,SD,Z

)
(n, a) = 1]| ≤ negl(n)

9

Proposition 1 (Completeness of the Dummy Adversary). Let π and φ
be protocols. Then, π ≥

##
φ if and only if π emulates φ with respect to the dummy

adversary in the Fortified UC framework.

Proposition 2 (Transitivity). Let π1, π2, π3 be protocols. If π1 ≥
##

π2 and

π2 ≥
##
π3 then it holds that π1 ≥

##
π3.

Definition 4 (En bloc Protocols and their Initial Fortification). A pro-
tocol π is called en bloc if each protocol party has been combined with all of its sub-
parties (i.e. they all have the same PID) and π only uses standard-connections.
Also, π only calls functionalities that immediately notify the adversary upon each
input and let the adversary change inputs of adaptively corrupted parties.

Furthermore, given an en bloc protocol π, define its initial fortification π̃ to be
identical to π except that all standard-connections between parties with different
PIDs and between a party and an ideal functionality are replaced by air-gap
switches. Also, each air-gap switch is initially disconnected. Upon receiving
input, each party immediately connects all of its air-gap switches.

Theorem 1 (Equivalence with UC-emulation for en bloc Protocols and
their Initial Fortification). Let π, φ be en bloc protocols and π̃, φ̃ their initial
fortification. Then,

π ≥
##
φ ⇐⇒ π ≥

UC
φ ⇐⇒ π̃ ≥

##
φ̃

Theorem 2 (Universal Composition). Let π be a protocol, F be an ideal
functionality (note that F may be fortified) and ρF a protocol in the F-hybrid
model. Then it holds that

π ≥
##
F =⇒ ρπ ≥

##
ρF

4 Construction for Non-reactive Functionalities

In this section, we will construct a general MPC protocol for every fortified
functionality of a non-reactive functionality that is secure in our framework.

The broad idea is to have the parties send encrypted shares of their inputs in
an offline sharing phase where they are unhackable and subsequently use these
shares to compute the desired function in an online compute phase.

This, however, cannot be done straightforwardly. To begin with, in the offline
phase, parties are not able to retrieve the relevant public keys themselves since
this would necessitate going online, making them hackable. We therefore let
parties send their shares to an unhackable encryption unit (Enc-unit) (via a data
diode) which retrieves the relevant public keys and sends the encrypted shares to
the designated receiver’s (hackable) buffer (note that the parties are offline an
can therefore not receive messages themselves).

10

Furthermore, each message to be sent has to be authenticated so that the
adversary cannot modify it since this would allow him to change the input
of the sending party. In particular, one must prevent him from changing the
messages contained in the buffers he has hacked. One could do this by assuming an
“authentication unit” that signs each ciphertext. However, such an authentication
unit, since it has to be online, would have to be unhackable. Since we want to use
as few unhackable hardware modules as possible, we take a different approach. We
let each party sign its shares and have the Enc-unit encrypt these shares together
with their signatures. Note that, in general, signing-then-encrypting is not secure.
Signing-then-encrypting is secure, however, if the public key encryption scheme is
non-malleable and the digital signature scheme satisfies a property called “length-
normality”. The latter means that the signatures of two messages of equal length
are also of equal length (this prevents an adversary from learning information of
the plaintexts based only on the length of their signatures). Each party sends
its verification key to a (hackable) sub-party that after receiving the verification
key disconnects itself from its main party and relays the verification key to a
public bulletin board (via a data diode) together with its own PID. Once a party
has sent all of its shares, it erases everything except for its own share and its
verifcation key and goes online.

In the online compute phase, we must prevent the adversary from using values
that are different from the shares that have been generated by the honest parties
in the sharing phase as input to the multi-party computation. Otherwise, he
would be able to change the inputs of the parties that have not been corrupted
(but possibly hacked). We therefore require each input to be verified before
computation. To this end, parties must input not only the shares but also
the signatures of these shares (and the verification keys) into the multi-party
computation where they will be checked for validity. Note that since the signing
keys have been erased at the end of the offline phase, the adversary cannot
generate new valid signatures for honest or hacked parties. He can also not
revoke the verification key of a hacked party since this would require hacking the
sub-party that registered the key, which is impossible since that party is offline.

Another problem to be taken care of is that an adversary could intercept a
message in the sharing phase addressed to an honest party and swap that message
with a ciphertext containing a share and signature received by a corrupted of
hacked party. Moreover, an adversary who controls at least two parties knows two
shares of each party along with their valid signatures and could use one of these
shares twice in the multi-party computation. In order to prevent these attacks,
we let a party sign each share along with the PID of the designated receiver. We
also let each party include its own PID in each message it sends. This - along
with non-malleability - prevents an adversary from reusing messages of honest
parties for messages coming from corrupted parties (this would allow him to set
the input of a corrupted party to be equal to the input of a hacked party).

Finally, we cannot simply send the result of the compute phase to a party
since this party may have been hacked. Doing so would therefore allow the
adversary to learn and change the output of the hacked party. Instead, we further

11

modularize each party by introducing an unhackable output interface machine
(OIM). To this end, we let each party i send not only the shares of its input xi
but also shares of a random pad ri and of a MAC key ki in the sharing phase.
Each tuple of shares is signed along with the PID of the designated receiver.
Furthemore, each party sends the random pad ri and the MAC key ki to its OIM
(via a data diode). In the compute phase, the parties will then use these shares
to compute the function (yi + ri,Mac(ki, yi + ri)), where yi is the desired output
value (of party i). A party can then send the result of the compute phase to its
OIM. The OIM will then check authenticity by verifying the MAC tag and, if
correct, reconstruct and output the value yi.

In the following, we will take a modular approach and define an ideal function-
ality FG that implements the verification of the input values in the compute phase
(i.e. checks the signatures of the shares) as well as the subsequent multi-party
computation on the shares. Using Theorems 1 and 2, we will be able to realize
this functionality with (existing) UC-secure protocols.

For simplicity, we assume perfect correctness for all of the following algorithms
(cf. Appendix B). However, this is not necessary.

We first define the functionality FG .

Construction 1
Let G be a non-reactive ideal functionality.
FG proceeds as follows, running with parties P1, . . . , PN and an adversary A and
parametrized with a digital signature SIG and a message authentication code
MAC.

1. Upon receiving input vki = (vk(i)
1 , . . . , vk(i)

N) and (sji, rji, kji, σji) (j = 1, . . . , N)
from party Pi, store that input and send (received, Pi) to A.

2. Once each party has sent its input, check if one party has sent ⊥. If yes,
output ⊥

3. Else, check if vk1 = · · · = vkN . If no, output ⊥
4. Else, set (vk1, . . . , vkn) = (vk(1)

1 , . . . , vk(1)
N). For all i = 1, . . . , N, check if

VrfySIG(vkj , i, sji, rji, kji, σji) = 1 for all j = 1, . . . , N . If this does not hold,
output ⊥

5. Else, for each i = 1, . . . , N , compute xi = si1 + si2 + · · · + siN , ki = ki1 +
ki2 + · · ·+ kiN and ri = ri1 + ri2 + · · ·+ riN .

6. Internally run G on input (x1, . . . , xN). Let (y1, . . . , yN) be the output of G.
7. For all i = 1, . . . , N , compute oi = yi + ri and θi ← Mac(ki, yi + ri).
8. For all i = 1, . . . , N , send a public delayed output (oi, θi) to Pi.
C If A sends (corrupt, P) and FG has already received an input from party P

then FG sends that input to A. Otherwise FG sends “no input yet”. Further-
more, FG lets A determine the input of party P .

Next, we define our protocol, which is in the (FG ,Freg,Fkrk)-hybrid model.

Construction 2 Define the protocol ρFG ,Freg,Fkrk as follows:
Architecture: (cf. Fig. 1 in Appendix A) Each party has two hackable and two
unhackable sub-parties. The hackable sub-parties are a buffer and a registration

12

machine, and the unhackable sub-parties are an Enc-unit and an OIM. Each
party has an air-gap switch at its input port, an air-gap switch to its buffer,
a data diode to its OIM, an air-gap switch and a data diode to its Enc-
unit, an air-gap switch to Freg, an air-gap switch to FG, and an air-gap
switch to the network. Furthermore, each Enc-unit has a standard-connection
to Fkrk and a standard-connection to the network, each buffer has a standard-
connection to the network and each registration machine has an air-gap switch
to its main party and a data diode to Freg. Apart from the parties’ input port and
the registration machines’ connection to their main parties, all air-gap switches
are disconnected at the beginning.

– Offline Sharing Phase:
Upon input xi, each party Pi does the following:
• Disconnect at the input port.
• Generate shares si1 + si2 + · · ·+ siN = xi
• Generate ki ← GenMAC(1n) and (sgki, vki)← GenSIG(1n)
• Generate shares ki1 + ki2 + · · ·+ kiN = ki
• Generate a random pad ri ← {0, 1}pi(n) and generate shares ri1 + ri2 +
· · ·+ riN = ri

• Send (ki, ri) to the OIM and the verification key vki to the registration
machine. The registration machine will then disconnect itself from its
main party and relay vki to Freg (using its own PID).
• Create signatures σij ← Sig(sgki, j, sij , rij , kij) (j = 1, . . . , N)
• Iteratively send (j, sij , rij , kij , σij) (j ∈ {1, 2, . . . ,m}\{i}) to the Enc-unit
(at each activation)
• At first activation, the Enc-unit requests a key pair (pki, ski) from Fkrk.
• Upon receiving a tuple (j, sij , rij , kij , σij), the Enc-unit requests the public
key pkj belonging to party Pj from Fkrk. If pkj does not exist yet, the
Enc-unit sends a “request public key message” to the Enc-unit of Pj.
Otherwise, it computes cij ← Enc(pkj , i, sij , rij , kij , σij) and sends (i, cij)1

to party Pj.
• Once all shares have been sent to the Enc-unit, erase everything except
for the tuple (sii, rii, kii, σii) and the verification key vki (in particular,
the input xi, signing key ski, random pad ri and MAC key ki are erased).

– Online Compute Phase:
Once the last step in the offline sharing phase is completed, a party Pi does
the following:
• Connect to the buffer, to the Enc-unit and to Freg.
• Request the secret key ski from the Enc-unit.
• Request all verification keys {vkl}l∈{1,...,N}\{i} that were registered with
the PIDs of the other parties’ registration machines from Freg. If not all
verification keys can be retrieved yet, go into idle mode and request again
at the next activation.

1 Sending the PID i of the sender as a prefix in the clear is not necessary but simplifies
the following discussion. Note that for (i, c), we also say that c is addressed as coming
from party i.

13

• At each activation, check if there are at least N −1 messages in its buffer.
If no, go into idle mode and when activated again check again.
If yes, check if one has received from each party j a set Mj = {(j, c̃)}
with the following property:
There exists a tuple (j, ŝji, r̂ji, k̂ji, σ̂ji) and an element (j, c) ∈Mj such
that (∗):
∗ Dec(ski, c) = (j, ŝji, r̂ji, k̂ji, σ̂ji)
∗ VrfySIG(vkj , i, ŝji, r̂ji, k̂ji, σ̂ji) = 1
∗ For every (j, c̃) ∈Mj it holds that either

Dec(ski, c̃) = (j, ŝji, r̂ji, k̂ji, σ̂ji) or (j, c̃) is “invalid”, i.e., either de-
crypts to (j, s̃ji, r̃ji, k̃ji, σ̃ji) such that VrfySIG(vkj , i, s̃ji, r̃ji, k̃ji, σ̂ji) =
0, or decrypts to (l, s̃jir̃ji, k̃ji, σ̃ji) where l 6= j, or does not decrypt
correctly.

If this does not hold, send ⊥ to FG.
Else, send all verification keys (vk1, . . . , vkN) as well as all (ŝji, r̂ji, k̂ji, σ̂ji)
(j ∈ {1, . . . , N} \ {i}) and the own share (sii, rii, kii, σii) to FG.

– Online Output Phase:
Upon receiving an output from FG, a party Pi does the following:
• Connect its input port.
• If this output equals ⊥, it sends ⊥ to the OIM, which then outputs ⊥
• Otherwise, let (oi, θi) be the output from FG. Send this tuple to the OIM.
• The OIM then checks if VrfyMAC(ki, oi, θi) = 1 and outputs yi = oi + ri
if this holds, and ⊥ otherwise.

Before stating the theorem, we define the following auxiliary experiment,
which will be used in the proof.

Definition 5 (Auxiliary Experiment). The experiment ExpauxA(z),PKE,SIG(n)
is defined as follows: At the beginning, the experiment generates keys (pk, sk)←
GenPKE(1n) and (vk, sgk) ← GenSIG(1n). On input 1n, z and pk, the adver-
sary A may then non-adaptively send queries to a signing oracle OSig(sgk,·).
Afterwards, the experiment sends vk to A. A may then send a message of
the form (prf1, prf2,m) to the experiment. The experiment then computes
σ ← Sig(sgk, prf2,m), c∗ ← Enc(pk, prf1,m, σ), and sends c∗ to A. Through-
out the experiment, A has access to a decryption oracle ODec(sk,·) subject to the
restriction that the queries to Dec(sk, ·) are non-adaptive (i.e. parallel) and do
not contain c∗. At the end of the experiment, A sends a tuple (m′, σ′) to the
experiment. The experiment then checks if VrfySIG(vk,m′, σ′) = 1 and m′ has
not been sent to OSig(sgk,·) before. If this holds, the experiment outputs 1 and 0
otherwise.

We have the following lemma. The proof is straightforward (cf. Appendix F).

Lemma 1. If PKE is IND-pCCA-secure and SIG EUF-naCMA-secure, then for
every ppt-adversary A and all z ∈ {0, 1}∗, there exists a negligible function negl
such that

Pr[ExpauxA(z),PKE,SIG(n) = 1] ≤ negl(n)

14

We will use the above experiment to show that an environment Z cannot
send “fake messages” (i, c′) addressed as coming from a party i that has not been
corrupted (but possibly hacked) such that c′ was not generated by party i but
(i, c′) is accepted by an honest party j. Otherwise, one could build a successful
adversary A in ExpauxA(z),PKE,SIG(n): A guesses indices i, j such that Z sends a fake
message (i, c′) to party j. A simulates the protocol execution for Z. For party
i, A sends the tuples (l, sil, ril, kil) for l 6= j to OSig(sgk,·) and (i, j, sij , rij , kij)
to the experiment, receiving c∗. A then uses (i, c∗) for (i, cij) in its simulation.
If A’s guess is correct, A can decrypt c′ using the decryption oracle ODec(sk,·),
obtaining a message (i,m′, σ′). A can then send (j,m′, σ′) to the experiment. A
then wins because he has never sent a message of the form (j,m) to OSig(sgk,·).
Note that if A had also sent (j, sij , rij , kij) to OSig(sgk,·), then he would not win
if c′ decrypts to the same plaintext as c∗, which happens if Z manages to break
the non-malleability of PKE.

Next, we define the simulator to be used in the proof.

Definition 6 (Simulator for up to N − 1 Corruptions/Hacks, Non-Re-
active Case). Define the simulator Sim interacting with an environment Z and
the ideal functionality [G] as follows:

• Sim generates (pki, ski)← GenPKE(1n) for each party i.
• Sim generates ki ← GenMAC(1n) and (sgki, vki)← GenSIG(1n) for each party
i that has not been corrupted.

• Sim extracts the inputs of the corrupted parties by decrypting all ciphertexts
coming from Z (note that Sim can do this because he knows all secret keys)
and looking at the inputs Z sends to FG for corrupted parties. Sim sends
these inputs to [G].
• Each time Sim is activated by [G] after an honest party received its
input, Sim generates 3N random strings s′ij , r

′
ij , k

′
ij, computes σ′ij ←

Sig(sgki, j, s′ij , r′ij , k′ij) (j = 1, . . . , N) and cij ← Enc(pkj , i, s′ij , r′ij , k′ij , σ′ij).
Sim then iteratively reports (i, cij) (j ∈ {1, . . . , N} \ {i}) to Z (at each acti-
vation of party i).
• If Z requests the public key or verification key of an honest party, Sim sends
the respective key to Z if that party has already received its input. If Z requests
the public key or verification key or secret key of a hacked party, Sim sends
the respective key to Z. If Z requests the public key and secret key of a
corrupted party, then Sim sends the respective key pair to Z if Z has sent a
register-message addressed to Fkrk for that party before.

• If an honest party j is activated (in Sim’s internal simulation) and has sent
all its shares and has received at least N − 1 messages (in its buffer), Sim
checks if the following two conditions hold:
– party j has received all the (i, cij) that were sent by the Enc-unit of the
parties that have not been corrupted (but possibly hacked).

– party j has received from each corrupted party l a set Ml fulfilling
property (∗) (see Page 14).

15

If these two conditions hold, Sim marks this party as genuine. Otherwise,
Sim marks this party as fake. In both cases, Sim continues the simulation as
if FG had received an input from party j.
• If Z sends a tuple (s′ij , r′ij , k′ij , σ′ij) as the input of a corrupted or hacked
party j to FG such that (s′ij , r′ij , k′ij) 6= (sij , rij , kij), where (sij , rij , kij) was
generated (in Sim’s internal simulation) by a party i that has not been
corrupted (but possibly hacked), then Sim marks party j as fake. Otherwise,
Sim verifies the signature of this input. If VrfySIG(vki, j, s′ij , r′ij , k′ij , σ′ij) = 1,
then Sim marks this party as genuine. Otherwise, Sim marks this party as
fake. In both cases, Sim continues the simulation as if FG had received an
input from party j.
• If a party in Sim’s internal simulation expects an output from FG and all
parties are marked as genuine, then Sim does the following:
– For an honest party, Sim instructs [G] to send the output.
– For a hacked party i, Sim first generates a random string ỹi ← {0, 1}pi(n)

and sends (ỹi,Mac(ki, ỹi)) to Z. If Z sends a message (m′, t′) addressed
to the OIM of that party, then
∗ If m′ 6= ỹi, Sim instructs [G] to output ⊥ to party i
∗ If m′ = ỹi, then Sim verifies if VrfyMAC(ki,m′, t′) = 1. If this holds,
then Sim instructs [G] to send the output to party i. Otherwise, Sim
instructs [G] to output ⊥ to party i

– For a corrupted party i, Sim first generates a random string ỹi ← {0, 1}n
and sends (ỹi,Mac(ki, ỹi)) to Z. Sim then lets Z determine the output.

• If a party in Sim’s internal simulation expects an output from FG and one of
the parties is marked as fake, then Sim does the following:
– For the honest parties, Sim instructs [G] to output ⊥.
– For a hacked party i, Sim first sends ⊥ to Z. Sim then waits for Z’s
response addressed to the OIM of that party and after receiving that
response instructs [G] to output ⊥ to party i.

– For a corrupted party i, Sim first sends ⊥ to Z to Z. Sim then lets Z
determine the output.

• Each time Z sends status, Sim sends the status of all simulated parties.

We are now ready to state our theorem:

Theorem 3 (Up to N − 1 Corruptions/Hacks, Non-Reactive Function-
alities).
Let G be a non-reactive functionality.
Let PKE = (GenPKE,Enc,Dec) be a IND-pCCA-secure PKE,
SIG = (GenSIG,Sig,VrfySIG) an EUF-naCMA-secure and length-normal
DigSig and MAC = (GenMAC,Mac,VrfyMAC) an EUF-1-CMA-secure MAC.

Then it holds that ρFG ,Freg,Fkrk ≥
##

[G] for up to N − 1 corruptions/hacks.

Proof. By Proposition 1, it suffices to find a simulator for the dummy adversary.
The main idea of the proof is to consider a sequence of hybrids H0, . . . ,H4,

each of which defines an ideal protocol that grants the simulator certain actions,

16

i.e. learn/change the inputs/outputs of certain parties. Starting from an ideal
protocol that gives the simulator maximal leverage (i.e. just sends all inputs to
him and lets him determine each output), we will gradually reduce the simulators
possibilties. The final hybrid H4 will be the ideal protocol with functionality [G]
and the simulator as defined in Definition 6.

Let Z be an environment that corrupts or hacks at most N − 1 parties. Let
outi(Z) be the output of the environment Z in the hybrid Hi.

Hybrid H0 Let H0 be the execution experiment between the environment Z, the
ideal protocol with functionality F0 and the adversary Sim0, where F0 and Sim0
are defined as follows:
F0 is defined to be the ideal functionality that simply forwards the inputs

and outputs of all parties to the adversary and lets the adversary determine the
inputs and outputs of all parties. Furthermore, F0 is initially offline.

Define Sim0 to be the ideal-model adversary that simulates the entire protocol
ρFG ,Freg,Fkrk for Z. Sim0 can do this because he is given all inputs and outputs
and can change every input and determine each output.

Since all air-gap switches in ρFG ,Freg,Fkrk are disconnected at the beginning,
apart from the parties’ input ports (and the registration machines’ connection to
their main parties), it holds that the views of Z in the real-model execution and
in H0 are identically distributed, hence

|Pr[Exec##

(
ρFG ,Freg,Fkrk ,D,Z

)
= 1]− Pr[out0(Z) = 1]| = 0

Hybrid H1 Let H1 be the execution experiment between the environment Z, the
ideal protocol with functionality F1 and the adversary Sim1, where F1 and Sim1
are defined as follows:

Define F1 to be identical to F0 except that now the adversary is allowed to
determine the inputs only of corrupted parties and determine the outputs only of
corrupted and hacked parties (note that the adversary is still given all inputs and
outputs).

Define the ideal-model adversary Sim1 to be like Sim0 except for the following:

• Sim1 generates (pki, ski)← GenPKE(1n) for each party i.
• Sim1 generates ki ← GenMAC(1n) and (sgki, vki) ← GenSIG(1n) for each
party i that has not been corrupted.

• Sim1 extracts the inputs of the corrupted parties by decrypting all ciphertexts
coming from Z (note that Sim1 can do this because he knows all secret keys)
and looking at the inputs Z sends to FG for corrupted parties. Sim1 sends
these inputs to F1.

• If Z requests the public key or verification key of an honest party, Sim sends
the respective key to Z if that party has already received its input. If Z
requests the public key or verification key or secret key of a hacked party,
Sim sends the respective key to Z. If Z requests the public key and secret
key of a corrupted party, then Sim sends the respective key pair to Z if Z
has sent a register-message addressed to Fkrk for that party before.

17

• If an honest party j is activated (in Sim1’s internal simulation) and has sent
all its shares and has received at least N − 1 messages (in its buffer), Sim1
checks if the following two conditions hold:
– party j has received all the (i, cij) that were sent by the Enc-unit of the
parties that have not been corrupted (but possibly hacked).

– party j has received from each corrupted party l a set Ml fulfilling
property (∗).

If these two conditions hold, Sim1 marks this party as genuine. Otherwise,
Sim1 marks this party as fake. In both cases, Sim1 continues the simulation
as if FG had received an input from party j.

• If Z sends a tuple (s′ij , r′ij , k′ij , σ′ij) as the input of a corrupted or hacked
party j to FG such that (s′ij , r′ij , k′ij) 6= (sij , rij , kij), where (sij , rij , kij)
was generated (in Sim1’s internal simulation) by a party i that has not been
corrupted (but possibly hacked), then Sim1 marks party j as fake. Otherwise,
Sim1 verifies the signature of this input. If VrfySIG(vki, j, s′ij , r′ij , k′ij , σ′ij) = 1,
then Sim1 marks this party as genuine. Otherwise, Sim1 marks this party as
fake. In both cases, Sim1 continues the simulation as if FG had received an
input from party j.

• If a party in Sim1’s internal simulation expects an output from FG and all
parties are marked as genuine, then Sim1 does the following:
– For an honest party, Sim1 instructs F1 to send the output.
– For a hacked party i, Sim1 first sends (yi + ri,Mac(ki, yi + ri)) to Z.
If Z responds with a tuple (m′, t′) such that VrfyMAC(ki,m′, t′) = 1,
then Sim1 instructs F1 to output m′ + ri to the hacked party i. If
VrfyMAC(ki,m′, t′) = 0, Sim1 instructs F1 to output ⊥ to party i.

– For a corrupted party i, Sim1 first generates a random string ỹi ← {0, 1}n
and sends (ỹi,Mac(ki, ỹi)) to Z. Sim1 then lets Z determine the output.

• If a party in Sim1’s internal simulation expects an output from FG and one
of the parties is marked as fake, then Sim1 does the following:
– For an honest party, Sim1 instructs F1 to output ⊥.
– For a hacked party i, Sim1 first sends ⊥ to Z. If Z responds with a
tuple (m′, t′) such that VrfyMAC(ki,m′, t′) = 1, then Sim1 instructs F1
to output m′ + ri to the hacked party i. If VrfyMAC(ki,m′, t′) = 0, Sim1
instructs F1 to output ⊥ to party i.

– For a corrupted party i, Sim1 first sends ⊥ to Z to Z. Sim1 then lets Z
determine the output.

• Each time Z sends status, Sim1 sends the status of all simulated parties.

Consider the following events:
Let Efakemess be the event that there exists an honest party j that fetches

a tuple (i, c′) in its (possibly hacked) buffer such that party i has not been
corrupted (but possibly hacked) and Dec(skj , c′) = (i, s′ij , r′ij , k′ij , σ′ij) and
VrfySIG(vki, j, s′ij , r′ij , k′ij , σ′ij) = 1 but either c′ 6= cij or cij has not been generated
yet by party i.

Let Efakeinp be the event that Z sends an input (s′ij , r′ij , k′ij , σ′ij) for a cor-
rupted or hacked party j to FG such that VrfySIG(vki, j, s′ij , r′ij , k′ij , σ′ij) = 1 but

18

(s′ij , r′ij , k′ij) 6= (sij , rij , kij), where (sij , rij , kij) was generated by a party i that
has not been corrupted (but possibly hacked).

Let E = Efakemess ∪Efakeinp. It holds that

Pr[out0(Z) = 1 ∧ ¬E] = Pr[out1(Z) = 1 ∧ ¬E]

This is because if Efakemess does not occur then a message in the buffer
of a party j that is addressed as coming from a party i who has not been
corrupted (but possibly hacked) decrypts to a valid message/signature pair
if and only if it equals the ciphertext cij sent by party i. Moreover, for each
corrupted or hacked party i, since Efakeinp does not occur, Z only sends inputs
(s′ij , r′ij , k′ij , σ′ij) to FG such that either VrfySIG(vki, j, s′ij , r′ij , k′ij , σ′ij) = 0 or
VrfySIG(vki, j, s′ij , r′ij , k′ij , σ′ij) = 1 and (s′ij , r′ij , k′ij) = (sij , rij , kij) was generated
by party i (who has not been corrupted).

Therefore, it holds that

|Pr[out0(Z) = 1]− Pr[out1(Z) = 1]| ≤ Pr[E] ≤ Pr[Efakemess] + Pr[Efakeinp]

Claim 1: Pr[Efakemess] is negligible.
Consider the following adversaryA in the auxiliary experiment ExpauxA(z),PKE,SIG(n):
At the beginning, A randomly selects a tuple (i, j) ∈ {1, . . . , N}×{1, . . . , N}\{i}.
A then simulates hybrid H0 using the public key pk from the experiment for pkj
in its internal simulation. When Z gives the party i its input xi, A generates
shares sil, ril, kil of xi, of a random pad ri and of a MAC key ki just like in
H0. A sends the tuples (l, sil, ril, kil) for l 6= j to the signing oracle OSig(sgk,·),
receiving signatures σil. After receiving the verification key vk from the exper-
iment, A uses vk for vki in its internal simulation. Using pk, A encrypts all
tuples (l, sil, ril, kil, σil) (l 6∈ {i, j}) and sends them to the respective party in its
internal simulation. Once the message (i, cij) is supposed to be sent in the internal
simulation, A sends (i, j, sij , rij , kij) to the experiment, receiving c∗. A then uses
(i, c∗) for (i, cij) in its simulation. When party j is activated and has sent all its
shares and has received at least N−1 messages, A sends all ciphertexts addressed
as coming from party i such that c 6= c∗ to the decryption oracle ODec(sk,·) (if c∗
has not been generated yet, A sends all ciphertexts addressed as coming from
party i). For each message (̃i,m, σ) he receives from the oracle ODec(sk,·), A
checks if VrfySIG(vk, j,m, σ) = 1. If this holds for a message (i′,m′, σ′), then A
sends (j,m′, σ′) to the experiment. If during the simulation, Z corrupts party i
or corrupts or hacks party j or if no message A receives from ODec(sk,·) is valid,
then A sends ⊥ to the experiment.

By construction, it holds that if Efakemess occurs and A has correctly guessed
an index (i, j) for which Efakemess occurs, then A sends a message c′ to ODec(sk,·)
such that c 6= c∗ or c∗ has not been generated yet and Dec(sk, c′) = (i,m′, σ′) and
VrfySIG(vk, j,m′, σ′) = 1. Since A does not send a message of the form (j,m) to
the signing oracle OSig(sgk,·), it follows that ExpauxA(z),PKE,SIG(n) = 1. Furthermore,
the probability that A correctly guesses an index (i, j) for which Efakemess occurs
is at least 1/(N · (N − 1)). Hence,

19

Pr[ExpauxA(z),PKE,SIG(n) = 1] ≥ Pr[Efakemess]/(N · (N − 1))

Therefore, since Pr[ExpauxA(z),PKE,SIG(n) = 1] is negligible by Lemma 1 and
N · (N − 1) is polynomial in n, it follows that Pr[Efakemess] is also negligible.

Claim 2: Pr[Efakeinp] is negligible.
Consider the following adversary A against the EUF-naCMA security of SIG:
At the beginning, A randomly selects an index i ∈ {1, . . . , N}. A then simulates
hybrid H0. When Z gives the party i its input xi, A generates shares sij , rij , kij
of xi, of a random pad ri and of a MAC key ki just like in H0. A sends the
tuples (j, sij , rij , kij) to the signing oracle OSig(sgk,·), receiving signatures σij .
After receiving vk, A then uses vk for vki, encrypts all tuples (i, sij , rij , kij , σij)
(j = 1, . . . , N) and sends them to the respective party in its internal simu-
lation. Each time Z sends a tuple (s′ij , r′ij , k′ij , σ′ij) as input for a corrupted
or hacked party j to FG such that (s′ij , r′ij , k′ij) 6= (sij , rij , kij), A checks if
VrfySIG(vki, j, s′ij , r′ij , k′ij , σ′ij) = 1. If this holds, A sends (j, s′ij , r′ij , k′ij , σ′ij) to
the experiment. If during the simulation, Z corrupts party i or if no message A
checks is valid, then A sends ⊥ to the experiment.

By construction, it holds that if Efakeinp occurs and A has correctly guessed an
index i for which Efakeinp occurs, then Expeuf-nacma

A(z),SIG (n) = 1 because (j, s′ij , r′ij , k′ij , σij)
is valid and (j, s′ij , r′ij , k′ij) 6= (j, sij , rij , kij) has not been sent to the signing ora-
cle OSig(sgk,·). Furthermore, the probability that A correctly guesses an index i
for which Efakeinp occurs is at least 1/N . Hence,

Pr[Expeuf-nacma
A(z),SIG (n) = 1] ≥ Pr[Efakeinp]/N

Therefore, since Pr[Expeuf-nacma
A(z),SIG (n) = 1] is negligible by assumption and N is

polynomial in n, it follows that Pr[Efakeinp] is also negligible.
Hence, there exist a negligible function negl1 such that

|Pr[out0(Z) = 1]− Pr[out1(Z) = 1]| ≤ negl1(n)

Hybrid H2 Let H2 be the execution experiment between the environment Z, the
ideal protocol with functionality F1 (again) and the adversary Sim2, where Sim2
is defined as follows:

Define the ideal-model adversary Sim2 to be like Sim1 except for the following:
For every honest party i, Sim2 generates N random strings k′ij and computes
σ′ij ← Sig(sgki, j, sij , rij , k′ij) (j = 1, . . . , N), where the sij and rij (j = 1, . . . , N)
are still the shares of the input xi and a random pad ri, respectively. Sim2
then iteratively reports (i,Enc(pkj , i, sij , rij , k′ij , σ′ij)) (j ∈ {1, . . . , N}\{i}) to Z.
Sim2 still uses ki ← GenMAC(1n) as MAC key for the output of FG to a hacked
party i (if that output is 6= ⊥).

Let H2,0, . . . ,H2,N be the execution experiment between the environ-
ment Z, the ideal protocol with functionality F1 (again) and the adversary
Sim2,0, . . . ,Sim2,N , respectively, where Sim2,i is defined as follows:

20

Define the ideal-model adversaries Sim2,i to be like Sim1 except for the
following: For every honest party l ∈ {1, . . . , i}, Sim2,i generates N random
strings k′lj , computes σ′lj ← Sig(sgkl, j, slj , rlj , k′lj) (j = 1, . . . , N), and iteratively
reports (l,Enc(pkj , l, slj , rlj , k′lj , σ′lj)) (j ∈ {1, . . . , N} \ {l}) to Z.

It holds that
Pr[out2,0(Z) = 1] = Pr[out1(Z) = 1]

and
Pr[out2,N (Z) = 1] = Pr[out2(Z) = 1]

Assume that there exists a non-negligible function ε such that |Pr[out1(Z) =
1] = Pr[out2(Z) = 1]| > ε. Then there exists an i∗ ∈ {1, . . . , N} such that

|Pr[out2,i∗−1(Z) = 1]− Pr[out2,i∗(Z) = 1]| > ε/N

Moreover, if party i∗ is not hacked, i.e. if it is corrupted or remains honest
throughout the execution, then the views of Z in H2,i∗−1 and H2,i∗ are identically
distributed. Therefore,

ε/N <|Pr[out2,i∗−1(Z) = 1]− Pr[out2,i∗(Z) = 1]|
=|Pr[out2,i∗−1(Z) = 1 ∧ party i∗ is hacked]
− Pr[out2,i∗(Z) = 1 ∧ party i∗ is hacked]|

Consider the following adversaryA against the IND-pCCA security of PKE: At
the beginning,A randomly selects an index j ∈ {1, . . . , N}\{i∗}.A then simulates
the experiment H2,i∗−1. When Z gives the party i∗ its input xi∗ , A generates
shares si∗l, ri∗l, ki∗l of the input xi∗ , of a random pad ri∗ and of a MAC key ki∗
just like in H2,i∗−1. A additionally generates random strings k′i∗l (l ∈ {1, . . . , N}).
A then generates signatures σi∗j , σ′i∗j for (j, si∗j , ri∗j , ki∗j) and (j, si∗j , ri∗j , k′i∗j),
respectively, and sends (i∗, si∗j , ri∗j , ki∗j , σi∗j), (i∗, si∗j , ri∗j , k′i∗j , σ′i∗j) to the
experiment, receiving a ciphertext c∗. Note that A’s challenge messages are
allowed, i.e. have the same length, because SIG is length-normal. A then continues
simulating the experiment H2,i∗−1 using c∗ as ci∗j and its decryption oracle to
decrypt the ciphertexts in the buffer of party j that are addressed as coming
from the corrupted parties but do not equal c∗ (the ones that are equal to c∗ are
ignored. Note that a tuple (l, c∗) sent by a corrupted party l is always invalid since
l 6= i∗). Note that in A’s internal simulation, party i∗ receives the correct value
from FG (i.e. (yi∗ + ri∗ ,Mac(ki∗ , yi∗ + ri∗)) or ⊥). At the end of the experiment,
A outputs what Z outputs. If during the simulation, Z corrupts or hacks party
j or if party i∗ is not hacked, i.e. if it is corrupted or remains honest throughout
the execution, then A sends ⊥ to the experiment.

Let outputb(A) = 1 denote the output of A in the IND-pCCA experiment
when the challenge bit b is chosen. By construction, assuming party i∗ is hacked,
if A guessed an index j of an honest party then it holds that if the challenge bit
is 0 the view of Z in A’s internal simulation is distributed as in the experiment
H2,i∗−1 and if the challenge bit is 1 the view of Z in A’s internal simulation is

21

distributed as in the experiment H2,i∗ . Moreover, assuming party i∗ is hacked,
the probability that A guesses an index j of an honest party is at least 1/(N − 1).
Hence,

|Pr[output0(A) = 1]− Pr[output1(A) = 1]|
=|Pr[out2,i∗−1(Z) = 1 ∧ party i∗ is hacked ∧Guess correct]
− Pr[out2,i∗(Z) = 1 ∧ party i∗ is hacked ∧Guess correct]|

>ε/(N · (N − 1))

This contradicts the IND-pCCA security of PKE.
Hence, there exist a negligible function negl2 such that

|Pr[out1(Z) = 1]− Pr[out2(Z) = 1]| ≤ negl2(n)

Hybrid H3 Let H3 be the execution experiment between the environment Z, the
ideal protocol with functionality F2 and the adversary Sim3, where F2 and Sim3
are defined as follows:

Let F2 be identical to F1 except that now the adversary is allowed to determine
the outputs only of corrupted parties.

Define the ideal-model adversary Sim3 to be like Sim2 except for the following:
If Z receives an output from FG for a hacked party i then,

– If this outputs equals ⊥, Sim3 first sends ⊥ to Z. Sim3 then waits for Z’s
response addressed to the OIM of that party and after receiving that response
instructs F2 to output ⊥ to party i.

– Otherwise, i.e if this output equals (m, t), if Z sends a response (m′, t′)
addressed to the OIM of that party then
• if m′ 6= m, Sim3 instructs the F2 to output ⊥ to party i
• if m′ = m, then Sim3 verifies if VrfyMAC(ki,m′, t′) = 1. If this holds,
then Sim3 instructs F2 to send the output to party i. Otherwise, Sim3
instructs F2 to output ⊥ to party i

Let Efakeoutp be the event that Z sends a message (m′, t′) to the OIM of a
hacked party i such that VrfyMAC(ki,m′, t′) = 1 but either party i has received
⊥ from FG or (m, t) such that m′ 6= m, or party i has not received an output
from FG yet.

It is easy to see that the following holds:

Pr[out2(Z) = 1 ∧ ¬Efakeoutp] = Pr[out3(Z) = 1 ∧ ¬Efakeoutp]

Therefore, it holds that

|Pr[out2(Z) = 1]− Pr[out3(Z) = 1]| ≤ Pr[Efakeoutp]

22

Claim 3: Pr[Efakeoutp] is negligible.
Consider the adversary A against the EUF-1-CMA-security of MAC. At the
beginning, A randomly selects an index i ∈ {1, . . . , N}. A then simulates the
hybrid H2. Once Z expects the output from FG for (the hacked) party i, A
computes the (padded) result m for this party. If m = ⊥, A sends ⊥ to Z.
Otherwise, A sends m to the MAC oracle OMac(k,·), receiving a tag t. A then
sends (m, t) to Z. If Z sends a tuple (m′, t′) to the OIM of party i such that
m′ 6= m, then A sends (m′, t′) to the experiment. If during the simulation, Z
does not hack party i or if Z sends ⊥ or a tuple (m′, t′) such that m′ = m to the
OIM of party i, then A sends ⊥ to the experiment.

By construction, it holds that if Efakeoutp occurs and A correctly guessed
an index for which Efakeoutp occurs, then Expeuf-1-cma

A(z),MAC(n) = 1 because (m′, t′)
is valid and m′ 6= m has not been sent to the MAC oracle OMac(k,·). Moreover,
the probability that A correctly guesses an index for which Efakeoutp occurs is at
least 1/N . Hence,

Pr[Expeuf-1-cma
A(z),MAC(n) = 1] ≥ Pr[Efakeoutp]/N

Therefore, since Pr[Expeuf-1-cma
A(z),MAC(n) = 1] is negligible by assumption and N is

polynomial in n, it follows that Pr[Efakeoutp] is also negligible.
Hence, there exist a negligible function negl3 such that

|Pr[out2(Z) = 1]− Pr[out3(Z) = 1]| ≤ negl3(n)

Hybrid H4 Let H4 be the execution experiment between the environment Z, the
ideal protocol with functionality F3 and the adversary Sim4, where F3 and Sim4
are defined as follows:

Let F3 be identical to F2 except that now the adversary is not given the
inputs and outputs of honest and hacked parties anymore.

Define the ideal-model adversary Sim4 to be like Sim3 except for the follow-
ing: For every honest party i, Sim4 generates 3N random strings s′ij , r′ij , k′ij ,
computes σ′ij ← Sig(sgki, j, s′ij , r′ij , k′ij) (j = 1, . . . , N), and iteratively reports
(i,Enc(pkj , i, s′ij , r′ij , k′ij , σ′ij)) (j ∈ {1, . . . , N}\{i}) to Z. If all parties are marked
as genuine, then for every corrupted or hacked party i, Sim4 generates a ran-
dom string ỹi ← {0, 1}pi(n) and sends (ỹi,Mac(ki, ỹi)) to Z as output from FG ,
where ki ← GenMAC(1n). If one of the parties is marked as fake, then for every
corrupted or hacked party i, Sim4 sends ⊥ to Z as output from FG .

Let H4,0, . . . ,H4,N be the execution experiment between the environment
Z, the ideal protocol with functionality F3,0, . . . ,F3,N and the adversary
Sim4,0, . . . ,Sim4,N , respectively, where F3,i and Sim4,i are defined as follows:

Define F3,i be identical to F2 except now the adversary is not given the inputs
and outputs of the parties l ∈ {1, . . . , i} if they are honest or hacked.

Define the ideal-model adversaries Sim4,i to be like Sim3 except for the follow-
ing: For every honest party l ∈ {1, . . . , i}, Sim4,i generates 3N random strings
s′lj , r

′
lj , k

′
lj , computes σ′lj ← Sig(sgkl, j, s′lj , r′lj , k′lj) (j = 1, . . . , N), and iteratively

reports (l,Enc(pkj , l, s′lj , r′lj , k′lj , σ′lj)) (j ∈ {1, . . . , N} \ {l}) to Z. If all parties

23

are marked as genuine, then for every corrupted or hacked party l ∈ {1, . . . , i},
Sim4 generates a random string ỹl ← {0, 1}pi(n) and sends (ỹl,Mac(kl, ỹl)) to Z
as output from FG , where kl ← GenMAC(1n). If one of the parties is marked as
fake, then for every corrupted or hacked party, Sim4,i sends ⊥ to Z as output
from FG .

It holds that
Pr[out4,0(Z) = 1] = Pr[out3(Z) = 1]

and
Pr[out4,N (Z) = 1] = Pr[out4(Z) = 1]

Assume that there exists a non-negligible function ε such that |Pr[out3(Z) =
1] = Pr[out4(Z) = 1]| > ε. Then there exists an i∗ ∈ {1, . . . , N} such that

|Pr[out4,i∗−1(Z) = 1] = Pr[out4,i∗(Z) = 1]| > ε/N

One can now construct an adversary A against the IND-pCCA-security of PKE.
The reduction is almost identical to the one in hybrid H2.

Hence, there exist a negligible function negl3 such that

|Pr[out3(Z) = 1]− Pr[out4(Z = 1]| ≤ negl3(n)

Since H4 is identical to the ideal-model experiment with functionality [G] and
the simulator as defined in Definition 6, it follows that there exists a negligible
function negl such that

|Pr[Exec##

(
ρFG ,Freg,Fkrk ,D,Z

)
= 1]− Pr[Exec##

(
[G],Sim,Z

)
= 1]| ≤ negl(n)

The statement follows. ut

Remark 1. Note that one can also let a party check each message it receives (in
its buffer) right away once it is online without having to wait for at least N − 1
messages in the buffer. The protocol remains secure if one assumes the stronger
assumption that PKE is IND-CCA-secure.

Remark 2. Using Theorems 1 and 2 (and Proposition 2 for transitivity), we can
replace FG in our protocol with an appropriate adaptively UC-secure protocol,
e.g. [CLOS02] (using a CRS as an additional setup). Note that the imported
UC-secure protocol needs to be initially fortified (cf. Definition 4) since we require
initially disconnected air-gap switches to FG in our construction.

Remark 3. Note that we do not model how to reuse machines such as the
registration machines that stay disconnected throughout the protocol execution.
In practice, one may assume, e.g., a reset button for these machines.

24

4.1 Up to N Corruptions/Hacks

We will now augment Construction 2 in order to obtain a protocol that is
also secure if the adversary hacks all parties at the expense of one additional
unhackabe hardware primitive called decryption unit (Dec-unit). In the new
construction, parties do not decrypt the encrypted shares themselves but send
the messages they received to the Dec-unit (cf. Fig. 3 in Appendix A).

More specifically, define the protocol ρFG ,Freg,Fkrk
2 to be identical to ρFG ,Freg,Fkrk

except that now each party additionally has an unhackable Dec-unit. Furthermore,
each party has an air-gap switch to its Dec-unit and only one connection to
the Enc-unit, namely a data diode. The Dec-unit gets the secret key from the
corresponding Enc-unit in the sharing phase. In the compute phase, each party
sends all the messages in its buffer to its Dec-unit for decryption. The Dec-unit
only decrypts the first vector of ciphertexts it receives. Since the Dec-units do not
leak the secret keys, the simulator can report plaintext tuples to Z in such a way
that the shares they contain are consistent with the parties’ inputs and outputs
even if all parties are hacked. Z is unable to check if the tuples it receives were
encrypted before since it does not have the secret keys. (cf. Appendix G for a
more detailed description of the simulator).

The security proof is very similar to the proof of Theorem 3 and therefore
omitted due to length restrictions.

Theorem 4 (Up to N Corruptions/Hacks, Non-Reactive Functionali-
ties). Let G be a non-reactive functionality.
Let PKE, SIG, MAC be as in Theorem 3.

Then it holds that ρFG ,Freg,Fkrk
2 ≥

##
[G] for up to N corruptions/hacks.

5 Construction for Reactive Functionalities

In this section, we will construct a general MPC protocol for every fortified
functionality of a reactive functionality that is secure in our framework. The new
construction is a direct generalization of Construction 2.

For reactive functionalities, a new problem arises because a protocol party is
online after the first round. The input(s) for the next round(s) can therefore not
just be given to a party since it may have been hacked. We therefore need to find
a way to insert the input(s) of round u ≥ 2 into the protocol without allowing a
party to learn (or change) them.

To this end, we introduce an additional unhackable hardware module called
input interface machine (IIM) that acts as the counterpart of the OIM for inputs.
Let R ∈ N be the number of rounds. In the offline sharing phase, each party i
generates 2R random pads r1

i , . . . , r
R
i , t

1
i , . . . , t

R
i and shares them as before. Also,

each party pads its (first) input x̃1
i = x1

i + t1i and computes a MAC tag of it.
Then, each party sends the R random pads r1

i , . . . , r
R
i as well as the MAC key

ki to the OIM and the other R random pads t1i , . . . , tRi and the MAC key ki

25

to the IIM. As before, each random pad is shared with the other parties along
with signatures on these shares, the PID of the designated receiver as well as
the number of the round in which this share is to be used. Note that the latter
prevents an adversary from using shares from earlier rounds.

In each online compute phase, the parties will then use their shares and their
padded inputs in order to compute the desired padded output values and a MAC
tag of these padded output values along with a prefix indicating this being an
output and the round number. Verification and reconstruction of the output values
is then done as before using the OIM. Note that since the prefix contains the
round number, the OIM is able to reject results from earlier computation phases.

As before, each input to the compute phase has to be verified before the
actual multi-party computation. Now, however, not only the signatures of the
shares are verified but also the MAC tags of the padded inputs. In order to obtain
the MAC tags for the padded inputs of round u ≥ 2, the respective input needs
to be inserted into the protocol via the IIM. The IIM pads each input it receives
and computes a MAC tag of the padded input along with a prefix indicating
this being an input and the round number. It then sends the resulting tuple to
the party. This way, a party will be able to continue the computation without
learning the inputs of round u ≥ 2. Note that due to the prefix containing the
round number, the adversary cannot use padded inputs of earlier rounds. (Also
note that since the prefix indicates inputs/outputs, an adversary cannot send a
padded input to the OIM.)

As before, we will take a modular approach and define an ideal functionality
F reac
G that implements the verification of the input values in the compute phase

as well as the multi-party computation on the shares and padded inputs.
We first define the functionality F reac

G .

Construction 3
Let G be a (possibly reactive) ideal functionality.
F reac
G proceeds as follows, running with parties P1, . . . , PN and an adversary A

and parametrized with a digital signature SIG and a message authentication code
MAC.

1. If this is round u = 1, do the following:
– Upon receiving input vki = (vk(i)

1 , . . . , vk(i)
N), (t1ji, r1

ji, σ
1
ji, kji, σ

′
ji)

(j = 1, . . . , N) and (x̃1
i , τ

1
i) from party Pi, store that input and send

(received, Pi) to A.
– Once each party has sent its input, check if one party has sent ⊥. If yes,
output ⊥

– Else, check if vk1 = · · · = vkN . If no, output ⊥
– Else, set (vk1, . . . , vkn) = (vk(1)

1 , . . . , vk(1)
N). For all i = 1, . . . , N, check if

VrfySIG(vkj , i, kji, σ′ji) = 1 for all j = 1, . . . , N,. If no, output ⊥
– Else, for all i = 1, . . . , N , compute and store ki = ki1 + ki2 + · · ·+ kiN .
– Continue with Step 3

2. Else, if this is round u > 1, do the following:
– Upon receiving input (tuji, ruji, σuji) (j = 1, . . . , N) and (x̃ui , τui), store that
input and send (received, Pi) to A.

26

– Once each party has sent its input, continue with Step 3
3. For all i = 1, . . . , N, check if VrfySIG(vkj , u, i, tuji, ruji, σuji) = 1 for all j =

1, . . . , N and if VrfyMAC(ki, Inp Round u, x̃ui , τ
u
i) = 1. If this does not hold,

output ⊥
4. Else, for each i = 1, . . . , N, compute rui = rui1 + rui2 + · · ·+ ruiN and tui = tui1 +

tui2 + · · ·+ tuiN and xui = x̃ui + tui .
5. Internally run G on input (xui , . . . , xuN). Let (yu1 , . . . , yuN) be the output of G.
6. For all i = 1, . . . , N , compute oui = yui + rui and θui ←

Mac(ki, Outp Round u, yui + rui).
7. For all i = 1, . . . , N , send a public delayed output (oui , θui) to Pi.
C If A sends (corrupt, P) and FG has already received an input from party P

then FG sends that input to A. Otherwise FG sends “no input yet”. Further-
more, FG lets A determine the input of party P .

Next, we define our protocol for reactive functionalities, which is in the
(F reacG ,Freg,Fkrk)-hybrid model.

Construction 4 Define the protocol ρFG ,Freg,Fkrk
3 as follows:

Architecture: (cf. Fig. 3 in Appendix A) Each party has two hackable and three
unhackable sub-parties. The hackable sub-parties are a buffer and a registration
machine, and the unhackable sub-parties are an Enc-unit, an OIM and an IIM.
Each party has an air-gap switch to its buffer, a data diode to its OIM, an
air-gap switch and a data diode to its Enc-unit, an air-gap switch to Freg,
an air-gap switch to F reac

G , a standard-connection to its IIM and an air-gap
switch to the network. Furthermore, each Enc-unit has a standard-connection
to Fkrk and a standard-connection to the network, each buffer has a standard-
connection to the network, each IIM has an air-gap switch at its input port
and each registration machine has an air-gap switch to its main party and
a data diode to Freg. Apart from the parties’ input ports and the registration
machines’ connection to their main parties, all air-gap switches are disconnected
at the beginning.

– Offline Sharing Phase:
Upon input x1

i , each party Pi does the following:
• Disconnect at the input port.
• Generate random pads t1i , t

2
i , . . . , t

R
i ← {0, 1}n and r1

i , r
2
i , . . . , r

R
i ←

{0, 1}pi(n)

• Generate shares tui1 + tui2 + · · ·+ tuiN = tui (u = 1, . . . ,R) and rui1 + rui2 +
· · ·+ ruiN = rui (u = 1, . . . ,R).

• Generate ki ← GenMAC(1n) and (sgki, vki)← GenSIG(1n)
• Send (ki, rui) (u = 1, . . . ,R) to the OIM and (ki, tui) (u = 1, . . . ,R) to the

IIM.
• Send the verification key vki to the registration machine. The registration
machine will then disconnect itself from its main party and relay vki to
Freg (using its own PID).

• Create signatures σuij ← Sig(sgki, u, j, tuij , ruij) and σ′ij ← Sig(sgki, j, kij)
(j = 1, . . . , N ;u = 1, . . . ,R).

27

• Compute x̃1
i = x1

i + t1i and τ1
i ← Mac(ki, Inp Round 1, x̃1

i)
• Let tij = (t1ij , t2ij , . . . , tRij), rij = (r1

ij , r
2
ij , . . . , r

R
ij) and σij =

(σ1
ij , σ

2
ij , . . . , σ

R
ij). Iteratively send (j, tij , rij , σij , kij , σ′ij) (j ∈ {1, . . . ,R}\

{i}) to the Enc-unit (at each activation)
• At first activation, the Enc-unit requests a key pair (pki, ski) from Fkrk.
• Upon receiving a tuple (j, tij , rij , σij , kij , σ′ij) (j ∈ {1, . . . , N} \ {i}),
the Enc-unit requests the public key pkj belonging to party Pj from
Fkrk. If pkj does not exist yet, the Enc-unit sends a “request pub-
lic key message” to the Enc-unit of Pj. Otherwise, it computes
cij ← Enc(pkj , i, tij , rij , σij , kij , σ′ij) and sends (i, cij) to party Pj.

• Once all shares have been sent to the Enc-unit, erase everything except
for the tuple (tii, rii, σii, kii, σ′ii) and (x̃1

i , τ
1
i) and the verification key

vki (in particular, the input xi, signing key ski, random pads tui , rui and
MAC key ki are erased).

– First Online Compute Phase:
Once the last step in the offline sharing phase is completed, a party Pi does
the following:
• Connect to the buffer, Enc-unit and Freg.
• Request the secret key ski from the Enc-unit.
• Request all verification keys {vkl}l∈{1,...,N}\{i} that were registered with
the PIDs of the other parties’ registration machines from Freg. If not all
verification keys can be retrieved yet, go into idle mode and request again
at the next activation.
• At each activation, check if there are at least N −1 messages in its buffer.
If no, go into idle mode and when activated again check again.
If yes, check if one has received from each party j a set Mj = {(j, c̃)}
with the following property:
There exists a tuple (̂tji, r̂ji, σ̂ji, k̂ji, σ̂′ji), where t̂ji = (t̂1ji, t̂2ji, . . . , t̂Rji),
r̂ji = (r̂1

ji, r̂
2
ji, . . . , r̂

R
ji) and σ̂ji = (σ̂1

ji, σ̂
2
ji, . . . , σ̂

R
ji), and an element

(j, c) ∈Mj such that
∗ Dec(ski, c) = (j, t̂ji, r̂ji, σ̂ji, k̂ji, σ̂′ji)
∗ VrfySIG(vkj , u, i, t̂uji, r̂uji, σ̂uji) = 1 (u = 1, . . . ,R) and

VrfySIG(vkj , i, k̂ji, σ̂′ji) = 1
∗ For every (j, c̃) ∈ Mj it holds that either Dec(ski, c̃) =

(j, t̂ji, r̂ji, σ̂ji, k̂ji, σ̂′ji) or (j, c̃) is “invalid”, i.e., either decrypts to
(j, t̃ji, r̃ji, σ̃ji, k̃ji, σ̃′ji) such that either VrfySIG(vkj , u, i, t̃uji, r̃uji, σ̃uji) =
0 for some u or VrfySIG(vkj , i, k̃ji, σ̃′ji) = 0, or decrypts to
(l, t̃ji, r̃ji, σ̃ji, k̃ji, σ̃′ji) where l 6= j, or c̃ does not decrypt correctly.

If this does not hold, send ⊥ to FG.
Else, send all verification keys (vk1, . . . , vkN) as well as all
(t̂1ji, r̂1

ji, σ̂
1
ji, k̂ji, σ̂

′
ji) (j ∈ {1, . . . , N} \ {i}) and the own shares

(t1ii, r1
ii, σ

1
ii, kii, σ

′
ii) and (x̃1

i , τ
1
i) to F reac

G .

28

• Instruct the IIM to connect its input port.

– Subsequent Online Compute Phases:
Upon receiving an input xui in round u, each IIM does the following:
• Compute x̃ui = xui + tui and τui ← Mac(ki, Inp Round u, x̃ui) and send

(x̃ui , τui) to the party Pi.
• Party Pi then sends (t̂uji, r̂uji, σ̂uji) (j ∈ {1, . . . , N} \ {i}) and the own
share (tuii, ruii, σuii) and (x̃ui , τui) to F reac

G .

– Online Output Phases:
Upon receiving an output from F reac

G in round u, a party Pi does the following:
• If this output equals ⊥, it sends ⊥ to the OIM, which then outputs ⊥
• Otherwise, let (oui , θui) be the output from F reac

G . Send this tuple to the
OIM.

• The OIM then checks if VrfyMAC(ki, Outp Round u, oui , θ
u
i) = 1 and out-

puts yui = oui + rui if this holds, and ⊥ otherwise.

We are now ready to state our theorem for reactive functionalities. The
proof is similar to the proof of Theorem 3 and therefore omitted due to length
restrictions.

Theorem 5 (Up to N − 1 Corruptions/Hacks, Reactive Functionali-
ties).
Let G be a (possibly reactive) functionality.
Let PKE = (GenPKE,Enc,Dec) be a IND-pCCA-secure PKE,
SIG = (GenSIG,Sig,VrfySIG) an EUF-naCMA-secure and length-normal
DigSig and MAC = (GenMAC,Mac,VrfyMAC) an EUF-CMA-secure MAC.

Then it holds that ρF
reac
G ,Freg,Fkrk

3 ≥
##

[G] for up to N − 1 corruptions/hacks.

5.1 Up to N Corruptions/Hacks

As in Section 4.1, we can augment Construction 4 in order to obtain a protocol
ρ
F reac
G ,Freg,Fkrk

4 that is also secure if the adversary hacks all parties at the expense
of the additional unhackabe hardware module Dec-unit (cf. Fig. 4 in Appendix A).
We again omit the proof due to length restrictions.

Theorem 6 (Up to N Corruptions/Hacks, Reactive Functionalities).
Let G be a (possibly reactive) functionality.
Let PKE, SIG, MAC be as in Theorem 5.

Then it holds that ρF
reac
G ,Freg,Fkrk

4 ≥
##

[G] for up to N corruptions/hacks.

29

6 Weakening the Assumption on Erasure

We can also obtain the results in Theorems 3 to 6 with only a very weak notion
of erasure. To this end, we split each main party into two hackable parts S and
T that are connected via a data diode. At the beginning, S takes the (first)
input and carries out the offline sharing phase. Once the sharing phase is over,
S sends its own shares (and for reactive functionalities also its padded input)
together with their signatures (and possibly MAC tags) to T . From then on, T
carries out all further computations. S is never activated again and remains offline
throughout the protocol execution. After the protocol execution, S has to be
“destroyed” or at least reset to its initial state in order to erase its secret inputs.
This assumption is weaker than the selective erasure we require in Theorems 3
to 6. Moreover, it is in line with what is implicitly assumed in large parts of the
MPC literature, e.g. in the UC framework, where the Turing machines holding
secrets cease to exist after protocol executions.

7 Conclusion

We have proposed a new framework that captures the advantages provided
by unhackable hardware modules and isolation. Using few simple unhackable
hardware modules, we constructed protocols for securily realizing any fortified
functionality in our framework.

References

[AMR14] D. Achenbach, J. Müller-Quade, and J. Rill. “Universally Compos-
able Firewall Architectures Using Trusted Hardware”. In: Balkan-
CryptSec 2014. LNCS 9024. Springer, 2014, pp. 57–74.

[BDH+17] B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, and M.
Nagel. “Concurrently Composable Security with Shielded Super-
Polynomial Simulators”. In: EUROCRYPT 2017. LNCS 10210. 2017,
pp. 351–381.

[BDLO14] J. Baron, K. E. Defrawy, J. Lampkins, and R. Ostrovsky. “How to
withstand mobile virus attacks, revisited”. In: PODC 2014. ACM,
2014, pp. 293–302.

[Can01] R. Canetti. “Universally Composable Security: A New Paradigm for
Cryptographic Protocols”. In: FOCS 2001. IEEE. 2001, pp. 136–145.

[CFGN96] R. Canetti, U. Feige, O. Goldreich, and M. Naor. “Adaptively Secure
Multi-Party Computation”. In: STOC 1996. 1996, pp. 639–648.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. “Universally
composable two-party and multi-party secure computation”. In:
STOC 2002. ACM, 2002, pp. 494–503.

[CPV17] R. Canetti, O. Poburinnaya, and M. Venkitasubramaniam. “Equiv-
ocating Yao: constant-round adaptively secure multiparty compu-
tation in the plain model”. In: STOC 2017. ACM, 2017, pp. 497–
509.

30

[DMMN13] N. Döttling, T. Mie, J. Müller-Quade, and T. Nilges. “Implement-
ing Resettable UC-Functionalities with Untrusted Tamper-Proof
Hardware-Tokens”. In: TCC 2013. LNCS 7785. Springer, 2013,
pp. 642–661.

[GIK+15] S. Garg, Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Cryp-
tography with One-Way Communication”. In: CRYPTO 2015. LNCS
9216. Springer, 2015, pp. 191–208.

[GIS+10] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. “Found-
ing Cryptography on Tamper-Proof Hardware Tokens”. In: TCC
2010. LNCS 5978. Springer, 2010, pp. 308–326.

[HLP15] C. Hazay, Y. Lindell, and A. Patra. “Adaptively Secure Computation
with Partial Erasures”. In: PODC 2015. ACM, 2015, pp. 291–300.

[HPV17] C. Hazay, A. Polychroniadou, and M. Venkitasubramaniam. “Con-
stant Round Adaptively Secure Protocols in the Tamper-Proof
Hardware Model”. In: PKC 2017. LNCS 10175. Springer, 2017,
pp. 428–460.

[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. “Founding Cryptography
on Oblivious Transfer - Efficiently”. In: CRYPTO 2008. LNCS 5157.
Springer, 2008, pp. 572–591.

[Kat07] J. Katz. “Universally Composable Multi-party Computation Using
Tamper-Proof Hardware”. In: EUROCRYPT 2007. LNCS. Springer,
2007, pp. 115–128.

[Nem17] H. Nemati. “Secure System Virtualization: End-to-End Verification
of Memory Isolation”. PhD thesis. Royal Institute of Technology,
Stockholm, Sweden, 2017. url: http://nbn-resolving.de/urn:nbn:se:
kth:diva-213030.

[OY91] R. Ostrovsky and M. Yung. “How to Withstand Mobile Virus Attacks
(Extended Abstract)”. In: PODC 1991. ACM, 1991, pp. 51–59.

[ZGL18] E. Zheng, P. Gates-Idem, and M. Lavin. “Building a virtually air-
gapped secure environment in AWS: with principles of devops secu-
rity program and secure software delivery”. In: Hot Topics in the
Science of Security, HoTSoS 2018. ACM, 2018, 11:1–11:8.

31

http://nbn-resolving.de/urn:nbn:se:kth:diva-213030
http://nbn-resolving.de/urn:nbn:se:kth:diva-213030

Appendix

A Graphical Depicture of Architectures

This section contains graphical depictions of the architectures of the protocols
in Sections 4 and 5. Main parties are represented by circles, sub-parties and
ideal functionalities by boxes. Boxes with bold lines denote that the sub-party
is unhackable. Standard channels are denoted by lines, data diodes and air-gap
switches by their usual symbols. Dashed lines denote standard connections to
other parties that are currently not shown. Downward connections from the main
party and possibly from the OIMs or IIMs are to the environment (or the calling
protocol).

P

OIM

Buffer

Enc

FG

Freg

Fkrk

M

Fig. 1. Architecture for non-reactive functionalities and up to N − 1 corruption / hacks.

32

P

OIM

Buffer

EncDec

FG

Freg

Fkrk

M

Fig. 2. Architecture for non-reactive functionalities and up to N corruption / hacks.

33

P

OIM

Buffer

Enc

IIM

F reac
G

Freg

Fkrk

M

Fig. 3. Architecture for reactive functionalities and up to N − 1 corruption / hacks.

34

P

OIM

Buffer

EncDec

IIM

F reac
G

Freg

Fkrk

M

Fig. 4. Architecture for reactive functionalities and up to N corruption / hacks.

B Definitions

B.1 Ideal Functionalities

In our constructions (Sections 4 and 5), we make use of several ideal functionalities
which we introduce in the following.

Definition 7 (Ideal Functionality FfSFE). FSFE proceeds as follows, given a
list of functions f = f1, . . . , fR, fi : ({0, 1}∗ ∪ {⊥})N × U × S → ({0, 1}∗)N
(i = 1, . . . , R). At the first activation, verify that sid = (P, sid′) where P is
an ordered set of N identities; else halt. Denote the identities P1, . . . , PN . Also,
initialize variables xi1, . . . , xiN , yi1, . . . , yiN (i = 1, . . . , R), state to a default value
⊥. Set cj = 0 (j = 1, . . . , N), c = 0. Next:

1. Upon receiving input (Input, sid, v) from some party Pi ∈ P, set xci
i = v and

send a message (Input, sid, Pi) to the adversary. Increment ci.
2. Upon receiving input (Output, sid, v) from some party Pi ∈ P, do:

35

(a) If xci has been set for all parties Pi that are currently uncorrupted,
and yc1, . . . , y

c
n have not been yet set, then choose rc ← U and set

(yc1, . . . , ycn, state′) = fc(xc1, . . . , xcn, rc, state). Let the adversary deter-
mine the output of corrupted parties.

(b) Generate a private delayed output yci to Pi.
(c) If all Pi ∈ P have received output for round c, increment c and set

state = state′.

Definition 8 (Ideal Functionality Freg).
Freg proceeds as follows:

– Report: Upon receiving a message (register, vk) from party P , send
(registered, P, vk) to the adversary; upon receiving ok from the adversary,
record the pair (P, vk). Otherwise, ignore the message.

– Retrieve: Upon receiving a message (retrieve, Pi) from some party Pj (or
the adversary S), generate a public delayed output (retrieve, Pi, vk) to Pj,
where v = ⊥ if no record (P, vk) exists.

Note that in contrast to the usual definition, we allow key revocation in Freg.

Definition 9 (Ideal Functionality Fkrk).
Fkrk proceeds as follows, given a (deterministic) key generation function

GenPKE (with security parameter n), running with parties P1, . . . , PN and an
adversary S:

– Registration: When receiving a message (register, sid) from party Pi that
has not previously registered, compute (pki, ski)← GenPKE(1n) and record
the tuple (Pi,pki, ski).

– Retrieval: When receiving a message (retrieve, sid, Pi) from party Pj (where
j 6= i), if there is a previously recorded tuple of the form (Pi,pki, ski), then
generate a public delayed output (i, Pi,pki) to Pj . Otherwise generate a public
delayed output (i, Pi,⊥) to Pj. When receiving a message (retrieve, i, Pi)
from party Pi, if there is a previously recorded tuple of the form (Pi,pki, ski),
then generate a private delayed output (i, Pi,pki, ski) to Pi. Otherwise, gen-
erate a private delayed output (i, Pi,⊥) to Pi.

B.2 Cryptographic Primitives

In the following, we define the cryptographic primitives used in this paper along
with their required security properties.

Public-Key Encryption Schemes

Definition 10 (Public-Key Encryption Scheme).
Let M ⊆ {0, 1}p(n) be the message space. A public-key encryption scheme

PKE = (GenPKE,Enc,Dec) consists of three probabilistic polynomial-time algo-
rithms such that:

36

1. The key-generation algorithm GenPKE takes as input 1n and outputs a tuple
(pk, sk). We call pk the public key and sk the private key or secret key.

2. The encryption algorithm Enc takes as input a public key pk and a message
m ∈M and outputs a ciphertext c.

3. The decryption algorithm Dec takes as input a private key sk and a ciphertext
c and outputs a message m ∈M or a special symbol ⊥ denoting failure.

We call PKE perfectly correct if Dec(sk,Enc(pk,m)) = m for any m ∈ M
and for all (pk, sk)← GenPKE(1n).

Definition 11 (Indistinguishability Under Parallel Chosen Ciphertext
Attack). We call a public-key encryption scheme PKE IND-pCCA-secure if for
every ppt-adversary A and all z ∈ {0, 1}∗ there exists a negligible function negl
such that ∣∣∣∣Pr[ExpIND−pCCAA(z),PKE (n) = 1]− 1

2

∣∣∣∣ ≤ negl(n)

The experiment ExpIND−pCCAA(z),PKE (n) is defined as follows: At the beginning, the
experiment generates keys (pk, sk)← GenPKE(1n). On input 1n, z and pk, the
adversary A chooses two messages m∗0,m∗1 of equal length and sends them to
the experiment. The experiment then chooses a bit b uniformly random from
{0, 1} and encrypts c∗ ← Enc(pk,mb). On input 1n, z, c∗ and pk, the adversary
may now choose an arbitrary number of ciphertexts (not containing c∗) and do
a single query to an oracle ODec(sk,·) sending these ciphertexts to decrypt them
all in parallel. Afterwards, A chooses a bit b′ ∈ {0, 1}. If b = b′, the experiment
outputs 1, otherwise 0.

Message Authentication Codes
Definition 12 (Message Authentication Code). A message authentication
code MAC = (GenMAC,Mac,VrfyMAC) consists of three probabilistic polynomial-
time algorithms such that:
1. The key-generation algorithm GenMAC takes as input 1n and outputs a key

k. We call k the MAC key.
2. The tag-generation algorithm Mac takes as input a MAC key k and a message

m and outputs a MAC tag t.
3. The verification algorithm VrfyMAC takes as input a MAC key k, a message

m and a presumptive MAC tag t and outputs a bit b ∈ {0, 1}, with b = 1
meaning valid and b = 0 meaning invalid.

It is required that for every MAC key k ← GenMAC(1n) and every m ∈ {0, 1}∗,
it holds that VrfyMAC(k,m,Mac(k,m)) = 1 (correctness).

Definition 13 (Existential Unforgeability under One Chosen Message
Attack for MACs). We call a message authentication code MAC EUF-1-CMA-
secure if for every ppt-adversary A and all z ∈ {0, 1}∗ there exists a negligible
function negl such that

Pr[ExpEUF−1−CMA
A(z),MAC (n) = 1] ≤ negl(n)

37

The experiment ExpEUF−1−CMA
A(z),MAC (n) is defined as follows: At the beginning,

the experiment generates a key k ← GenMAC(1n). On input 1n, the adversary A
may send a single query m′ to an oracle OMac(k,·). Afterwards, A outputs a tuple
(m∗, t∗). If VrfyMAC(k,m∗, t∗) = 1 and m∗ 6= m′, the experiment outputs 1, else
0.

Definition 14 (Existential Unforgeability under Chosen Message At-
tack for MACs). We call a message authentication code MAC EUF-CMA-
secure if for every ppt-adversary A and all z ∈ {0, 1}∗ there exists a negligible
function negl such that

Pr[ExpEUF−CMA
A(z),MAC (n) = 1] ≤ negl(n)

The experiment ExpEUF−CMA
A(z),MAC (n) is defined as follows: At the beginning, the

experiment generates a key k ← GenMAC(1n). On input 1n, the adversary A may
send queries to an oracle OMac(k,·). Let Q be the set of all queries. Eventually, A
outputs a tuple (m∗, t∗). If VrfyMAC(k,m∗, t∗) = 1 and m∗ /∈ Q, the experiment
outputs 1, else 0.

Signature Schemes
Definition 15 (Signature Scheme). A signature scheme
SIG = (GenSIG,Sig,VrfySIG) consists of three probabilistic polynomial-time
algorithms such that:
1. The key-generation algorithm GenSIG takes as input 1n and outputs a tuple

(vk, sgk). We call vk the (public) verification key and sgk the (private) signing
key or signature key.

2. The signature-generation algorithm Sig takes as input a signing key sgk and
a message m and outputs a signature σ.

3. The verification algorithm VrfySIG takes as input a verification key vk, a
message m and a presumptive signature σ and outputs a bit b ∈ {0, 1}, with
b = 1 meaning valid and b = 0 meaning invalid.

It is required that for every key pair (vk, sgk)← GenSIG(1n) and every m ∈
{0, 1}∗, it holds that VrfySIG(vk,m,Sig(sgk,m)) = 1 (correctness).

We say that SIG is length-normal if for all m,m′ ∈ {0, 1}∗ such that |m| =
|m′|, (vk, sgk) ← GenSIG(1n), σ ← Sig(sgk,m), σ′ ← Sig(sgk,m′), it holds that
|σ| = |σ′|.

Definition 16 (Existential Unforgeability under Non-Adaptive Chosen
Message Attack for Signature Schemes). We call SIG EUF-naCMA-secure
if for every ppt-adversary A and all z ∈ {0, 1}∗ there exists a negligible function
negl such that

Pr[ExpEUF−naCMA
A(z),SIG (n) = 1] ≤ negl(n)

The experiment ExpEUF−naCMA
A(z),SIG (n) is defined as follows: At the beginning,

the experiment generates keys (vk, sgk) ← GenSIG(1n). On input 1n, the ad-
versary A may send queries to a signing oracle OSig(sgk,·). Let Q be the set

38

of all queries. Afterwards on input 1n and vk, A outputs a tuple (m∗, σ∗). If
VrfySIG(vk,m∗, σ∗) = 1 and m∗ /∈ Q, the experiment outputs 1, else 0.

C Summary: Corruption Rules

main party P hackable (initial) state of P notify to environment
Corruption
prior to protocol

invocation * * “physical access corruption of P”
Impact: The adversary gets control over P and all of its sub-parties regardless of whether
they are unhackable. Also, he may choose to ignore enhanced channels of these parties.

after protocol
invocation and hackable online “online-initiated corruption of P”
prior to input

Impact: The adversary gets control over P only. The adversary has to adhere to the
communication restrictions implied by the enhanced channels of P .

Hack
input received hackable online “P hacked” if P is a main party

Impact: The adversary gets control (only) over P . The adversary has to adhere to the
communication restrictions implied by the enhanced channels of P .

Table 1. Corruption Rules

D A Simple Motivating Example for the Corruption
Model

Consider a protocol π that consists of two hackable parties P1 and P2 (who
e.g. jointly compute some function) that are connected via a standard-channel.
Consider another protocol φ that is identical to π except that P1 is connected
to P2 via an air-gap switch, which is initially disconnected but connected as
soon as P1 receives its input.

Intuitively, π should not emulate φ since P1 has an “open” connection to P2 in
π from the beginning, but not in φ. This can indeed be shown in our framework.
Consider an environment Z that invokes P1 and sets the online/offline-state of
P1’s input port offline. Furthermore, consider an adversary A interacting with π
that sends (attack, P1) before P1 receives its input but after P1 is invoked. Since
P1 is hackable and online, Z will be notified with “online-initiated corruption of
P1”. However, this cannot be simulated in φ since P1 is offline before it receives
its input if Z sets the online/offline-state of P1’s input port offline.

39

Conversely, one should be able to argue that φ emulates π since φ is intuitively
more secure than π. This is also possible in our framework, since the simulator
interacting with π is able to suppress the attack instruction to P1.

E Proofs of the Properties of the Framework

In this section, we prove various properties of our framework.

Proposition 1 (Completeness of the Dummy Adversary). Let π and φ
be protocols. Then, π FUC-emulates φ if and only if π FUC-emulates φ with
respect to the dummy adversary.

Proof (Sketch). The proof is almost identical to the proof in the UC framework
(cf. [Can01]). The only difference is that the environment ZD, which internally
runs a copy of a given adversary A and environment Z, forwards the current
status (i.e. current online/offline state of all parties) of all parties to A each time
A is activated in ZD’s internal simulation. Note that ZD can obtain the status
by sending status to the dummy adversary D. ut

Proposition 2 (Transitivity). Let π1, π2, π3 be protocols. If π1 ≥
##

π2 and

π2 ≥
##
π3 then it holds that π1 ≥

##
π3.

Proof (Sketch). The proof follows from the same argument as in the UC framework
[Can01]. ut

Theorem 1 (Equivalence with UC-emulation for en bloc Protocols and
their Initial Fortification). Let π, φ be en bloc protocols and π̃, φ̃ their initial
fortification. Then,

π ≥
##
φ ⇐⇒ π ≥

UC
φ ⇐⇒ π̃ ≥

##
φ̃

Proof (Sketch). These statements follow from the fact that for en bloc protocols
and their initial fortifications UC environments can easily simulate environments
in our framework and vice versa. This is because in an en bloc protocol or its
initial fortification a notify transport is only triggered if a protocol party sends a
message to an ideal functionality and each ideal functionality called by a protocol
party immediatey notifies the adversary and lets him change the inputs of hacked
parties. Also, the online/offline state of a party in an en bloc protocol or its
initial fortification can be trivially derived. ut

Theorem 2 (Universal Composition). Let π be a protocol, F be an ideal
functionality (note that F may be fortified) and ρF a protocol in the F-hybrid
model. Then it holds that

π ≥
##
F =⇒ ρπ ≥

##
ρF

40

Proof (Sketch). The proof is almost identical to the proof in the UC framework
(cf. [Can01]). The main difference is that the environment Zρ, which interacts
with π and internally runs the protocol ρ and a given environment Z (and all
but one of the instances of π that are called by ρ), determines the online/offline
state of each input port to a party in π according to the online/offline state
of the respective calling party in ρ in its internal simulation. This way, the
online/offline state of the parties in π when interacting with Zρ are the same as
in the interaction between ρπ and Z. Also, if Z sends an attack-instruction in
Zρ’s internal simulation to a party in π, Zρ forwards that attack-instruction to
the respective party (if the protocol ρ has already been invoked in its internal
simulation but π has not been invoked yet, then Zρ first invokes the respective
party before sending the attack-instruction) and reports the correct notification
to Z if the party to which Z has sent the attack-instruction is (combined with)
a main party in ρπ. ut

F Proof of Lemma 1

In this section, we proof Lemma 1.

Lemma 1 (Restatement). If PKE is IND-pCCA-secure and SIG EUF-
naCMA-secure, then for every ppt-adversary A and all z ∈ {0, 1}∗, there exists
a negligible function negl such that

Pr[ExpauxA(z),PKE,SIG(n) = 1] ≤ negl(n)

Proof (Sketch). Assume there exists an adversary A that wins in the experiment
ExpauxA(z),PKE,SIG(n) with non-negligible probability. Since PKE is IND-pCCA-
secure, one can replace c∗ by c′ ← Enc(pk, 0L), where L = |(prf1,m, σ)|, in-
curring only a negligible loss in A’s success probability. Then, one can directly
construct an adversary A′ out of A that breaks the EUF-naCMA-security of SIG
with non-negligible probability. A′ simply internally simulates the experiment
ExpauxA(z),PKE,SIG(n) for A using his signing oracle and c′ for c∗. Once A sends
a tuple (m,σ) to the experiment ExpauxA(z),PKE,SIG(n), A′ sends (m,σ) to the
EUF-naCMA experiment. A′ then wins in the EUF-naCMA experiment if and
only if A wins in the experiment ExpauxA(z),PKE,SIG(n). ut

G Simulator for up to N Corruptions/Hacks,
Non-Reactive Case

In the following, we give a detailed description of the simulator for up to N
corruptions/hacks (non-reactive case) (cf. Section 4.1).

The simulator Sim′ for the case of up to N corruptions/hacks is identical to
the simulator for up to N − 1 in Definition 6, except for the following: Once all
parties have been hacked, Sim′, who learns the inputs and outputs of all parties
from [G] in this case, reports plaintext tuples to Z in such a way that the shares

41

they contain are consistent with the parties’ inputs and outputs. Note that Z
cannot check if the tuples it receives from Sim′ were encrypted before since it
does not have the secret keys.

More specifically, for every honest party i, Sim′ generates 3N random strings
s′ij , r

′
ij , k

′
ij , computes σ′ij ← Sig(sgki, j, s′ij , r′ij , k′ij) (j = 1, . . . , N), and reports

(i,Enc(pkj , i, s′ij , r′ij , k′ij , σ′ij)) (j ∈ {1, . . . , N} \ {i}) to Z. Furthermore, for each
party i = 1, . . . , N , Sim′ generates random strings ỹi ← {0, 1}n.

Once the last party, denoted by PID l∗, has been hacked, Sim′
computes for each i the shares s̃il∗ = xi +

∑
j∈{1,...,N}\{l∗} s

′
ij , and

k̃il∗ = ki +
∑
j∈{1,...,N}\{l∗} k

′
ij and r̃il∗ = ỹi + yi +

∑
j∈{1,...,N}\{l∗} r

′
ij .

Sim′ then computes σ̃il∗ ← Sig(sgki, l∗, s̃il∗ , r̃il∗ , k̃il∗) and reports the tuples
(i, s̃il∗ , r̃il∗ , k̃il∗ , σ̃il∗) (i = 1, . . . , N). When Z sends a vector of ciphertexts to
the Dec-unit of party l∗, then Sim′ checks for each c′ contained in that vector if
c′ = cil∗ for some i. For each c′ for which this holds, Sim′ returns the correspond-
ing (i, s̃il∗ , r̃il∗ , k̃il∗ , σ̃il∗). Otherwise, Sim′ returns Dec(sk∗l , c′). When Z sends
a vector of ciphertexts to the Dec-unit of a party i 6= l∗, Sim′ decrypts each
ciphertext contained in that vector using ski.

If all parties are marked as genuine, then for every corrupted or hacked party
i, Sim′ sends (ỹi,MAC(ki, ỹi)) to Z as output from FG . If one of the parties is
marked as fake, then for every corrupted or hacked party i, Sim′ sends ⊥ to Z
as output from FG .

H A Short Introduction into UC Security

In the following, we give a brief overview of the UC framework. The following is
taken from [BDH+17].

The essential idea is to define security by means of the indistinguishability
between an experiment in which the task at hand is carried out by dummy parties
with the help of an ideal incorruptible entity and an experiment in which the
parties must conduct the task themselves. In contrast to previous attempts to
define security by simulation the indistinguishability must not only hold after the
protocol execution has completed, but the distinguisher—called the environment
Z—takes part in the experiment, orchestrates all adversarial attacks, supplies
the inputs to the parties running the challenge protocol and can observe the
parties’ output as well as communication during the whole protocol execution.

The basic model of computation The basic model of computation consists of a set
of (possibly polynomial many) instances (ITIs) of interactive Turing machines
(ITMs). An interactive Turing machine (ITM) is the description of a Turing
machine with additional tapes, namely the identity tape, tapes for subroutine
input and output as well as tapes for incoming and outgoing network messages.
The tangible instantiation of an ITM—the ITI—is identified by the content of its
identity tape which consists of an session and a party identifier (SID/PID). The
order of activation of the ITIs is completely asynchronous and message-driven.
An ITI gets activated if either subroutine input or an incoming message is written

42

onto its respective tape. If the ITI provides subroutine output or writes an
outgoing message, the activation of the ITI completes and the ITI to whom the
message has been delivered to gets activated next. Each experiment comprises
two special ITIs the environment Z and the adversary A (in the real experiment)
or the simulator Sim (in the ideal experiment). The environment is the ITI that
is initially activated. If during the execution any ITI completes its activation
without giving any output, the environment is activated again as a fall-back. If
the environment Z conducts a subroutine output, the whole experiments stops.
The output of the experiment is the output of Z.

The adversary The adversary A has the following capabilities. If any ITI writes
an outgoing message the message is not directly delivered to the incoming
tape of designated receiver but the adversary is responsible for all message
transfers. To this end every message is implicitly copied to the incoming message
tape of the adversary. The adversary can process the message arbitrarily. The
adversary may decide to deliver to message (by writing the message on its own
outgoing tape), the adversary may postpone or completely suppress the message,
inject new messages or alter messages in any way including the recipient and/or
alleged sender. This modeling reflects the idea of an unreliable and untrusted
network. Please note twofold: (a) Only incoming/outgoing messages are under
the control of the adversary, subroutine input/output between ITIs is immediate
and trustworthy as long as the ITIs are uncorrupted. (b) As the sequence of
activations is message-driven the adversary also controls the scheduling and
order of execution. Moreover the adversary can corrupt an ITI. In this case the
adversary learns the complete entire state of the corrupted ITI and takes over its
execution. This means whenever the corrupted ITI would have been activated
(even due to subroutine input) the adversary gets activated with the same input.

The real experiment In the real experiment for a challenge protocol π, denoted
by Exec(π,A,Z), the environment Z is activated first. After the invocation
of the adversary A the environment Z requests the creation of the challenge
protocol. The main parties of π become subroutines of the environment and the
environment freely choses their input and the SID of the challenge protocol. The
experiment is executed as outlined above.

The ideal experiment In the ideal experiment, denoted by Exec(F ,S,Z), the
challenge protocol is silently replaced by an instance of F together with dummy
parties. The dummy parties obtain a common session identifier (SID) and individ-
ual party identifiers (PIDs) from the environment as if they were the actual main
parties of the protocol π in the real experiment, however they merely forward
the subroutine input/output between the instance of the functionality F and
the environment. The ideal functionality F is simultaneously a subroutine for
each dummy party, holds the same SID but no PID, and conducts the prescribed
task without the necessity to exchange any network messages. Moreover, in the
ideal experiment the adversary is replaced by a simulator Sim that mimics the

43

adversarial behavior to the environment as if this was the real experiment with
real parties carrying out the real protocol with real π-messages.

Definition of Security A protocol π is said to UC-realize an ideal functionality
F , denoted by π ≥

UC
F , iff

∀A ∃S ∀Z : Exec(π,A,Z) c≡ Exec(F ,S,Z) (1)

holds, where the randomness on the left and on the right is taken over the initial
input of Z and all random tapes of all PPT machines.

44

	Fortified Universal Composability: Taking Advantage of Simple Secure Hardware Modules

