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Abstract

We propose a new method for reducing complexity of the pairing compar-
isons based on polynomials. Thought the construction introduces uncertainty
into (usually deterministic) checks, it is easily quantifiable and in most cases
extremely small. The application to CL-LRSW signature verification under n
messages and group order q allows to reduce the number of computed pairings
from 4n down to just 4, while the introduced uncertainty is just 2n−1

q
.

1 Introduction
Bilinear pairings is an interesting topic in cryptographic research. There is a great
number of cryptographic protocols that use bilinear pairing comparisons as their
core components and their versatility is without the question. The main issue,
however, is their relative computational cost, which is rather high, compared to
standard operations on elliptic curves. Due to their inefficiency they are not so
widely adopted in the real world.

In this paper we propose a new and efficient way to significantly reduce the
number and complexity of pairing comparisons, based on polynomial evaluation.
The idea is to use sides of comparisons as polynomial coefficients, and compare the
result of evaluation in randomly chosen point. Though the construction introduces
some uncertainty into, usually deterministic, checks, the probability of failure is
easily quantifiable. For practical applications, where the number of performed
checks is negligible in comparison to the group order, our construction achieves a
negligible false positive rate.

We later show an application of the method to the CL-LRSW signature scheme
and results for a proof-of-concept implementation, in order to highlight the com-
putational cost reduction.

1



1.1 Preliminaries
Definition (Real/False Positive/Negative) In this paper, we introduce random-
ness and uncertainty to, usually deterministic, checks. The uncertainty is quantified
by probability of certain events. However, given that our guarantees are dependent
on the values to be checked to be correct or incorrect, we cannot simply declare one,
universal value.

To quantify the quality of our proposal, we measure the chance of a false-positive
and false-negative event. There are two additional, complimentary events, that can
be defined using the aforementioned values: real-positive and real-negative.

In cryptography, false-positive is usually associated with soundness property
(what is the chance that someone without proper input can simulate the protocol),
whilst real-positive is usually associated with completeness property (what is the
chance that given proper inputs, the protocol succeeds).

Let A denote the output of our algorithm, and let O denote an output of an “ideal”
algorithm. In cases presented in this paper, the “ideal” algorithm corresponds to a
routine comparison on value-by-value basis.

Output 1 means “verification passed” and 0 means “verification failed”.

Pr[false-positive] = Pr[1← A|0← O]
Pr[false-negative] = Pr[0← A|1← O]
Pr[real-positive] = Pr[1← A|1← O]
Pr[real-negative] = Pr[0← A|0← O]

Note that

Pr[real-positive] = 1− Pr[false-negative]

Pr[real-negative] = 1− Pr[false-positive].

Definition (Bilinear Maps (Pairings)) Let G1 and G2 be two (additive in notation)
groups, containing subgroups of prime order q. We say that e is a bilinear map, if
there exist another (multiplicative in notation) cyclic group GT of order q, and a pairing
function e : G1 ×G2 → GT such that:

1. (Bilinear) For all quadruples of elements (A,B,C,D) ∈ G2
1 × G2

2, the function is
bilinear, that is:

e(A+B,C +D) = e(A,C) · e(A,D) · e(B,C) · e(B,D).

2. (Non-degenerate) There exist a pair of inputs P ∈ G1, Q ∈ G2, that creates a
non-trivial solution, that is e(P,Q) 6= 1, where 1 is the identity of GT .

3. (Efficient) There exists an efficient algorithm for computing e.

2 Efficient comparison via polynomial evaluation
Let us first consider a generic case of comparing pairwise multiple pairs of elements
of cyclic groups. Assume that, for some reason, the comparison itself is expensive,
e.g. elements are located at remote hosts, or are coset representatives and have to
be normalized.
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Theorem 1 Let G be a cyclic group of order q and let g be its generator. Given a
series of n pairs (Li, Ri) ∈ G2, a sequential comparison

Li
?
= Ri ∀i ∈ {0, ...n− 1}

is roughly equivalent to
n−1∏
i=0

Lx
i

i
?
=

n−1∏
i=0

Rx
i

i

for x ∈ Zq chosen uniformly at random, up to a probability of false positive not greater
than n−1

q .

Proof Since G is cyclic, each element Li and Ri can be represented as a power of
the generator g, that is:

Li = gµi Ri = gνi .

Therefore, for each i ∈ {0, . . . n− 1}:

Li = Ri ⇐⇒ µi ≡ νi mod q.

Consider the following polynomials, µ(X) and ν(X):

µ(X) =

n−1∑
i=0

µiX
i ν(X) =

n−1∑
i=0

νiX
i

We know that if for some x

µ(x) = ν(x)

µ(x)− ν(x) = 0

(µ− ν)(x) = 0,

then x is either a solution to a non-trivial polynomial (µ− ν)(X) =
∑n−1
i=0 (µi − νi)(X),

or all coefficients µi = νi. We know that a polynomial of degree n − 1 has at most
n − 1 solutions. Thus, for x chosen uniformly at random, the probability of (blindly)
finding a solution of the polynomial is bounded by:

Pr
[
(α− β)(x) = 0 ∧ α(X) 6= β(X)

]
≤ n− 1

q
.

We can write:

gµ(x) = g
∑n−1

i=0 µix
i

gν(x) = g
∑n−1

i=0 νix
i

=

n−1∏
i=0

Lx
i

i =

n−1∏
i=0

Rx
i

i

Therefore, instead of comparing the equalities for a sequence of value pairs, we can
compare the products

n−1∏
i=0

Lx
i

i
?
=

n−1∏
i=0

Rx
i

i

for a uniformly chosen value x. If the sequences are identical, the result is correct,
thus Pr[false-negative] = 0. In case of inequalities, we obtain the incorrect result with
probability Pr[false-positive] ≤ n−1

q . �
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In this paper, we restrict the case to cyclic groups of prime order q, because of
the natural isomorphism between them and Fq. The construction works in many
other cases, as long as a similar isomorphism (not necessarily efficiently com-
putable) to a ring can be found.

Note that this construction works for all cases of cyclic groups, regardless of any
hardness assumptions. The false positive rate is purely statistical and depends on
uniform selection of the challenge x. There are no external parties, no adversaries,
etc.

3 Application to Bilinear Maps
The same principle can be applied to bilinear maps, with additional advantages.

Theorem 2 Assume G1 and G2 are pairing preimage groups, and GT is a pairing
target group with order q. Given a series of n quadruples

(Ai, Bi, Ci, Di) ∈ G2
1 ×G2

2,

a sequential comparisons of bilinear maps

e(Ai, Ci)
?
= e(Bi, Di) ∀i ∈ {0, ...n− 1}

where each Ai, Ci ∈ G1 and Bi, Di ∈ G2, for x ∈ Zq chosen uniformly at random,
yields the same output as

n−1∏
i=0

e(Ai, Ci)
xi ?

=

n−1∏
i=0

e(Bi, Di)
xi

with Pr[false-negative] = 0 and Pr[false-positive] ≤ n−1
q .

Proof Let us denote Li = e(Ai, Ci) and Ri = e(Bi, Di). Given that both Li and Ri are
elements of a cyclic group GT , Theorem 1 holds. �

Corollary 1 Using bilinear properties, Theorem 2 can be used to reduce the number
of pairing function computations, if there are common elements between the input
quadruples (Ai, Bi, Ci, Di) ∈ G2

1 ×G2
2.

Example Consider a series of n checks of a form e(G,Ai)
?
= e(H,Bi) for i ∈ {0, ...n−

1}. Using Theorem 2, the series can be replaced with a single check:
n−1∏
i=0

e(G,Ai)
xi ?

=

n−1∏
i=0

e(H,Bi)
xi

However, using bilinear property of e, this can be rewritten, without loss of gen-
erality, as:

n−1∏
i=0

e(G, [xi]Ai)
?
=

n−1∏
i=0

e(H, [xi]Bi)

e

(
G,

n−1∑
i=0

[xi]Ai

)
?
= e

(
H,

n−1∑
i=0

[xi]Bi

)
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This procedure reduced the total number of e calls from 2n to 2.

Note that there are no assumptions on G1 or G2 being cyclic, or having any
other properties, apart from being preimage groups for a non-degenerate bilinear
pairing.

4 Application to CL-LRSW Signatures
While the technique has numerous applications, we only present a few of them.
Notably, the reduction can be used to simplify verification of the CL-LRSW [CL04]
signatures by a significant factor. Using the technique, we reduced number of ex-
pensive pairing operations from 4l+4 down to 4, on the cost of 4l+2 (much cheaper)
G1/G2 scalar multiplications and extremely small probability of false-positive out-
come.

Corollary 2 (CL-LRSW Reduction) Let σ = (A0, . . . Al, B0, . . . Bl, C) be a CL-LRSW
signature (Scheme C) under l + 1 messages mi and let pk = (X(2), Y (2), Z

(2)
1 , . . . Z

(2)
l )

be a valid CL-LRSW public key (where the index (2) indicates the element belongs to
G2). Standard sequential verification can be reduced to just 4 pairing operations, on
the cost of 4l + 2 G1/G2 scalar multiplications and Pr[false-positive] = 2l+1

q .

StdVerify:

1 : e(C,G2)
?
= e(A0, X

(2)) ·
∏l

i=0 e([mi]Bi, X
(2))

2 : e(A0, Z
(2)
i )

?
= e(Ai, G2) ∀i ∈ {1, . . . l}

3 : e(Ai, Y
(2))

?
= e(Bi, G2) ∀i ∈ {0, . . . l}

PolyVerify:

1 : x←$Zq

2 : L = e(C +
∑l

i=1[x
i]Ai +

∑l
i=0[x

l+i+1]Bi, G2)

3 : R = e(A0 +
∑l

i=0[mi]Bi, X
(2)) · e(A0,

∑l
i=1[x

i]Z
(2)
i ) · e(

∑l
i=0[x

l+i+1]Ai, Y
(2))

4 : L
?
= R

Proof Let us rearrange and label the equations as follows:

L0 = e(C,G2) R0 = e(A0 +
∑l
i=0[mi]Bi, X

(2))

Li = e(Ai, G2) Ri = e(A0, Z
(2)
i ) ∀i ∈ {1, . . . l}

Li+l+1 = e(Bi, G2) Ri+l+1 = e(Ai, Y
(2)) ∀i ∈ {0, . . . l}.

From Theorem 2 with n = 2l+2, it follows that for a standard polynomial verifica-
tion, the false positive rate is bounded by Pr

[
false-positive

]
≤ 2l+1

q . In a similar fashion
to Corollary 1, the pairing functions can be folded to obtain more compact form:
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{
L = e(C,G2)

x0 ·
∏l
i=1 e(Ai, G2)

xi ·
∏l
i=0 e(Bi, G2)

xl+i+1

R = e(A0 +
∑l
i=0[mi]Bi, X

(2))x
0 ·
∏l
i=1 e(A0, Z

(2)
i )x

i ·
∏l
i=0 e(Ai, Y

(2))x
l+i+1{

L = e(C,G2) · e(
∑l
i=1[x

i]Ai, G2) · e(
∑l
i=0[x

l+i+1]Bi, G2)

R = e(A0 +
∑l
i=0[mi]Bi, X

(2)) · e(A0,
∑l
i=1[x

i]Z
(2)
i ) · e(

∑l
i=0[x

l+i+1]Ai, Y
(2)){

L = e(C +
∑l
i=1[x

i]Ai +
∑l
i=0[x

l+i+1]Bi, G2)

R = e(A0 +
∑l
i=0[mi]Bi, X

(2)) · e(A0,
∑l
i=1[x

i]Z
(2)
i ) · e(

∑l
i=0[x

l+i+1]Ai, Y
(2))

Given that all cases are equivalent, PolyVerify also satisfies Theorem 2 with n =
2l + 2, thus for a simplified polynomial verification, the false positive rate is still
bounded by Pr

[
false-positive

]
≤ 2l+1

q . �

The same technique works with interactive protocols proving possession of an
LRSW signature and its message. Given the compact formulae from [SW17], the
checks can be translated nearly 1-to-1.

Corollary 3 (CL-LRSW ZKP Reduction) Let σ′ = (Ã0, . . . Ãl, B̃0, . . . B̃l, C̃), T, c, sr,
s0, . . . sl be the inputs to the verification step of the Improved Verification Protocol
from [SW17], and pk = (X(2), Y (2), Z

(2)
1 , . . . Z

(2)
l ) be a valid CL-LRSW public key.

Standard sequential verification can be reduced to just 4 pairing operations. On
the cost of 4l + 2 G1/G2 scalar multiplications and Pr[false-positive] = 2l+1

q .

StdVerify:

1 : e(Ã0, Z
(2)
i )

?
= e(Ãi, G2) ∀i ∈ {1, . . . l}

2 : e(Ãi, Y
(2))

?
= e(B̃i, G2) ∀i ∈ {0, . . . l}

3 : e([c]C̃, G2)
?
= e(T − [sr]Ã0 −

∑l
i=0[si]B̃i, X

(2))

PolyVerify:

1 : x←$Zq

2 : L = e([c]C̃ +
∑l

i=1[x
i]Ãi +

∑l
i=0[x

l+i+1]B̃i, G2)

3 : R = e(T − [sr]Ã0 −
∑l

i=0[si]B̃i, X
(2)) · e(Ã0,

∑l
i=1[x

i]Z
(2)
i ) · e(

∑l
i=0[x

l+i+1]Ãi, Y
(2))

4 : L
?
= R

Proof The corollary is trivial and can be proven identically as Corollary 2. �

5 Practical Results
To verify if the results of proposed modification are in any case practical, we have
created a proof-of-concept implementation of CL-LRSW verification using Python
library Charm-Crypto. Tests were run on MacBook 12 (2016). We considered
multiple scenarios where number of signed messages n = l−1 differs. Average time
of verification is presented in the Table 1, and the visualization of the difference
on Figure 1.
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No. of messages 3 10 20 30 40 50
Standard 0.5715 1.6732 3.3550 5.0331 6.6795 8.3960
Polynomial 0.1905 0.2578 0.3505 0.4474 0.5411 0.6316

Table 1: Verification time (in seconds) of CL-LRSW on BN254 Elliptic Curve
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Figure 1: Verification Time of CL-LRSW on BN254 Elliptic Curve

The results meet the expectations, the verification with polynomials hugely im-
proves the execution time.
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