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Abstract

Oblivious transfer is an important tool against malicious cloud server providers. Halevi-Kalai OT, which is based on
smooth projective hash(SPH), is a famous and the most efficient framework for 1-out-of-2 oblivious transfer (OT2

1)
against malicious adversaries in plain model. A natural question however, which so far has not been answered, is
whether its security level can be improved, i.e., whether it can be made fully-simulatable.

In this paper, we press a new SPH variant, which enables a positive answer to above question. In more details, it
even makes fully-simulatable OTn

t (n, t ∈ N and n > t) possible. We instantiate this new SPH variant under not only
the decisional Diffie-Hellman assumption, the decisional N-th residuosity assumption and the decisional quadratic
residuosity assumption as currently existing SPH constructions, but also the learning with errors (LWE) problem.
Before this paper, there is a folklore that it is technically difficult to instantiate SPH under the lattice assumption (e.g.,
LWE). Considering quantum adversaries in the future, lattice-based SPH makes important sense.

Keywords: oblivious transfer, secure multiparty computation, malicious adversaries, smooth projective hashing,
learning with errors.

1. Introduction

Oblivious transfer (OT) [1] is a fundamental cryptographic primitive allowing the secure multiparty computation
(SMPC) of any computable function [2]. t-out-of-n oblivious transfer (OTn

t ) deals with the scenario where a sender
holds n private values m1,m2, . . . ,mn and a receiver possesses t private indexes i1, i2, . . . , it. The receiver expects to
get the values mi1 ,mi2 , . . . ,mit without leaking any information about which ones were chosen. On the other hand, the
sender does not want the receiver to know anything but the t values queried about.

OT is an important tool against malicious cloud server providers (CSP). For example, a client first stores n files on
a CSP, then he can retrieve t files of them via a OTn

t protocol. This prevents the possibly malicious CSP from deducing
the behaviors of the client. Thus, OT provides a privacy preserving way to access cloud data. Generally speaking, it
is used as a building block in a variety of security protocols against malicious CSP: privacy preserving data mining
[3], database search [4, 5], oblivious keyword search [6],electronic commerce [7].

Smooth projective hashing (SPH) is introduced by Cramer and Shoup [8] in context of constructing public-key
encryption scheme secure against adaptive chosen ciphertext attacks. Based on SPH, Halevi and Kalai generalizes
highly efficient protocols of [9, 7] and presents a framework for OT2

1 against malicious adversaries in plain model.
Halevi-Kalai OT is a remarkable work among known protocols [10, 11, 12, 5, 13, 14], because it is most efficient and
generally realizable.

However, Halevi-Kalai OT is non-simulatable. That is, it can not provide simulation-based security proof. Thus,
it is harder to use it as a building block in secure multi-party computation protocols. A concrete attack on non-
simulatable OT can be seen in [4]. A natural question however, which so far has not been answered, is whether
Halevi-Kalai OT can be made fully-simulatable. Before this paper, there is a folklore that it is technically difficult
to instantiate SPH under the lattice assumption [14]. Considering quantum adversaries in the future, lattice-based
cryptographic primitive make important sense. Another natural question is whether this folklore is true.
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1.1. Our Contribution

In this paper, we present a new SPH. Using this new SPH, [15] not only present a positive answer to the first
question but also present a fully-simulatable framework for general OTn

t (n, t ∈ N and n > t) . We tress that OTn
t has

its own interesting when compare it with OT2
1. First, there are many applications for OTn

t itself. Second, when an
efficient OTn

t protocol is needed in practice, it is unknown how to construct it from a known OT2
1 protocol. Please see

[15] for more discussions.
We present a negative answer to the second question. Specifically, we instantiate this new SPH variant under

not only the decisional Diffie-Hellman assumption, the decisional N-th residuosity assumption and the decisional
quadratic residuosity assumption as currently existing SPH constructions, but also the learning with errors (LWE)
problem.

We present a useful lemma related to probability ensembles. Loosely speaking, we shows that if probabili-
ty ensembles X and Y are computationally indistinguishable, then multiple probability ensembles (X1, X2, · · · , Xn,
Y1,Y2, · · · ,Yl) and multiple probability ensembles gained by arbitrarily permutating the former are computationally
indistinguishable too, where each Xi (Yi, respectively) is independent and employs the sample algorithm as X (Y ,
respectively). Please see Lemma 34 for the details.

1.1.1. Cryptographic Approach
The SPH variant used in [16] was called verifiably smooth projective hash family. It deals with two types of

instances (smooth and projective) which are computationally indistinguishable due to a property called hard subset
membership. Nonetheless, another property called verifiable smoothness provides a way to verify whether at least one
of a two instances is smooth. In the remaining of this paper, we are to denote verifiably smooth projective hash family
with hard membership property by VSPH-HM.

For each instance x of each type, there are two kinds of keys (hash keys and projection keys). In addition, every
projective instance holds a witness while no smooth instance does so. A hash value is computed from a hash key (i.e.,
Hash(x, hk)) while a projection value is computed from a projection key and a witness (i.e., pHash(x, pk,w)). For
a smooth instance, the projection value reveals almost no knowledge about the hash value due to a property called
smoothness. However, for a projective instance, the projection value equals the hash value. This fact is guaranteed by
another property called projection.

Despite the notion of VSPH-HM can be used to deal with OTn
1, it seems difficult to extend it to handle the gen-

eral case OTn
t . The reason is that, to hold verifiable smoothness, both types of instances have to be generated in a

dependent way. This makes it difficult to design an algorithm checking that at least t of n arbitrary instances are
smooth without leaking any information to the adversaries which could be used to distinguish smooth instances from
projective instances. Therefore, even constructing a non-simulatable protocol for OTn

t as in [16] seems difficult.
Another problem comes from the fact that, for a protocol using a VSPH-HM, it is impossible to gain simulation-

based security in the case where only the receiver is corrupted. The reason is that, to extract the adversary’s real input
in this case, the simulator has to identify the projective part of a smooth-projective instance pair. However, this is
computationally impossible because of the hard subset membership assumption.

Seeing the above difficulties, we define a new variant of SPH called smooth projective hash family with distin-
guishability and hard subset membership (SPH-DHM). The most essential difference between the notions of SPH-
DHM and VSPH-HM is that a SPH-DHM also provides witnesses to the smooth instances while verifiable smooth-
ness is removed. Furthermore, we introduce the distinguishability property providing a way to differentiate smooth
instances from projective ones when needed witnesses are given. This enables a SPH-DHM to generate both types of
instances independently. Further, this enables a SPH-DHM to treat fully-simulatable OTn

t . Please see [15] for more
discussions.

1.1.2. Instantiation of the SPH
We will present an instantiation of a SPH-DHM based on the learning with errors (LWE) assumption following the

original design of the public key cryptosystem from [17]. Prior to our construction, it was thought to be technically
difficult to instantiate a SPH under this assumption. We observed that the algorithm Hash(.) (computing hash values)
could be viewed as an encryption algorithm while pHash(.) (computing projection values) could be interpreted as a
decryption algorithm. Our instantiation idea is to take public-private key pairs as projective instance-witness pairs
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and take messy public-private key pairs1 as smooth instance-witness pairs. With this identification, we can see that
normal public keys and messy public keys can provide projection and smoothness, respectively. To implement this
idea, we let the key generator (i.e., the algorithm generating the hash-projection key pairs) take an instance as a part of
its input. This is a technical difference between a SPH-DHM and a SPH. Besides the LWE assumption, we also show
that a SPH-DHM can be instantiated under the DDH assumption, the decisional N-th residuosity (DNR) assumption
and the decisional quadratic residuosity (DQR) assumption as for previous existing SPH.

1.2. Related Work

Smooth projective hashing is introduced by Cramer and Shoup [8]. It usually provides conceptual simplicity,
modular design, and generally realizability. Originally it is used to construct efficient public-key encryption scheme
(PKE) secure against adaptive chosen ciphertext attacks. Lately SPH is widely used in various contexts such as OT
and password-based authenticated key exchange (PAKE).

OT [1] is a fundamental cryptographic primitive allowing the secure multiparty computation (SMPC) of any
computable function [2]. Based on SPH, Halevi and Kalai present a framework for OT2

1 against malicious adversaries
in plain model [16], which generalizes the protocols of [9, 7]. [18] extends Halevi-Kalai OT and present a framework
for OTn

t against covert adversaries. There are many SPH-based works achieve higher security level, i.e., universally
composable security against adaptive adversaries, which additionally require a trusted setup assumption, i.e., a trusted
common reference string. For example, [19] gives a OT2

1 scheme and [20, 21] proposes generic constructions of OTn
1.

PKE. [8] present and use SPH to generalize their previous PKE. Later [22] finds that SPH can be applied to the
leakage-resilient PKE. Following works can be seen in [23, 24]. In constructing identity-based encryption schemes
against key leakage attacks, Alwen et al. [25] firstly give the concept of ID-based SPH and get three encryption
schemes. Recently [26] employs SPH to present a framework for PKE satisfying key-dependent message security and
a framework for dual-mode cryptosystems.

PAKE is proposed by Bellovin and Merritt [27] where authentication is done using a simple password, possibly
drawn from a small entropy space subject to exhaustive search. SPH has been extensively used in PAKE, starting with
the work of Gennaro and Lindell [28] which generalized an earlier construction by [29]. Following Gennaro-Lindell
methodology, [30] shows a UC secure PAKE protocol and [31, 20] presents an adaptively secure PAKE. Later new
variants of SPHF are proposed to enable the construction of one-round PAKE schemes [32, 33, 21].

1.3. Paper Organization

In the next section, we describe the notations used throughout our work and the security definition for OTn
t .

In Section 3, we define a new variant of smooth projective hash (i.e. SPH-DHM). In Section 4, we reduce the
construction of SPH-DHM to considerably simpler hash families. In Section 5, we instantiate those simpler families
under the DDH, LWE, DQR, DNR assumptions, respectively.

2. Preliminaries

Most notations and concepts mentioned in this section come from [34, 35, 36] and we tailored them to deal with
OTn

t .

2.1. Basic Notations and Definitions

We set the following notations for this paper:

• N: set of natural numbers.

• k: security parameter where k ∈ N. It is used to measure the security of the underlying computational assump-
tions (e.g., the DDH assumption).

• [n]: the set {1, 2, . . . , n} where n ∈ N.

1A key is called messy if a ciphertext generated under such a key carries no information (statistically) about the corresponding plaintext.
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• Ψ = {T ⊆ [n] : |T | = t}: the set of the receiver’s all legal private inputs in t-out-of-n oblivious transfer.

• ~x〈 j〉: the j-th entry of the vector ~x.

• S n: the set of all permutations of [n] where n ∈ N.

• σ(~x): the vector gained by shifting the i-th entry of the n-vector ~x to the σ(i)-th entry where σ ∈ S n. In other
words, σ(~x) denotes the vector ~y such that: ∀i ∈ [n] ~y〈σ(i)〉 = ~x〈i〉.

• Poly(.): an unspecified positive polynomial.

• {0, 1}∗: set of all bitstrings.

• α ∈U D: an element α chosen uniformly at random from a domain D.

• α ∈χ D: an element α chosen from a domain D according the probabilistic distribution χ.

• |X|: the cardinality of a finite set X.

Definition 1. A (positive) function µ(.) is called negligible in k, if and only if:

∀Poly(·) > 0∃k0 ∈ N : ∀k > k0 µ(k) < 1/Poly(k).

Definition 2. A probability ensemble

X
de f
= {X(1k, a)}k∈N,a∈{0,1}∗

is an infinite sequence of random variables indexed by (k, a), where a represents various types of inputs used to sample
the instances according to the distribution of the random variable X(1k, a).

Definition 3. A probability ensemble X is polynomial-time constructible, if there exists a probabilistic polynomial-
time (PPT) sampling algorithm Samp(.) such that for any a, any k, the random variables Samp(1k, a) and X(1k, a)
are identically distributed.

Definition 4. Let X,Y be two probability ensembles. We say they are computationally indistinguishable, denoted by
X c

= Y, if for any non-uniform PPT algorithm D with auxiliary input z = (zk)k∈N (where each zk ∈ {0, 1}∗), there exists
a negligible function µ(.) such that for any sufficiently large k and any a ∈ {0, 1}∗, it holds that

|Prob(D(1k, a, X(1k, a), zk) = 1) − Prob(D(1k, a,Y(1k, a), zk) = 1)| 6 µ(k).

Definition 5. Let X,Y be two probability ensembles. They are said to be statistically indistinguishable, denoted by
X s

= Y, if their statistical difference is negligible. More specifically, if there exists a negligible function µ(.) such that

1/2 ·
∑

α∈{0,1}∗
|Prob(X(1k, a) = α) − Prob(Y(1k, a) = α)| = µ(k).

Definition 6. Let X,Y be two probability ensembles. They are said to be identical, denoted by X ≡ Y, if the distribu-
tions of X(1k, a) and Y(1k, a) are identical.

Remark 7. Let X,Y be two probability ensembles. We obviously have: X ≡ Y implies X s
= Y and X s

= Y implies
X c

= Y.
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2.2. Smooth Projective Hash
Halevi and Tauman Kalai applied the following SPH variant to construct a protocol for OT2

1.

Definition 8 ([16]). A hash familyH is defined by means of the following PPT algorithmsH = (PG, IS, IT,KG,Hash, pHash):

• Parameter generator PG: it takes a security parameter k as input and returns a hash parameter Λ: i.e. Λ ←

PG(1k).

• Instance sampler IS: it takes a security parameter k and a hash parameter Λ as input and returns a triple, i.e.,
(ẋ, ẇ, ẍ)← IS(1k,Λ)), where ẋ is a projective instance, ẇ is one of its witnesses, ẍ is a smooth instance.

• Instance-testing algorithm IT: it tests the parameters Λ and two strings x0, x1, i.e., IT(Λ, x0, x1) ∈ {0, 1} . The
intent is to test that at least one of x0, x1 is a smooth instance.

• Key generator KG: it takes a security parameter k, a hash parameter Λ and an instance x as input and outputs
a hash-projection key pair (hk, pk): i.e., (hk, pk)← KG(1k,Λ).

• Hash algorithm Hash: it takes a security parameter k, a hash parameter Λ, an instance x and a hash key hk as
input and outputs a value y: i.e., y← Hash(1k,Λ, x, hk).

• Projection algorithm pHash: it takes a security parameter k, a hash parameter Λ, an instance x, a projection
key pk and a witness w of x as input and outputs a value y: i.e., y← pHash(1k,Λ, x, pk,w).

The smoothness requires that for any ẍ, its projection key and hash value are almost uniformly distributed. The
projection requires that for any ẋ and any its hash-projection key pair (hk, pk), its hash value equals its projection value.
The verifiable smoothness requires that if IT(Λ, x0, x1) = 1, then at least one of x0, x1 is a smooth instance. The hard
subset membership requires the smooth instances ẍ and projective instances ẋ are computationally indistinguishable.
We let VSPH-HM denote the hash family which holds all properties mentioned here.

3. A New Smooth Projective Hash

Since previous definitions of SPH do not suffice for our application, we define another variant of SPH.

Definition 9. A (n, t)-hash familyH is defined by means of the following PPT algorithmsH = (PG, IS, pIS,Check,DI,
KG,Hash, pHash):

• Parameter generator PG: it takes a security parameter k as input and returns a hash parameter Λ: i.e. Λ ←

PG(1k).

• Checker Check: it takes a security parameter k and a hash parameter Λ as input and returns an indicator bit
b ∈ {0, 1}: i.e. b← Check(1k,Λ). The objective is to check that Λ was correctly generated.

• Instance sampler IS: it takes a security parameter k and a hash parameter Λ as input and returns a vector
~a = ((ẋ1, ẇ1), . . . , (ẋt, ẇt), (ẍt+1, ẅt+1), . . . , (ẍn, ẅn)) (i.e., ~a ← IS(1k,Λ)) where each entry of ~a is an instance-
witness pair with the first t pairs are projective and the last n − t pairs are smooth.

• Projective instance sampler pIS: similar to IS with exception that all n instances are projective.

• Distinguisher DI: it takes a security parameter k, a hash parameter Λ and an instance-witness pair (x,w) as
input and outputs an indicator value b: i.e., b← DI(1k,Λ, x,w). Its goal is to distinguish smooth instances and
projective instances.

• Key generator KG: it takes a security parameter k, a hash parameter Λ and an instance x as input and outputs
a hash-projection key pair (hk, pk): i.e., (hk, pk)← KG(1k,Λ, x).

• Hash algorithm Hash: it takes a security parameter k, a hash parameter Λ, an instance x and a hash key hk as
input and outputs a value y: i.e., y← Hash(1k,Λ, x, hk).
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• Projection algorithm pHash: it takes a security parameter k, a hash parameter Λ, an instance x, a projection
key pk and a witness w of x as input and outputs a value y: i.e., y← pHash(1k,Λ, x, pk,w).

Definition 10. For a given hash parameter Λ, if Check outputs 1, then Λ is said to be legal; otherwise, it is said to
be illegal.

Remark 11. It is obvious that any Λ generated by PG is legal.

Definition 12. Let R = {(x,w) : x,w ∈ {0, 1}∗} be a relation. For a legal Λ, we define its projective relation as ṘΛ =

{(ẋ, ẇ) : (ẋ, ẇ) is generated by IS(1k,Λ)} and its smooth relation as R̈Λ = {(ẍ, ẅ) : (ẍ, ẅ) is generated by IS(1k,Λ)}.

Definition 13 (Distinguishability). For any legal hash parameter Λ, any instance-witness pair (x,w), we require:

DI(1k,Λ, x,w) =


0 if (x,w) ∈ ṘΛ,
1 if (x,w) ∈ R̈Λ,
2 otherwise.

Definition 14. If R is a relation, then its language is defined as L
de f
= {x ∈ {0, 1}∗ : ∃w((x,w) ∈ R)}.

Let L̇Λ and L̈Λ be the languages of relation ṘΛ and relation R̈Λ, respectively. The properties smoothness and
projection to be defined next will ensure that L̇Λ ∩ L̈Λ = ∅ holds. That is, no instance can exhibit both smoothness and
projection.

Definition 15 (Projection). For any hash parameter Λ generated by PG(1k), any projective instance-witness pair
(ẋ, ẇ) generated by IS(1k,Λ), and any hash-projection key pair (hk, pk) generated by KG(1k,Λ, ẋ), it holds that

Hash(1k,Λ, ẋ, hk) = pHash(1k,Λ, ẋ, pk, ẇ).

Definition 16. For an instance-witness vector ~a = ((x1,w1), . . . , (xn,wn)), we define its instance vector as x(~a)
de f
=

(x1, . . . , xn) and its witness vector as w(~a)
de f
= (w1, . . . ,wn).

Definition 17. Fix a legal hash parameter Λ. If a vector ~a contain at least n − t smooth instance-witness pairs, (i.e.,
at least n − t pairs in R̈Λ), then ~a is said to be legal.

Remark 18. Note that any ~a generated by IS(1k,Λ) is legal, and the legality of any ~a that may be maliciously
generated can be checked by invoking algorithm DI at most n times.

Definition 19 (Smoothness). For any legal hash parameter Λ, any legal instance-witness vector ~a (without loss of
generality, we assume that the last n − t entries of ~a are smooth), any permutation σ ∈ S n, smoothness holds if the

two probability ensembles SM1
de f
= {SM1(1k)}k∈N and SM2

de f
= {SM2(1k)}k∈N, specified as follows, are statistically

indistinguishable: i.e., SM1
s
= SM2. Perfect smoothness holds, if SM1 ≡ SM2.

• GΛ

de f
= {y : x ∈ L̇Λ ∪ L̈Λ, (hk, pk)← KG(1k,Λ, x), y← Hash(1k,Λ, x, hk)} is a set of all possible hash values.

• Algorithm SmGen1(1k) works as follows:

– ~x← x(~a).

– For each j ∈ [n], perform: (hk j, pk j)← KG(1k,Λ, ~x〈 j〉), y j ← Hash(1k,Λ, ~x〈 j〉, hk j).

– Set
−−→
pky← (pk j, y j) j∈[n] and output

−−→
pky.

• Algorithm SmGen2(1k) works as SmGen1(1k) except that for each j ∈ {t + 1, t + 2, . . . , n}, y j ∈U GΛ.

• For i ∈ [2], algorithm SMi(1k) works as follows:
−−→
pky← S mGeni(1k),

−̃−→
pky← σ(

−−→
pky) and output

−̃−→
pky.
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Definition 20 (Hard Subset Membership). For any σ ∈ S n, the two probability ensembles HS1
de f
= {HS1(1k)}k∈N and

HS2
de f
= {HS2(1k)}k∈N, specified as follows, are computationally indistinguishable, i.e., HS1

c
= HS2.

• Algorithm HS1(1k) works as follows: Λ← PG(1k), ~a← IS(1k,Λ) and outputs (Λ, x(~a)).

• Algorithm HS2(1k) operates as HS1(1k) except that it outputs (Λ, σ(x(~a))).

Remark 21. In this paper, for a projective instance ẋ, its witness ẇ is mainly used to gain the instance’s hash value
while, for a smooth instance ẍ, its witness ẅ serves as a proof of smoothness (i.e., a proof of ẍ ∈ L̈Λ). The distin-
guishability property guarantees that, given the needed witness-vector, projective instances and smooth instances are
distinguishable.

For notational simplicity, we denote a (n, t)-hash family H that holds properties smoothness, projection, distin-
guishability and hard subset membership (n, t)-SPH-DHM. Similarly, we denote a verifiably smooth projective hash
family with hard subset membership property [16] VSPH-HM. As both our SPH-DHM notion and Halevi and Tauman
Kalai’s VSPH-HM are used to construct protocols for OT, it is necessary to discuss the differences between these two
variants of SPH.

1. The major difference between these two notions is that a SPH-DHM not only provides a witness to each pro-
jective instance (as a VSPH-HM) but also to every smooth instance. For example, (2, 1)-SPH-DHM samples
tuples of form ((ẋ1, ẇ1), (ẍ2, ẅ2)) while VSPH-HM samples tuples of form (ẇ, ẋ, ẍ).

2. The hard subset membership property of SPH-DHM is stronger than that of VSPH-HM, because the former
requires that indistinguishability holds for multiple instances.

3. The key generation algorithm KG of a SPH-DHM takes an additional parameter: an instance x. This tech-
nical modification makes instantiating such a hash family easier as we will see in Section 5 using the LWE
assumption.

4. The instance sampling algorithm IS of a VSPH-HM generates tuples consisting of a smooth instance, a pro-
jective instance and its witness. To deal with OTn

t , in a SPH-DHM, the sampling algorithm returns vectors
containing t projective instance-witness pairs and n − t smooth instance-witness pairs. As a natural result, the
properties of smoothness and hard subset membership are extended to consider instance vectors of n entries.

5. A SPH-DHM does not need the verifiable smoothness property of a VSPH-HM (implemented by algorithm IT
in [16]). This property was used by Halevi and Tauman Kalai to verify whether at least one of two instances is
smooth. Instead, a SPH-DHM exhibits the distinguishability property (implemented by algorithm DI).

6. A SPH-DHM additionally provides an algorithm pIS which plays a key role in simulation-based security proof.
In the case that the sender is corrupted, our simulator invokes pIS to cheat the adversary and extract its real
input. However, Halevi-Tauman can not offer a simulation-based proof in this case.

4. Reducing the Construction Conditions of a SPH-DHM

In order to obtain a (n, t)-SPH-DHM, we need to satisfy a large number of properties and consider multiple
instances. In this section, we reduce the design of such a family to the construction of considerably simpler hash
families. The basic idea is to generate the instances of each type (projective/smooth) independently.

4.1. Basic Hash Family
Definition 22. A basic hash familyH is defined by means of the same seven PPT algorithmsH = (PG, IS,Check,DI,
KG,Hash, pHash) as in Definition 9 with the exception of algorithm IS is defined as follows.

• Instance sampler IS: it takes a security parameter k, a hash parameter Λ, a work mode δ ∈ {0, 1} as input and
outputs an instance-witness pair (x,w) (i.e., (x,w) ← IS(1k,Λ, δ)). Its goal is to generate projective instance-
witness pairs under mode 0 and smooth ones under mode 1.

To be consistent with Definition 9, we write the instance-witness pair generated under mode δ = 0 as (ẋ, ẇ), and
under mode δ = 1 as (ẍ, ẅ). The properties of distinguishability and projection are defined as in Section 3. However,
the properties of smoothness and hard subset membership are defined in considerably simpler way.
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Definition 23 (Smoothness). For any legal hash parameter Λ, any instance-witness (ẍ, ẅ) generated by IS(1k,Λ, 1),

smoothness holds if the two probability ensembles BSM1
de f
= {BSM1(1k)}k∈N and BSM2

de f
= {BSM2(1k)}k∈N, specified

as follows, are statistically indistinguishable, i.e., BSM1
s
= BSM2. Perfect smoothness holds, if BSM1 ≡ BSM2.

• BSM1(1k): Generate (hk, pk)← KG(1k,Λ, ẍ) and compute y← Hash(1k,Λ, ẍ, hk). Output (pk, y).

• BSM2(1k): Compared to BSM1(1k), the only difference is that y ∈U GΛ where GΛ is a set of all possible hash
values (see Definition 19).

Definition 24 ([8, 16]). Let 0 < ε < 1. For any legal hash parameter Λ, any instance-witness (ẍ, ẅ) generated by
IS(1k,Λ, 1), ε-universality holds if for any string pk ∈ {0, 1}∗, and any value y ∈ GΛ, it holds that

Prob(Hash(1k,Λ, ẍ,HK) = y | PK = pk) ≤ ε,

where (HK, PK)← KG(1k,Λ, ẍ). The probability is taken over the randomness used by KG.

Intuitively speaking, universality requires that, for any instance-witness (ẍ, ẅ) generated by IS(1k,Λ, 1), the prob-
ability of guessing its hash value is at most ε. Compared with smoothness, ε-universality relaxes the upper bound of
this probability to be a higher value. However, we can efficiently gain smoothness from universality.

Lemma 25 ([8, 16]). Given a basic hash family H̃ holding universality, then we can efficiently construct a basic hash
familyH holding smoothness.

The constructive proof of this lemma proceeds in two steps as follows. First, it reduces ε-universality to εc-
universality by simple c-fold ”parallelization”. Second, smoothness is obtained from εc-university by simply applying
the Leftover Hash Lemma (see [37] for this lemma). We refer the reader to [8, 16] for the proof details.

Definition 26 (Hard subset membership). The two probability ensembles BHS1
de f
= {BHS1(1k)}k∈N and BHS2

de f
=

{BHS2(1k)}k∈N defined as follows, are computationally indistinguishable (i.e., BHS1
c
= BHS2).

• BHS1(1k): Generate Λ← PG(1k) and compute (ẋ, ẇ)← IS(1k,Λ, 0). Output (Λ, ẋ).

• BHS2(1k): Generate Λ← PG(1k) and compute (ẍ, ẅ)← IS(1k,Λ, 1). Output (Λ, ẍ).

4.2. The Reduction Process

Construction 1 Reduction Procedure
Input: A basic hash familyH = (PG, IS,Check,DI,KG,Hash, pHash).

We construct a hash family H (as defined in Definition 9) having the same algorithms H with exceptions of the
instance sampling algorithms IS and pIS(1k,Λ) which are defined as follows.

• IS(1k,Λ): For each i ∈ [t], ~a〈i〉 ← IS(1k,Λ, 0). For each i ∈ [n] \ [t], ~a〈i〉 ← IS(1k,Λ, 1). Return ~a.

• pIS(1k,Λ): For each i ∈ [n], ~a〈i〉 ← IS(1k,Λ, 0).

Theorem 27. In Construction 1, if the basic hash family H has (perfect) smoothness, then H holds this property as
well.

Theorem 28. In Construction 1, if the basic hash family H has the property hard subset membership property, then
the hash familyH holds this property as well.

We will prove the above two theorems in Section 4.2.1 and Section4.2.2 respectively. A consequence of these two
theorems and Lemma 25, we can reduce the construction of a (n, t)-SPH-DHM to the design of a basic hash family
having smoothness (or universality), projection, distinguishability and hard subset membership.
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4.2.1. Proof of Theorem 27
Before starting our demonstration of Theorem 27, we need some preliminary results.

Definition 29. For any probability ensemble X = {X(1k, a)}k∈N,a∈{0,1}∗ , we define its multiple-sampled probability
ensemble ~X as follows:

~X = {~X(1k, a)}k∈N,a∈{0,1}∗ with

~X(1k, a) = (X1(1k, a), X2(1k, a), . . . , Xn(1k, a)),

where each Xi(1k, a) ≡ X(1k, a) and each random variable Xi(1k, a) is independent.

Lemma 30 ([34]). Let X, Y be two probability ensembles, and ~X, ~Y their multiple-sampled probability ensembles,
respectively.

• If X s
= Y, then ~X s

= ~Y.

• If X and Y are polynomial-time constructible and X c
= Y, then ~X c

= ~Y.

Definition 31. Let F
de f
= ( fk)k∈N be a function family. For a probability ensemble X = {X(1k, a)}k∈N,a∈{0,1}∗ , we define

its image probability ensemble F(X) under F as follows:

F(X) = { fk(X(1k, a))}k∈N,a∈{0,1}∗ .

Lemma 32. Let X, Y be two probability ensembles and F(X), F(Y) their image probability ensembles, respectively.
If X s

= Y, then F(X) s
= F(Y).

Proof.

1
2

∑
α∈{0,1}∗

|Prob[ fk(X(1k, a)) = fk(α)]−Prob[ fk(Y(1k, a)) = fk(α)]| ≤
1
2

∑
α∈{0,1}∗

|Prob[X(1k, a) = α]−Prob[Y(1k, a) = α]|.

This shows that the statistical difference between F(X) and F(Y) is less than that between X and Y .

We can now expose our proof of Theorem 27.

Proof. We only consider smoothness as the proof in the case of perfect smoothness is similar and simpler. We reuse
notations SmGeni(1k), SMi from Definition 19 and BSMi from Definition 23.

For the hash familyH in Construction 1, we define the following probability ensemble for each i ∈ [2] and j ∈ [n].

SM j
i = {SM j

i (1
k)}k∈N

de f
= {SmGeni(1k)〈 j〉}k∈N.

It is easy to see that: ∀ j ∈ {t + 1, t + 2, · · · , n} SM j
i ≡ BSMi. Combining the fact that basic hash family H holds

smoothness (i.e., BSM1
s
= BSM2) and Lemma 30, we have:

{(SMt+1
1 (1k), . . . ,SMn

1(1k))}k∈N
s
= {(SMt+1

2 (1k), . . . ,SMn
2(1k))}k∈N.

We introduce the following notations: ~X
de f
= {(SM1

1(1k), . . . ,SMn
1(1k))}k∈N and ~Y

de f
= {(SM1

2(1k), . . . ,SMn
2(1k))}k∈N.

Looking at the definition of SmGeni(1k), we notice: ∀ j ∈ [t] SM j
1(1k) ≡ SM j

2(1k). So, it holds: ~X s
= ~Y .

Let F
de f
= (σ)k∈N where σ is an arbitrary permutation over set [n]. Following Lemma 32, we have F(~X) s

= F(~Y),
i.e.:

{σ(SM1
1(1k), . . . ,SMn

1(1k))}k∈N
s
= {σ(SM1

2(1k), . . . ,SMn
2(1k))}k∈N.

This means: SM1
s
= SM2.
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4.2.2. Proof of Theorem 28
We start by some preliminary results to be used in our main proof.

Definition 33. For any probability ensemble X = {X(1k, a)}k∈N,a∈{0,1}∗ and Y={Y(1k, a)}k∈N,a∈{0,1}∗ , we define their
hybrid probability ensemble

−−→
XY as follows:

−−→
XY={

−−→
XY(1k, a)}k∈N,a∈{0,1}∗ with

−−→
XY(1k, a)=(X1(1k, a), . . . , Xt(1k, a),Yt+1(1k, a), . . . ,Yn(1k, a)),

where each Xi(1k, a) ≡ X(1k, a), each Yi(1k, a) ≡ Y(1k, a), and all random variables are independent.

Lemma 34. Let X, Y be two probability ensembles and
−−→
XY their hybrid probability ensemble. Let σ(

−−→
XY) be the image

probability ensemble of
−−→
XY under the function family F=(σ)k∈N where σ is an arbitrary element of S n. If X c

= Y and
X, Y are polynomial-time constructible, then

−−→
XY c

= σ(
−−→
XY).

Proof. If {σ〈i〉}i∈[t] ⊆ [t], then the relation
−−→
XY c

= σ(
−−→
XY) holds. It remains to consider the case where {σ〈i〉}i∈[t] * [t].

Assume that the lemma is false in this case. Then, there exists a non-uniform PPT distinguisher D with auxiliary
input z = (zk)k∈N, a polynomial Poly(.), an infinite positive integer set G ⊆ N such that, for each k ∈ G, we have:

|Prob(D(1k, zk, a,
−−→
XY(1k, a)) = 1) − Prob(D(1k, zk, a, σ(

−−→
XY(1k, a)) = 1)| ≥ 1/Poly(k). (1)

Consider V
de f
= {i : i ∈ [t], σ(i) < [t]}. We list the elements of V in order as i1 < ... < i j... < i|V |. Let

V j
de f
= {i1, . . . , i j}. We define the following |V | + 1 permutations over [n].

φ0(i) =

i if i ∈ V ∪ {σ(i′)}i′∈V ,
σ(i) otherwise.

For each j ∈ [|V |], we set:

φ j(i) =

i if i ∈ (V \ V j) ∪ {σ(i′)}i′∈V\V j ,

σ(i) otherwise.

In particular: σ = φ|V |. Note that φ j(
−−→
XY(1k, a)) is well defined as σ(

−−→
XY(1k, a)), because φ j is a permutation over [n]

as σ. As φ0(
−−→
XY(1k, a)) is obtained by not swapping positions between X(1k, a) and Y(1k, a), it holds that

−−→
XY(1k, a) ≡

φ0(
−−→
XY(1k, a)). So, we have:

|Prob(D(1k, zk, a,
−−→
XY(1k, a)) = 1) − Prob(D(1k, zk, a, σ(

−−→
XY(1k, a))) = 1)|

= |Prob(D(1k, zk, a, φ0(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a, φ|V |(

−−→
XY(1k, a))) = 1)|. (2)

Using the triangle inequality, we get:

|Prob(D(1k, zk, a, φ0(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a, φ|V |(

−−→
XY(1k, a))) = 1)|

≤

|V |∑
j=1

|Prob(D(1k, zk, a, φ j−1(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a, φ j(

−−→
XY(1k, a))) = 1)|. (3)

Combining Inequality (1) to Inequality (3), we have:

|V |∑
j=1

|Prob(D(1k, zk, a, φ j−1(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a, φ j(

−−→
XY(1k, a))) = 1)| ≥ 1/Poly(k).
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So, there exists j ∈ [|V |] such that

|Prob(D(1k, zk, a, φ j−1(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a, φ j(

−−→
XY(1k, a))) = 1)| ≥ 1/(|V |Poly(k)). (4)

For any pair of permutations (φ j−1, φ j), they differ at values of points i j and σ(i j). Similarly, for probability

ensembles φ j−1(
−−→
XY(1k, a)) and φ j(

−−→
XY(1k, a)) differ at their i j-th entry and σ(i j)-th entry. Specifically,

φ j−1(
−−→
XY(1k, a))〈i j〉 ≡ X(1k, a),

φ j−1(
−−→
XY(1k, a))〈σ(i j)〉 ≡ Y(1k, a),

φ j(
−−→
XY(1k, a))〈i j〉 ≡ Y(1k, a),

φ j(
−−→
XY(1k, a))〈σ(i j)〉 ≡ X(1k, a).

Let
−−−−→
MXY

de f
= {
−−−−→
MXY(1k, a)}k∈N,a∈{0,1}∗ where

−−−−→
MXY(1k, a) is defined as follows.

∀d ∈ [n]
−−−−→
MXY(1k, a)〈d〉 ≡

φ j−1(
−−→
XY(1k, a))〈d〉 if d , σ(i j)

X(1k, a) if d = σ(i j)

Using the triangle inequality, we get:

|Prob(D(1k, zk, a, φ j−1(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a,

−−−−→
MXY(1k, a)) = 1)|+

|Prob(D(1k, zk, a,
−−−−→
MXY(1k, a)) = 1) − Prob(D(1k, zk, a, φ j(

−−→
XY(1k, a))) = 1)|

≥ |Prob(D(1k, zk, a, φ j−1(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a, φ j(

−−→
XY(1k, a))) = 1)| (5)

Combining Inequality (4) and Inequality(5), we know that either

|Prob(D(1k, zk, a, φ j−1(
−−→
XY(1k, a))) = 1) − Prob(D(1k, zk, a,

−−−−→
MXY(1k, a)) = 1)| ≥ 1/(2 |V |Poly(k)) (6)

or
|Prob(D(1k, zk, a,

−−−−→
MXY(1k, a)) = 1) − Prob(D(1k, zk, a, φ j(

−−→
XY(1k, a))) = 1)| ≥ 1/(2 |V |Poly(k)) (7)

Without loss of generality, we assume that Inequality (6) holds (in the case where Inequality (7) holds, the proof
is similar). The difference between

−−−−→
MXY(1k, a) and φ j−1(

−−→
XY(1k, a)) is on their σ(i j)-th entry. Specifically:

−−−−→
MXY(1k, a)〈σ(i j)〉 ≡ X(1k, a),

φ j−1(
−−→
XY(1k, a))〈σ(i j)〉 ≡ Y(1k, a).

We can construct a distinguisher D′ with auxiliary input z = (zk)k∈N for the probability ensembles X and Y as
follows.

• D′(1k, zk, a, γ): Sample an instance vector −−−→mxy according to the random variable
−−−−→
MXY(1k, a) and set γ to be its

σ(i j)-th entry. Return D′(1k, zk, a,−−−→mxy).

Obviously, we have:

|Prob(D′(1k, zk, a, X(1k, a)) = 1) − Prob(D′(1k, zk, a,Y(1k, a)) = 1)| =

|Prob(D(1k, zk, a,
−−−−→
MXY(1k, a)) = 1) − Prob(D(1k, zk, a, φ j−1(

−−→
XY(1k, a))) = 1)|. (8)

Combining Inequality (6) and Inequality(8), we obtain:

|Prob(D′(1k, zk, a, X(1k, a)) = 1) − Prob(D′(1k, zk, a,Y(1k, a)) = 1)| ≥ 1/(2 |V |Poly(k))

which contradicts the fact X c
= Y .
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Remark 35. Let Poly1(.),Poly2(.) be two arbitrary positive polynomials such that Poly1(.) < Poly2(.). It is easy to
verify that Lemma 34 also holds in the case where t = Poly1(k), n = Poly2(k).

We are ready to prove Theorem 28.

Proof. We reuse the notations HSi from Definition 20, and BHSi from Definition 26. For a hash family H in Con-
struction 1, we define the following probability ensemble for each j ∈ [n].

HS j={HS j(1k)}k∈N
de f
= {(HS1(1k)〈1〉,HS1(1k)〈2〉〈 j〉)}k∈N,

Recall that HS1(1k)〈1〉 corresponds to the hash parameter Λ, and HS1(1k)〈2〉 corresponds to the instance vector
~x ~a. It is easy to see that: ∀ j ∈ [t] HS j ≡ BHS1 and: ∀ j < [t] HS j ≡ BHS2. Combining the fact that basic hash family
H holds the hard subset membership property (i.e., BHS1

c
= BHS2) and Lemma 34, we have:

((HS1(1k)〈1〉,HS1(1k)〈2〉〈1〉), . . . (HS1(1k)〈1〉,HS1(1k)〈2〉〈n〉)) c
=

(HS2(1k)〈1〉,HS2(1k)〈2〉〈1〉), . . . (HS2(1k)〈1〉,HS2(1k)〈2〉〈n〉)).

Since HS1(1k)〈1〉 ≡ HS2(1k)〈1〉, we have:

(HS1(1k)〈1〉,HS1(1k)〈2〉〈1〉, . . . ,HS1(1k)〈2〉〈n〉) c
= (HS2(1k)〈1〉,HS2(1k)〈2〉〈1〉, . . . ,HS2(1k)〈2〉〈n〉),

That is: HS1
c
= HS2.

5. Constructing Basic Hash Families

In the previous section, we reduced the existence of a (n, t)-SPH-DHM to the construction of a basic hash family
having smoothness (or universality), projection, distinguishability and hard subset membership. In this section, we
show how to create such families under several mathematical hardness assumptions: DDH, LWE, DNR and DQR.

5.1. Instantiation under the Decisional Diffie-Hellman Assumption

Let Gen(1k) be a PPT algorithm taking a security parameter k as input and outputting the description of a cyclic
group G of prime order: (g1, g2, q) ← Gen(1k) where g1, g2 and q are respectively two distinct generators of G and
the group order.

Assumption 36. The decisional Diffie-Hellman (DDH) assumption assumes that there is no non-uniform PPT al-
gorithm distinguishing the following two probability ensembles DDH1={DDH1(1k)}k∈N and DDH2={DDH2(1k)}k∈N
defined as:

• DDH1(1k): Set (g1, g2, q)← Gen(1k) and choose a ∈U Zq, b ∈U Zq. Output ((g1, g2, q), ga
1, g

b
2).

• DDH2(1k): Operate as DDH1(1k) but return ((g1, g2, q), ga
1, g

a
2).

Our DDH-based basic hash family whose syntax is specified in Section 4.1 is described in Construction 2.

Lemma 37. The hash family obtained from Construction 2 has perfect smoothness.

Proof. Let Λ = (g1, g2, q) be a legal hash parameter. Let (ẍ, a) = ((ga
1, g

b
2), a) be an instance-witness pair generated by

IS(1k,Λ, 1). For this family, the probability ensembles BSM1, BSM2 in Definition 23 can be described as follows.

• BSM1(1k): Choose u ∈U Zq and v ∈U Zq. Set hk ← (u, v), pk ← gu
1gv

2 and y← gau
1 gbv

2 . Output (pk, y).

• BSM2(1k): Run as BSM1(1k) with the exception that y ∈U G, where G is the group described by (g1, g2, q).
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Construction 2 A DDH-based basic hash family

• PG(1k): Set Λ← Gen(1k) and return Λ.

• IS(1k,Λ, δ): Parse Λ as (g1, g2, q) and choose a ∈U Zq, b ∈U Zq. Set ẋ ← (ga
1, g

a
2), ẇ ← a, ẍ ← (ga

1, g
b
2) and

ẅ← a. Return (ẋ, ẇ) if δ = 0 or (ẍ, ẅ) if δ = 1.

• Check(1k,Λ): Parse Λ as (g1, g2, q). If q is a prime number of appropriate bitlength, and g1, g2 are two
distinct generators, then outputs 1. Otherwise, output 0.

• DI(1k,Λ, x,w): Parse Λ as (g1, g2, q) and x as (α, β). If (α, β) = (gw
1 , g

w
2 ), then output 0. If α = gw

1 and β , gw
2 ,

then output 1. Otherwise return 2.

• KG(1k,Λ, x): Parse Λ as (g1, g2, q) and choose u ∈U Zq, v ∈U Zq. Set hk ← (u, v) and compute pk ← gu
1gv

2.
Output (hk, pk).

• Hash(1k,Λ, x, hk): Parse x as (α, β) and hk as (u, v). Compute y← αuβv and return y.

• pHash(1k,Λ, x, pk,w): Compute y← pkw and output y.

The difference between the two ensembles is the generation of y. Let’s consider the value y generated by BSM1.
Since g1 is a generator of the cyclic group G, there exists a constant c such that g2 = gc

1. Then: gau
1 gbv

2 = gau+cbv
1 . Since

u and v are chosen uniformly from Zq, au + cbv is also uniformly distributed over Zq. Since q is prime, gau+cbv
1 (= y)

is uniformly distributed over the group G. Therefore: BSM1 ≡ BSM2 since the value y created by BSM2(1k) is, by
construction, uniformly uniformly distributed over G.

Lemma 38. The hash family obtained from Construction 2 has the projection property.

Proof. Write Λ = (g1, g2, q) and let (ẋ, ẇ) = ((ga
1, g

a
2), a) denote an instance-witness pair generated by IS(1k,Λ, 0). Let

(hk, pk) = ((u, v), gu
1gv

2) be a hash-projection key pair generated by KG(1k,Λ, ẋ). We have:

Hash(1k,Λ, ẋ, hk) = Hash(1k,Λ, (ga
1, g

a
2), (u, v))

= gau
1 gav

2 ,

pHash(1k,Λ, ẋ, pk, ẇ) = pHash(1k,Λ, (ga
1, g

a
2), gu

1gv
2, a)

= gau
1 gav

2 .

Therefore, we obtain: Hash(1k,Λ, ẋ, hk) = pHash(1k,Λ, ẋ, pk, ẇ).

Lemma 39. The hash family obtained from Construction 2 has the distinguishability property.

The proof of this lemma is trivial, so we omit it.

Lemma 40. Assuming that the DDH assumption holds, the hash family obtained from Construction 2 has hard subset
membership.

Proof. For this family, the probability ensembles BHS1, BHS2 in Definition 26 can be described as follows.

• BHS1(1k): Generate Λ ← PG(1k), and parse Λ as (g1, g2, q). Choose a ∈U Zq and compute ẋ ← (ga
1, g

a
2).

Return (Λ, ẋ).

• BHS2(1k): Generate Λ ← PG(1k), and parse Λ as (g1, g2, q). Choose a ∈U Zq, b ∈U Zq and compute ẍ ←
(ga

1, g
b
2). Return (Λ, ẍ).

Obviously: BHS1
c
= BHS2.
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5.2. Instantiation under the Learning with Errors Assumption

We start this section with some preliminaries related to the discretization of probabilistic distributions.
We consider the quotient ring R/Z representing the segment [0, 1) with addition modulo 1. Let β be an arbitrary

positive real number. We denote by Ψβ the distribution over R/Z obtained by sampling from a normal variable with
mean 0 and standard deviation β/

√
2π and reducing the result modulo 1.

Ψβ : R/Z −→ R+

r 7−→

∞∑
k=−∞

1
β

exp

−π (
r − k
β

)2 .
Definition 41 ([38]). Given an arbitrary integer q ≥ 2, an arbitrary distribution φ : R/Z→ R+, the discretization of
φ over Zq is defined as:

φ : Zq −→ R+

i 7−→

∫ (i+1/2)/q

(i−1/2)/q
φ(x) dx.

Let Gen(1k) be a PPT algorithm taking a security parameter k as input and outputs a description (q,m, χ), where
q is a prime, m = Poly(k) and χ = Ψα where α ∈ (2

√
k/q, 1).

Assumption 42 ([38]). The decision version of the learning with errors (LWE) assumption assumes that that there
is no non-uniform PPT algorithm distinguishing the following two probability ensembles LWE1={LWE1(1k)}k∈N and
LWE2={LWE2(1k)}k∈N defined as:

• LWE1(1k): Set (q,m, χ)← Gen(1k) and choose A ∈U (Zq)m×k, ~s ∈U (Zq)k, ~e ∈χ (Zq)m (which means each entry
of ~e is independently drawn from Zq according to χ). Compute ~b← A~s + ~e mod q and output ((q,m, χ), A, ~b).

• LWE2(1k): Operate as LWE1(1k) except that ~b ∈U (Zq)m.

Remark 43. Assumption 42 describes only the decision version of LWE problem. Nonetheless, the hardness of this
decision problem is the same as the LWE problem itself [38].

Remark 44. The LWE problem is an average-case problem. However, Regev showed that its hardness is implied
by both the worst-case hardness of the shortest independent vector problem (SIVP) and the worst-case hardness of
the decision version of the shortest vector problem (GapSVP) (see Theorem 1 of [38]). In other words, if the LWE
problem is efficiently solvable, so are both the SIVP and GapSVP. Since these two problems are believed to be hard
even for quantum algorithms [39], so is the LWE problem.

Before presenting our LWE-based instantiation of basic hash family, we need to recall the key generation algorithm
of a LWE-based public key cryptosystem presented by Gentry et al. to be used as a building block [17].

• Message space: {0, 1}.

• Setup(1k): Uniformly chooses a prime q such that q ∈ [k2, 2k2]. Set m← (1 + ε)(k + 1) log q (where ε > 0 is an
arbitrary constant and arbitrarily choose α such that α = o(1/(

√
k log k)) (e.g., α = 1

√
k(log k)2 ). Set χ ← Ψα and

Λ← (q,m, χ). Output Λ.

• KeyGen(1k,Λ): Parse Λ as (q,m, χ). Choose A ∈U (Zq)m×k, ~s ∈U (Zq)k and ~e ∈χ (Zq)m. Compute ~b ←
A~s + ~e mod q and set pubk ← (A, ~b) and sk ← ~s. Return the public-private key pair (pubk, sk).

Definition 45 ([17]). A public key (A, ~b) is messy if and only if, for all m0,m1 ∈ {0, 1}, the statistical difference
between the distributions of EncA,~b(m0) and EncA,~b(m1) is negligible where Enc denotes the encryption algorithm of
the cryptosystem.
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We would like to point out that any ciphertext produced under messy public keys carries no information (statis-
tically) about the encrypted message. Therefore, for any (even unbounded) adversary, recovery of the corresponding
plaintext is impossible. Gentry et al. showed that, if the construction parameters were appropriately chosen, their
cryptosystem held the following properties.

P1 It provides security against chosen plaintext attack. [For our construction, we only need semantic security.]
P2 All but an at most 2/qk-fraction of (A, ~b) ∈ ((Zq)m×k, (Zq)m) is messy.
P3 There exists an efficient algorithm IsMessy that identifies messy public keys. It takes a public key (A, ~b), a

trapdoor T as input and outputs an indicator. IsMessy has the following properties.

• IsMessy outputs 1 on an overwhelming fraction of all possible public keys which may be maliciously
generated.

• If IsMessy(A,T, ~b) outputs 1 on a public key (A, ~b), then (A, ~b) is indeed messy.

We do not know how to gain distinguishability as defined in Definition 13. Instead, we will be able to obtained a
relaxed version defined as follows.

Definition 46 (Relaxed Distinguishability). For any legal hash parameter Λ, any instance-witness pair (x,w) ∈
({0, 1}∗)2 which may be maliciously generated, we require:

DI(1k,Λ, x,w) =


0 if (x,w) ∈ ṘΛ,
1 if (x,w) ∈ R̈Λ,
0 or 2 otherwise.

In our framework for OTn
t , the only usage of DI is to check the legalities of instance-witness vectors. According

to the legality definition (Definition 17), an instance-witness vector is called legal if and only if it has at least n − t
entries that on receiving them DI outputs 1. Therefore, this relaxed distinguishability is sufficient for our objective.

Our LWE-based basic hash family whose syntax is specified in Section 4.1 is described in Construction 3.

Lemma 47. The hash family obtained from Construction 3 has smoothness.

Proof. Let Λ = (q,m, χ) be a legal hash parameter. Let (ẍ, ẅ) = ((A, ~b), (1,T )) be an instance-witness pair generated
by IS(1k,Λ, 1). For this family, the probability ensembles BSM1 and BSM2 from Definition 23 can be described as
follows.

• BSM1(1k): Choose a ∈U {0, 1} and compute pk ← EncA,~b(a). Set y← a and output (pk, y).

• BSM2(1k): Choose a′ ∈U {0, 1} and compute pk ← EncA,~b(a′). Pick y ∈U {0, 1} and output (pk, y).

It is easy to see that the second component of each ensemble is uniformly distributed. The difference between these
two ensembles is their first value denoted by pk. In the case of BSM1(1k), it is the encryption of y while, for BSM2(1k),
it corresponds to the encryption of a′. Because (A, ~b) is messy, the two distributions of this value pk are statistically
indistinguishable. Therefore, BSM1

s
= BSM2.

Lemma 48. The hash family obtained from Construction 3 has the projection property.

Proof. Let (ẋ, ẇ) = ((A, ~b), (0, ~e, ~s)) be an instance-witness generated by IS(1k,Λ, 0). Obviously, ((A, ~b), ~s) is a normal
public-private key pair. Then, we have:

Hash(1k,Λ, ẋ, hk) = a

and
pHash(1k,Λ, ẋ, pk, ẇ) = Dec~s(α) = Dec~s(EncA,~b(a)) = a

This means that, for any (Λ, ẋ, ẇ) generated by the hash family, it holds: Hash(1k,Λ, ẋ, hk) = pHash(1k,Λ, ẋ, pk, ẇ).

Lemma 49. The hash family obtained from Construction 3 has the distinguishability property.
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Construction 3 A LWE-based basic hash family
(Setup, KeyGen, Enc, Dec) representing the cryptosystem from [17] where the parameters of Setup were tuned so
that properties P1, P2 and P3 hold.

• PG(1k): Set Λ← Setup(1k) and return Λ.

• IS(1k,Λ, δ): Parse Λ as (q,m, χ) and choose A ∈U (Zq)m×k along with its trapdoor T , ~s ∈U (Zq)k and ~e ∈χ
(Zq)m. Compute ẋ← (A, A~s+~e mod q) and set ẇ← (0, ~e, ~s). Pick ~b ∈U (Zq)m such that IsMessy(A,T, ~b) = 1
and set ẍ← (A, ~b), ẅ← (1,T ). Output (ẋ, ẇ) if δ = 0, (ẍ, ẅ) if δ = 1.

• Check(1k,Λ): Parse Λ as (q,m, χ). If q is a prime number, m is a positive integer, and χ is a discretization of
an appropriate distribution then output 1. Otherwise, return 0.

• DI(1k,Λ, x,w): Parse Λ as (q,m, χ) and x as (A, ~b). Let i denote the value of w’s first entry. If i = 0, then
(0, ~e, ~s)← w; if i = 1, then (1,T )← w; otherwise output 2. Perform the following checks:

– if i = 0: Check ~b, ~e ∈ (Zq)m, A ∈ (Zq)m×k, ~s ∈ (Zq)k and ~b = A~s + ~e mod q. If the checks are all
successful then output 0; else output 2.

– if i = 1: Check ~b ∈ (Zq)m, A ∈ (Zq)m×k, T is a trapdoor and IsMessy(A,T, ~b) = 1. If the checks are all
successful then output 1; otherwise output 2.

• KG(1k,Λ, x): Parse Λ as (q,m, χ) and x as (A, ~b). Choose a ∈U {0, 1} and compute α ← EncA,~b(a). Set
hk ← a, pk ← α and output (hk, pk).

• Hash(1k,Λ, x, hk): Output hk.

• pHash(1k,Λ, x, pk,w): Parse Λ as (m, q, χ) and w as (0, ~e, ~s). Compute a← Dec~s(pk) and output a.
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Proof. Let Λ be a legal hash parameter, (x,w) an instance-witness pair that may be maliciously generated. It is trivial
to see that DI outputs 0 if (x,w) can be generated by IS(1k,Λ, 0) (i.e., (x,w) ∈ ṘΛ).

Recalling the property of algorithm IsMessy, we know that if DI outputs 1, then (x,w) ∈ R̈Λ; if (x,w) ∈ R̈Λ, then
DI outputs 1 with probability almost 1.

Lemma 50. Assuming the LWE assumption holds, the hash family obtained from Construction 3 has hard subset
membership.

Proof. For this family, the probability ensembles BHS1, BHS2 from Definition 26 can be described as follows.

• BHS1(1k): Generate Λ ← PG(1k) and parse it as (q,m, χ). Choose A ∈U (Zq)m×k along with its trapdoor T ,
~s ∈U (Zq)k and ~e ∈χ (Zq)m. Compute ẋ← (A, A~s + ~e mod q) and output (Λ, ẋ).

• BHS2(1k): Generate Λ ← PG(1k) and parse it as (q,m, χ). Choose A ∈U (Zq)m×k along with its trapdoor T and
pick ~b ∈U (Zq)m such that IsMessy(A,T, ~b) = 1. Set ẍ← (A, ~b) and output (Λ, ẍ).

Obviously, BHS1
c
= BHS2.

Since, in our basic hash family, each instance holds a matrix A, so does the hash family resulting from Construc-
tion 1. It is trivial to show that this hash family can be improved by each instance vector sharing a common matrix
A. However, to securely instantiate our framework for OTn

t , it cannot be improved by all instance vectors sharing a
common matrix A. The reason is that, in this case, seeing A’s trapdoor T in Step S2 of the framework Π, the sender
can distinguish smooth instances and projective instances of the unchosen instance vectors and thus he can deduce the
receiver’s private input.

5.3. Instantiation under the Decisional Quadratic Residuosity Assumption

Let Gen(1k) be a PPT algorithm taking a security parameter k as input and returning an integer N being the product
of two distinct k-bit odd primes. Let JN be the subgroup of Z∗N of elements having Jacobi symbol +1.

Assumption 51 ([40]). The decisional quadratic residuosity (DQR) assumption assumes that there is no non-uniform
PPT algorithm distinguishing the following two probability ensembles DQR1={DQR1(1k)}k∈N and DQR2={DQR2(1k)}k∈N
defined as:

• DQR1(1k): Generate N ← Gen(1k), choose r ∈U Z∗N and compute x← r2 mod N. Output (N, x).

• DQR2(1k): Operate as DQR1(1k) except x ∈U JN .

Definition 52 ([16]). A hash familyH = (PG, ÎS, ÎT, K̂G,Hash, pHash) is a verifiably-ε-universal projective hashing
family, if for any Λ generated by PG(1k), any (ẋ, ẇ, ẍ) generated by ÎS(1k,Λ),H is projective on ẋ, and universal on
ẍ. In addition, it holds verifiable-ε-universallity, which is defined as follows.

• For any Λ generated by PG(1k), any (ẇ, ẋ, ẍ) generated by ÎS(1k,Λ), we have: ÎT(1k,Λ, ẋ, ẍ) = ÎT(1k,Λ, ẍ, ẋ) =

1.

• For any tuple (Λ, x1, x2) which may be maliciously generated, if ÎT(1k,Λ, x1, x2) = 1, then H is ε-universal on
at least one of x1 or x2.

We can see that the syntax of a hash family appearing in [16] is different from our basic hash family notion. It
does not have algorithms like Check or DI. However, it possesses an algorithm ÎT. There are some additional syntaxic
differences not reflected by above definition. In a Halevi and Tauman Kalai hash family, ÎS does not take any work
mode parameter δ and ÎS(1k,Λ) outputs a tuple (ẋ, ẇ, ẍ) where typically ẋ and ẍ are generated in dependent way. In
addition, their key generating algorithm K̂G does not take any instance parameter x.

Under the DQR assumption, Halevi and Tauman Kalai proposed the following verifiably-ε-universal projective
hash family.
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Construction 4 A verifiably-universal projective hash family [16]

• PG(1k): Choose uniformly two k-bit prime p, q such that p = q = 3 mod 4. Set N ← pq, choose a ∈U Z∗N
and compute g← a2 mod N. Set Λ← (N, g) and output Λ.

• ÎS(1k,Λ): Parse Λ as (N, g). Set T ← 2dlog Ne, choose ẇ ∈U ZN and compute ẋ← (gT )ẇ mod N and ẍ← N− ẋ.
Output (ẇ, ẋ, ẍ).

• ÎT(1k,Λ, ẋ, ẍ): Parse Λ as (N, g). Checks that N > 22n, g, ẋ ∈ Z∗N , and ẍ = N − ẋ. Outputs 1 if all these tests
pass and 0 otherwise.

• K̂G(1k,Λ): Parse Λ as (N, g). Set T ← 2dlog Ne, choose hk ∈U ZN and compute pk ← (gT )hk mod N. Output
(hk, pk).

• Hash(1k,Λ, x, hk): Parse Λ as (N, g) and compute y← xhk mod N. Output y.

• pHash(1k,Λ, x, pk,w): Parse Λ as (N, g) and compute y← pkw mod N. Output y.

Our DQR-based basic hash family whose syntax is specified in Section4.1 is described in Construction 5.

Construction 5 A DQR-based basic hash family

• Algorithms PG, KG, Hash, pHash operate as in Construction 4.

• IS(1k,Λ, δ): Parse Λ as (N, g). Set T ← 2dlog Ne, choose r ∈U ZN and compute ẋ← (gT )r mod N. Set ẇ← r,
compute ẍ← N − (gT )r mod N and assign ẅ← r. Output (ẋ, ẇ) if δ = 0; output (ẍ, ẅ) if δ = 1.

• Check(1k,Λ): Parse Λ as (N, g). If it holds that N > 22k and g ∈ Z∗N , then output 1; otherwise, output 0.

• DI(1k,Λ, x,w): Parse Λ as (N, g). Set T ← 2dlog Ne and r ← w. If x = (gT )r mod N, then output 0. If
x = N − (gT )r mod N, then output 1. Otherwise, output 2.

It is easy to see that the basic hash family obtained from Construction 5 inherits the universality and projection
properties from Construction 4.

Lemma 53. The hash family obtained from Construction 5 has the distinguishability property.

Proof. Let Λ be a legal hash parameter and (x,w) an instance-witness pair that may be maliciously generated. It
is easy seen that DI(1k,Λ, x,w) = 0 if and only if (x,w) can be generated by IS(1k,Λ, 0) (i.e., (x,w) ∈ ṘΛ) and
DI(1k,Λ, x,w) = 1, if and only if (x,w) can be generated by IS(1k,Λ, 1) (i.e., (x,w) ∈ R̈Λ).

Lemma 54. Assuming that the DQR assumption holds, the hash family obtained from Construction 5 has hard subset
membership.

Proof. For this family, the probability ensembles BHS1 and BHS2 from Definition 26 can be described as follows.

• BHS1(1k): Generate (N, g) ← PG(1k). Set T ← 2dlog Ne, choose r ∈U ZN and compute ẋ ← (gT )r mod N.
Output (Λ, ẋ).

• BHS2(1k): Operate as BHS1(1k) except that it outputs (Λ, ẍ), where ẍ← N − (gT )r mod N.

It is easy to see that (gT )r mod N is a quadratic residue modulo N and N is a Blum integer. Following the
properties of Blum integers, N − (gT )r mod N is not a quadratic residue and N − (gT )r mod N ∈ JN . Therefore, if the
DQR assumption holds, we have: BHS1

c
= BHS2.

18



5.4. Instantiation under the Decisional N-th Residuosity Assumption
We use the same parameter generator Gen(1k) as in Section 5.3.

Assumption 55 ([41]). The decisional N-th residuosity (DNR) assumption assumes that there is no non-uniform PPT
algorithm distinguishing the following two probability ensembles DNR1={DNR1(1k)}k∈N and DNR2={DNR2(1k)}k∈N
defined as follows:

• DNR1(1k): Generate N ← Gen(1k) and choose a ∈U Z∗N2 . Compute b← aN mod N2 and output (N, b).

• DNR2(1k): Operate as DNR1(1k) except that b ∈U Z∗N2 .

Similarly to our DQR-based basic hash family, our DNR-based basic hash family is built from Halevi and Kalai’s
DNR-based verifiably-ε-universal projective hash family [16]. The modifications and security proofs are similar too.
To save space, we omit these details and only describe our basic hash family in Construction 6.

Construction 6 A DNR-based basic hash family

• PG(1k): Generate N ← Gen(1k), choose a ∈U Z∗N2 and compute g ← aN mod N. Set Λ ← (N, g) and return
Λ.

• IS(1k,Λ, δ): Parse Λ as (N, g). Set T ← Nd2 log Ne, choose r ∈U Z∗N and compute ẋ ← (gT )r mod N2. Set
ẇ← (r, 0), v ∈U Z∗N , choose ẍ← (gT )r(1 + vN) mod N2 and ẅ← (r, v). Output (ẋ, ẇ) if δ = 0; output (ẍ, ẅ)
if δ = 1.

• Check(1k,Λ): Parse Λ as (N, g). If N > 22k and g ∈ Z∗N2 , then output 1. Otherwise, output 0.

• DI(1k,Λ, x,w): Parse Λ as (N, g) and w as (r, v). If v = 0, r ∈ Z∗N and x = (gT )r mod N2, then output 0. If
v , 0, r, v ∈ Z∗N and x = (gT )r(1 + vN) mod N2, then output 1. Otherwise, output 2.

• KG(1k,Λ, x): Parse Λ as (N, g). Set T ← Nd2 log Ne, choose hk ∈U ZN2 and compute pk ← (gT )hk mod N2.
Output (hk, pk).

• Hash(1k,Λ, x, hk): Output xhk mod N2.

• pHash(1k,Λ, x, pk,w): Output pkw mod N2.
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