
Cryptographic Constructions Supporting Implicit

Data Integrity

Michael Kounavis, David Durham, Sergej Deutsch,
Antonios Papadimitriou and Amitabh Das

Intel Labs, Intel Corporation, 2111, NE 25th Avenue, Hillsboro, OR 97124

Email: {michael.e.kounavis, david.durham, sergej.deutsch,

antonios.papadimitriou, amitabh.das}@intel.com

May 2018

Abstract

We study a new methodology supporting data integrity called ‘implicit integrity’ and
present cryptographic constructions supporting it. Implicit integrity allows for corruption
detection without producing, storing or verifying mathematical summaries of the content
such as MACs, ICVs etc. The main idea behind this methodology is that, whereas typical
user data demonstrate patterns such as repeated bytes or words, decrypted data resulting
from corrupted ciphertexts no longer demonstrate such patterns. Thus, by checking the
entropy of some decrypted ciphertexts, corruption can be possibly detected.

We discuss that implicit integrity can be associated with a notion of security which
is different from the typical requirement that the output of cryptographic systems should
be indistinguishable from the output of a random permutation. The notion of security
we discuss is that it should be computationally difficult for an adversary to corrupt some
ciphertext so that the resulting plaintext demonstrates specific patterns. We further in-
troduce two kinds of adversaries. First, an input perturbing adversary performs content
corruption attacks. Second an oracle replacing adversary performs content replay attacks.
We discuss requirements for supporting implicit integrity in these two adversary models,
and provide security bounds for a construction called IVP, a three-level confusion diffusion
network which can support implicit integrity and is inexpensive to implement.

1 Introduction

1.1 The Concept of implicit data integrity

This paper addresses the problem of corruption detection without producing, storing or ver-
ifying mathematical summaries of the content. Such summaries, typically known as Message
Authentication Codes (MACs) [3] [4] or Integrity Check Values (ICVs) are typically costly to
maintain and use. The standard way of supporting data integrity is by using MACs produced
by cryptographic hash functions such as SHA256 [1] or SHA3 [2], the use of which typically
results in latency, storage and communication overheads. These overheads are due to the
unavoidable message expansion associated with using the MACs. For example, if a system
protects a cache line with a MAC [7], this MAC value needs to be read in every data read
operation. This wastes memory access bandwidth resources as each data read operation needs
to be realized as two memory read operations.

plaintext

content
(e.g., cache line)

encryption

ciphertext

corruption

corrupted
ciphertext

decryption

corrupted
plaintext

modified content

distinguishable
from random

no longer
distinguishable

from random

Figure 1: The concept of implicit integrity

Another area where our work applies is in network and communication systems which
employ a number of different protocols at different layers of the network stack, ranging from
the link layer to the application layer, with additional corruption detection mechanisms [3]
[4] [24]. Many of these protocols employ corruption detection mechanisms to cater for any
intentional or unintentional corruptions encountered during the transmission of data from
point A to point B. The cost of providing such capabilities is the additional metadata per
packet, which can be sigificant. This paper describes an alternative methodology that uses
pattern techniques in order to support corruption detection for the large majority of user data
without message expansion. The main idea is discussed below.

If some content exhibits patterns (i.e., has low entropy), then such content can be dis-
tinguished from random data. Let’s consider that this content is encrypted, as shown in the
figure, where the encryption algorithm is a good pseudo-random permutation and thus can
successfully approximate a random oracle. The cipher text which is produced in this way
is no longer distinguishable from random data, under certain reasonable assumptions about
the adversary. Any corruption on the cipher text results in a new cipher text value, which is
different from the original one. Furthermore, any decryption operation on this new cipher text
value results in a corrupted plaintext value which is different from the original one as well. As
decryption is the inverse operation of encryption, the decryption algorithm also approximates
a random oracle under reasonable adversary models. Because of this reason, the corrupted
plaintext value is also indistinguishable from random data with very high probability. From a
system realization standpoint, the corrupted plaintext is indistinguishable from random data
because block ciphers or cryptographic constructions typically perform strong mixing of their
input bits. Due to an ‘avalanche effect’ associated with the decryption oracle, even a single
bit change in the cipher text can affect all bits of the decrypted plaintext. For these reasons,
checking the entropy of the result of a decryption operation can be a reliable test for detecting
corruption for some data. We refer to such methodology as ‘implicit data integrity’ or just
‘implicit integrity’.

One of the main challenges in building a system, the operation of which is based on the
principle of implicit integrity is how to define ‘high or ‘low’ entropy. It is not straightforward
how to determine that some content’s entropy is ‘low enough’ or ‘high enough’ so as to safely
deduce that the original content has not been corrupted. Another challenge has to do with

2

the design of cryptographic constructions for supporting implicit integrity and the derivation
of analytical proofs associated with security claims. A large body of work exists that focuses
on bounds associated with distinguishing the output of cryptographic constructions from that
of a random permutation. In our work we argue that such strong notion of security may not
be required in the context of implicit integrity. The security objective which we discuss in
this paper is that it should be computationally hard for adversaries to modify a set of given
ciphertext messages so as to result in plaintexts of low entropy, while preserving confidentiality.
This paper focuses on formalizing this security objective, exploring the requirements of cryp-
tographic constructions supporting it, and providing an example of a simple, implementable
three level confusion diffusion network that meets these requirements for a specific security
level.

1.2 Summary of our contributions

A first contribution of this paper is the introduction of a class of constructions which we refer to
as ‘Random Oracles according to Observer functions’ (RO2). An observer function is a function
that searches the output of cryptographic systems in order to detect unusual behavior, such
as the presence of patterns. Patterns can be repeated nibbles, bytes, words or double words.
If an observer function detects unusual behavior with the same or similar probability in a
cryptographic system’s output as in a random oracle’s output then such cryptographic system
belongs to the class of RO2 constructions associated with the specific observer function.

A second contribution of this paper is the description of a security model against data
corruption and replay attacks, which is associated with implicit integrity and connected with
the class of RO2 constructions. Specifically, we show that if a construction is in the RO2 class,
then the construction always supports some form of implicit data integrity, and is secure in
the proposed model. The proposed model comprises two kinds of adversaries. First, an input
perturbing adversary is an algorithm which is given a set of ciphertext messages q0, . . . , qm−1,
the plaintexts of which exhibit patterns and a query bound B. The algorithm succeeds if it finds
a ciphertext message y which is different from q0, . . . , qm−1, the plaintext of which also exhibits
patterns. Security in this adversary model indicates protection against data corruption attacks.
Second, an oracle replacing adversary is an algorithm which is also given a set of cipher messages
q0, . . . , qm−1 the plaintexts of which exhibit patterns and a query bound B. The algorithm
succeeds if it replaces a set of oracles R0, R1, . . . queried by the decryption system with a
new set of oracles R′0, R

′
1, . . ., so that there exists a ciphertext message y ∈ {q0, . . . , qm−1}

the plaintext of which continues to exhibit patterns even when the oracles R0, R1, . . . of the
decryption system are replaced by R′0, R

′
1, We discuss that security in this adversary model

indicates protection against content replay attacks.
A third contribution of this paper is a cryptographic construction called IVP (stands for

‘Implicit integrity Via Pre-processing’), which is in the proposed class RO2. IVP is a three
level confusion diffusion network that includes pseudo-random permutations of varying widths.
Proofs for this construction derive from computing the probability that the system state is
being altered by the flow of differentials inside the construction. Differentials are caused
by adversarial perturbations. In our analysis we consider that the number of queries issued
by adversaries is bounded in such a way, so that the internal pseudo-random permutations
queried by the proposed construction are indistinguishable from truncated output random
oracles. In this case, differential signals coming out of these components are indistinguishable
from random, uniformly distributed and statistically independent signals. The methodology
followed in the proofs is similar to the methodology used for searching for zero correlation
linear hulls in block ciphers [19].

3

1.3 Protecting data that do not exhibit patterns

One issue that needs addressing, when building a system that protects data using the principle
of implicit integrity, is how to detect corruption if data do not exhibit patterns. As we elaborate
below, patterns can be found in up to 91% of the data of client workloads and 84% of the data
of server workloads. The numbers come from observations on 111 million representative client
workload cache lines and 1.4 billion representative server workload cache lines. Whereas such
data can be protected using implicit integrity, the remaining 9% − 16% of the data need
protecting also.

Such design issue can be easily addressed. Implementations can protect the overwhelming
majority of user data that exhibit patterns using implicit integrity and the remaining data
using standard techniques. There is nothing in the implicit integrity methodology, discussed
here, that prevents it from being used together with other independent integrity mechanisms
such as MACs. Such solutions can co-exist with implicit integrity.

Cost reduction comes from the fact that only MACs computed from high entropy data
need to be stored and accessed. If some decrypted content exhibits patterns, then there is
some assurance that no corruption has occurred. If no patterns are exhibited, however, a
search can be made for a MAC associated with the content. If no MAC is found, then the
data is deemed corrupted. Otherwise, an integrity check is made using the returned MAC.
Such implementation can use a content addressable memory unit or a hash table for accessing
and managing MACs. We remind that MACs are significantly fewer than those required for
protecting all the data, and this is the main advantage of this approach. Further investigations
on hardware and operating system changes required in order to support implicit integrity are
beyond the scope of this paper.

2 Related work

We are the first to analyze the concept of implicit integrity and are not aware of any other
published work that proposes or studies any similar integrity methodology. Besides this, the
concept of random oracles according to observer functions bears some similarity with the
concept of correlation intractability discussed in reference [20]. The aim of reference [20] is
different from ours. Reference [20] establishes that there exist signature and encryption schemes
that are secure in the random oracle model, but for which any implementation of a random
oracle results in insecure schemes. In the process, reference [20] introduces two concepts which
are related to our definition of the class RO2. First, a binary relation is introduced as ‘evasive’
if when given access to a random oracle O, it is infeasible to find a string x so that the pair
(x;O(x)) is in the relation. Second, a function ensemble F is called correlation intractable if
for every evasive binary relation, given the description of a uniformly selected function fs from
F it is infeasible to find an x such that (x; fs(x)) is in the relation.

Notable differences between our paper and [20] are the following: First, the binary relation
as defined in [20] involves a relationship between two strings. In our case, we employ an
observer function which examines the output of the system and produces a Boolean value
from this output, after running a polynomial time algorithm. The two definitions may be
equivalent, however, the difference in the formalism reflects further contrasts. Second, in
reference [20], much is said about intractability. There is a function defined, which characterizes
the probability values associated with the output of a system as negligible or non-negligible,
and the whole function ensemble as tractable or intractable. This is a ‘black-and-white’
binary characterization which is not directly relevant to our analysis. In the case of the
RO2 definition, we are more interested in the relative behavioral difference in the output

4

of a system, when compared to a random oracle or a random function. For this purpose,
we introduce an indistinguishability parameter ε. This parameter characterizes this relative
behavioral difference between the real system we examine and a random oracle or random
function primitive.

Third, we examine only systems associated with query bounds. Essentially, we push forward
research on open problems identified in [20] and associate solutions to these problems (i.e.,
correlation intractability in the presence of adversary query bounds) with practical implications
such as the ability to detect corruptions without message authentication tags. As part of the
process, we discover that it is not possible to support implicit integrity without introducing a
number of structural constraints in the systems examined. These structural constraints are a
unique contribution of our work, and are sufficient in order to demonstrate the usefulness of
implicit integrity systems against data replaying adversaries.

In our work we also make extensive use of the results of references [11] [12] which allow
us to consider the internal pseudo-random permutations of our constructions as truncated
output random oracles. Finally, a large body of work exists on wide block ciphers and wide
block cipher constructions, which could be used instead of the constructions proposed here
for supporting implicit integrity. The main difference between our proposed constructions
and wide block ciphers is in the security objective which guides the system designs. Wide
block ciphers and similar constructions are designed with the aim of being indistinguishable
from random permutations or truncated output random oracles. Implicit integrity systems are
designed with a different aim in mind: That of being computationally difficult to manipulate so
as to create ciphertexts the plaintexts of which exhibit patterns. Such difference in objectives
is reflected in the complexity of the system designs. For example, in section 6 we propose
a simple three-level confusion diffusion network which provides some assurances against data
corruption and data replay attacks without compromising the confidentiality of the output,
and which is structurally simpler than some wide block cipher constructions (e.g., [26]). We
come back to this issue later in the paper.

3 Preliminary concepts and definitions

3.1 Random Oracles according to Observer functions (RO2)

We begin our discussion with the concept random oracles according to observer functions.
We consider ‘observer functions’ that search cryptographic system outputs in order to detect
‘abnormal behavior’, such as repetitions of values of different sizes. Such repetitions are not
different from the repetitions termed “needles in a haystack”, which are studied in reference
[23].

The concept is illustrated in Figure 2. Function f observes unusual behavior in the values
of the output of a random oracle with probability Pf . The same function f observes the same
unusual behavior in the values of the output of the real system S with probability Pf,2. If
Pf,2 6 Pf · 2ε for a given maximum non-repeating input sequence of size B, and if this relation
holds even when Pf,2 is conditioned upon previous inputs, then the system S is a “random
oracle according to observer function f” associated with an indistinguishability parameter ε:
S ∈ RO2(f,B, ε).

The query bound B denotes the life time of the construction. Furthermore, the query
bound B is related to additional structural constraints discussed below. A finite life time B
is introduced in the definition of a RO2 construction, so that the construction can contain
primitives which are bijective functions (pseudo-random permutations) and which within the
bounds of the life time B are indistinguishable from truncated output random oracles. In what

5

Random
Oracle

function f observes
unusual behavior with

prob. Pf

f System S

function f observes the
same unusual behavior

with prob. Pf, 2

If ��,� ≤ �� � 2� for non-repeating input size B,

then � ∈ RO�(�, �, �)RO

Figure 2: The Concept of a Random Oracle according to an Observer function (RO2)

follows we will be denoting such primitives as ‘ingredient random permutations’.
In order for a construction to be RO2 it needs to satisfy the condition Pf,2 6 Pf · 2ε for

non-repeating input. So what does non-repeating input mean? Having non-repeating input
means that:

• within a lifetime of a construction {y0, y1, . . . , yB−1} input is not repeating, i.e., yi 6=
yj ∀i, j ∈ [0, B − 1]; and

• inputs that result in unusual behavior in one lifetime {y0, y1, . . . , yB−1} of a construction
are not repeated in any other lifetime {z0, z1, . . . , zB−1} of the same construction.

Whereas the inputs to constructions that are in the class RO2 can be from any set of
values, the constructions are most useful when the inputs considered are adversary queries,
i.e., corrupted ciphertext values. In this case, the conditions of non-repeating input are not as
restrictive as they sound. The intuition behind introducing these conditions, which are used
in the derivation of our main results below, is that if an adversary repeats queries as part
of the attack strategy, then the system provides the same output for these repeated queries.
Specifically, we consider that there are no parameters, potentially randomizing the system
which are out of the adversary’s control. Under this assumption it is clear that it is not
beneficial for an adversary to repeat queries which are unsuccessful, as their result will be the
same. On the other hand, if some queries are successful, then the adversary does not need
to repeat these queries, as the adversary possesses the knowledge about the impact of such
queries. Because of these reasons, it is not restrictive to introduce the non-repeating input
requirement, as we consider adversaries that do not repeat their queries to the construction.
We also note that we do not restrict every input to the construction. We just restrict only the
inputs for which the condition Pf,2 6 Pf · 2ε needs to be satisfied.

Definition 1: Observer function. A function f associated with input strings of length L,
f : {0, 1}L → {0, 1} is called an observer function if it outputs only one of two values 0 or
1. If for some input x, f(x) = 1, then we will be saying that input x demonstrates unusual
behavior according to observer function f . We will also be denoting this fact as x ∈ Π(f).

Definition 2: Random Oracle according to an Observer function (RO2). Let {y(0)0 , y
(0)
1 ,

. . . , y
(0)
m0−1}, {y

(1)
0 , y

(1)
1 , . . . , y

(1)
m1−1}, . . . be sets of binary strings of length L, the cardinalities

of which satisfy mi 6 B, ∀i > 0. Let also f be an observer function associated with inputs

6

E(y), D(y)

a1, a2,…

R0

R1

R2

R3

y

r

further processing
p()

… …

Figure 3: Internal structure of a constrained RO2 construction

of length L, and R ← 2∞ a random oracle. A function or system S : {0, 1}L → {0, 1}L is
called a random oracle according to observer function f associated with a life time B and
indistinguishability parameter ε if the following conditions are true:

i. y
(k)
i 6= y

(k)
j for all y

(k)
i , y

(k)
j ∈ {y(k)0 , y

(k)
1 , . . . , y

(k)
mk−1} such that i 6= j, k > 0;

ii. if y ∈ Π(f) and y ∈ {y(k)0 , y
(k)
1 , . . . , y

(k)
mk−1} for some k > 0, then y /∈ {y(l)0 , y

(l)
1 , . . . , y

(l)
ml−1}

for all l 6= k;

iii. for all inputs y and collections of inputs y0, . . . , yq−1 > 0 such that y 6= y0, . . . , y 6= yq−1,

y ∈ {y(k)0 , y
(k)
1 , . . . , y

(k)
mk−1}, yi ∈ {y

(li)
0 , y

(li)
1 , . . . , y

(li)
mli
−1}, k > 0, li > 0, 0 6 i < q and

q > 0, the following is true:

Prob[S(y) ∈ Π(f) | y0, . . . , yq−1] 6 Pf · 2ε where Pf = Prob[truncL(R(y)) ∈ Π(f)]

where the function truncL() used in Definition 2 truncates its input returning the input’s L
most significant bits.

When a system S is a random oracle according to an observer function f , life time B
and indistinguishability parameter ε, we will be denoting this fact as S ∈ RO2(f,B, ε). We
also note that condition (iii) in Definition 2 covers all cases where the probability of seing
unusual behavior in the output of S is conditioned upon any set of input values different from
y of cardinality q. In the special case were q = 0 (i.e., no conditioning) this third condition
is simplified as Prob[S(y) ∈ Π(f)] 6 Pf · 2ε. The probability value Pf will be denoted as
‘observation probability’ or ‘pattern observation probability’ associated with observer function
f in this document.

A ‘constrained’ RO2 function or system uses a number of internal invertible functions
which are random permutations and which, for the life time (i.e., query) bound B used, are
practically indistinguishable from random oracles in both processing directions. These are the
primitives referred to as ingredient random permutations. An RO2 system is invertible itself.
One direction is denoted as E and referred to as ‘encryption’, whereas the other direction is
denoted a D and referred to as ‘decryption’. A constrained RO2 system accepts a construction
input y and uses a set of pre-processing polynomial time algorithms a1, a2, . . . , an to compute
the inputs to ingredient random permutations which provide a response vector r. Then, it is
this response which is further used in the RO2 system for processing. Processing is done by an
invertible polynomial time algorithm p() and the input y is no longer used. A constrained RO2

7

system is illustrated in Figure 3. In what follows, whenever we will be using the term RO2 we
will be referring only to constrained RO2 systems.

In what follows we will be using the notation ER0,R1,R2,... and DR0,R1,R2,... to refer to
encryption and decryption systems (encryption and decryption oracles) with access to the
ingredient random permutations R0, R1, R2, Furthermore if ER0,R1,R2,... and DR0,R1,R2,...

are RO2 associated with an observer function f , a query bound B and an indistinguishability
parameter ε, we will be denoting this fact as:

ER0,R1,R2,..., DR0,R1,R2,... ∈ RO2(f,B, ε) (3.1)

Finally, regarding the construction of Figure 3, we note that if algorithms a1, a2, . . . , an are
replaced by the identity function and the data path of the figure implements a decryption
operation, then the ciphertext of such system is obtained directly from the output of random
permutations R0, R1, R2, This means that the system does not compromise the confiden-
tiality offered by R0, R1, R2, . . . in any way, provided that the implementation of p(), does
not use any secret information also used by the implementations of R0, R1, R2, Setting
a1, a2, . . . , an to the identity function is a choice we made in the design of IVP discussed in
Section 6.

3.2 Pattern frequency observers

By ‘Pattern Frequency Observers’ (PFO) we mean observer functions that output true if a
number of values that are equal to each other, from a given input set, exceed a threshold. Value
types can range and may include nibbles, bytes, words and double words. The reason why we
study these functions in this paper, is because such functions have experimentally been proven
successful in characterizing the overwhelming majority of typical uncompressed, unencrypted
client and server data. We have observed that client and server data demonstrate repetitions
of values of different types, which in truly random data (i.e, random oracle outputs) appear
with very low probability. It is these observations that motivate the implicity integrity work.

The fact that uncompressed, unencrypted user data demonstrate patterns should not come
as a surprise. User data often consist of code, data structures, media data, pointer tables, and
other types of structured data that are characterized by significant redundancy. For example,
there exists a simple pattern which is frequently encountered in client and server data. This
is the appearance of 4 or more 16-bit words which are equal to each other in a collection of
32 words. In this pattern the input size is 512 bits (i.e., each data is a memory cache line).
An observer function which detects the presence of such pattern in inputs of size L = 512 bits
is denoted as ‘f4×16’. Our experimental observations come from over 111 million client cache
lines and 1.47 billion server cache lines of typical workloads. According to these observations,
the f4×16 pattern characterizes 82% of the client cache lines and 78% of the server cache lines.

Pass rate comparisons associated with different pattern detectors are shown in Figure 4.
Pattern detection based on the observer function f4×16 is referred to as ‘Standard Pattern
Matching’ (SPM). Pattern detection based on the equality of words as well as other types of
data such as bytes, double words and nibbles is referred to as ‘Extended Pattern Matching’
(EPM). As is evident from the figure, there are many typical client workloads (e.g., Microsoft R©
Office, transcoding, video player), the pass rates of which are quite high, ranging between 75%-
80%, when Standard Pattern Matching is employed. These pass rates are boosted to 98% when
Extended Pattern Matching is employed. Overall, the average client pass rates associated with
Standard Pattern Matching are 82%. The average pass rates associated with Extended Pattern
Matching are 91%. For server data, the corresponding pass rates are 78% and 84% respectively.

8

0
10
20
30
40
50
60
70
80
90

100

h
ad

o
o

p
_

w
o

rd
co

u
n

t

h
ad

o
o

p
_

w
o

rd
so

rt
au

d
io

_p
la

yb
ac

k
b

la
ck

ja
ck

-v
e

ga
s

n
av

it
-g

p
s

o
ff

ic
e

-i
m

p
re

ss
o

ff
ic

e
-s

p
re

ad
sh

e
et

o
ff

ic
e

-w
ri

te
r

p
ic

tu
re

-a
n

im
at

e

tr
an

sc
o

d
in

g
3

d
ga

m
e

vi
d

eo
-p

la
yb

ac
k

sp
e

cp
o

w
er

ed
in

b
u

rg
h

ad
o

b
e-

fl
as

h
h

d
r-

ex
p

o
se

h
d

r_
p

h
o

to
-m

at
ri

x
it

u
n

es

m
ed

ia
sh

o
w

p
h

o
to

sh
o

p
-e

le
m

en
ts

p
re

m
ie

re
-e

le
m

en
ts

d
ra

g-
n

-d
ro

p

w
in

d
o

w
-m

ed
ia

-p
la

ye
r

fi
re

fo
x

3
d

m
ar

kv
an

ta
ge

A
V

ER
A

G
E

P
as

s
R

at
e

(%
)

Standard Pattern Matching and ICV Cache Hit Rates

Standard Pattern Matching Rate ICV Cache Hit Rate

0
10
20
30
40
50
60
70
80
90

100

h
ad

o
o

p
_

w
o

rd
co

u
n

t
h

ad
o

o
p

_
w

o
rd

so
rt

au
d

io
_p

la
yb

ac
k

b
la

ck
ja

ck
-v

e
ga

s
n

av
it

-g
p

s

o
ff

ic
e

-i
m

p
re

ss

o
ff

ic
e

-s
p

re
ad

sh
e

et
o

ff
ic

e
-w

ri
te

r

p
ic

tu
re

-a
n

im
at

e
tr

an
sc

o
d

in
g

3
d

ga
m

e

vi
d

eo
-p

la
yb

ac
k

sp
e

cp
o

w
er

ed
in

b
u

rg
h

ad
o

b
e-

fl
as

h
h

d
r-

ex
p

o
se

h
d

r_
p

h
o

to
-m

at
ri

x

it
u

n
es

m
ed

ia
sh

o
w

p
h

o
to

sh
o

p
-e

le
m

en
ts

p
re

m
ie

re
-e

le
m

en
ts

d
ra

g-
n

-d
ro

p

w
in

d
o

w
-m

ed
ia

-p
la

ye
r

fi
re

fo
x

3
d

m
ar

kv
an

ta
ge

A
V

ER
A

G
E

P
as

s
R

at
e

(%
)

Extended Pattern Matching and ICV Cache Hit Rates

Extended Pattern Matching Rate ICV Cache Hit Rate

Figure 4: Pass rates associated with Standard and Extended Pattern Matching on client
workload cache lines

9

state
i.e., cipher text

D ∈ RO2(f, Β, ε)

can be any of q0,…,qm-1

perturbation ⊕

adversary adds
perturbations
to the input exhibits

patterns?

focus: data corruption attacks

Figure 5: Input perturbing adversary

The EPM scheme encompasses many more pattern detectors than SPM. Pattern frequency
observers, associated with the EPM scheme detect entities among the input data which are not
only equal to each other, but are also placed in continuous index positions. These observers
are not necessarily the same as those detecting value equalities. One can associate these two
types of observer functions with different thresholds and, by doing so, build two different
integrity schemes. Yet another type of observer function detects entities that take special
values. Special values are values that are frequently encountered in regular user data but are
infrequently encountered in random or corrupted plaintext data. For example, in memory
cache lines obtained from client and server data workloads, a high percentage of bytes take the
values of 0x00 or 0xFF.

A last type of observer functions used by EPM detects entities the value histogram of which
demonstrates a sum of n highest entries (i.e., frequencies) being higher than a threshold. The
intuition behind this type of pattern check is that there are several types of input messages,
the content of which is not as random as that of encrypted data, but also does not demonstrate
patterns at the byte or word granularity. One example of such content is media data, where
nibble values may be replicated, but data do not demonstrate significant byte or word repli-
cations. Our experimental studies showed that there are millions of cache lines demonstrating
a limited set of byte equalities but many nibble equalities. By checking whether the sum of
the two highest nibble frequencies exceeds a threshold, a more flexible pattern detector can be
built, which on the one hand encompasses significantly more regular user inputs, and on the
other hand is associated with an event that is infrequent among random data.

Figure 4 also shows Integrity Check Value (ICV) cache hit rates for these algorithms. It
is assumed that not all memory cache lines are protected visa implicit integrity, as discussed
above, but some are protected using standard methods. For these, ICVs or MACs are cached.
The hit rates of Figure 4 are obtained from a simulator implementing the caching of 32-bit
ICVs using a 4KB cache unit for this purpose. When ICVs are cached the total pass rate
observed by SPM and EPM are boosted significantly. For Standard Pattern Matching, the
total pass rate, which includes a pattern check pass rate and an ICV cache hit rate, is 97%.
For Extended pattern matching this rate is increased to 99%.

4 Adversary models and main security claims

4.1 Input perturbing adversary

Having presented some preliminary concepts and definitions, we are now in a position where
we can present our adversary models and main security claims. The first type of adversary
presented, describes adversaries which aim in corrupting encrypted data that are stored some-
where, or are in transit, in such a way so that the corruptions pass undetected. We refer to

10

such type of adversary as ‘input perturbing’ adversary.
The input perturbing adversary models any software process or physical intruder that aims

in intentional corruptions of data. The underlying assumption of this adversary model is that
the adversary can access data only in their encrypted form. This adversary can corrupt ci-
phertext data in any possible way hoping that the corruptions will result in plaintexts with
patterns, and thus pass undetected. This adversary model is not unrealistic. In secure net-
work connections or encrypted storage systems, many attacks originate from sources outside
of these trusted domains (e.g., malware running in different processes or virtualized environ-
ments, untrusted hypervisors, man-in-the-middle attackers intercepting the packets of secure
connections etc.) These attackers can possibly inspect a range of encrypted data, such as the
whole encrypted memory of a computing system, but do not have access to the encryption
keys required for obtaining the corresponding plaintexts. Thus, these attackers are unable to
corrupt user data in a straightforward manner, such as changing special values from 0x00 to
0xFF. Attackers can only do this through the modification of ciphertexts, where ciphertexts
are produced using keys unknown to the attackers.

More formally, the input perturbing adversary is defined as follows: Let’s consider a pair
of encryption and decryption oracles E and D such that D = E−1 and for which D,E ∈
RO2(f,B, ε) for some f,B, ε. An input perturbing adversary MD(q0, . . . , qm−1, B) is defined
as a polynomial time algorithm which:

• has oracle access to D

• has knowledge of m queries q0, . . . , qm−1 to D and their responses D(q0), . . . , D(qm−1),
where the responses exhibit patterns: D(q0), . . . , D(qm−1) ∈ Π(f)

• can perform at most B non-repeating queries to D as part of the game, which are other
than q0, . . . , qm−1.

The algorithm succeeds if it finds a new input data word y which is different from q0, . . . ,
qm−1, the output of which exhibits patterns, i.e., D(y) ∈ Π(f). The number of query-response
values known m is assumed not to be large enough so as to leak information about the internals
of E, D allowing, for instance, rainbow table attacks. The input perturbing adversary type is
shown in Figure 5. One special case of attacks performed by this adversary but not the only
one studied in this paper, includes attacks where the query budget B is tight. These are the
cases of on-line attacks where a single failure from the adversary’s side exposes the attack (e.g.,
B can be 232). These attacks are further discussed in section 6.

The advantage of the input perturbing adversary is defined for the decryption operation
as:

Adv(MD(q0, . . . , qm−1, B), f) = Prob[y ←MD(q0, . . . , qm−1, B);

y /∈ {q0, . . . , qm−1}; D(y) ∈ Π(f)]
(4.1)

4.2 Oracle replacing adversary

Another type of adversary, the ‘oracle replacing adversary’ is associated with replay attacks.
Replay attacks may happen across key domains such as network sessions that are encrypted
with different keys, or encrypted memory domains. The model of the oracle replacing adversary
can indeed be associated with such replay attacks under the assumption that the ingredient
random permutations of an RO2 construction use key values which are specific to particular

11

state i.e.,
cipher text

DR0’, R1’, R2’,… ∈ RO2(f, Β, ε)

can be any of q0,…,qm-1

exhibits
patterns?

focus: replay attacks across key domains
such as memory address domains

adversary has replaced the internal random
permutations R0, R1, R2 ,… with R0’, R1’, R2’,…

which are also random permutations

Figure 6: Oracle replacing adversary

domains of trust. When some valid encrypted data from one domain is replayed in another
domain, then this replay attack is equivalent to replacing the ingredient random permutations
of a RO2 construction with another set of permutations, associated with a new domain, and
observing the output.

More formally, lets consider a pair of encryption and decryption oracles E and D, D =
E−1 for which D,E ∈ RO2(f,B, ε) for some f,B, ε and have access to ingredient random
permutations R0, R1, R2, An oracle replacing adversary MD(q0, . . . , qm−1, B,R) is defined
as a polynomial time algorithm for which the following are true:

• the algorithm has oracle access to DR0,R1,R2,...

• the algorithm has knowledge of m queries q0, . . . , qm−1 to DR0,R1,R2,... and their responses
D(q0), . . . , D(qm−1), where the responses exhibit patterns: D(q0), . . . , D(qm−1) ∈ Π(f)

• the algorithm has access to a set R, R = {{R(0)
0 , R

(0)
1 , . . .}, . . . , {R(n−1)

0 , R
(n−1)
1 , . . .}} of

n sets of random permutations that have the same input and output length characteristics
as R0, R1, R2, . . . and are all different from R0, R1, R2, . . .

• can perform at most B non-repeating queries to DR0,R1,R2,... as part of the game, other
than q0, . . . , qm−1

The algorithm succeeds if it finds a set of new ingredient random permutations {R′0, R′1, R′2,
. . .} ∈ R and an input query word y ∈ {q0, . . . , qm−1}, the output of which exhibits patterns
when y is applied on an instance of D that uses the new ingredient random permutations
R′0, R

′
1, R

′
2, . . ., i.e., DR′0,R

′
1,R
′
2,...(y) ∈ Π(f). As in the case of the input perturbing adversary,

this adversary also does not have any knowledge about possible keys used by E, D. The oracle
replacing adversary is shown in Figure 6.

The advantage of the oracle replacing adversary is defined for the decryption operation as:

Adv(MD(q0, . . . , qm−1, B,R), f) = Prob[{{R′0, R′1, . . .}, y} ←MD(q0, . . . , qm−1, B,R);

y ∈ {q0, . . . , qm−1}; {R′0, R′1, . . .} ∈ R; DR′0,R
′
1,...(y) ∈ Π(f)]

(4.2)

5 Main results

Our main results connect the concept of a random oracle according to an observer function with
security claims associated with the input perturbing and oracle replacing adversary models.

12

Theorem 1: About the security of an RO2 construction in the input perturbing adversary
model. Given a pair of encryption and decryption oracles E and D, D = E−1, an observer
function f , a query bound B, and an observation indistinguishability parameter ε such that:
D,E ∈ RO2(f,B, ε) then for any input perturbing adversary MD(q0, . . . , qm−1, B):

Adv(MD(q0, . . . , qm−1, B), f) 6 Pf · 2ε (5.1)

We note that Pf is the pattern observation probability associated with observer function f .

Proof of Theorem 1: We need to show that for every input perturbing adversary:

Prob[y ←MD(q0, . . . , qm−1, B); y /∈ {q0, . . . , qm−1}; D(y) ∈ Π(f)] 6 Pf · 2ε (5.2)

We assume that an adversary M exists for which the relation 5.2 does not hold. This adversary
can succeed in repeatedly producing messages the outputs of which exhibit patterns with
probability > Pf ·2ε. We will show that if such adversary exists then it is not possible for E,D
to belong to the set RO2(f,B, ε), which contradicts our assumption.

The adversary M is a polynomial time algorithm which performs at most B queries to oracle
D. At the end of its computations the algorithm returns one of the following three outputs:
(i) a value y which, if passed to oracle D, produces an output which exhibits patterns. In this
case, the algorithm is successful; (ii) a value y which, if passed to oracle D, produces an output
which does not exhibit patterns. In this case, the algorithm is unsuccessful; (iii) an indication
that the algorithm has halted before returning any value y. In this case, the algorithm is
unsuccessful as well.

From algorithm M , one can easily construct an algorithm M ′ which invokes M and behaves
in the following way: If M does not halt before returning a y value, M ′ returns the same y
value which M returns. If, on the other hand, M halts before returning a y value, then M ′

selects a value yr at random and returns this value. Furthermore, algorithm M ′ maintains a
table of previously returned yr values so that every time algorithm M halts, the algorithm
M ′ returns a different yr value. From the definition of M ′, it is evident that algorithm M ′

also succeeds in repeatedly producing messages the outputs of which exhibit patterns with
probability > Pf · 2ε. Furthermore, algorithm M ′ never halts but always returns some y value.

The next step of the proof considers two cases for algorithm M ′ shown in Figures 7 and
8 respectively. In this first case, the algorithm M ′ as well as the underlying M distinguish
between queries made to D that assist in the computation of a returned y value and the
proposal of a y value. Such distinction is supported by the control flow of algorithms M,M ′.
Because of such distinction, the oracle D, which the adversary M ′ accesses on the side for his
own calculations can be different the oracle D which is being attacked. In fact, we consider
that such oracle is an exact replica of the attacked oracle.

In the second case, the oracle which the adversary M ′ accesses is indeed the same as the
oracle D under attack. In this second case, there is no distinction between queries assisting
the adversary computations and proposals of a y value. Nor such distinction is supported by
the control flow of algorithms M ′,M .

In the first case, the adversary M ′ performs B attacks which are different from each other.
For these attacks the adversary makes all queries but the one corresponding to the computed
y to the oracle D, which is available on the side for his calculations. The computed y values
are passed to the oracle which is being attacked. The expected value of the ratio of successful
queries to the attacked oracle over all queries satisfies simultaneously > Pf · 2ε due to the
assumption that the attacker exists and is successful and 6 Pf · 2ε due to the fact that the

13

trace of attack 0 trace of attack B-1

y0 yB-1

traces of B attacks

…

queries on a replica
of D on the side

proposals for y values
on D

Figure 7: Hypothetical successful attacks of an input perturbing adversary M’ (first case)

N attacks; the sum of all querries is ≤ B

trace of attack 0 trace of attack N-1

y0
yN-1

…

all queries on D are
also y proposals proposals for y values

Figure 8: Hypothetical successful attacks of an input perturbing adversary M’ (second case)

attacked oracle is RO2(f,B, ε) accepting non-repeating input of maximum length B, which is
not possible.

In the second case, the adversary performs N attacks which are also different from each
other. The sum of their trace lengths is at most B. In these attacks there is no distinction
between queries assisting the adversary computations and proposals for a y value. The expected
value of the ratio of successful queries to the attacked oracle over all queries again satisfies
simultaneously > Pf ·2ε and 6 Pf ·2ε which is not possible. This is because we assume that the
adversary exists, and that the attacked oracle is RO2(f,B, ε) accepting non-repeating input of
maximum length B. Hence Theorem 1 is proven.

The reason for distinguishing between cases 1 and 2 in this proof is because such distinction
allows us to construct different sequences of non-repeating inputs in each case, where these se-
quences demonstrate a paradox. Such sequences need to include quite many successful queries,
due to the assumption that the adversary is successful, and at the same time quite too few due
to the assumption that the construction used is RO2(f,B, ε).

A next theorem concerns the security of RO2 constructions in the oracle replacing adver-
sary model. It is in the proof of this theorem that we make use of the constraints of RO2

constructions which we introduce in Figure 3 above.

Theorem 2: About the security of an RO2 construction in the oracle replacing adversary
model. Given a pair of encryption and decryption oracles E and D, D = E−1, an observer
function f , a query bound B, and an observation indistinguishability parameter ε such that:
D,E ∈ RO2(f,B, ε) then for any oracle replacing adversaryMD(q0, . . . , qm−1, B,R):

Adv(MD(q0, . . . , qm−1, B,R), f) 6 Pf · 2ε (5.3)

where Pf is the pattern observation probability associated with observer function f .

Proof of Theorem 2: We need to show that for every oracle replacing adversary:

14

D R0, R1…

y

exhibits patterns

response
vector r

D R’0, R’1…

y

exhibits patterns ?

response
vector r’

D R0, R1…

y’ which is different from y

Pr[D(y’) ∈ ∏(f)] ≤ �� ⋅ 2
�

response
vector r’

system 1 system 2 system 3

systems 2 and 3 generate the same output

Figure 9: Replacing ingredient random permutations inside an RO2 construction

Prob[{{R′0, R′1, . . .}, y} ←MD(q0, . . . , qm−1, B,R); y ∈ {q0, . . . , qm−1};

{R′0, R′1, . . .} ∈ R; DR′0,R
′
1,...(y) ∈ Π(f)] 6 Pf · 2ε

(5.4)

We assume that an adversary exists for which the relation 5.4 does not hold. This adversary
repeatedly succeeds in producing random permutation replacements and inputs y the outputs
of which exhibit patterns with probability greater than Pf ·2ε. We show that if such adversary
exists then it is not possible for E, D to be RO2(f,B, ε) which contradicts our assumption. The
proof is similar as in Theorem 1. We first state and prove a lemma that bounds the probability
of seeing patterns in the output of an RO2 construction once we replace the ingredient random
permutations.

Lemma 1: Let’s assume that we have a pair of encryption and decryption oracles D,E ∈
RO2(f,B, ε) for some f,B, ε, D = E−1, and some input y, such that DR0,R1,R2,...(y) ∈ Π(f).
Then for any set of ingredient random permutation replacements R′0, R

′
1, . . . which are also

random permutations, the probability Prob[DR′0,R
′
1,...(y) ∈ Π(f)] of seeing patterns in the

output of y is bounded by:

Prob[DR′0,R
′
1,...(y) ∈ Π(f) |DR0,R1,R2,...(y) ∈ Π(f)] 6 Pf · 2ε (5.5)

Proof of Lemma 1: We consider a system 1 shown in Figure 9, where the decryption oracle
D accesses the original ingredient random permutations R0, R1, R2, . . . and in this system one
particular query to R0, R1, R2, . . . returns a query response vector r. In another system, sys-
tem 2, the original ingredient random permutations R0, R1, R2, . . . are replaced by R′0, R

′
1, . . .,

and the same query now returns a different response vector r′. In system 3 of the figure, the
decryption oracle D accesses the original ingredient random permutations R0, R1, R2, . . ., but
in this system the corresponding query to R0, R1, R2, . . . returns a response vector r′, which
is the same as the one returned by the permutations of system 2. As the ingredient random
permutations R0, R1, R2, . . . are bijective functions, they are invertible. By inverting the ingre-
dient random permutations R0, R1, R2, . . . on the response vector r′, one computes an input
y′ which needs to be provided to system 3 in order for the ingredient random permutations
of this system to return the same response vector r′, which is returned in system 2. Due to
R0, R1, R2, . . . being bijective and the RO2 construction constraints introduced in Figure 3,
input y′ must be different from y. Since y′ 6= y, and system 3 is an RO2 construction, then the
output of system 3 exhibits patterns with probability:

15

Prob[DR0,R1,...(y′) ∈ Π(f) |DR0,R1,R2,...(y) ∈ Π(f)] 6 Pf · 2ε (5.6)

The proof of Lemma 1 completes by observing that systems 2 and 3 generate the same output.
Hence:

Prob[DR′0,R
′
1,...(y) ∈ Π(f) |DR0,R1,R2,...(y) ∈ Π(f)] =

Prob[DR0,R1,...(y′) ∈ Π(f) |DR0,R1,R2,...(y) ∈ Π(f)] 6 Pf · 2ε
(5.7)

and Lemma 1 is proven. We proceed with the proof of Theorem 2 by stating and proving one
more Lemma:

Lemma 2: Let’s consider an ensemble of ingredient random permutation sets {R(i)
0 , R

(i)
1 , . . .},

i > 0. Let’s also consider constructions D,E ∈ RO2(f,B, ε) for some f,B, ε and D = E−1.
We further consider a set of input indices, J0 = 0, J1 > J0, J2 > J1, . . . for which Ji+1−Ji 6 B
for all i > 0. Using the constructions E, D and the indices J0, J1, . . ., we define permutation
swapping constructions E′, D′ as constructions that accept as input discrete sequences of
values y0, y1, . . ., have infinite lifetime as opposed to bounded by B, and provide output which
is obtained as follows:

E′(yj) = ER
(i)
0 ,R

(i)
1 ,...(yj) and D′(yj) = DR

(i)
0 ,R

(i)
1 ,...(yj) for all yj such that Ji 6 j < Ji+1

(5.8)

If E′, D′ are defined by equation 5.8, then for any input sequence ỹ0, ỹ1, . . . to D′ which is not
repeating inside the index bounds defined by J0, J1, . . . the following inequality is true:

Prob[D′(ỹ) ∈ Π(f)] 6 Pf · 2ε (5.9)

where ỹj′ 6= ỹj′′ for all Ji 6 j′ < Ji+1, Ji 6 j′′ < Ji+1, j
′ 6= j′′ and i > 0, and where the relation

5.9 holds for every input ỹ ∈ {ỹ0, ỹ1, . . .}.

Proof of Lemma 2: From the definition of equation 5.8 it is evident that E′ and D′ are also
encryption and decryption oracles and that D′ = E′−1. The inputs to decryption oracle D′

can either result in outputs with patterns or not. On the other hand, the inputs that result
in patterns can be split into repeating inputs and non-repeating inputs, as inputs from the
sequence ỹ0, ỹ1, . . . to D′ may be repeating across index bounds. It is sufficient to show that
the property Prob[D′(ỹ) ∈ Π(f)] 6 Pf · 2ε holds for the repeating inputs which produce at
least one output with patterns. This is because the probability Prob[D′(ỹ) ∈ Π(f)] is trivially
0 if it is known that inputs are always unsuccessful. On the other hand, for the non-repeating
inputs the property does hold, as the constructions defined by E′, D′ are RO2 inside the index
bounds.

It is easy to see that, for the remaining case of repeating inputs that produce at least one
output with patterns, the property Prob[D′(ỹ) ∈ Π(f)] 6 Pf ·2ε holds due to Lemma 1. Indeed
let’s consider some input ỹj such that Ji 6 j < Ji+1 for some i > 0. Let’s also consider that
this input, if passed to the decryption oracle D′, produces output that exhibits patterns:

D′(ỹj) = DR
(i)
0 ,R

(i)
1 ,...(ỹj) ∈ Π(f) (5.10)

If this input ỹj appears in the input sequence again, outside the index bounds Ji and Ji+1,
then the probability of seing patterns at the output of this repeated instance of ỹj is bounded

16

according to Lemma 1. Specifically, if value ỹj appears again inside the index bounds J ′i and
Ji′+1 for some i′ 6= i, then the output of the decryption oracle D′ for this repeated instance is

equal to DR
(i′)
0 ,R

(i′)
1 ,...(ỹj). If we apply Lemma 1 to the sets of ingredient random permutations

{R(i)
0 , R

(i)
1 , . . .} and {R(i′)

0 , R
(i′)
1 , . . .} and to the input value ỹj , we obtain inequality:

Prob[DR
(i′)
0 ,R

(i′)
1 ,...(ỹj) ∈ Π(f) |DR

(i)
0 ,R

(i)
1 ,...(ỹj) ∈ Π(f)] 6 Pf · 2ε (5.11)

which completes the proof of Lemma 2. We also note that the inequality 5.9 of Lemma 2 holds
even if the event D′(ỹ) ∈ Π(f) is conditioned upon inputs to D′ which are different from ỹ.
This is due to the fact that the construction D′ is RO2 inside index bounds and the reasonable
assumption that systems can be constructed in such a way that different input values do not
affect instances of D that query different ingredient random permutations.

Completing the proof of Theorem 2: Any instance of D that queries ingredient random
permutations from one of the sets of R is RO2 by the definition of D and due to the fact that the
permutations contained in the sets of R are random permutations. Similarly, any permutation
swapping construction D′ which is produced from D and has infinite lifetime, exhibits patterns
in its output with probability which is bounded according to Lemma 2, provided that the input
is non-repeating inside index bounds.

Now, let’s suppose we have an oracle replacing adversary M , which is repeatedly successful
with probability higher than the bound Pf · 2ε of relation 5.4. In every attack, this adversary
succeeds in computing a different y value and a different set of ingredient random permutations
from R all resulting in patterns with probability > Pf · 2ε. Furthermore, as in the proof of
Theorem 1, this adversary M can be turned into another adversary M ′ which always returns
some output and is still successful in attacking D with probability > Pf · 2ε. We consider
that such attacks are repeated again and again. One can see that the attacks performed by
adversary M ′ form a trace of queries to a permutation swapping construction D′ as defined
in Lemma 2. The expected value E of the ratio of successful queries to D′ over all queries
made needs to satisfy the inequality E > Pf · 2ε, due to the assumption about the existence of
the adversary M ′. On the other hand, the same expected value needs to satisfy the inequality
E 6 Pf · 2ε due to the fact that Lemma 2 holds, which is not possible. Hence, Theorem 2 is
proven.

So far, we have been able to reduce the proofs which establish security in the input per-
turbing and oracle replacing adversary models to showing that the constructions used are RO2

according to a chosen observer function, query budget and indistinguishability parameter. The
implications from Theorems 1 and 2 is that no matter how the adversary corrupts the cipher
text the probability that the patterns are visible in some plaintext can be bounded, if a con-
struction is RO2. In what follows we discuss an example of a 512-bit construction, called IVP,
which is built from 128-bit block cipher building blocks and which is RO2 according to the
observer function f4×16.

6 Example of a cryptographic construction supporting implicit
integrity

6.1 Construction overview

The cryptographic construction we discuss in this section, and which supports implicit integrity,
called IVP, is shown in Figures 10 and 11. Figure 10 provides an overview of the encrypt and
decrypt paths of the construction, while Figure 11 provides a description of the stages involved

17

output

encrypt path

input

four parallel
random permutations

(e.g., AES block
decryptions)

byte
remapping

2 rounds
of permutation-

substitution
stages

decrypt path

input output

byte
remapping

four parallel
random permutations

(e.g., AES block
encryptions)

2 rounds
of substitution-

permutation
stages

Figure 10: Overview of the encrypt and decrypt paths of the IVP construction

in the decrypt path. The IVP construction is a three level confusion diffusion network. It first
employs two rounds of substitution and permutation stages followed by a byte remapping stage.
The byte remapping stage prepares the inputs to four parallel random permutations, which
provide an encryption result. On the decrypt path this order is reversed. The construction is
512-bit wide and its internal stages are defined for specific input and state lengths, which are
discussed below.

The purpose of the two rounds of substitution and permutation stages is to diffuse every
bit of the input into sets of 128 bits. Specifically, each bit is fully diffused into one of four sets
of 128 bits. The purpose of the subsequent byte remapping stage is to change the order of
bytes so that every 128-bit input, which is passed into the subsequent random permutations,
contains bytes that depend on all 512 bits of the input. The random permutations of the
construction can be realized using any block cipher which is 128-bit wide. For example, they
can be realized as four independent AES block encryption stages. The preceding substitution
and permutation stages can also be realized using AES round building blocks for convenience,
as discussed later in this section.

The IVP construction, as we prove later, is indeed RO2 for the f4×16 pattern frequency
observer, the life time value of B = 232 queries and the indistinguishability parameter ε = 2.651
bits. For the sake of clarity, we remind that we are interested in the RO2 behavior of the decrypt
path of the construction, where the inputs are provided by an entity who has no knowledge of
any keys used by the construction. So, the lifetime B = 232 is not the lifetime of a valid user
of the construction but of an adversary (i.e., input perturbing or oracle replacing adversary)
who attacks it.

6.2 On-line attacks and their implications

IVP supports implicit integrity at a security level of 32 bits. Such security level is lower than
the security levels supported by standard MAC algorithms (e.g., [1] [2]), which are typically
at 256 or 512 bits. Still, 32-bit security is not insignificant in the context of on-line attacks. In
on-line attacks, the detection of even a single corruption exposes the attack and the adversary.
As the adversary can only corrupt data in their encrypted form, any subsequent read operation
performed on corrupted data results in a plaintext with high entropy with very high probability,
thus exposing the attack. For this reason, even a lower level of security, such as at 32 bits,
may be quite effective in protecting some computing systems. Defense against on-line attacks

18

R0

R2

R1

R3

B

CM
(first stage)

μ0
μ1

μ3

μ4

μ7

μ8
μ9
μ10
μ11

μ12
μ13
μ14
μ15

μ2

μ6

μ5

CM
(second stage)

RS

RS

RS

RS

SBox

SBox

SBox

SBox

RS SBox

ν0
ν1

ν3

ν4

ν7

ν8
ν9
ν10
ν11

ν12
ν13
ν14
ν15

ν2

ν6

ν5 RS SBox

RS SBox

RS SBox

outputinput

Figure 11: Description of the decrypt path of the IVP construction

at 32 bits of security also means that the probability of the adversary succeeding one and only
time is 2−32+ε for some ε. Moreover, a single corruption detection can cause re-encryption of
all user data with new keys, thus mitigating the attack. On-line attacks are discussed in RFC
4086 [27].

In the context of on-line attacks, a lower bound on the number of queries issued by an
adversary can be set. Within such bound (e.g., 232 queries) the block cipher stages employed
safely approximate random functions. For example, if the output of an 128-bit random permu-
tation is not truncated, then the advantage of distinguishing this random permutation from an
128-bit random function after 232 queries are performed is still < 2−20. Practically, this means
that whereas bytes in the output of a random function are random and uniformly distributed,
bytes in the output of a random permutation take every value from 0 to 255 with probability
that differs from 2−8 by no more than a value ∆ = 2−20. In the analysis that follows we
will either consider the output bytes of the ingredient random permutations as uniformly dis-
tributed and statistically independent when the analysis is not impacted by the presence of a
distinguishing advantage, or indeed associated with such advantage, which will be present in
our proofs yet considered negligible. We will also be using the term ‘almost’ random, uniformly
distributed and statistically independent to characterize bytes or words, when the statistical
properties of bytes or words differ from the properties of random, uniformly distributed and
statistically independent bytes or words by no more than O(∆).

6.3 Construction stages

Figure 11 shows the decrypt path for the IVP construction. In this figure, the input is the
cipher text and the output is the plaintext. In the figure, the four ingredient random per-
mutations employed R0, . . . , R3 are four symmetric encryption/decryption stages. Each stage
applies on inputs of width W1. In the specific design we propose W1 = 128 bits and the
four random permutations of the figure can be realized AES encryption/decryption stages.
Encryption/decryption is repeated four times, each for a separate 128-bit block of the input.

19

Encryption/decryption uses a key value K, which is a vector of four concatenated encryption
keys, one for each block, and, optionally, a tweak vector T .

The stage B indicates an entity reordering operation. Entities are groups of W2 bits. In
this design W2 = 8 bits and this stage is a byte remapping operation. Entity reordering takes
place across the entire width of the construction which is 4 ·W1 bits. Entity reordering is an
interleaving operation that ensures that outputs of the four ingredient random permutations
of the construction are evenly distributed among the subsequent processing stages. Such
interleaving operation is further discussed below. Two subsequent stages denoted as ‘CM’
perform AES-like bit linear processing on their inputs, which we refer to as ‘column mixing’.
In one realization the CM stages may implement the inverse mix columns or the mix columns
transformation of AES. In general, the requirement for each CM stage is to implement bit
linear systems that connect m W2-bit input entities to m W2-bit output entities using an MDS
matrix. The rank of each bit linear system for each output entity should be exactly W2. It
is easy to see that the AES mix columns and inverse mix columns transformations meet this
requirement for m = 4 and W2 = 8 bits. For the proofs discussed below we require that m = 4.
In the figure there are 16 first stage CM transformations denoted as ν0, . . . , ν15 and 16 second
stage CM transformations denoted as µ0, . . . , µ15.

The subsequent ‘RS’ stages indicate a ‘Row Shifting’ operation which is an entity reordering
operation similar to B. Row shifting occurs only inside W1 bit blocks and not across such blocks
as in the case of B. RS stages operate on entities of W2 bits and perform cyclic rotation of such
entities by increasing the number of rotate positions one at a time row-by-row. As in AES, it
is assumed that W2 bit entities are arranged in a matrix formation. In this formation rows are
cyclically rotated either to the left or to the right by a number of positions which is increasing
by one row-by-row. Row 1 for instance may be shifted by one entity position to the left. Row
2 by two entity positions to the left etc. In one realization RS stages implement the inverse
shift rows or the shift rows transformation of AES.

Sbox stands for substitution box. Substitution occurs in the granularity of W2 bits as
in the case of the CM and RS stages. Each Sbox stage in the figure is an array of multiple
substitution boxes of width W2 bits. A substitution box is a randomly chosen 8-bit Pseudo-
Random Permutation (PRP) which can be realized in many ways, such as by combining key
additions with strong non-linear bit mixing operations. In one realization the key values used
by these PRPs are set at the beginning of the operation of the IVP construction. This is
equivalent to selecting a set of W2-bit PRPs at random in the beginning of operation and
using these PRPs as substitution boxes. It is under these considerations that we have proven
specific security claims for the IVP construction, which we discuss in this section. Since we can
select PRPs once at the beginning of operation of the construction, this means that we can
have a single key set for the Sbox stages, which is independent of the keys used by the block
ciphers that implement the random permutations R0, . . . , R3.

The entity reordering operation B of the IVP construction is further illustrated in Figure
12 for the case where W2 = 8 bits (byte remapping). Here, each byte is reordered to a new
position so that all bytes coming from the same 128-bit block output are evenly distributed
to all 128-bit block inputs of a next stage. For instance, regarding the outputs coming from
a first random permutation R0, a first byte is mapped to a first position in a next block. A
second byte is mapped to a fourth position. A third byte to an eighth position, and so on.
Similarly, concerning the outputs coming from a second random permutation R1, a first byte
is mapped to a second position. A second byte is mapped to a fifth position. A third byte is
mapped to a ninth position, and so on.

To derive our byte remapping scheme we considered all possible ways to place 8 bits coming
from the output of an ingredient random permutation into a 32-bit entity. This number which

20

8 bits

byte remapping
in the construction

…

…

…

byte
reordering

Figure 12: Byte remapping in the IVP construction

is equal to
(
32
8

)
= 10, 518, 300 is tractable and allows for the space to be searched even with

exhaustive search. Each bit placement choice corresponds to a different bit linear system
connecting the input bits of the CM transformation to the output bits. The bit placement
choice determines which columns of the CM system matrix are selected in order to describe
the input output relationship. As stated earlier, it is desirable for the rank of the system
characterizing the derivation of each output byte to be exactly equal to W2 = 8 bits. For
the four output bytes we would like to have a cumulative rank equal to 32 bits. From the
10,518,300 choices 158,382 choices have so, including the choice of Figure 12.

6.4 Covered, uncovered and partially covered words

To prove that the IVP construction is RO2 we first demonstrate that the flow of differentials
characterizing this construction is associated with values that are almost random, uniformly
distributed and statistically independent, where the term almost random, uniformly distributed
and statistically independent is defined in Section 6.2. For this purpose we introduce the
concept of covered, uncovered and partially covered words and bytes shown in Figure 13. A
word w0 in the output is covered, w0 ∈ C(W), if the differential p0 which is superimposed on
its state x0 as a result of some input perturbation is (i) non-zero, (ii) almost random, uniformly
distributed, and (iii) almost statistically independent from other word differentials. A word
w0 is uncovered w0 ∈ U(W), if the differential p0 superimposed on its state x0 as a result of
some input perturbation is zero (e.g., the word may be exhibiting patterns).

Similarly, a byte b0 in the output is covered, b0 ∈ C(B), if the differential p0 which
is superimposed on its state x0 as a result of some input perturbation is (i) non-zero, (ii)
almost random, uniformly distributed, and (iii) almsot statistically independent from other
byte differentials. A byte b0 is uncovered b0 ∈ U(B), if the differential p0 superimposed on its
state x0 as a result of some input perturbation is zero. Finally, a word w0 is partially covered
w0 ∈ P (W) if the differential p0 superimposed on its state x0 causes one byte to be uncovered
and the other byte to be covered.

It is not difficult to see that the covered and uncovered states are mutually exclusive for
bytes and, consequently, each word can be in only one of the three states: covered, uncovered

21

�� = �0

�� = �0 + �0
, �0 ≠ 0

�� = �0 + �00| �01,
�00 ≠ 0, �01 = 0

original
word

covered
word

uncovered
word

potentially exhibiting
patterns

patterns are not present

partially
covered word

(single
covered byte)

�� = �0 + �0
, �0 = 0

Figure 13: Covered, uncovered and partially covered words

ingredient
random

permutations
R0, R1,…

reordering
bit linear

processing

8-bit
PRPs

non-zero perturbation
bytes are almost

random, uniformly distributed,
statistically independent

non-zero perturbation
bytes remain

almost random,
uniformly distributed,

and statistically
dependent

non-zero perturbation
bytes are almost

random, uniformly
distributed,

but not statistically
independent

non-zero perturbation
bytes are again

almost random, uniformly
distributed, statistically

independent

…

Figure 14: Statistical properties of differentials associated with ingredient random permutation
outputs

22

μ0

� �� = ����

μ0

� �� = ����

μ0

� �� = ����

μ0

� �� = ����

(a) all output bytes
are non-zero with
Prob ≈ 1- 2-8

(b) a singe output byte
is zero with Prob ≈ 2-8

if input is random

(c) two output bytes
are zero with Prob ≈ 2-16

if input is random

(d) three output bytes
are zero with Prob ≈ 2-24

if input is random

μ0

zero byte
non-zero byte

� �� = �����

μ0

� �� = �����

�� = 0x��� + 0x��� + 0x��� + 9��

�� = 9�� + 0x��� + 0x��� + 0x���

�� = 0x��� + 9�� + 0x��� + 0x���

�� = 0x��� + 0x��� + 9�� + 0x���

example μ0 = IMC of AES

Figure 15: The states of a column mixing transformation

or partially covered. For the IVP construction, the mutual exclusivity of covered and uncovered
states for bytes and can be established by observing that the ingredient random permutations
are the sole source of non-zero byte differentials. Any subsequent processing involves only: (i)
re-ordering operations at the byte granularity; (ii) full-rank bit-linear processing; and (iii) 8-bit
PRPs. Based on this fact, byte differentials remain almost random, uniformly distributed and
statistically independent as they flow through the IVP construction, as shown in Figure 14.
First, at the output of the ingredient random permutation stages, non-zero byte differentials
are almost random, uniformly distributed and statistically independent based on the indistin-
guishability of the ingredient random permutations from random functions and the life time
limitation B = 232.

After the bit linear preprocessing stage, non-zero byte differentials are still almost random,
uniformly distributed, but not necessarily statistically independent as each output byte is a
linear combination of input bytes. After the byte remapping stage, non-zero byte differentials
remain almost random, uniformly distributed, and possibly statistically dependent. It is in
the last stage, and due to the fact that 8-bit PRPs are independently chosen at random, that
non-zero byte differentials become again almost random, uniformly distributed and statistically
independent. Furthermore, these properties of byte differentials do not change if additional
diffusion stages or similar processing steps are added to the construction.

6.5 The state of column mixing transformations

The state S(µ0) of a 4 byte column mixing transformation µ0 can only be any of the following
three of Figure 15: (i) zero state S(µ0) = Szero. In this state all differential inputs a0, . . . , a3 to

23

μ0 μ0 μ0

μ0 μ0

zero byte stimuli result
in all output bytes being zero

single byte stimulus results
in all output bytes being non-zero

two byte stimuli result
in at most one output byte

being zero

three byte stimuli result
in at most two output bytes

being zero

four byte stimuli result
in at most three output bytes

being zero

Figure 16: Behavior of a column mixing transformation as the number non-zero byte stimuli
changes

the transformation µ0 are equal to zero: ai = 0 ∀i ∈ [0, 3]. Furthermore all output differentials
are zero too; (ii) single byte stimulus state S(µ0) = Sstim. In this state only one of the
input byte differentials is non-zero and all other byte differentials are zero: ∃ i ∈ [0, 3] : ai 6=
0 ∧ (∀j, j 6= i, j ∈ [0, 3], aj = 0). Since the column mixing transformation matrix is MDS, all
output byte differentials are non-zero; and (iii) saturation state S(µ0) = Ssat where more than
one of the input byte differentials is non-zero: ∃q0, . . . , qm−1 ∈ [0, 3] : 1 < m 6 4 ∧ aqi 6= 0∀i ∈
[0,m − 1]. Since the transformation µ0 is bit linear of full rank, the following four possible
events may be true: First, all output byte or byte differentials may be non-zero with probability
≈ 1−2−8. Second, a single output byte or byte differential may be zero with probability equal
to 2−8 + O(∆) if inputs satisfy the statistical properties discussed above. Third, two output
byte or byte differentials may be zero with probability 2−16 + 2−8 · O(∆) + O(∆2) if, again,
inputs satisfy the statistical properties discussed above. Fourth, three output byte or byte
differentials may be zero with probability 2−24 + 2−16 · O(∆) + 2−8 · O(∆2) + O(∆3) for the
same inputs.

The effects different numbers of non-zero byte stimuli have on column mixing transforma-
tions are further illustrated in Figure 16. These observations are a direct consequence of the
definition of the column mixing transformation being based on an MDS matrix. First, zero
byte stimuli result in all output bytes being zero. Second, a single byte stimulus results in all
output bytes being non-zero. Third, two byte stimuli result in at most one output byte being
zero. Fourth, three byte stimuli result in at most two output bytes being zero. Finally, four
byte stimuli result in at most three output bytes being zero.

6.6 On the security of the IVP construction

We begin the discussion on the security of the IVP construction by establishing the fact that
the pattern frequency observer f4×16, which we choose to use is indeed associated with 32-bit
security. This function observes whether there are 4 or more 16-bit words which are 16-bit
aligned and equal to each other in a set of 512 bits.

24

Theorem 3: About the security of the f4×16 pattern frequency observer. The f4×16 pattern
frequency observer is a PFO function associated with observation probability 2−32.866.

Proof of Theorem 3: We need to show that the probability of finding at least 4 16-bit words
that are equal to each other in a set of 32 words in random data is 2−32.866. This is an instance
of the more generic problem of computing the birthday collision probability P (B)(m,n, |V |)
for a number of people m > 1 having the same birthday from among the members of a set n,
where the number of birthdays is |V |. In this case |V | = 65536. For this problem solutions
exist [13, 15, 14, 16, 17] such as the the Suzuki et. al. bounds [16] and the approximation by
Kounavis et. al. [17]. Using the Suzuki bounds, the probability of the observer function f4×16
returning true upon receiving some 512-bit input is computed and found to be P (B) < 2−32.8659.
Using the Kounavis approximation, the same probability is found to be P (B) ≈ 2−32.8662. Both
numbers are consistent and establish the security of the f4×16 observer function.

Theorem 4: On the security of the IVP construction. The IVP construction is in the set
RO2(f4×16, 2

32, ε), specified by the observer function f4×16, the adversary query budget 232,
and the indistinguishability parameter ε, which is equal to 2.651 bits:

IVP ∈ RO2(f4×16, 2
32, 2.651) (6.1)

Proof of Theorem 4: Let’s consider y to be the input to the IVP construction. We need to
show that Prob[IVP(y) ∈ Π(f4×16)] 6 Pf4×16 · 2ε where ε = 2.651. Moreover, we need to show
that the probability bound Pf4×16 ·2ε remains the same even when the event IVP(y) ∈ Π(f4×16)
is conditioned upon inputs other than y. We consider y to be the sum of a state vector z and
a perturbation vector p: y = z+p. In one case, the patterns of the f4×16 observer function are
present in the output of the state vector z and remain uncovered. In this case, the probability
Prob[IVP(y) ∈ Π(f4×16)] is bounded by the probability that 4 words or more in the IVP
construction output remain uncovered.

In another case, patterns of the f4×16 appear when all words of the output of the IVP
construction are covered. In this case, the probability Prob[IVP(y) ∈ Π(f4×16)] is equal to
Pf4×16 plus a negligible term associated with the advantage of distinguishing the ingredient
random permutations of the IVP construction from random functions. In between these two
cases, a number of other subevents are possible, where patterns associated with the f4×16
observer function are formed from both uncovered words in the IVP construction output, the
values of which depend on the state vector z, and covered words, the values of which depend
on both the state z and the perturbation vector p.

Before analyzing each of these subevents, we compute the probability of having i-th word
in the output of the IVP construction uncovered. We denote such probability as PUW (i) =
Prob[wi ∈ U(W)]. In what follows we demonstrate that that PUW (i) = PUW 6 2−16 +O(∆′)
and is independent of the word index i. The term O(∆′) is much smaller than 2−16 and can be
considered negligible. To prove this bound for PUW (i) we state and prove a number of useful
Lemmas.

Lemma 3: On computing the probability of a single uncovered word if only one block pertur-
bation value is non-zero. If a block perturbation value p0 (i.e., a perturbation on one of the
four 128-bit blocks of the IVP construction input) is non-zero and all other block perturbations
p1, p2, and p3 are equal to zero then: (i) all four first stage CM transformations ν0, . . . , ν3
of the IVP construction are in the single byte stimulus state; (ii) all four second stage CM
transformations µ0, . . . , µ3 of the IVP construction are in the saturation state; and (iii) the
probability of a single uncovered word is equal to 2−16 +O(∆′), where O(∆′) is negligible:

25

�� �� ��
CM =

{��, ��, ��, ��}
RS SBox

B: byte
remapping

�� �� ��
CM =

{��, ��, ��, ��}
RS SBox

modified byte by perturbation p0

unmodified byte by perturbation p0

all transformations are in the
single byte stimulus state

all transformations are in the
saturation state

two bytes are unmodified
with probability 2-16

unmodified word

Figure 17: Corruptions in the IVP state when only one block perturbation is non-zero

if p0 6= 0 and p1 = p2 = p3 = 0, then S(νi) = Sstim ∀i ∈ [0, 3],

S(µi) = Ssat ∀i ∈ [0, 3], PUW = 2−16 +O(∆′)
(6.2)

Proof of Lemma 3: The situation where only one block perturbation is non-zero is shown
in Figure 17. If only a single block perturbation is non-zero, then each column mixing trans-
formation from among ν0, . . . , ν3 has exactly one non-zero input byte differential. Hence, each
transformation from ν0, . . . , ν3 is in the single byte stimulus state. All four byte differentials of
each column, after each transformation completes, are in this case non-zero. Byte differentials
remain non-zero after the subsequent row shifting and Sbox stages complete too. Hence, all
four second stage column transformations µ0, . . . , µ3 of the IVP construction are in the satura-
tion state. A single unmodified (i.e., uncovered) word in the output of the construction results
from two unaligned unmodified bytes in the preceding row shifting transformation. Since each
of the transformations µ0, . . . , µ3 is in the saturation state each zero byte differential (i.e.,
unmodified byte) appears in the output of these transformations with probability 2−8 +O(∆).
As a result the probability of a single uncovered word in the output of the IVP construction is
equal to 2−16 + 2−8 ·O(∆) +O(∆2). We set the negligible correcting term 2−8 ·O(∆) +O(∆2)
to O(∆′). This term compensates for the fact that the inputs are not exactly uniformly dis-
tributed, as they come from random permutations and not random functions. Hence, Lemma
3 is proven.

Lemma 4: On computing the probability of a single uncovered word if exactly two block per-
turbation values are non-zero. If two block perturbation values p0 and p1 are non-zero and
the other perturbation values p2 and p3 are equal to zero then: (i) all four first stage CM
transformations ν0, . . . , ν3 of the IVP construction are in the saturation state; (ii) there can be
at most a single second stage CM transformation in the zero state; and (iii) the probability of
a single uncovered word is 6 2−16 +O(∆′) for some negligible O(∆′).

26

�� �� ��
CM =

{��, ��, ��, ��}
RS SBox

B: byte
remapping

we assume that no column
has all bytes unmodified

all transformations are in the
saturation state

unknown byte state

�� �� ��
CM =

{��, ��, ��, ��}
RS SBox

each transformation
cannot be in the zero state

two bytes are unmodified
with probability 2-16

uncovered word

Probability of one uncovered word ��� = 2���

Figure 18: Corruptions in the IVP state when two block perturbations are non-zero (case I)

if p0 6= 0, p1 6= 0 and p2 = p3 = 0 then S(νi) = Ssat ∀i ∈ [0, 3],

there is at most one transformation µq : S(µq) = Szero, q ∈ [0, 3],

PUW 6 2−16 +O(∆′)

(6.3)

Proof of Lemma 4: We consider two cases: In a first case (case I) we assume that no column
has all bytes unmodified at the input to the second stage transformations µ0, . . . , µ3. At another
case (case II) we consider that this assumption does not hold. The situation of case I is shown
in Figure 18. In case I, if exactly two block perturbations are non-zero then each column mixing
transformation from ν0, . . . , ν3 has exactly two non-zero input byte differentials. Hence, each
transformation from ν0, . . . , ν3 is in the saturation state. Furthermore, in each column output
of ν0, . . . , ν3 there can be at most one zero byte differential. Due to the assumption associated
with case I, each transformation from µ0, . . . , µ3 is either in the single byte stimulus or in the
saturation state. Furthermore, due to the fact that there is at most one byte per column in the
output of ν0, . . . , ν3 which is unmodified, the number of transformations from µ0, . . . , µ3 which
are in the single byte stimulus state cannot be more than 1. Indeed, if there were 2 or more
transformations from µ0, . . . , µ3 in the single byte stimulus state, then the input to µ0, . . . , µ3
would have contained at least 6 unmodified bytes. Therefore, either 3 or 4 transformations
from µ0, . . . , µ3 are in the saturation state. From these transformations two unaligned zero
byte differentials result in a single uncovered word with probability 2−16 +2−8 ·O(∆)+O(∆2).
Next, we set the correcting term 2−8 · O(∆) + O(∆2) to O(∆′), as in Lemma 3. In this way
we complete the proof of Lemma 4 for case I.

If case II holds, then four unmodified bytes at the output of ν0, . . . , ν3 become aligned via
the subsequent row shifting transformation, in order to form a zero differential input column to
one of the transformations µ0, . . . , µ3. Since there can be at most four zero byte differentials at
the output of ν0, . . . , ν3 there can be no more than one unmodified input column to µ0, . . . , µ3.
Hence, exactly one transformation from µ0, . . . , µ3 is in the zero state and three transformations
are in the saturation state. Transformations ν0, . . . , ν3 are all in the saturation state, as in

27

�� �� ��
CM =

{��, ��, ��, ��}
RS SBox

B: byte
remapping

�� ��
CM =

{��, ��, ��, ��}
RS SBox

at most one column has all
bytes unmodified

at most one transformation
is in the zero state

uncovered word

all transformations are in the
saturation state

unmodified byte by
perturbation p0, due to a
CM transformation being in
the zero state

at most one byte per column
remains unmodified, each with prob. 2-8

one more unmodified byte
is required with prob. 2-8 Probability ��� = 2��� < 2���

Figure 19: Corruptions in the IVP state when two block perturbations are non-zero (case II)

case I. Because of this reason, each of the four zero byte differentials at the output of ν0, . . . , ν3
appears with probability 2−8 + O(∆). Having one word uncovered at the output of the IVP
construction requires at least one more byte differential to be zero at the output of µ0, . . . , µ3.
As a result, the probability of having one uncovered word in the output of the IVP construction
is 6 2−40+2−32 ·O(∆)+ . . .+O(∆5) < 2−16+O(∆′), where O(∆′) = 2−32 ·O(∆)+ . . .+O(∆5).
Hence Lemma 4 is proven for case II as well.

Lemma 5: On computing the probability of a single uncovered word if exactly three block
perturbation values are non-zero. If three block perturbation values p0, p1 and p2 are non-zero
and perturbation value p3 is equal to zero then: (i) all four first stage CM transformations
ν0, . . . , ν3 of the IVP construction are in saturation state; (ii) there can be at most two second
stage CM transformations in the zero state; and (iii) the probability of a single uncovered word
is 6 2−16 +O(∆′) for some negligible O(∆′):

if p0 6= 0, p1 6= 0, p2 6= 0 and p3 = 0 then S(νi) = Ssat ∀i ∈ [0, 3],

there are at most two transformations µq, µr : S(µq) = S(µr) = Szero, q, r ∈ [0, 3],

PUW 6 2−16 +O(∆′)

(6.4)

Proof of Lemma 5: We consider three cases: In a first case (case I) we assume that no
column has all bytes unmodified at the input to the second stage transformations µ0, . . . , µ3.
At another case (case II) we consider that the number columns that have all bytes unmodified
at the input to the second stage transformations µ0, . . . , µ3 is two or more. A third case is
when the number columns that have all bytes unmodified at the input to the second stage
transformations µ0, . . . , µ3 is exactly one. This third case is similar to case II of Lemma 4 and
its proof is omitted.

The situation of case I is shown in Figure 20. In case I, if exactly three block perturbations
are non-zero then each column mixing transformation from ν0, . . . , ν3 has exactly three non-
zero input byte differentials. Hence, each transformation from ν0, . . . , ν3 is in the saturation

28

�� �� ��
CM =

{��, ��, ��, ��}
RS SBox

B: byte
remapping

we assume that no column
has all bytes unmodified;

the case where one
column has all bytes unmodified

is exactly as in Lemma 3

all transformations are in the
saturation state

�� �� ��
CM =

{��, ��, ��, ��}
RS SBox

each transformation
cannot be in the zero state

two bytes are unmodified
with probability 2-16

uncovered word

Probability of one uncovered word ��� = 2���

Figure 20: Corruptions in the IVP state when three block perturbations are non-zero (case I)

state. Furthermore, in each column output of ν0, . . . , ν3 there can be at most two zero byte
differentials. Due to the assumption associated with case I, each transformation from µ0, . . . , µ3
is either in the single byte stimulus or in the saturation state. Furthermore, due to the fact
that there are at most two byte differentials per column in the output of ν0, . . . , ν3 which are
zero, the number of transformations from µ0, . . . , µ3 which are in the single byte stimulus state
cannot be more than 2. If there were 3 or more transformations from µ0, . . . , µ3 in the single
byte stimulus state, then the input to µ0, . . . , µ3 would have contained at least 9 unmodified
bytes. Therefore 2, 3 or 4 transformations from µ0, . . . , µ3 are in the saturation state. From
these transformations, two unaligned byte differentials being equal to zero may result in a
single uncovered word with probability 6 2−16 + O(∆′), for some negligible O(∆′). Hence
Lemma 5 is proven for case I.

If case II holds, then eight unmodified bytes at the output of ν0, . . . , ν3 become aligned
via the subsequent row shifting transformation, in order to form two zero differential input
columns to two of the transformations µ0, . . . , µ3. Since there can be at most eight zero byte
differentials at the output of ν0, . . . , ν3 there can be no more than two zero input columns to
µ0, . . . , µ3. Hence, exactly two transformations from µ0, . . . , µ3 are in the zero state and two
transformations are in the saturation state. Once again, transformations ν0, . . . , ν3 are all in
the saturation state, as in case I. Because of this reason, each of the eight zero byte differentials
at the output of ν0, . . . , ν3 appears with probability 2−8 +O(∆). Having two words uncovered
at the output of the IVP construction is an event that results from having such unmodified
byte differentials at the output of ν0, . . . , ν3 as shown in the figure. As a result, the probability
of having two uncovered words in the output of the IVP construction is 6 2−64 + 2−56 ·O(∆) +
. . .+ O(∆8) < (2−16)2 + O(∆′). As in Lemma 4, we set 2−56 · O(∆) + . . .+ O(∆8) to O(∆′).
Hence Lemma 5 is proven for case II as well.

Lemma 6: On computing the probability of a single uncovered word if all four block perturba-
tion values are non-zero. If all four block perturbation values p0, p1, p2 and p3 are non-zero
then: (i) all four first stage CM transformations ν0, . . . , ν3 of the IVP construction are in sat-

29

�� �� ��
RS SBox

B: byte
remapping

��

CM =
{��, ��, ��, ��}

RS

at most two transformations
are in the zero state

CM =
{��, ��, ��, ��}

all transformations are in the
saturation state

at most two bytes per column
remain unmodified, each with prob. 2-8

at most two columns have all
bytes unmodified

two uncovered words

Probability of two uncovered words = 2��� < 2��� �

��
SBox

Figure 21: Corruptions in the IVP state when three block perturbations are non-zero (case II)

uration state; (ii) there can be at most three second stage CM transformations in the zero
state; and (iii) the probability of a single uncovered word is 6 2−16 +O(∆′) for some negligible
O(∆′).

if pi 6= 0, ∀i ∈ [0, 3] then S(νi) = Ssat ∀i ∈ [0, 3],

there are at most three transformations µq, µr, µs :

S(µq) = S(µr) = S(µs) = Szero, q, r, s ∈ [0, 3], PUW 6 2−16 +O(∆′)

(6.5)

Proof of Lemma 6: We consider three cases: In a first case (case I) we assume that no
column has all bytes unmodified at the input to the second stage transformations µ0, . . . , µ3.
At another case (case II) we consider that the number columns that have all bytes unmodified
at the input to the second stage transformations µ0, . . . , µ3 is three or more. A third case is
when the number columns that have all bytes unmodified at the input to the second stage
transformations µ0, . . . , µ3 is either one or two. This third case is similar to the case II of
Lemmas 4 and 5 and its proof is omitted.

The situation of case I is shown in Figure 22. In case I, if all four block perturbations
are non-zero then each column mixing transformation from ν0, . . . , ν3 has four non-zero input
byte differentials. Hence, each transformation from ν0, . . . , ν3 is in the saturation state in this
case too. Furthermore, in each column output of ν0, . . . , ν3 there can be at most three zero
byte differentials. Due to the assumption associated with case I, each transformation from
µ0, . . . , µ3 is either in the single byte stimulus or in the saturation state. Furthermore, due to
the fact that there are at most three byte differentials per column in the output of ν0, . . . , ν3
which are zero, the number of transformations from µ0, . . . , µ3 which are in the single byte
stimulus state cannot be more than 3. If there were 4 transformations from µ0, . . . , µ3 in the
single byte stimulus state, then the input to µ0, . . . , µ3 would have contained 12 unmodified
bytes. Therefore at least one transformation from µ0, . . . , µ3 is in the saturation state. From
two such transformations in the saturation state, two unaligned byte differentials being equal

30

�� �� ��
CM =

{��, ��, ��, ��}
RS SBox

B: byte
remapping

we assume that no column
has all bytes unmodified;

the cases where one
or two columns have all bytes

unmodified
are exactly as in Lemmas 3, 4

all transformations are in the
saturation state

�� �� ��
CM =

{��, ��, ��, ��}
RS SBox

each transformation
cannot be in the zero state

two bytes are unmodified
with probability 2-16

uncovered word

Probability of one uncovered word ��� = 2���

Figure 22: Corruptions in the IVP state when all block perturbations are non-zero (case I)

to zero result in a single uncovered word with probability 6 2−16 +O(∆′), for some negligible
O(∆′). Hence Lemma 6 is proven for case I.

If case II holds, then twelve unmodified bytes at the output of ν0, . . . , ν3 become aligned
via the subsequent row shifting transformation, in order to form three zero differential input
columns to three of the transformations µ0, . . . , µ3. Since there can be at most twelve zero
byte differentials at the output of ν0, . . . , ν3 there can be no more than three zero differential
input columns to µ0, . . . , µ3. Hence, exactly three transformations from µ0, . . . , µ3 are in the
zero state and one transformation is in the saturation state. Transformations ν0, . . . , ν3 are
all in the saturation state, as in case I. Because of this reason, each of the twelve zero byte
differentials at the output of ν0, . . . , ν3 appears with probability 2−8 + O(∆). Having four
words uncovered at the output of the IVPconstruction is an event that results from having
such unmodified bytes at the output of ν0, . . . , ν3 as shown in the figure. As a result, the
probability of having four uncovered words in the output of the IVP construction is equal to
6 2−96 + 2−88 · O(∆) + . . . + O(∆12) < (2−16)2 + O(∆′). Again, we simplify this inequality
setting 2−88 ·O(∆) + . . .+O(∆12) to O(∆′). Hence Lemma 6 is proven for case II as well.

So far, Lemmas 3-6 have established the fact that the probability of having a single un-
covered word appearing in the output of the IVP construction is bounded in a manner that is
independent of the word index. Furthermore, the bound is equal to 2−16+O(∆′), where O(∆′)
is a negligible term associated with the advantage of distinguishing the ingredient random per-
mutations of the IVP construction from random functions. A next corollary suggests a bound
for the probability of having a single byte uncovered in the output of the IVP construction.

Corollary 1: A single uncovered byte appears at the output of the IVP construction with
probability PUB which is bounded as follows:

PUB 6 2−8 +O(∆) (6.6)

where Delta = 2−20 is associated with the advantage of distinguishing the ingredient random
permutations of the IVP construction from random functions.

31

�� ��
RS SBox

B: byte
remapping

��

CM =
{��, ��, ��, ��}

RS

at most three transformations
are in the zero state

CM =
{��, ��, ��, ��}

all transformations are in the
saturation state

at most three bytes per column
remain unmodified, each with prob. 2-8

at most three columns have all
bytes unmodified

four uncovered words

Probability of four uncovered words = 2��� < 2��� �

��
SBox

Figure 23: Corruptions in the IVP state when all block perturbations are non-zero (case II)

It is not difficult to see why Corollary 1 holds. In all situations covered by Lemma 3 and
cases I and II of Lemmas 4, 5 and 6, either all of the column mixing transformations ν0, . . . , ν3,
or all of the column mixing transformations µ0, . . . , µ3 are in the saturation state. Because of
this fact, it is not possible for zero byte differentials to originate in any way other than from
the bit linear mixing performed by these transformations. Hence, a byte is uncovered with
probability 6 2−8 +O(∆).

Completing the proof of Theorem 4: Having established bounds for the probability of
seeing an uncovered word and an uncovered byte at the output of the IVP construction, we
proceed with proving Theorem 4. The probability of seeing the patterns associated with
the f4×16 observer function at the output of IVP can be expressed as a sum of probabilities
associated with different subevents. In one subevent, as discussed earlier, the patterns are
present in the output of the state vector z (i.e., the original plaintext) and remain visible at
the IVP output after the addition of a perturbation vector p onto z. In another subevent,
patterns are formed only from word differentials, and all IVP output bytes and words are
covered. In other subevents patterns are formed from both covered and uncovered words or
bytes. All these subevents are captured in Proposition 1 below:

Proposition 1: The probability of the event that the output of the IVP construction exhibits
the patterns associated with the f4×16 observer function is bounded as follows:

Prob[IVP(y) ∈ Π(f4×16)] 6 Pf4×16 +
(
32
4

)
· PUW + T +O(∆′) (6.7)

where Pf4×16 is the observation probability associated with f4×16, PUW is the probability of a
word in the output of IVP being uncovered, T is an additive term equal to 2−30.465 and O(∆′)
can be considered negligible.

The term Pf4×16 corresponds to the subevent, where the pattern is formed only from word

differentials and all words in the IVP output are covered. The term
(
32
4

)
· PUW corresponds

32

to the subevent where the pattern is present in the output of the state vector z and remains
visible after the addition of the perturbation vector p. In this case, the pattern is formed from
words, all of which are uncovered. The additive term T corresponds to all other subevents
where the pattern is formed from both covered and uncovered words or bytes. The proof of
the correctness of Proposition 1 is provided in Appendix A.

Substituting Pf4×16 with 2−32.866 from Theorem 3, PUW with the bound 2−16 from Lemmas
3-6, and T with 2−30.465 we obtain:

Prob[IVP(y) ∈ Π(f4×16)] 6 2−30.215 +O(∆) = 2−30.866 · 22.651 +O(∆′) (6.8)

To complete the proof we observe that the probability bounds of all sub-events considered in
the derivation of 6.8 are independent of inputs other than y. Indeed all sub-events considered
involve bytes or words which are either covered or demonstrate patterns coming from the
unperturbed state z. The probability bounds associated with covered words or bytes are
independent of the values of words or bytes of different inputs, as established by Lemmas 3-6
and Corollary 1. On the other hand, the bounds associated with sub-events where patterns may
exist in the unperturbed state z are derived in a way that is independent of the values of these
patterns. Therefore the bound in inequality 6.8 holds even if the event IVP(y) ∈ Π(f4×16) is
conditioned upon inputs other than y. This completes the proof of Theorem 4 and establishes
the security of the IVP construction in the input perturbing and oracle replacing adversary
models.

7 Discussion

There are several questions about implicit integrity that are open and possibly the subject of
future work. We believe that constructions which generalize IVP and apply to larger inputs
may be able to support higher security levels. Such constructions would potentially relax
the assumption of adversaries performing on-line attacks which characterizes the IVP example
discussed in this paper. Specifically, the width values used in the IVP example can be replaced
by generic width parameters and the pattern of seeing for our more words equal to each other in
a set of 32 can be replaced by a more generic requirement that larger quantities (e.g, 128 bits,
256 bits) should demonstrate entropy below a threshold. Such generalization is the subject of
future work.

One may also ask why not simply compress the data and augment it by a MAC in the
now free space. We believe there is a practical reason why implicit integrity is better than
compression. Compressing/decompressing in combinatorial logic requires not only detecting
patterns, but also encoding the data in such a way so that some necessary space is freed for
holding a MAC. For some patterns such as nibble-based patterns, this process can be quite
costly, especially if implemented in combinatorial logic. Ongoing research of ours shows that
the client cache lines that can be compressed at reasonable cost are significantly fewer than
those protected via implicit integrity (78% as opposed to 91%). A MAC engine can also be
costlier to implement in hardware. In contrast, the IVP construction requires only the detection
of patterns, avoiding compressing or decompressing the data. Furthermore, it burdens the
encrypt/decrypt data path with only two additional rounds of permutation-substitution steps,
avoiding the use of any extra MAC engine in HW. Detailed comparison between compression-
based and implicit integrity is the subject of future work.

33

References

[1] Secure Hash Standard, Federal Information Processing Standards Publication FIPS PUB
180-4.

[2] SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions, Federal
Information Processing Standards Publication FIPS PUB 202.

[3] The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing
Standards Publication FIPS PUB 198-1.

[4] SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and ParallelHash, NIST Special
Publication 800-185.

[5] Advanced Encryption Standard (AES), Federal Information Processing Standards Pub-
lication FIPS PUB 197.

[6] Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confi-
dentiality on Storage Devices, NIST Special Publication 800-38E.

[7] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi, V. Shanbhogue
and U. Savagaonkar, Innovative instructions and software model for isolated execution,
Proceedings of the Workshop on Hardware and Architectural Support for Security and
Privacy (HASP), 2013.

[8] A. J. Menezes and P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, 1996.

[9] M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols, In Proceedings, ACM Conference on Computer and Communications
Security, pp. 62-73, 1993.

[10] M. Luby and C. Rackoff, How to Construct Pseudorandom Permutations and Pseudo-
random Functions, SIAM Journal of Computing, Vol. 17, No, 2, 1988.

[11] C. Hall, D. A. Wagner, J. Kelsey and B. Schneier, Building PRFs from PRPs,
CRYPTO 1998: 370-389.

[12] S. Gilboa and S. Gueron, Distinguishing a truncated random permutation from a random
function, IACR Cryptology ePrint Archive 2015: 773 (2015).

[13] M. S. Klamkin and D. J. Newman, Extensions on the Birthday Surprise, Journal of
Combinatorial Theory, Vol. 3, pp. 279-282, 1967.

[14] A. DasGupta, The matching, birthday and the strong birthday problem: a contemporary
review, Journal of Statistical Planning and Inference, Vol. 130, pp. 377-389, 2004.

[15] Wolfram Mathworld: Birthday Problem, website, available on-line at:
http://mathworld.wolfram.com/BirthdayProblem.html

[16] K. Suzuki, D. Tonien, K. Kurosawa and K. Toyota, Birthday Paradox for Multi-
collisions, International Conference on Information Security and Cryptology, pp. 29-40,
2006.

34

[17] M. Kounavis, S. Deutsch, D. Durham and S. Komijani, Non-recursive computation of
the probability of more than two people having the same birthday, ISCC 2017: 1263-1270.

[18] B. Sun, M, Liu, J. Guo, L. Qu and V. Rijmen, New insights on AES-Like SPN Ciphers,
hskip 1em plus 0.5em minus 0.4emCRYPTO 2016.

[19] A. Bogdano and V. Rijmen, Linear hulls with correlation zero and linear cryptanalysis
of block ciphers, Design, Codes and Cryptography, 70(3), pp. 369-383, 2014.

[20] R. Halevi, O. Goldreich and S. Halevi, The random oracle metholodology revisited, 30th
ACM Symposium of the Theory of Computing (STOC), pp. 209-218, 1998.

[21] U. Maurer, R. Renner and C. Holenstein, Indifferentability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology, In Moni Naor, editor,
First Theory of Cryptography Conference - TCC 2004, volume 2951 of LNCS, pages 21-39.
Springer-Verlag, February 1921 2004.

[22] Y. Dodis, T. Liu, M. Stam, J. Steinberger, Indifferentiability of Confusion-Diffusion
Networks, hskip 1em plus 0.5em minus 0.4emePrint 2015/680.

[23] I. Dinur, O. Dunkelman, N. Keller, A. Shamir, Memory-Efficient Algorithms for Finding
Needles in Haystacks, CRYPTO 2016.

[24] M. Dworkin, Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC, NIST Special Publication 800-38D.

[25] J. Salowey, A. Choudhury and D. McGrew, AES Galois Counter Mode (GCM) Cipher
Suites for TLS, RFC 5288.

[26] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Calas and J. Walker, The Skein Hash Function Family, available online at
http://www.skein-hash.info/sites/default/files/skein1.1.pdf

[27] Randomness Requirements for Security, RFC 4086, available online at
http://tools.ietf.org/html/rfc4086. June 2006.

35

A Proof of the correctness of Proposition 1

For ease of notation, we denote the event IVP(y) ∈ Π(f4×16) as E(f4×16). The probability
of this event can be expressed as the sum of the probabilities of nine subevents, which are
mutually exclusive:

Prob[E(f4×16)] = Prob[[seeing the f4×16 pattern in the IVP output] ∧

[no uncovered words] ∧ [no uncovered bytes]] +

Prob[[seeing the f4×16 pattern in the IVP output] ∧

[having exactly 1 uncovered word in the IVP output]] +

Prob[[seeing the f4×16 pattern in the IVP output] ∧

[having exactly 2 uncovered words in the IVP output]] +

Prob[[seeing the f4×16 pattern in the IVP output] ∧

[having exactly 3 uncovered words in the IVP output]] +

Prob[[seeing the f4×16 pattern in the IVP output] ∧

[having 4 or more uncovered words in the IVP output]] +

Prob[[seeing the f4×16 pattern in the IVP output] ∧

[no uncovered words] ∧ [exactly 1 uncovered byte in IVP output]] +

Prob[[seeing the f4×16 pattern in the IVP output] ∧

[no uncovered words] ∧ [exactly 2 uncovered bytes in IVP output]] +

Prob[[seeing the f4×16 pattern in the IVP output] ∧

[no uncovered words] ∧ [exactly 3 uncovered bytes in IVP output]] +

Prob[[seeing the f4×16 pattern in the IVP output] ∧

[no uncovered words] ∧ [4 or more uncovered bytes in IVP output]]

(A.1)

To facilitate computations, we also introduce the following notation to refer to events and
subevents associated with E(f4×16):

i E(f4×16)(N): seeing the f4×16 pattern in N out of 16 words of the IVP output.

ii E(ex-uw)(n,N): having exactly n uncovered words among N in the output of the IVP
construction.

iii E(at-uw)(n,N): having at least n uncovered words among N in the output of the IVP
construction.

iv E(ex-eqw)(n,N): having exactly one set of n equal covered words among N covered ones
in the output of the IVP construction, where no other set with equal or greater number
of equal covered words exists.

36

v E(ex-eqw)(n, v,N): having exactly one set of n equal covered words among N covered
ones in the output of the IVP construction, where no other set with equal or greater
number of equal covered words exists, and where the value of these words is v.

vi E(at-eqw)(n,N): having at least n equal covered words among N covered ones in the
output of the IVP construction.

vii E(diff-uw)(v): having an uncovered word in the output of the IVP construction with
value different from v.

viii E(eq-uw)(v): having an uncovered word in the output of the IVP construction with value
equal to v.

ix E(ex-ub)(n,N): having no uncovered words and exactly n uncovered bytes among N in
the output of the IVP construction.

x E(at-ub)(n,N): having no uncovered words and at least n uncovered bytes among N in
the output of the IVP construction.

xi E(ex-eqb)(n,N): having exactly one set of n equal covered bytes among N covered ones
in the output of the IVP construction, where no other set with equal or greater number
of equal covered bytes exists.

xii E(ex-eqb)(n, v,N): having exactly one set of n equal covered bytes among N covered
ones in the output of the IVP construction, where no other set with equal or greater
number of equal covered bytes exists, and where the value of these bytes is v.

xiii E(eq-ub)(v): having an uncovered byte in the output of the IVP construction with value
equal to v.

xiv E(ex-uw-pat)(n0, n1, N): having exactly n0+n1 uncovered words among N in the output
of the IVP construction, of which n0 words are elements of a set exhibiting the f4×16
pattern and the remaining n1 are not.

xv E(at-uw-pat)(n0, n1, N): having at least n0+n1 uncovered words among N in the output
of the IVP construction, of which n0 words are elements of a set exhibiting the f4×16
pattern and the remaining at least n1 are not.

xvi E(ex-ub-pat)(n0, n1, N): having exactly n0 +n1 uncovered bytes among N in the output
of the IVP construction, of which n0 bytes are elements of a set exhibiting the f4×16
pattern and the remaining n1 are not.

xvii E(at-ub-pat)(n0, n1, N): having at least n0 +n1 uncovered bytes among N in the output
of the IVP construction, of which n0 bytes are elements of a set exhibiting the f4×16
pattern and the remaining at least n1 are not.

Using the notation above, we rewrite equation A.1 as follows:

37

Prob[E(f4×16)] = Prob[E(f4×16)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(0, 64)] +

Prob[E(f4×16)(32) ∧ E(ex-uw)(1, 32)] + Prob[E(f4×16)(32) ∧ E(ex-uw)(2, 32)] +

Prob[E(f4×16)(32) ∧ E(ex-uw)(3, 32)] + Prob[E(f4×16)(32) ∧ E(at-uw)(4, 32)] +

Prob[E(f4×16)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] +

Prob[E(f4×16)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(2, 64)] +

Prob[E(f4×16)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(3, 64)] +

Prob[E(f4×16)(32) ∧ E(ex-uw)(0, 32) ∧ E(at-ub)(4, 64)]
(A.2)

We further define probabilities P0, P1, . . . , P8 as shown in equation A.3:

P0 = Prob[E(f4×16)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(0, 64)] +

P1 = Prob[E(f4×16)(32) ∧ E(ex-uw)(1, 32)]

P2 = Prob[E(f4×16)(32) ∧ E(ex-uw)(2, 32)]

P3 = Prob[E(f4×16)(32) ∧ E(ex-uw)(3, 32)]

P4 = Prob[E(f4×16)(32) ∧ E(at-uw)(4, 32)]

P5 = Prob[E(f4×16)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)]

P6 = Prob[E(f4×16)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(2, 64)]

P7 = Prob[E(f4×16)(32) ∧ E(ex-uw)(0, 32) ∧ E(ex-ub)(3, 64)]

P8 = Prob[E(f4×16)(32) ∧ E(ex-uw)(0, 32) ∧ E(at-ub)(4, 64)]

(A.3)

so that:

Prob[E(f4×16)] =

8∑
i=0

Pi (A.4)

Lemma A.1 The probability P1 defined in equation A.3 is bounded by 2−43.866 + ∆1 where
∆1 is a term significantly smaller than 2−43.866 and can thus be considered negligible:

P1 < 2−43.866 + ∆1 (A.5)

Proof of Lemma A.1 The probability P1 can be expressed as the sum of the probabilities
of two mutually exclusive subevents. The first subevent is the event that the f4×16 pattern
is visible in the output of the IVP construction, that there is exactly one uncovered word in
this output and that the value of this uncovered word is not part of the visible pattern. The
second subevent is the event that the f4×16 pattern is also visible in the output of the IVP
construction, that there is exactly one uncovered word in the output, and that the value of
this uncovered word is now part of the visible pattern:

P1 = Prob[E(f4×16)(32) ∧ E(ex-uw)(1, 32) ∧ E(ex-uw-pat)(0, 1, 32)] +

Prob[E(f4×16)(32) ∧ E(ex-uw)(1, 32) ∧ E(ex-uw-pat)(1, 0, 32)]
(A.6)

38

Equation A.6 can be rewritten as:

P1 = Prob[E(ex-uw)(1, 32)] ·

Prob[E(f4×16)(32) ∧ E(ex-uw-pat)(0, 1, 32) | E(ex-uw)(1, 32)] +

Prob[E(ex-uw)(1, 32)] ·

Prob[E(f4×16)(32) ∧ E(ex-uw-pat)(1, 0, 32) |E(ex-uw)(1, 32)]

(A.7)

Next, we observe that, if it is known that there is one uncovered word in the output of
the IVP construction, then the event of having a visible pattern in the output and that the
uncovered word is not part of the pattern is the same as the event that there are 4 or more
words equal to each other among 31 in the output of IVP and that the uncovered word is not
part of the pattern. Similarly, the event of having a visible pattern in the output and that the
uncovered word is part of the pattern is the same as the event that there are 3 or more words
equal to each other among 31 in the output of IVP and that that the uncovered word is part
of the pattern:

P1 = Prob[E(ex-uw)(1, 32)] ·

Prob[E(at-eqw)(4, 31) ∧ E(ex-uw-pat)(0, 1, 32) | E(ex-uw)(1, 32)] +

Prob[E(ex-uw)(1, 32)] ·

Prob[E(at-eqw)(3, 31) ∧ E(ex-uw-pat)(1, 0, 32) |E(ex-uw)(1, 32)]

(A.8)

In the equality above, the probability of the event of having 4 or more words equal to
each other among 31, which we denote as E(at-eqw)(4, 31), can be safely approximated
by the probability of the most dominant subevent of having exactly one set of 4 words
equal to each other and no other sets of 4 or more word equalities, E(ex-eqw)(4, 31), pro-
vided that we add some negligible term δ to the result. Indeed using the Suzuki bound
Prob[E(at-eqw)(4, 31)] < 233.0585, whereas the probability of the event E(ex-eqw)(4, 31) is
almost equal to 233.0590. Their difference is 2−44.55 which can be considered negligible when
compared to the the bound 233.0585. This approximation continues to hold even when the
event E(at-eqw)(4, 31) is conditioned upon E(ex-uw)(1, 32), due to the almost statistical in-
dependence of the two events, and provided that a correcting negligible term is present. The
approximation also holds when we compute the probability of this event E(at-eqw)(4, 31) to-
gether with the event that the value of the uncovered word participates (or not) in the visible
pattern. The events E(ex-uw-pat)(0, 1, 32) and E(ex-uw-pat)(1, 0, 32) when considered in con-
junction with E(at-eqw)(4, 31) do not significantly alter the fact that E(ex-eqw)(4, 31) is the
dominant subevent. Finally, we note that a similar approximation holds for the event of having
3 or more words equal to each other among 31 words. Hence:

P1 = Prob[E(ex-uw)(1, 32)] ·

Prob[E(ex-eqw)(4, 31) ∧ E(ex-uw-pat)(0, 1, 32) | E(ex-uw)(1, 32)] +

Prob[E(ex-uw)(1, 32)] ·

Prob[E(ex-eqw)(3, 31) ∧ E(ex-uw-pat)(1, 0, 32) |E(ex-uw)(1, 32)] + δ

(A.9)

39

In the next step of the proof, we express the events E(ex-eqw)(4, 31) and E(ex-eqw)(3, 31)
as a union of mutually exclusive subevents E(ex-eqw)(4, v, 31) and E(ex-eqw)(3, v, 31), where
in each subevent the elements of the sets of 3 or 4 words equal to each other take a specific
value v.

P1 = Prob[E(ex-uw)(1, 32)] ·∑
v

Prob[E(ex-eqw)(4, v, 31) ∧ E(ex-uw-pat)(0, 1, 32) | E(ex-uw)(1, 32)] +

Prob[E(ex-uw)(1, 32)] ·∑
v

Prob[E(ex-eqw)(3, v, 31) ∧ E(ex-uw-pat)(1, 0, 32) |E(ex-uw)(1, 32)] + δ

(A.10)

Equation A.10 can be further rewritten as:

P1 = Prob[E(ex-uw)(1, 32)] ·∑
v

Prob[E(ex-eqw)(4, v, 31) ∧ E(diff-uw)(v) | E(ex-uw)(1, 32)] +

Prob[E(ex-uw)(1, 32)] ·∑
v

Prob[E(ex-eqw)(3, v, 31) ∧ E(eq-uw)(v) |E(ex-uw)(1, 32)] + δ

= Prob[E(ex-uw)(1, 32)] ·∑
v

(
Prob[E(ex-eqw)(4, v, 31) ∧ E(diff-uw)(v) | E(ex-uw)(1, 32)] +

Prob[E(ex-eqw)(3, v, 31) ∧ E(eq-uw)(v) |E(ex-uw)(1, 32)]
)

+ δ

(A.11)

The state of each word in the output of the IVP construction, as being covered or uncovered,
is almost statistically independent from the state of other words. Because of this, the condition
E(ex-uw)(1, 32) can be removed from the probabilities of events that describe equality of
covered word values Prob[E(ex-eqw)(4, v, 31)] and Prob[E(ex-eqw)(3, v, 31)] in equation A.11.
This, again, can be done provided that a correcting negligible term is present. Moreover, each
probability term can be expressed as a product of two:

P1 = Prob[E(ex-uw)(1, 32)] ·∑
v

(
Prob[E(ex-eqw)(4, v, 31)] · Prob[E(diff-uw)(v) | E(ex-uw)(1, 32)] +

Prob[E(ex-eqw)(3, v, 31)] · Prob[E(eq-uw)(v) | E(ex-uw)(1, 32)]
)

+ δ

(A.12)

We conclude the proof observing that the probability terms Prob[E(ex-eqw)(4, v, 31)] and
Prob[E(ex-eqw)(3, v, 31)] are the same for every value of v. Because of this reason, these
probability terms can be taken out of the summation, where the term v can be replaced by
some term v0 that represents any value from 0 to 65536. We also observe that the probability

40

Prob[E(diff-uw)(v) |E(ex-uw)(1, 32)] can be replaced by 1 in order to obtain an upper bound
and that

∑
v Prob[E(eq-uw)(v) | E(ex-uw)(1, 32)] = 1.

As a result P1 is bounded by:

P1 < Prob[E(ex-uw)(1, 32)] ·(
65536 · Prob[E(ex-eqw)(4, v0, 31)] + Prob[E(ex-eqw)(3, v0, 31)]

)
+ δ

(A.13)

The term Prob[E(ex-uw)(1, 32)] is the probability of having one uncovered word in the
output of the IVP construction in any location, and is equal to 32 · 2−16 + A0 where the
term A0 is negligible and is associated with the advantage of distinguishing the ingredient
random permutations of the IVP construction from random functions. On the other hand,
the term Prob[E(ex-eqw)(4, v0, 31)] is equal to

(
31
4

)
· 2−64 + A1, where the term A1 is also

negligible and is associated with the approximation error and the advantage of distinguishing
the ingredient random permutations of the IVP construction from random functions. Finally,
the term Prob[E(ex-eqw)(3, v0, 31)] is equal to

(
31
3

)
·2−48 +A2, where the term A2 is negligible

for too, the same reasons as A1. From these equalities and relation A.13 we get:

P1 < 2−43.866 + ∆1 (A.14)

where ∆1 is negligible and depends on A0, A1, A2 and δ. In this way, Lemma A.1 is proven.

Lemma A.2 The probability P2 defined in equation A.3 is bounded by 2−46.279 + ∆2 where
∆2 is a term significantly smaller than 2−46.279 and can thus be considered negligible:

P2 < 2−46.279 + ∆2 (A.15)

Proof of Lemma A.2 The probability P2 can be bounded in a similar manner as probability
P1 in Lemma A.1. Probability P2 can be expressed as the sum of the probabilities of three
mutually exclusive subevents. The first subevent is the event that the f4×16 pattern is visible
in the output of the IVP construction, that there are exactly two uncovered words in this
output and that the values of these uncovered words are not part of the visible pattern. The
second subevent is the event that the f4×16 pattern is also visible in the output of the IVP
construction, that there are exactly two uncovered words in the output, and that the value
of the first uncovered word is part of the visible pattern, but the value of the second is not.
The third subevent is the event that the f4×16 pattern is visible in the output of the IVP
construction, that there are exactly two uncovered words in the output, and that the values of
both uncovered words are part of the visible pattern. It should be noted that the terms ‘first’
and ‘second’ here do not refer to any specific order of the uncovered words, but are merely
used for differentiating between the two. The same applies to other similar subsequent uses
of the terms first, second, etc. Considering only the dominant subevents, as in the proof of
Lemma A.1, we write the probability P2 as:

41

P2 = Prob[E(ex-uw)(2, 32)] ·

Prob[E(ex-eqw)(4, 30) ∧ E(ex-uw-pat)(0, 2, 32) | E(ex-uw)(2, 32)] +

Prob[E(ex-uw)(2, 32)] ·

Prob[E(ex-eqw)(3, 30) ∧ E(ex-uw-pat)(1, 1, 32) |E(ex-uw)(2, 32)] +

Prob[E(ex-uw)(2, 32)] ·

Prob[E(ex-eqw)(2, 30) ∧ E(ex-uw-pat)(2, 0, 32) |E(ex-uw)(2, 32)] + δ

(A.16)

Equation A.16 can be further rewritten, following a similar methodology as in the proof of
Lemma A.1:

P1 = Prob[E(ex-uw)(2, 32)] ·∑
v

(
Prob[E(ex-eqw)(4, v, 30)] · Prob[E(diff-uw)(v) |E(ex-uw)(2, 32)]2 +

Prob[E(ex-eqw)(3, v, 30)] · 2 · Prob[E(diff-uw)(v) |E(ex-uw)(2, 32)] ·

Prob[E(eq-uw)(v) |E(ex-uw)(2, 32)] +

Prob[E(ex-eqw)(2, v, 30)] · Prob[E(eq-uw)(v) |E(ex-uw)(2, 32)]2
)

+ δ

(A.17)

Next, we observe that the terms Prob[E(ex-eqw)(4, v, 30)] and Prob[E(ex-eqw)(3, v, 30)]
are the same for every value of v and can be taken out of the summation, as in the proof

of Lemma A.1. We also observe that the probability Prob[E(diff-uw)(v) |E(ex-uw)(2, 32)]
can be replaced by 1 in order to obtain an upper bound for the probability P2, and that∑

v Prob[E(eq-uw)(v) |E(ex-uw)(2, 32)] = 1. Finally, we observe that
∑

v Prob[E(eq-uw)(v) |
E(ex-uw)(2, 32)]2 <

∑
v Prob[E(eq-uw)(v) |E(ex-uw)(2, 32)] = 1. As a result P2 is bounded

by:

P2 < Prob[E(ex-uw)(2, 32)] ·(
65536 · Prob[E(ex-eqw)(4, v0, 30) + 2 · Prob[E(ex-eqw)(3, v0, 30) +

Prob[E(ex-eqw)(2, v0, 30)
)

+ δ

(A.18)

The term Prob[E(ex-uw)(2, 32)] is the probability of having two uncovered words in the
output of the IVP construction in any locations and is equal to

(
32
2

)
· 2−32 + A0 where the

term A0 is negligible and is associated with the advantage of distinguishing the ingredient
random permutations of the IVP construction from random functions. On the other hand,
the term Prob[E(ex-eqw)(4, v0, 30)] is equal to

(
30
4

)
· 2−64 + A1, where the term A1 is also

negligible and is associated with the approximation error and the advantage of distinguishing
the ingredient random permutations of the IVP construction from random functions. Finally,
the term Prob[E(ex-eqw)(3, v0, 30)] is equal to

(
30
3

)
·2−48 +A2, where the term A2 is negligible

for the same reasons, and the term Prob[E(ex-eqw)(2, v0, 30)] is equal to
(
30
2

)
·2−32+A3, where

the term A3 is negligible too. From these equalities and relation A.18 we get:

P1 < 2−46.279 + ∆2 (A.19)

42

where ∆2 is negligible and depends on A0, A1, A2, A3 and δ. In this way, Lemma A.2 is
proven.

Lemma A.3 The probability P3 defined in equation A.3 is bounded by 2−46.865 + ∆3 where
∆3 is a term significantly smaller than 2−46.865 and can thus be considered negligible:

P3 < 2−46.865 + ∆3 (A.20)

Proof of Lemma A.3 The probability P3 can be expressed as the sum of the probabilities
of four mutually exclusive subevents. The first subevent is the event that the f4×16 pattern is
visible in the output of the IVP construction, that there are exactly three uncovered words in
this output and that the values of these uncovered words are not part of the visible pattern.
The second subevent is the event that the f4×16 pattern is also visible in the output of the
IVP construction, that there are exactly three uncovered words in the output, and that the
value of the first uncovered word is part of the visible pattern, but the values of the other two
not. The third subevent is the event that the f4×16 pattern is visible in the output of the IVP
construction, that there are exactly three uncovered words in the output, that the values of
the first two uncovered words are part of the visible pattern, and that the value of the third
uncovered word is not. A fourth subevent is the event that the f4×16 pattern is visible in the
output of the IVP construction, that there are exactly three uncovered words in the output,
and that the values of these uncovered words are all part of the visible pattern. Considering
only the dominant subevents, the probability P3 can be written as:

P3 = Prob[E(ex-uw)(3, 32)] ·

Prob[E(ex-eqw)(4, 29) ∧ E(ex-uw-pat)(0, 3, 32) | E(ex-uw)(3, 32)] +

Prob[E(ex-uw)(2, 32)] ·

Prob[E(ex-eqw)(3, 29) ∧ E(ex-uw-pat)(1, 2, 32) |E(ex-uw)(3, 32)] +

Prob[E(ex-uw)(2, 32)] ·

Prob[E(ex-eqw)(2, 29) ∧ E(ex-uw-pat)(2, 1, 32) |E(ex-uw)(3, 32)] +

Prob[E(ex-uw)(2, 32)] ·

Prob[E(ex-uw-pat)(3, 0, 32) |E(ex-uw)(3, 32)]

(A.21)

Equation A.21 can be further rewritten as follows, following a similar methodology as in
Lemma A.2:

43

P3 = Prob[E(ex-uw)(3, 32)] ·∑
v

(
Prob[E(ex-eqw)(4, v, 29)] · Prob[E(diff-uw)(v) |E(ex-uw)(3, 32)]3 +

Prob[E(ex-eqw)(3, v, 29)] · 3 · Prob[E(diff-uw)(v) |E(ex-uw)(3, 32)]2 ·

Prob[E(eq-uw)(v) |E(ex-uw)(3, 32)] +

Prob[E(ex-eqw)(2, v, 29)] · 3 · Prob[E(diff-uw)(v) |E(ex-uw)(3, 32)] ·

Prob[E(eq-uw)(v) |E(ex-uw)(3, 32)]2 +

Prob[E(ex-eqw)(1, v, 29)] · Prob[E(eq-uw)(v) |E(ex-uw)(3, 32)]3
)

+ δ

(A.22)

Next, we observe that all terms of the form Prob[E(ex-eqw)(n, v, 29)], n = 1, 2, 3, 4 are
the same for every value of v and can be taken out of the summation as in the previous
two proofs, replacing v by v0 to represent any value. We also observe that the probability

Prob[E(diff-uw)(v)|E(ex-uw)(3, 32)] can be replaced by 1 in order to obtain an upper bound for
the probability P3, and that

∑
v Prob[E(eq-uw)(v) |E(ex-uw)(3, 32)] = 1. Finally, we observe

that
∑

v Prob[E(eq-uw)(v)| E(ex-uw)(3, 32)]3 <
∑

v Prob[E(eq-uw)(v)| E(ex-uw)(3, 32)]2. As
a result P3 is bounded by:

P3 < Prob[E(ex-uw)(3, 32)] ·(
65536 · Prob[E(ex-eqw)(4, v0, 29) + 3 · Prob[E(ex-eqw)(3, v0, 29) +

3 · Prob[E(ex-eqw)(2, v0, 29) +

Prob[E(ex-eqw)(1, v0, 29)
)

+ δ

(A.23)

The term Prob[E(ex-uw)(3, 32)] is the probability of having three uncovered words in the
output of the IVP construction in any locations and is equal to

(
32
3

)
·2−48+A0 where the term A0

is negligible and is associated with the advantage of distinguishing the ingredient random per-
mutations of the IVP construction from random functions. The term Prob[E(ex-eqw)(4, v0, 29)]
is equal to

(
29
4

)
· 2−64 + A1, where the term A1 is also negligible and is associated with the

approximation error and the advantage of distinguishing the ingredient random permuta-
tions of the IVP construction from random functions. The term Prob[E(ex-eqw)(3, v0, 29)]
is equal to

(
29
3

)
· 2−48 + A2, where the term A2 is negligible for the same reasons. The term

Prob[E(ex-eqw)(2, v0, 29)] is equal to
(
29
2

)
· 2−32 + A3, where the term A3 is negligible too.

Finally, the term Prob[E(ex-eqw)(1, v0, 29)] is equal to 29 · 2−16 + A4, where the term A4 is
negligible. From these equalities and relation A.23 we get:

P3 < 2−46.865 + ∆3 (A.24)

where ∆3 is negligible and depends on A0, . . . , A4 and δ. This completes the proof of Lemma
A.3.

Lemma A.4 The probability P5 defined in equation A.3 is bounded by 2−34.406 + ∆5 where
∆5 is a term significantly smaller than 2−34.406 and can thus be considered negligible:

44

P5 < 2−34.406 + ∆5 (A.25)

Proof of Lemma A.4 The probability P5 can be expressed as the sum of the probabilities
of two mutually exclusive subevents. The first subevent is the event that the f4×16 pattern
is visible in the output of the IVP construction, that there are no uncovered words but one
uncovered byte in this output, and that this uncovered byte is not part of the visible pattern.
The second subevent is the event that the f4×16 pattern is also visible in the output of the IVP
construction, that there are no uncovered words but one uncovered byte in the output, and
that the value of this uncovered byte is part of the visible pattern. According to such splitting,
the probability P5 can be written as:

P5 = Prob[E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] ·

Prob[E(f4×16)(32) ∧ E(ex-ub-pat)(0, 1, 64) | E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] +

Prob[E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] ·

Prob[E(f4×16)(32) ∧ E(ex-ub-pat)(1, 0, 64) |E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)]

(A.26)

Next, we observe that Prob[E(ex-uw)(0, 32) ∧ E(ex-ub)(1, 64)] ≈ Prob[E(ex-ub)(1, 64)]
and that the event E(f4×16)(32) can be expressed in terms of the probabilities of 3 or 4 words
or more being equal to each other, in the output of the IVP construction.

P5 = Prob[E(ex-ub)(1, 64)] ·

Prob[E(at-eqw)(4, 31) ∧ E(ex-ub-pat)(0, 1, 64) | E(ex-ub)(1, 64)] +

Prob[E(ex-ub)(1, 64)] ·

Prob[E(at-eqw)(3, 31) ∧ E(ex-ub-pat)(1, 0, 64) |E(ex-ub)(1, 64)] + δ

(A.27)

where δ compensates for the approximation error and can be considered negligible.
Next, we approximate the probabilities of the events E(at-eqw)(4, 31) and E(at-eqw)(3, 31)

with the probabilities of the most dominant subevents E(ex-eqw)(4, 31) and E(ex-eqw)(3, 31)
as in the previous proofs. Furthermore, we denote the concatenation of two byte values v and
w forming a word as v|w and write:

P5 = Prob[E(ex-ub)(1, 64)] ·∑
v|w

Prob[E(ex-eqw)(4, v|w, 31) ∧ E(ex-ub-pat)(0, 1, 64) | E(ex-ub)(1, 64)] +

Prob[E(ex-ub)(1, 64)] ·∑
v|w

Prob[E(ex-eqw)(3, v|w, 31) ∧ E(ex-ub-pat)(1, 0, 64) |E(ex-ub)(1, 64)] + δ

(A.28)

45

using a correcting term δ to compensate for the approximations.

We proceed with the proof observing that the event E(ex-ub-pat)(0, 1, 64) of an uncovered
byte not being part of a visible pattern can be removed in order to obtain an upper bound, being

a subset of the entire sample space Ω. We also observe that the event E(ex-ub-pat)(1, 0, 64)
of an uncovered byte being part of a visible pattern is a subset of the event that an uncovered
byte takes the value v or the value w, and its adjacent covered byte also takes the value v or
the value w. Hence:

P5 < Prob[E(ex-ub)(1, 64)] ·∑
v|w

Prob[E(ex-eqw)(4, v|w, 31)| E(ex-ub)(1, 64)] +

Prob[E(ex-ub)(1, 64)] ·∑
v|w

Prob[E(ex-eqw)(3, v|w, 31) ∧ (E(eq-ub)(v) ∨ E(eq-ub)(w)) ∧

(E(ex-eqb)(1, v, 1) ∨ E(ex-eqb)(1, w, 1)) |E(ex-ub)(1, 64)] + δ

(A.29)

Relation A.29 can be further rewritten as:

P5 < Prob[E(ex-ub)(1, 64)] ·
∑
v|w

(
Prob[E(ex-eqw)(4, v|w, 31)] +

Prob[E(ex-eqw)(3, v|w, 31)] ·
(
Prob[E(eq-ub)(v) |E(ex-ub)(1, 64)] +

Prob[E(eq-ub)(w) |E(ex-ub)(1, 64)]
)
·(

Prob[E(ex-eqb)(1, v, 1)] + Prob[E(ex-eqb)(1, w, 1)]
))

+ δ

(A.30)

The terms Prob[E(ex-eqw)(4, v|w, 31)], Prob[E(ex-eqw)(3, v|w, 31)] and the probability

sum
(
Prob[E(ex-eqb)(1, v, 1)] + Prob[E(ex-eqb)(1, w, 1)]

)
are all independent of the exact

values of v and w. These terms can be taken out of the summation, replacing v and w
with v0 and w0 respectively in order to refer to any value of v, w. We also observe that∑

v|w Prob[E(eq-ub)(v) | E(ex-ub)(1, 64)] =
∑

v|w Prob[E(eq-ub)(w) | E(ex-ub)(1, 64)] = 256.
Based on these observations, the relation A.30 can be simplified as follows:

P5 < Prob[E(ex-ub)(1, 64)] ·(
65536 · Prob[E(ex-eqw)(4, v0|w0, 31) + 512 · Prob[E(ex-eqw)(3, v0|w0, 31) ·(
Prob[E(ex-eqb)(1, v0, 1)] + Prob[E(ex-eqb)(1, w0, 1)]

))
+ δ

(A.31)

The term Prob[E(ex-ub)(1, 64)] is the probability of having an uncovered byte in the output
of the IVP construction in any location and is equal to 64·2−8+A0 where the term A0 is negligi-
ble and is associated with the advantage of distinguishing the ingredient random permutations
of the IVP construction from random functions. The term Prob[E(ex-eqw)(4, v0|w0, 31)] is
equal to

(
31
4

)
· 2−64 +A1, where the term A1 is also negligible for the same reasons. The term

46

Prob[E(ex-eqw)(3, v0|w0, 31)] is equal to
(
31
3

)
· 2−48 +A2, where the term A2 is negligible. The

term Prob[E(ex-eqb)(1, v0, 1)] is equal to 2−8 + A3, where the term A3 is negligible. Finally,

the term Prob[E(ex-eqb)(1, w0, 1)] is also equal to 2−8+A3. From these equalities and relation
A.31 we get:

p5 < 2−34.406 + ∆5 (A.32)

where ∆5 is negligible and depends on A0, . . . , A3 and δ. This completes the proof of Lemma
A.4.

Lemma A.5 The probability P6 defined in equation A.3 is bounded by 2−33.187 + ∆6 where
∆6 is a term significantly smaller than 2−33.187 and can thus be considered negligible:

P6 < 2−33.187 + ∆6 (A.33)

Proof of Lemma A.5 The probability P6 can be expressed as the sum of the probabilities
of three mutually exclusive subevents. The first subevent is the event that the f4×16 pattern
is visible in the output of the IVP construction, that there are no uncovered words but two
uncovered bytes in this output, and that no uncovered byte is part of the visible pattern. The
second subevent is the event that the f4×16 pattern is also visible in the output of the IVP
construction, that there are no uncovered words but two uncovered bytes in the output, and
that the value of the first uncovered byte is part of the visible pattern, but the value of the
second is not. The third subevent is the event that the f4×16 pattern is visible in the output
of the IVP construction, that there are no uncovered words but two uncovered bytes in the
output, and that the values of the uncovered bytes are part of the visible pattern. According
to such splitting, and if include only the dominant subevents, the probability P6 can be written
as:

P6 = Prob[E(ex-ub)(2, 64)] ·∑
v|w

Prob[E(ex-eqw)(4, v|w, 30) ∧ E(ex-ub-pat)(0, 2, 64) | E(ex-ub)(2, 64)] +

Prob[E(ex-ub)(2, 64)] ·∑
v|w

Prob[E(ex-eqw)(3, v|w, 30) ∧ E(ex-ub-pat)(1, 1, 64) |E(ex-ub)(2, 64)] +

Prob[E(ex-ub)(2, 64)] ·∑
v|w

Prob[E(ex-eqw)(2, v|w, 30) ∧ E(ex-ub-pat)(2, 0, 64) |E(ex-ub)(2, 64)] + δ

(A.34)

Next, we obtain a bound for the probability P6, in a similar manner as in the proof of
Lemma A.4, considering that the event of an uncovered byte being part of a visible pattern is
a subset of the event that an uncovered byte takes the value v or the value w, and its adjacent
covered byte also takes the value v or the value w:

47

P6 < Prob[E(ex-ub)(2, 64)] ·
∑
v|w

(
Prob[E(ex-eqw)(4, v|w, 30)] +

2 · Prob[E(ex-eqw)(3, v|w, 30)] ·
(
Prob[E(eq-ub)(v) |E(ex-ub)(2, 64)] +

Prob[E(eq-ub)(w) |E(ex-ub)(2, 64)]
)
·(

Prob[E(ex-eqb)(1, v, 1)] + Prob[E(ex-eqb)(1, w, 1)]
)

+

Prob[E(ex-eqw)(2, v|w, 30)] ·
(
Prob[E(eq-ub)(v) |E(ex-ub)(2, 64)] +

Prob[E(eq-ub)(w) |E(ex-ub)(2, 64)]
)2 ·(

Prob[E(ex-eqb)(1, v, 1)] + Prob[E(ex-eqb)(1, w, 1)]
)2)

+ δ

(A.35)

The terms Prob[E(ex-eqw)(n, v|w, 30)], for n = 2, 3, 4, as well as the probability sum(
Prob[E(ex-eqb)(1, v, 1)] + Prob[E(ex-eqb)(1, w, 1)]

)
are all independent of the exact values of

v and w. These terms can be taken out of the summation, as in the previous proof. We also ob-

serve that
∑

v|w
(
Prob[E(eq-ub)(v)| E(ex-ub)(2, 64)]+ Prob[E(eq-ub)(w)| E(ex-ub)(2, 64)]

)2
<∑

v|w
(
Prob[E(eq-ub)(v) | E(ex-ub)(2, 64)] + Prob[E(eq-ub)(w) | E(ex-ub)(2, 64)]

)
= 512.

Based on these observations, the relation A.35 can be simplified as follows:

P6 < Prob[E(ex-ub)(2, 64)] ·(
65536 · Prob[E(ex-eqw)(4, v0|w0, 30) +

1024 · Prob[E(ex-eqw)(3, v0|w0, 30) ·(
Prob[E(ex-eqb)(1, v0, 1)] + Prob[E(ex-eqb)(1, w0, 1)]

)
+

512 · Prob[E(ex-eqw)(2, v0|w0, 30) ·(
Prob[E(ex-eqb)(1, v0, 1)] + Prob[E(ex-eqb)(1, w0, 1)]

)2)
+ δ

(A.36)

The term Prob[E(ex-ub)(2, 64)] is the probability of having two uncovered bytes in the
output of the IVP construction as part of any two different words and is equal to 4·

(
32
2

)
·2−16+A0

where the term A0 is negligible and is associated with the advantage of distinguishing the
ingredient random permutations of the IVP construction from random functions. The term
Prob[E(ex-eqw)(4, v0|w0, 30)] is equal to

(
30
4

)
· 2−64 +A1, where the term A1 is also negligible

for the same reasons. The term Prob[E(ex-eqw)(3, v0|w0, 30)] is equal to
(
30
3

)
· 2−48 + A2,

where the term A2 is negligible. Similarly, the term Prob[E(ex-eqw)(2, v0|w0, 30)] is equal to(
30
2

)
·2−32+A3, where the term A3 is negligible too. Finally, the term Prob[E(ex-eqb)(1, v0, 1)]

is equal to 2−8 +A4 for some negligible A4 and the term Prob[E(ex-eqb)(1, w0, 1)] is also equal
to 2−8 +A4. From these equalities and relation A.36 we get:

p6 < 2−33.187 + ∆6 (A.37)

where ∆6 is negligible and depends on A0, . . . , A4 and δ. In this way, Lemma A.5 is proven.

Lemma A.6 The probability P7 defined in equation A.3 is bounded by 2−31.913 + ∆7 where
∆7 is a term significantly smaller than 2−31.913 and can thus be considered negligible:

48

P7 < 2−31.913 + ∆7 (A.38)

Proof of Lemma A.6 The probability P7 can be expressed as the sum of the probabilities
of four mutually exclusive subevents. The first subevent is the event that the f4×16 pattern
is visible in the output of the IVP construction, that there are no uncovered words but three
uncovered bytes in this output, and that no uncovered byte is part of the visible pattern. The
second subevent is the event that the f4×16 pattern is also visible in the output of the IVP
construction, that there are no uncovered words but three uncovered bytes in the output, and
that the value of the first uncovered byte is part of the visible pattern, but the values of the
other two are not. The third subevent is the event that the f4×16 pattern is visible in the
output of the IVP construction, that there are no uncovered words but three uncovered bytes
in the output, and that the values of the first two uncovered bytes are part of the visible
pattern, but the value of the last is not. The last subevent is the event that the f4×16 pattern
is visible in the output of the IVP construction, that there are no uncovered words but three
uncovered bytes in the output, and that the values of all uncovered bytes are part of the visible
pattern. Considering only the dominant subevents, the probability P7 can be written as:

P7 = Prob[E(ex-ub)(3, 64)] ·∑
v|w

Prob[E(ex-eqw)(4, v|w, 29) ∧ E(ex-ub-pat)(0, 3, 64) | E(ex-ub)(3, 64)] +

Prob[E(ex-ub)(3, 64)] ·∑
v|w

Prob[E(ex-eqw)(3, v|w, 29) ∧ E(ex-ub-pat)(1, 2, 64) |E(ex-ub)(3, 64)] +

Prob[E(ex-ub)(3, 64)] ·∑
v|w

Prob[E(ex-eqw)(2, v|w, 29) ∧ E(ex-ub-pat)(2, 1, 64) |E(ex-ub)(3, 64)] +

Prob[E(ex-ub)(3, 64)] ·∑
v|w

Prob[E(ex-ub-pat)(3, 0, 64) |E(ex-ub)(3, 64)] + δ

(A.39)

Next, we obtain a bound for the probability P7, in a similar manner as in the proof of
Lemmas A.4 and A.5. We consider that the event of an uncovered byte being part of a visible
pattern is a subset of the event that an uncovered byte takes the value v or the value w, and
its adjacent covered byte also takes the value v or the value w:

49

P7 < Prob[E(ex-ub)(3, 64)] ·
∑
v|w

(
Prob[E(ex-eqw)(4, v|w, 29)] +

3 · Prob[E(ex-eqw)(3, v|w, 29)] ·
(
Prob[E(eq-ub)(v) |E(ex-ub)(3, 64)] +

Prob[E(eq-ub)(w) |E(ex-ub)(3, 64)]
)
·(

Prob[E(ex-eqb)(1, v, 1)] + Prob[E(ex-eqb)(1, w, 1)]
)

+

3 · Prob[E(ex-eqw)(2, v|w, 29)] ·
(
Prob[E(eq-ub)(v) |E(ex-ub)(3, 64)] +

Prob[E(eq-ub)(w) |E(ex-ub)(3, 64)]
)2 ·(

Prob[E(ex-eqb)(1, v, 1)] + Prob[E(ex-eqb)(1, w, 1)]
)2

+

Prob[E(ex-eqw)(1, v|w, 29)] ·
(
Prob[E(eq-ub)(v) |E(ex-ub)(3, 64)] +

Prob[E(eq-ub)(w) |E(ex-ub)(3, 64)]
)3 ·(

Prob[E(ex-eqb)(1, v, 1)] + Prob[E(ex-eqb)(1, w, 1)]
)3)

+ δ

(A.40)

As in the proof of Lemma A.5, the terms Prob[E(ex-eqw)(n, v|w, 29)], for n = 1, 2, 3, 4,

as well as the probability sum
(
Prob[E(ex-eqb)(1, v, 1)] + Prob[E(ex-eqb)(1, w, 1)]

)
are all

independent of the exact values of v and w. These terms can be taken out of the summation,
replacing v and w with v0 and w0 respectively in order to refer to any value for v, w. We also ob-

serve that
∑

v|w
(
Prob[E(eq-ub)(v) | E(ex-ub)(3, 64)]+ Prob[E(eq-ub)(w) | E(ex-ub)(3, 64)]

)3
<
∑

v|w
(
Prob[E(eq-ub)(v) | E(ex-ub)(3, 64)] + Prob[E(eq-ub)(w) | E(ex-ub)(3, 64)]

)
= 512.

Based on these observations, we simplify the relation A.40 in the following way:

P7 < Prob[E(ex-ub)(3, 64)] ·(
65536 · Prob[E(ex-eqw)(4, v0|w0, 29) +

1536 · Prob[E(ex-eqw)(3, v0|w0, 29) ·(
Prob[E(ex-eqb)(1, v0, 1)] + Prob[E(ex-eqb)(1, w0, 1)]

)
+

1536 · Prob[E(ex-eqw)(2, v0|w0, 29) ·(
Prob[E(ex-eqb)(1, v0, 1)] + Prob[E(ex-eqb)(1, w0, 1)]

)2
+

512 · Prob[E(ex-eqw)(1, v0|w0, 29) ·(
Prob[E(ex-eqb)(1, v0, 1)] + Prob[E(ex-eqb)(1, w0, 1)]

)3)
+ δ

(A.41)

The term Prob[E(ex-ub)(3, 64)] is the probability of having three uncovered bytes in the
output of the IVP construction as part of any three different words and is equal to 8 ·

(
32
3

)
·2−24 ·

(1− 1
8)29+A0 where the term A0 is negligible and is associated with the advantage of distinguish-

ing the ingredient random permutations of the IVP construction from random functions. The
term Prob[E(ex-eqw)(4, v0|w0, 29)] is equal to

(
29
4

)
·2−64 +A1, where the term A1 is also negli-

gible for the same reasons. The term Prob[E(ex-eqw)(3, v0|w0, 29)] is equal to
(
29
3

)
· 2−48 +A2,

where the term A2 is negligible. Similarly, the term Prob[E(ex-eqw)(2, v0|w0, 29)] is equal to(
29
2

)
·2−32 +A3, where the term A3 is negligible too. The term Prob[E(ex-eqw)(1, v0|w0, 29)] is

50

equal to 29·2−16+A4, where the termA4 is negligible. Finally, the term Prob[E(ex-eqb)(1, v0, 1)]

is equal to 2−8 +A5 for some negligible A5 and the term Prob[E(ex-eqb)(1, w0, 1)] is also equal
to 2−8 +A5. From these equalities and relation A.41 we get:

p7 < 2−31.913 + ∆7 (A.42)

where ∆7 is negligible and depends on A0, . . . , A5 and δ. This completes the proof of Lemma
A.6.

Lemma A.7 The probability P8 defined in equation A.3 is bounded by 2−31.728 + ∆8 where
∆8 is a term significantly smaller than 2−31.728 and can thus be considered negligible:

P8 < 2−31.728 + ∆8 (A.43)

Proof of Lemma A.7 First, we observe that the probability P8 is mostly determined by
the most dominant subevent which is to have no uncovered words and exactly four uncovered
bytes in the IVP construction output. This probability can be expressed as the sum of the
probabilities of five mutually exclusive subevents. These are the subevents where the f4×16
pattern is visible in the output of the IVP construction, there are no uncovered words in the
output, and the number of uncovered bytes that are part of the visible pattern ranges from 0
to 4. Considering only the dominant subevents of these subcases, the probability P8 can be
written in a similar manner as P7:

P8 = Prob[E(ex-ub)(4, 64)] ·∑
v|w

Prob[E(ex-eqw)(4, v|w, 28) ∧ E(ex-ub-pat)(0, 4, 64) | E(ex-ub)(4, 64)] +

Prob[E(ex-ub)(4, 64)] ·∑
v|w

Prob[E(ex-eqw)(3, v|w, 28) ∧ E(ex-ub-pat)(1, 3, 64) |E(ex-ub)(4, 64)] +

Prob[E(ex-ub)(4, 64)] ·∑
v|w

Prob[E(ex-eqw)(2, v|w, 28) ∧ E(ex-ub-pat)(2, 2, 64) |E(ex-ub)(4, 64)] +

Prob[E(ex-ub)(4, 64)] ·∑
v|w

Prob[E(ex-ub-pat)(3, 1, 64) |E(ex-ub)(4, 64)] +

Prob[E(ex-ub)(4, 64)] ·∑
v|w

Prob[E(ex-ub-pat)(4, 0, 64) |E(ex-ub)(4, 64)] + δ

(A.44)

Next, we obtain a bound for the probability P8, considering that the event of an uncovered
byte being part of a visible pattern is a subset of the event that an uncovered byte takes the
value v or the value w, and its adjacent covered byte also takes the value v or the value w:

51

P8 < Prob[E(ex-ub)(4, 64)] ·
∑
v|w

(
Prob[E(ex-eqw)(4, v|w, 28)] +

4 · Prob[E(ex-eqw)(3, v|w, 28)] ·
(
Prob[E(eq-ub)(v) |E(ex-ub)(4, 64)] +

Prob[E(eq-ub)(w) |E(ex-ub)(4, 64)]
)
·(

Prob[E(ex-eqb)(1, v, 1)] + Prob[E(ex-eqb)(1, w, 1)]
)

+

6 · Prob[E(ex-eqw)(2, v|w, 28)] ·
(
Prob[E(eq-ub)(v) |E(ex-ub)(4, 64)] +

Prob[E(eq-ub)(w) |E(ex-ub)(4, 64)]
)2 ·(

Prob[E(ex-eqb)(1, v, 1)] + Prob[E(ex-eqb)(1, w, 1)]
)2

+

4 · Prob[E(ex-eqw)(1, v|w, 28)] ·
(
Prob[E(eq-ub)(v) |E(ex-ub)(4, 64)] +

Prob[E(eq-ub)(w) |E(ex-ub)(4, 64)]
)3 ·(

Prob[E(ex-eqb)(1, v, 1)] + Prob[E(ex-eqb)(1, w, 1)]
)3

+(
Prob[E(eq-ub)(v) |E(ex-ub)(4, 64)] +

Prob[E(eq-ub)(w) |E(ex-ub)(4, 64)]
)4 ·(

Prob[E(ex-eqb)(1, v, 1)] + Prob[E(ex-eqb)(1, w, 1)]
)4)

+ δ

(A.45)

The terms Prob[E(ex-eqw)(n, v|w, 28)], for n = 1, 2, 3, 4, as well as the probability sum(
Prob[E(ex-eqb)(1, v, 1)] + Prob[E(ex-eqb)(1, w, 1)]

)
are all independent of the exact values

of v and w. These terms can be taken out of the summation, replacing v and w with v0 and
w0 respectively in order to refer to any value for v, w. Based on these observations we can
simplify the relation A.45 in the following way:

P8 < Prob[E(ex-ub)(4, 64)] ·(
65536 · Prob[E(ex-eqw)(4, v0|w0, 28) +

2048 · Prob[E(ex-eqw)(3, v0|w0, 28) ·(
Prob[E(ex-eqb)(1, v0, 1)] + Prob[E(ex-eqb)(1, w0, 1)]

)
+

3072 · Prob[E(ex-eqw)(2, v0|w0, 28) ·(
Prob[E(ex-eqb)(1, v0, 1)] + Prob[E(ex-eqb)(1, w0, 1)]

)2
+

2048 · Prob[E(ex-eqw)(1, v0|w0, 28) ·(
Prob[E(ex-eqb)(1, v0, 1)] + Prob[E(ex-eqb)(1, w0, 1)]

)3
+

512 ·
(
Prob[E(ex-eqb)(1, v0, 1)] + Prob[E(ex-eqb)(1, w0, 1)]

)4)
+ δ

(A.46)

The term Prob[E(ex-ub)(4, 64)] is the probability of having four uncovered bytes in the out-
put of the IVP construction as part of any four different words and is equal to 16·

(
32
4

)
·2−32 ·(1−

1
8)28+A0 where the term A0 is negligible and is associated with the advantage of distinguishing

52

the ingredient random permutations of the IVP construction from random functions. The term
Prob[E(ex-eqw)(4, v0|w0, 28)] is equal to

(
28
4

)
· 2−64 +A1, where the term A1 is also negligible

for the same reasons. The term Prob[E(ex-eqw)(3, v0|w0, 28)] is equal to
(
28
3

)
·2−48+A2, where

the term A2 is negligible. Similarly, the term Prob[E(ex-eqw)(2, v0|w0, 28)] is equal to
(
28
2

)
·

2−32+A3, where the term A3 is negligible too. The term Prob[E(ex-eqw)(1, v0|w0, 28)] is equal

to 28 ·2−16 +A4, where the term A4 is negligible. Finally, the term Prob[E(ex-eqb)(1, v0, 1)] is

equal to 2−8 + A5 for some negligible A5 and the term Prob[E(ex-eqb)(1, w0, 1)] is also equal
to 2−8 +A5. From these equalities and relation A.46 we get:

p8 < 2−31.728 + ∆8 (A.47)

where ∆8 is negligible and depends on A0, . . . , A5 and δ. This completes the proof of Lemma
A.7.

Lemma A.8 The probability P0 defined in equation A.3 is bounded by 2−32.866 + ∆0 where
∆0 is a term significantly smaller than 2−32.866 and can thus be considered negligible:

P0 < 2−32.866 + ∆0 (A.48)

Proof of Lemma A.8 Probability P0 is the probability of seeing the f4×16 pattern in the
output of the IVP construction when all words of the output are covered. Lemma A.8 is
mostly similar to Theorem 3. In what follows we repeat some of the findings from that proof for
completeness. Probability P0 is equal to the observation probability Pf4×16 of a PFO associated
with this pattern, plus the advantage of distinguishing the ingredient random permutations of
the IVP construction from random functions. The observation probability Pf4×16 , on the other
hand, is the birthday collision probability associated with seeing four or more equal words
among 32 in the truncated output of a random oracle. Using the Suzuki bound we find that
Pf4×16 < 2−32.866. Furthermore, by setting the distinguisher’s advantage equal to a negligible
∆0 the correctness of relation A.48 is shown and Lemma A.8 is proven.

Lemma A.9 The probability P4 defined in equation A.3 is bounded by 2−48.866 + ∆4 where
∆4 is a term significantly smaller than 2−48.866 and can thus be considered negligible:

P4 < 2−48.866 + ∆4 (A.49)

Proof of Lemma A.9 Probability P4 is the probability of seeing the f4×16 pattern in the
output of the IVP construction when four or more words of the output are uncovered. This is
bounded by the probability of having four or more words in the IVP output uncovered, which
is further bounded by

(
32
4

)
· 2−64 + ∆4 for some negligible ∆4. This bound is further equal to

2−48.866 + ∆4.

Completing the proof of the correctness of Proposition 1: Summing up the non-
negligible terms of the probabilities P1, P2, P3, P5, P6, P7, and P8 we compute a term T as
follows:

T =
∑

i∈{1,2,3,5,6,7,8}

[non-negligible term of] Pi = 2−30.465 (A.50)

This is the additive term that appears in Proposition 1. On the other hand, the observation
probability Pf4×16 , which also appears in Proposition 1, is the non-negligible term of probability

53

P0. Furthermore, the remaining non-negligible term
(
32
4

)
· PUW in Proposition 1 is the non-

negligible term of probability P4. Finally, we set O(∆′) = ∆0 + ∆1 + . . .+ ∆8. This concludes
the proof.

54

