
Fully Automated Differential Fault Analysis on Software
Implementations of Cryptographic Algorithms

Xiaolu Hou

School of Comp. Science and Eng.

Nanyang Technological University, Singapore

xlhou@ntu.edu.sg

Jakub Breier

PACE Labs

Nanyang Technological University, Singapore

jbreier@ntu.edu.sg

Fuyuan Zhang

School of Comp. Science and Eng.

Nanyang Technological University, Singapore

fuzh@ntu.edu.sg

Yang Liu

School of Comp. Science and Eng.

Nanyang Technological University, Singapore

yangliu@ntu.edu.sg

ABSTRACT
Emerging technologies with the requirement of small size and

portability, such as Internet-of-Things devices, represent a good

target for physical attacks, e.g., fault attacks. These attacks often aim

at revealing secrets used in cryptographic algorithms, which are the

essential building block for communication protocols. Differential

Fault Analysis (DFA) is considered as themost popular fault analysis

method. While there are techniques that provide a fault analysis

automation on the cipher level to some degree, it can be shown

that when it comes to software implementations, there are new

vulnerabilities, which cannot be found by observing the cipher

design specification.

This work bridges the gap by providing a fully automated way

to carry out DFA on assembly implementations of symmetric block

ciphers. We use a customized data flow graph to represent the pro-

gram and develop a novel fault analysis methodology to capture

the program behavior under faults. We establish an effective de-

scription of DFA as constraints that are passed to an SMT solver.

We create a tool that takes assembly code as input, analyzes the

dependencies among instructions, automatically attacks vulnerable

instructions using SMT solver and outputs the attack details that

recover the last round key (and possibly the earlier keys). We sup-

port our design with evaluations on lightweight ciphers SIMON,

SPECK, and PRIDE, and a current NIST standard, AES. By auto-

mated assembly analysis, we were able to find new efficient DFA

attacks on SIMON, SPECK and PRIDE, exploiting implementation

specific vulnerabilities, and a previously published DFA on AES.

Moreover, we present a novel DFA on multiplication operation that

has never been shown for symmetric block ciphers before. Our

experimental evaluation also shows reasonable execution times

that are scalable to current cipher designs and can easily outclass

the manual analysis.

We note that this is the first work that automatically carries out

DFA on cipher implementations without any plaintext or ciphertext

information and therefore, can be generally applied to any input

data to the cipher.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution.

KEYWORDS
differential fault analysis, cryptographic fault attacks, automation,

assembly

1 INTRODUCTION
Internet of Things (IoT) constitutes a significant market that cur-

rently comprises over 20 billion devices and is expected to double

by 2022 and almost quadruple by 2025, according to IHS [38]. The

main requirements for these devices are small size, low cost, and

low power profile. Because of these three properties, we are nor-

mally looking at low computational power microcontrollers that

are sufficient for standard tasks required from IoT platforms, such

as reading a sensor data, adjusting settings of home appliances, and

communicating with the user. However, because of the connectivity

required from IoT devices, security plays a crucial role – no one

wants to have their home appliances exposed to the whole world.

As stated in [21], IoT security is specific in a way that it includes

software, hardware, and network concerns at the same time.

Lightweight cryptography is one of the areas that became cru-

cial with the emergence of IoT. There are numerous algorithms

providing sufficient security properties, while keeping the foot-

print minimal [13]. Some of them work better in hardware, such

as SIMON [6] and SKINNY [8], while others aim at software, such

as SPECK [6] and ChaCha [9]. However, accessibility of IoT de-

vices and lack of expensive tamper-protection makes them an ideal

target for physical attacks, such as Side-Channel Analysis (SCA)

and Fault Analysis (FA). These implementation attacks can easily

bypass the theoretical security provided on the cipher level. In case

of SCA [34], this is done by observing physical characteristics of

a device (electromagnetic emanation, timing, etc.) and correlating

this information with the values processed in the algorithm. In case

of FA [12], the attacker disturbs the computation by intentionally

changing the processed values and then gets the secret information

by comparing the faulty and the correct outputs.

Differential Fault Analysis (DFA) [12] is normally a method of

choice for fault analysis of symmetric key cryptographic algorithms,

thanks to its efficiency and simplicity. When properly utilized, the

attacker only needs very few encryptions for a secret key recovery.

As DFA follows the steps of a reduced-round differential cryptanal-

ysis [11], one can find many attacks that are on the cipher design

Xiaolu Hou, Jakub Breier, Fuyuan Zhang, and Yang Liu

Figure 1: Overview of TADA.

level. Such methods are universal and can normally be applied to

any unprotected implementation of a given cipher.

When it comes to the attacks on assembly level, there are not

many works in this field, since each implementation is unique and

a specific attack on one implementation cannot be generalized

to other implementations. However, these implementations can

often contain DFA related vulnerabilities that are not visible on the

first sight and cannot be identified by simply observing the cipher

design [15]. Also, one has to take into account that the number of

faults required by DFA on cipher design might be different than

when attacking the implementation, making the high-level DFA

Table 1: Examples of linear and non-linear operations.

a b c = a & b d = a ⊕ b
0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

estimates imprecise. For example, in [28], the authors claim they

can break SPECK cipher with only 5 ∼ 8 faults, but that is only if

the whole cipher state is considered as one large variable. If we have

an 8-bit implementation, this number would be 4× bigger in the

case of SPECK32/64 and 16× bigger in the case of SPECK128/256.

Furthermore, it is important to do the implementation level anal-

ysis since a real attack will always be executed either on assembly

level in software or gate level in hardware, by utilizing various fault

injection techniques, such as clock/voltage glitch, electromagnetic

pulse, or laser pulse [4].

To analyze the vulnerabilities of a software implementation,

one has to analyze the assembly code line by line to determine

whether it can be exploited by a fault attack. But assembly code of

a cryptographic algorithm is normally hundreds to thousands lines

long, making it tedious and time consuming for manual analysis.

Shortcomings of current works. As of today, it remains an open

problem to automatically find a DFA attack on cryptographic im-

plementation. Current works either focus on cipher level [44] or

are not completely automated [15], thus falling short in finding an

attack without further manual analysis.

Previous tools (e.g., [44, 50, 51] which all focus on cipher level

analysis) search for a possible DFA by enumerating different inputs

and then trying to find the key by solving equations for these.

Therefore, while the tools are able to find a particular key, they fall

short in providing a generic proof that the resulting analysis will

work for all keys. Moreover, they also require the knowledge of

plaintext in order to carry out the analysis, which is in contrast to

most of DFA attacks that do not assume such knowledge.

Our contribution. In this work, we focus on the fully automated

DFA attack on software implementations of cryptographic algo-

rithms. We develop a tool that analyzes assembly code statically,

constructs an abstract representation of this code, and searches

for an attack. In case there is a vulnerability, it outputs the attack

procedure that can be used to recover the key by DFA. Unlike afore-

mentioned automated analysis works, our tool does not require any

cipher input, such as plaintext and key. Instead, it gives a generic

attacking method which can be used to recover any key used for

encryption of any plaintext, thus it is aligned with the standard

DFA assumptions. This allows us to make the analysis independent

of the data, and therefore, to always find an attack if it exists for

the given implementation.

We design and implement TADA – Tool for Automated DFA on
Assembly. An overview of TADA is shown in Figure 1. TADA reads

an assembly code from a text file and creates a customized Data

Flow Graph (DFG) that records the relations between the variables

and identifies the non-linear operations used in the algorithm. It

calculates the nodes that can be directly identified from the known

data (ciphertext, constants). Then it finds instructions vulnerable

to DFA by analyzing the graph and outputs subgraphs and DFA

Fully Automated Differential Fault Analysis on Software Implementations of Cryptographic Algorithms

equations for each of these instructions. DFA equations are passed

to SMT solver to analyze. In case the instruction can be attacked by

bit flip(s), the attack method is recorded and the graph is updated

to capture the result of this attack. Then TADA continues to find

next vulnerable instruction. TADA stops either when the correct

number of round keys is recovered as required by the user or when

no more vulnerable instructions can be found.

We would like to point out that our static analysis method is

sound, meaning that a fault attack found by TADA is provably

exploitable, i.e., there are no false positives.

We present evaluation on implementations of four well-known

block ciphers: SIMON and SPECK are ultra-lightweight algorithms

published by NSA [6], AES is the current NIST standard [17], and

PRIDE [3] is a lightweight cipher optimized for 8-bit microcon-

trollers. For SIMON, SPECK and PRIDE, we were able to find novel

DFA attacks that are fully implementation specific and provide prac-

tical examples of importance of our methodology. In case of AES,

we were able to find an equivalent attack that was presented in the

literature on the cipher level. Thanks to TADA, we could identify

specific instructions that make these attacks possible, which is the

highest level of detail that can be provided for an attack on software

implementation.

Moreover, we develop a novel attack on multiplication used in

block cipher implementations, revealing a vulnerability of such

operation. Multiplications with a constant are normally used for

more efficient bit shifting, leading to saving a couple of clock cycles.

However, thanks to non-linearity of multiplication, it opens a new

attack vector that can be exploited by DFA. Such vulnerability can

be easily revealed with TADA analysis.

Execution times for finding attacks on full ciphers fall within

reasonable range, considering that the analysis is complete and

does not require any human intervention. Lightweight ciphers vary

within the range of minutes – the fastest analysis was on PRIDE

(4.6 minutes), the slowest was on SIMON (17.2 minutes). Larger

ciphers fall within the range of hours, where the analysis of AES

needed less than 5 hours.

Organization. The rest of the paper is structured as follows. Sec-

tion 2 provides preliminaries on symmetric block ciphers, DFA and

SMT solvers. Section 3 presents the design and describes the usage

of TADA. Section 4 shows experimental evaluations on SIMON,

SPECK, AES and PRIDE. Section 5 introduces related work. Sec-

tion 6 provides the discussion. Finally, Section 7 concludes this

work.

2 BACKGROUND
2.1 Symmetric Block Cipher
A symmetric block cipher is an algorithm operating on blocks of

data of a pre-defined size. It specifies two processes, encryption

and decryption. The encryption takes a plaintext and a secret key

as inputs and produces a ciphertext as an output. Similarly, for a

ciphertext and a secret key as inputs for decryption, it outputs the

plaintext. In the rest of this work, we focus on the encryption to

simplify the explanations. However, the proposed method would

work the same way on the decryption operation. Block cipher

normally consists of several rounds where each round consists of a

small number of operations. Those operations scramble the input

by using various transformations and adding key-dependent data.

A key used in a round is referred to as round key. Round keys are

derived from the secret key, which is called master key, by a key

scheduling algorithm that works as an invertible transformation.

Therefore, by getting information about a certain round key, it is

possible to get the master key by using an inverse key scheduling

algorithm. This is important in context of DFA that normally tries

to recover the last round key.

2.2 Differential Fault Analysis
When performing DFA, the attacker first obtains a correct cipher-

text, by running the encryption without any disturbance. Then,

she runs the algorithm again with the same input values (plaintext,

secret key), while injecting a fault into a certain round of the cipher,

obtaining a faulty ciphertext. Later, she compares these two cipher-

texts and if the attack was successful, she gets an information about

the secret key.

As an example, let us consider the operation that takes a and b
as inputs and outputs the result c = a & b, where a,b ∈ {0, 1} and

& is the bitwise AND operator. We assume the output is known to

the attacker but values of a,b are unknown. The attacker can then

inject fault in b by flipping it to find the value of a: the first three
columns of Table 1 show the case when b is flipped. If the output c
stays the same, then a = 0; otherwise a = 1.

Now let us consider the same fault attack on the operation that

takes input a,b ∈ {0, 1} and outputs d = a ⊕ b, where ⊕ is bitwise

XOR operator. In this case the attack will not work: columns 1,2,4

in Table 1 shows that whenever b is flipped, d will also be flipped.

Operations similar to ⊕ are said to be linear and those similar

to & are said to be non-linear. Formally, we give the following

definition.

Definition 2.1 (Linear Operation). Let F be an operation with the

set of inputs denoted by F i and the set of outputs denoted by Fo .
Suppose the inputs and outputs of F are all binary strings of length

n. We say F is linear if for any pair a,b (a ∈ F i is an input of F ,
b ∈ Fo is an output of F), the following condition is always satisfied:
for any set of fixed values of F i\{a}, ∀x ,y ∈ {0, 1}n such that when

a = x ,b = y, we have if a = x ⊕ ∆, then b = y ⊕ ∆, ∀∆ ∈ {0, 1}n ,

where ⊕ is the bitwise XOR operator.

DFA exploits non-linear functions of the cipher. It often works

with just a single faulty and correct ciphertext pair from the encryp-

tion [47]. The attacker makes use of two sets of equations: one set

that describes the correct execution of the encryption; one set corre-

sponds to the faulted encryption process. For a simple example, let

us consider the program that takes two binary inputs a,b ∈ {0, 1},

calculates c = a & b and outputs c . The equation corresponding to

the correct execution is c = a & b. If a fault is injected in b such that

b is flipped, the equation corresponding to the faulted execution

would be c ′ = a & b ′, where b ′ = b ⊕ δ and δ = 1. By calculating

the difference of the output ∆ = c ⊕ c ′, the attacker can get the

value in a: a = 0 if ∆ = 0; a = 1 if ∆ = 1. The two sets of equations

corresponding to correct and faulted executions are referred to as

DFA equations. The change in b, denoted by δ , which is equal to

1 in this case, is called the fault mask. The output difference ∆ is

called the output mask.
DFA is usually executed at the final rounds of the cipher, so that

there are not too many collisions of the altered values. Otherwise,

Xiaolu Hou, Jakub Breier, Fuyuan Zhang, and Yang Liu

it would make the analysis too complex. The most straightforward

approaches inject a fault into the last round, usually requiring at

least as many faults as the number of non-linear operations in the

round. More sophisticated approaches attack 2-3 rounds before the

encryption ends, utilizing the permutation layer that distributes the

fault into the whole state. Such techniques require lower number

of faults, but the number of equations to solve is higher.

In our approach, we first consider fault injections in the last

round in order to recover the last round key. If an attack on the last

round can be found, it then depends on user decision whether the

attack is carried out further on earlier rounds.

2.3 Satisfiability Modulo Theories
Satisfiability Modulo Theories (SMT) [18] is concerned with de-

ciding the satisfiability of first order formulas w.r.t. background

theories, e.g. the theory of linear arithmetic over integers, of bit-

vectors, of arrays, and so on. Decision procedures for solving SMT

problems are called SMT solvers. In program analysis and verifi-

cation, many problems can be naturally reduced to SMT problems

and SMT solvers have been used as back-end engines in many tools

for software testing, analysis and verification. The SMT solver we

use in TADA is Z3 [19].

Consider the case of attacking c = a & b in the above mentioned

DFA. Letψ denote the following formula, which specifies the DFA

equations as well as the equations for fault mask and output mask:

(c = a & b) ∧ (c ′ = a & b ′) ∧ (b ′ = b ⊕ δ) ∧ (∆ = c ⊕ c ′).

To find a fault attack for c = a & b amounts to finding a mapping

between the value of ∆ and a. To this end, we use an SMT solver

to check the satisfiability of the following two formulas, where V
denotes the set of variables inψ :

1) ∀V \{δ } : ((ψ ∧ ∆ = 1) ⇒ a = 1) ∧ ((ψ ∧ ∆ = 0) ⇒ a = 0)

2) ∀V \{δ } : ((ψ ∧ ∆ = 1) ⇒ a = 0) ∧ ((ψ ∧ ∆ = 0) ⇒ a = 1)

Notice that δ is the only free variable in both formulas. We explain

the first formula briefly. Since δ is the only free variable in formula

1), checking the satisfiability of formula 1) amounts to ask whether

we can find a value for the fault mask δ such that it is always the

case that a = 1 if ∆ = 1 and a = 0 if ∆ = 0. By calling an SMT

solver, we know that formula 1) is satisfiable because the formula

evaluates to true when δ = 1. Therefore, we can perform DFA by

using δ = 1. This result is consistent with the fault analysis given

in the above section. On the other hand, formula 2) is unsatisfiable.

3 TADA METHODOLOGY
In this section we present the methodology that was used when

implementing TADA. Section 3.1 describes the fault models we

consider. Section 3.2 details attacks on target instructions. Require-

ments on assembly code are stated in Section 3.3. Section 3.4 pro-

vides the design overview of TADA and details the automated

analysis steps. Finally, Section 3.5 explains the analysis carried out

by the SMT solver module.

3.1 Fault Models
An assembly implementation of a cryptographic algorithm, say F ,

is a finite sequence of instructions. An instruction f consists of

four parts: sequence number, mnemonic, the set of input operands

and the set of output operands. Sequence number is the index of

f as an element of F . The mnemonic of f is the operation that f
uses. We say an instruction f is linear if its mnemonic is a linear

function by Definition 2.1.

A single fault attack on an assembly implementation F can be

modeled by a fault injected in one of the instructions in F such

that it either affects the mnemonic/input operands/output operands

of this instruction or it deletes this instruction from the sequence

(instruction skip) [40].

We are interested in single fault adversarial model, meaning that

the attacker can inject exactly one fault during the execution of an

assembly implementation of the algorithm at a time. However, she

can repeat the execution as many times as she wants, with different

faults. We consider bit flip fault model, therefore for a register

length n, there are n possibilities of flipping a bit. A bit flip changes

one bit in one of the input/output operands of an instruction in an

assembly implementation F . The change is referred to as a fault
mask, which can be chosen by the attacker. Bit flip model is the most

precise fault model for DFA
1
and it is usually the model of choice

when attacking cryptographic algorithms with binary non-linear

operations (e.g. addition-rotation-xor based ciphers). This model

was previously shown to be practically achievable either by laser

fault injection [2] or Rowhammer attack [10].

As most DFA attacks, we assume known ciphertext attack with-

out the knowledge of the plaintext.

3.2 Attacks on Target Instructions
In general, DFA aims at attacking non-linear instructions. Up to now,

there have been various attacks exploiting the following operations:

bitwise AND [48], bitwise OR [15], addition [7, 29, 48], and table

lookup [31, 43, 47], often used for Sbox calculation. Even though

the attack varies for different ciphers, the main principle behind

the attack of a particular operation stays the same [32].

In our work, we focus on these operations and moreover, we

present a novel attack on multiplication with a constant. To the

best of our knowledge, this is the first attack on multiplication used

in a cryptographic implementation. Multiplications are not used in

symmetric block cipher designs, however they can be efficient for

performing logical bit shifts. For example, in the implementation

of SPECK that we analyzed, shift by 3 bits to the left was done by

multiplication with a constant value of 0x08.
The analysis module of TADA focuses on instructions that imple-

ment the aforementioned operations. Here, we explain the generic

idea for attacking each of the operations.

Bitwise AND, bitwise OR. The attack on bitwise AND operator

follows the description in Section 2.2 (c.f. Table 1 and corresponding

discussions).

The attack on bitwise OR is similar. Suppose we have a program

that takes two binary inputs a,b ∈ {0, 1}, calculates c = a | b, and
outputs c . The relations between a,b, c are as follows:

a b c = a | b

0 0 0

0 1 1

a b c = a | b

1 0 1

1 1 1

1
Bit sets/resets, although being more precise than bit flips, are used for other methods,

such as ineffective fault analysis and are out of scope of DFA.

Fully Automated Differential Fault Analysis on Software Implementations of Cryptographic Algorithms

We inject a fault δ in b and we have the following equations:

DFA equations Fault mask Output mask

c = a | b c ′ = a | b ′ b ′ = b ⊕ δ ∆ = c ⊕ c ′

Take δ = 1, the value of a can be obtained from the value of output

mask ∆:

∆ = 1 =⇒ a = 0; ∆ = 0 =⇒ a = 1. (1)

Note that if we let out = 1, var0 = 1, var1 = 0, then ∆ & out =
var0 or var1, and the following is equivalent to equation (1):

∆ & out = var0 =⇒ a = 0; ∆ & out = var1 =⇒ a = 1.

Addition. For addition, we have
a b c = a + b

0 0 00

0 1 01

a b c = a + b

1 0 01

1 1 10

We inject a fault δ in b and we have the following equations:

DFA equations Fault mask Output mask

c = a + b c ′ = a + b ′ b ′ = b ⊕ δ ∆ = c ⊕ c ′

Take δ = 1, the value of a can be obtained from the value of output

mask ∆: if ∆ = 01 then a = 0 and if ∆ = 11 then a = 1. Equivalently,

let out = 11, var0 = 01, var1 = 11, then ∆ & out is either var0 or
var1, and ∆ & out = var0 =⇒ a = 0; ∆ & out = var1 =⇒ a = 1.

Addition with carry. In case there is a carry bit for addition

calculation, DFA needs to take the value of the carry bit into

consideration. We look at the program that takes three inputs

a,b, carry ∈ {0, 1}, calculates c = a + b + carry and outputs c
in binary format. We have:

a b carry c

0 0 0 000

0 1 0 001

1 0 0 001

1 1 0 010

a b carry c

0 0 1 001

0 1 1 010

1 0 1 010

1 1 1 011

We inject a fault δ in b and we have the following equations:

DFA equations Fault mask Output mask

c = a + b + carry c ′ = a + b ′ + carry b ′ = b ⊕ δ ∆ = c ⊕ c ′

For carry= 0, ∆ = 001 =⇒ a = 0 and ∆ = 011 =⇒ a = 1. For

carry= 1, ∆ = 011 =⇒ a = 0 and ∆ = 001 =⇒ a = 1. Let

out = 011, var0 = 001, var1 = 011 if carry= 0 and let out =
011, var0 = 011, var1 = 001 if carry= 1, then ∆ & out = var0 or
var1 and ∆ & out = var0 =⇒ a = 0; ∆ & out = var1 =⇒ a = 1.

Note that the choices of value for variables out, var0, var1 are not
unique, taking out = 111, var0 = 001, var1 = 011 for carry= 0 and

let out = 010, var0 = 010, var1 = 000 for carry= 1 also gives the

same result. Furthermore, we can see that for DFA, it is necessary

to consider both values of the carry bit.

Table lookup for Sbox. Sbox (substitution-box) is a basic nonlin-
ear component in cipher designs, mostly used in SPN (Substitution-

PermutationNetwork) ciphers. Sbox is responsible for the confusion

property in encryption modules defined by Shannon [46]. It is a per-

mutation function on integers with values 0, 1, 2, . . . , 2n − 1, where

n is referred to as the number of bits of the Sbox. An Sbox can be de-

scribed as an array: for example, {1,a, 0, 2, 3, 4, 5, 6, e,b, c, 8, 7, 9,d, f }
is a 4−bit Sbox such that Sbox(0) = 1, Sbox(1) = a . . . , Sbox(f) = f
(integers are in hexadecimal format). It can either be implemented

as a lookup table in the memory or in Algebraic Normal Form (ANF)

that can be calculated as a series of arithmetic and logic operations.

We provide analysis of both - lookup Sbox in case of AES imple-

mentation and algebraic Sbox in case of PRIDE. For any Sbox, there

is an associated difference distribution table (DDT) [11], where the
(∆,δ)−entry consists of the values x such that Sbox(x)⊕Sbox(x ′) =
∆, where x ′ = x ⊕ δ . As we only consider bit flip fault model, for

4−bit Sboxes, the fault mask δ takes only 4 values: 1, 2, 4, 8. The

DDT for the above mentioned 4−bit Sbox with only bit flip fault

masks is as follows:

∆\δ 1 2 4 8

1 0 2 a e 1 9

2 2 3 e f 5 7 8 a 0 4 9 d

3 6 7 9 b

4 a b 3 7 4 c

5 8 9 2 6

6 4 6 d f

7 4 5 b f

8 1 3 6 e

9 8 c 7 f

a c e 3 b

b 0 1

c 2 a

d 5 d

e c d 1 5

f 0 8

By observing the output mask and fault mask pairs, the attacker

can get the value of the input. For example, if the 4 fault mask

and output mask pairs are (1,b), (2, 2), (4, 2), (8, f) then the input

is uniquely identified to be 0.

Multiplication with a constant. Consider a program that takes

input a ∈ {0, 1, 2, 3, 4} and outputs the product, denoted by c , of
a with constant 2. The strategy is to inject fault in the constant

operand and get value of a.

DFA equations Fault mask Output mask

c = a × 2 c ′ = a × const const = 2 ⊕ δ ∆ = c ⊕ c ′

When a bit flip fault is injected in 2, we get either 0 or 3. Repre-

senting the integers in binary format, we have:

a c = a × 2

00 0000

01 0010

10 0100

11 0110

a c ′ = a × 0

00 0000

01 0000

10 0000

11 0000

a c ′ = a × 3

00 0000

01 0011

10 0110

11 1001

We can see that if the fault mask δ = 2, then the output mask

∆ = c ⊕c ′ = a. Similarly, if fault mask δ = 1, a can also be identified

by value ∆.
In real DFA attacks, the output value of a vulnerable instruction

normally cannot be observed directly, but the output mask propa-

gates to the ciphertext and can be analyzed. However, in assembly

implementations, it is not easy to track which register value gives

the information of the output mask. TADA constructs a customized

data flow graph to capture the propagation of the fault, then it

utilizes SMT solver to prove whether the above techniques can be

applied to the vulnerable instructions.

Xiaolu Hou, Jakub Breier, Fuyuan Zhang, and Yang Liu

Table 2: Assembly implementation Fex for example cipher.

Instruction # Instruction # Instruction
0 LD r0 X+ 3 LD r3 key1+ 6 EOR r1 r3
1 LD r1 X+ 4 AND r0 r1 7 ST x+ r0
2 LD r2 key1+ 5 EOR r0 r2 8 ST x+ r1

3.3 TADA Usage
There are few requirements regarding the assembly implementa-

tions that have to be addressed before the analysis, detailed below.

We do not assume any annotations in the assembly code, how-

ever, certain naming conventions are required for important vari-

ables so that TADA could identify them correctly. More specifically,

round keys have to be identified by the word “key" followed by the

round number. Ciphertext variables then have to be identified by a

small letter “x”.
The analyzed implementations are unrolled – without loops and

jumps. We discuss this requirement more in Section 6.

The parsing subsystem is currently capable of reading assem-

bly files written for AVR ATmega microcontrollers
2
. However, the

analysis is done on an intermediate representation and therefore,

after creating a new parsing module, TADA can be reused on any

other instruction set (e.g. Thumb-2 or LLVM).

3.4 TADA Design
Implementation. TADA was implemented in Java (static analysis

part) and F# (Z3 SMT solver part) programming languages; each of

the following steps corresponds to one module.

Customized data flow graph. TADA constructs a customized

data flow graph in a static single assignment form from an assem-

bly implementation. The data flow graph represents the instructions

as edges and it takes input and output operands of the instructions

as nodes. Each node in the data flow graph corresponds to one unit

of data storage in the architecture. We refer to the nodes that corre-

spond to registers storing round key values as key nodes. Similarly,

nodes that represent ciphertext words are called ciphertext nodes.
For an instruction f , the nodes corresponding to its input operands
are called the input nodes of f and the nodes corresponding to its

output operands are called the output nodes of f . Both input and

output nodes are referred to as nodes of f . If a is an output node of

f , we say f generates a.

Example 3.1. Let us consider a toy block cipher implemented in

AVR assembly, stated in Table 2. The example cipher has one round.

It takes a 16-bit plaintext input. The first 8 bits are XORed with an

8-bit key word and give the first 8 bits of the ciphertext. Bitwise

AND operation is applied on the two parts of the plaintext, then

the result is XORed with another 8-bit key to give the last 8 bits

of the ciphertext. The customized data flow graph generated by

TADA for this example cipher implementation is given in Figure 2.

As the registers have 8 bits, the 16−bit ciphertext is stored in two

ciphertext words. Nodes r3(3) and r2(2) are the key nodes; x(8)
and x(7) are the ciphertext nodes. Instruction 4 has input nodes

r0(0),r1(1) and output node r0(4). We say that instruction 4

generates node r0(4).

2
https://www.microchip.com/webdoc/avrassembler/avrassembler.wb_instruction_

list.html

Figure 2: Data flow graph generated by TADA for example
cipher implementation Fex from Table 2.

Knownnodes and constants.Before further analysis, TADAdoes

a pre-examination of the nodes to find the known nodes. Since we
assume the attacker knows the ciphertext, the ciphertext nodes are

marked as known nodes. Tracing up from the graph, some nodes

can also be easily identified as known nodes. Moreover, a node

that represents a constant is marked as both a known node and a

constant, the value of the constant is also stored.

Example 3.2. In Figure 2, the value of r0(5) is equal to that of

x(7) because they are respectively the input node and output node

of a store instruction, hence r0(5) is marked as a known node.

Similarly, r1(6) is also a known node.

Data propagation is captured within the graph. Each edge has

a property that says whether it is linear or non-linear according

to the instruction it represents. A node x affects a node y if the

following two conditions are satisfied: the sequence number of the

instruction that generates y is bigger than the sequence number of

the instruction that generates x ; furthermore, changing the value of

x would influence the value of y (the second condition is equivalent

as saying y is a child of x in the directed graph). The number of

non-linear operations between a node x and each node y affected

by x is recorded as distance between them. A node x and a key node

y are linearly related to each other if x does not affect y and there

is another node z such that both x and y affect z with distance 0. A

node x is linearly related to a round key if it is linearly related to a

key node of this round key.

Example 3.3. In Figure 2, r1(1) affects r0(5) with distance 1; it

also affects x(8) with distance 0. r1(1) is linearly related to key

node r3(3) and r0(4) is linearly related to key node r2(2).

Vulnerable instruction. The goal of an attack on cryptographic

implementation is normally the recovery of the master key. For

some ciphers, the recovery of the last round key is sufficient (e.g.

AES). For other ciphers, the attacker needs more than one round

key to get the master key. For example, for SPECK, SIMON, and

PRIDE, the last round key and the second last round key are both

needed to get the master key. In view of this, we allow a user input,

Number of target round keys, which indicates how many round keys

https://www.microchip.com/webdoc/avrassembler/avrassembler.wb_instruction_list.html
https://www.microchip.com/webdoc/avrassembler/avrassembler.wb_instruction_list.html

Fully Automated Differential Fault Analysis on Software Implementations of Cryptographic Algorithms

Algorithm 1: Check if an instruction is vulnerable.

Input : f : an instruction of a program F, DFG: customized data flow

graph corresponding to F, key: target round key

Output :boolean: is f vulnerable?

1 if Mnemonic of f ∈ {AND, OR, ADD, ADC, LPM, MUL} then
2 if Mnemonic of f =MUL then
3 boolean vul = false;

4 for a: input nodes of f do
5 if a is a constant then
6 vul=true;

7 if vul=false then
8 return false;

9 for a: output nodes of f do
10 for x : known nodes affected by a do
11 if distance(a, x) > 0 then
12 return false;

13 for b : nodes of f do
14 if b is linearly related to key then
15 return true;

16 return false;

are supposed to be retrieved, counting from the last round key.

Thus if Number of target round keys = 1, TADA would only aim for

the recovery of the last round key. If Number of target round keys
= 2, TADA would work on the attack to obtain the keys from last

two rounds. During the execution, the round key which is under

analysis is referred to as the target round key. An instruction is

considered vulnerable by TADA if the following conditions are

satisfied:

1. The instruction is one of the operations as described in Section 3.2.

In AVR assembly, these include operations with mnemonics AND,
OR, ADD, ADC, LPM, MUL, which are respectively bitwise AND,

bitwise OR, addition, addition with carry, table lookup and multi-

plication. For multiplication, we further check if one of the input

nodes is a constant.

2. For each output node of the instruction, the distance from it and

each of its affected known nodes is = 0. Thus, there is only one

non-linear instruction between the input nodes of this instruction

and the known nodes, which is the instruction under analysis. This

ensures that there is only one non-linear equation to solve. Further-

more, this enables us to derive the SMT constraints based on the

generic attacking method described in Section 3.2.

3. At least one of its nodes is linearly related to a key node that

stores the value of the target round key, which is the round key

under analysis during the execution.

The algorithm for checking if an instruction is vulnerable is

outlined in Algorithm 1.

Remark 1. As explained in the discussion before Definition 2.1,
when a fault is injected in a linear instruction, the output mask does
not give information of the inputs as it is always equal to the fault
mask. Similarly, if we have a series of linear instructions before a non-
linear instruction, injecting a fault in one of the linear instructions is

Figure 3: Subgraph generated by TADA for target node r1(1)
and vulnerable node r0(0) from vulnerable instruction 4 of
example cipher Fex in Table 2.

Table 3: DFA Equations generated for subgraph in Figure 3.

Correct execution Faulted execution Fault mask
(a) r0(4) = r0(0) & r1(1) (d) r0(4)′ = r0(0)′ & r1(1) r0(0)′ = r0(0) ⊕ δ
(b) r0(5) = r0(4) ⊕ r2(2) (e) r0(5)′ = r0(4)′ ⊕ r2(2)
(c) r1(6) = r1(1) ⊕ r3(3)

equivalent to injecting a fault in the non-linear instruction. That is
why we put our focus on non-linear instructions only.

Target node and vulnerable node. For a vulnerable instruction,
each of its input nodes that is not known can be a target node.
Each of the input nodes can be a vulnerable node (which can be

the same as the target node). Recall that by selection of vulnerable

instructions, at least one of the nodes of the instruction is linearly

related to the target round key nodes. A DFA on the vulnerable

instruction injects fault in one of the vulnerable nodes, hoping to

get information about the target node, hence revealing information

about the linearly related key nodes.

Subgraphs and DFA equations generation. For each pair of tar-

get node and vulnerable node, TADA extracts a subgraph of the

full data flow graph that includes the vulnerable instruction and

the nodes affected by it. The subgraph stops at the known nodes.

Example 3.4. For example cipher from Table 2, one of the vulner-

able instructions found by TADA is instruction 4. Figure 3 shows

the subgraph for target node r1(1) and vulnerable node r0(0).

For each subgraph (i.e. each pair of target node and vulnerable

node), TADA constructs one set of DFA equations and one equation

for fault mask. The DFA equations describe the relation from the

vulnerable instruction until the known nodes. The equation for

fault mask indicates that the change in the vulnerable node is equal

to δ . Input to SMT solver module also indicates which variables

involved in the DFA equations represent known nodes.

Example 3.5. Equations (in the human readable form) generated

by TADA for subgraph in Figure 3 are given in Table 3 (color scheme

corresponds to Figures 2,3). The real format of the equations is in

the form of SMT solver module input. The list of known nodes,

which is {r0(5), r1(6)} is also passed to SMT solver module.

SMT solver and graph update. For each pair of vulnerable node

and target node, the SMT solver module of TADA designs con-

straints to describe the corresponding DFA attack and calls SMT

solver to output the attack details in case the attack is successful.

Xiaolu Hou, Jakub Breier, Fuyuan Zhang, and Yang Liu

X+ (0)

r0 (0)

ld (0)

r1 (1)

ld (1)

r0 (4)

and (4) and (4)

r1 (6)

eor (6)

key1+ (2)

r2 (2)

ld (2)

r3 (3)

ld (3)

r0 (5)

eor (5) eor (6)eor (5)

x+ (7)

st (7)

x+ (8)

st (8)

Figure 4: Updated graph generated by TADA after a success-
ful attack on target node r1(0) from vulnerable instruction
4 of example cipher Fex in Table 2.

The details of this module are presented in Section 3.5. After each

successful attack on a target node, TADA updates the known nodes

in the graph.

Example 3.6. The attack on vulnerable instruction 4 with target

node r1(1) and vulnerable node r0(0) as described in Example 3.5

gives 8 bits of r1(1). Since r1(6) is a known node, TADA updates

the key node r3(3) as known node. The updated graph is shown

in Figure 4. Furthermore, for the same vulnerable instruction with

target node r0(0) and vulnerable node r1(1), TADA recovers 8

bits of r1(1). At this point, both of the key bytes are retrieved

and the cipher is broken. (The final graph is shown in Appendix A

Figure 9).

In case the target node cannot be obtained from attacking one

vulnerable node, TADA tries to obtain the same target node with

a different vulnerable node. The analysis of one instruction stops

when either all the input nodes are retrieved or when there is no

more target node which can be obtained. The details are explained

in Algorithm 2. Note that SMT solver module stores the attack

details in separate files even if the attack is not successful (i.e. less

than 8 bits are retrieved). TADAwill only retrieve the corresponding

file and output the attack details if SMT solver module returns true,
which indicates a successful attack (lines 5-7 of Algorithm 2).

After the attack on one vulnerable instruction is finished, TADA

analyzes the new graph to find another vulnerable instruction.

TADA stops when the required number of round keys is found or

when there is no vulnerable instruction that can be attacked.

Remark 2. In practical DFA, the attack is also considered success-
ful if not all of the bits of the key can be recovered but the brute
force complexity of recovering the key is acceptable. Taking this into
consideration, TADA allows the user to specify the least number of bits
that need to be recovered to consider an attack as successful. In case
the number is less than 8, TADA records the number of bits missing
and outputs the total brute force complexity in the end (see Remark 4).

Algorithm 2: The analysis of one vulnerable instruction
Input : f : a vulnerable instruction.
Output :boolean variable exploit.

1 boolean exploit = false;

2 for a: input nodes of f do
3 if a is known then
4 continue;

5 boolean target = false;

6 for b : input nodes of f do
7 run SMT solver module with inputs: DFA equations, fault

mask equation, constraint on fault mask, the list of known

nodes;

8 if SMT solver module returns true then
9 output the attack details;

10 update graph;

11 target = true;

12 exploit = true;

13 break;

14 if target then
15 break;

16 return exploit;

3.5 SMT Solver Module
As mentioned earlier, for each pair of target node and vulnerable

node, the input of SMT solver module is the target node, vulner-

able node, the corresponding DFA equations, equation for fault

mask and a list of known nodes involved in the DFA equations (e.g.

Example 3.5). In this section, we detail how other constraints and

the satisfiability problems are designed for each of the operations

described in Section 3.2.

Depending on the mnemonics of the operation, TADA executes

different algorithms. Since we are considering 8−bit architecture

and bit flip fault model, in case the mnemonic is not LPM, TADA
generates the following constraint for the fault mask:

(δ = 1) ∨ (δ = 2) ∨ (δ = 4) ∨ (δ = 8) ∨ (δ = 16) ∨ (δ = 32)

∨ (δ = 64) ∨ (δ = 128). (2)

Bitwise AND, bitwise OR. The algorithm for attacking bitwise

AND, and bitwise OR, is outlined in Algorithm 3. For each known

node x , TADA generates an equation for output mask ∆ (line 2).

Then it tries to attack each bit of target node a (line 4). Line 5

specifies that for some variables out, var0 and var1, the output
mask ∆ has one of the two patterns: ∆ & out = var0 or ∆ & out =
var1. Line 6 specifies if ∆ is of the first pattern then the kth bit of

the target node is 0. Line 7 says if ∆ is of the second pattern, the

kth bit of the target node is 1. Line 10 tests if there exist valuations

to variables out, δ , var0 and var1 such that the above mentioned

constraints are all satisfiable. In case it is satisfiable, the 6−tuple

(k,δ ,x , out, var0, var1) is saved to a file. This tuple translates to:

the kth bit of the target node a can be obtained by attacking the

vulnerable node using fault mask δ and observing the output mask

∆ of the known node x : if ∆ & out = var0 then a[k] = 0 and if

∆ & out = var1 then a[k] = 1.

Fully Automated Differential Fault Analysis on Software Implementations of Cryptographic Algorithms

Algorithm 3: The algorithm for attacking bitwise AND, bit-

wise OR.

Input :ψ : DFA equations and the equation for fault mask; b :
vulnerable node; a: target node; S : the list of knowns nodes
in the DFA equations; ψδ : constraint for fault mask δ as in

Equation (2).

Output :boolean: true if a can be obtained by attacking b .
1 for x : S do
2 ϕ := ψ ∧ (∆ = x ⊕ x ′);
3 counter = 0;

4 for k = 0, 1, . . . , 7 do
5 ψ1 := ϕ ⇒ ((∆ & out = val0) ∨ (∆ & out = val1));

6 ψ2 := (ϕ ∧ ∆ & out = val0) ⇒ a[k] = 0;

7 ψ3 := (ϕ ∧ ∆ & out = val1) ⇒ a[k] = 1;

8 Φ := ψδ ∧ψ1 ∧ψ2 ∧ψ3;

9 V := all variables involved in Φ;

10 if (∀V \{out, δ, val0, val1 } : Φ) is satisfiable then
11 save to file (k, δ, x, out, val0, val1);
12 counter++;

13 if counter = 8 then
14 return true;

15 return false;

If, for one known node x , 8 bits of the target node can be all

retrieved, then it returns true (line 13 − 14). Otherwise it goes to

the next known node.

As indicated in Algorithm 2, the attack details will be retrieved

from the files and output only when the attack is successful. The

output from TADA for example cipher Fex in Table 2 is summarized

in Appendix A Table 6.

Remark 3. The files output by TADA indicate that for target node
r1(1) and vulnerable node r0(0), when the known node r1(6) is
considered, there is no attack (this can also be observed from Figure 2).
This is because the injected fault does not affect value in r1(6). Thus,
for each pair of target and vulnerable node, we need to iterate through
all the known nodes that are involved in the DFA equations. Only
when none of the known nodes can help us to find an attack, we
consider the attack fails.

Addition (with carry). The algorithm for attacking addition is

outlined in Algorithm 4. The sum of two 8−bit variables is stored

in a variable of 8 bits and a carry bit. Thus, instead of considering

the output mask of only one known node, we consider each pair of

known nodes (line 1). Here | | indicates concatenation. For example

10| |10 = 1010. We first attack the 0th bit of target node, which

does not involve carry bit value. If this bit can be retrieved, the

tuple (0,δ ,x ,y, out, var0, var1) is saved to a file. This corresponds

to: the 0th bit of the target node a can be obtained by injecting

fault mask δ in vulnerable node and observing the output mask

∆ = y | |x⊕y′ | |x ′. If ∆& out = var0, a[0] = 0 and if ∆& out = var1,
a[0] = 1. Similar to the discussion of the attack on addition with

carry in Section 3.2, for higher bits, we need to consider two cases

separately: the carry bit from the previous bits is 0 or 1 (line 16, 28).

Here a[k − 1, 0] denotes the integer that is the same as the first

k − 1 bits of a. For example 0110[2, 0] = 110. If attack for carry bit

= 0 is successful, the tuple (k, 0,δ ,x ,y, out, var0, var1) is saved to

Algorithm 4: The algorithm for attacking ADD.

Input :ψ : DFA equations and the equation for fault mask; b :
vulnerable node; a: target node; S : the list of knowns nodes
in the DFA equations; ψδ : constraint for fault mask δ as in

Equation (2).

Output :boolean: true if a can be obtained by attacking b .
1 for x, y ∈ S, x , y do
2 counter= 0;

3 ϕ := ψ ∧ (∆ = y | |x ⊕ y′ | |x ′);
4 ψ1 := ϕ ⇒ ((∆ & out = val0) ∨ (∆ & out = val1));

5 ψ2 := (ϕ ∧ ∆ & out = val0) ⇒ a[0] = 0;

6 ψ3 := (ϕ ∧ ∆ & out = val1) ⇒ a[0] = 1;

7 Φ := ψδ ∧ψ1 ∧ψ2 ∧ψ3;

8 V := all variables involved in Φ;

9 if (∀V \{out, δ, val0, val1 } : Φ) is satisfiable then
10 save to file (0, δ, x, y, out, val0, val1);
11 counter++;

12 else
13 continue;

14 for k = 1, 2, . . . , 7 do
15 //the carry from the first k bits = 0:;

16 ψc0 := (a[k − 1, 0] + b[k − 1, 0])[k] = 0;

17 ϕ := ψc0 ∧ψ ∧ (∆ = y | |x ⊕ y′ | |x ′);
18 ψ1 := (ϕ ⇒ ((∆ & out = val0) ∨ (∆ & out = val1)));

19 ψ2 := ((ϕ ∧ ∆ & out = val0) ⇒ a[k] = 0);

20 ψ3 := ((ϕ ∧ ∆ & out = val1) ⇒ a[k] = 1);

21 Φc0 := ψδ ∧ψ1 ∧ψ2 ∧ψ3;

22 V := all variables involved in Φc0;

23 if ∀V \{out, δ, val0, val1 } : Φc0 is satisfiable then
24 let output0 = (k, 0, δ, x, y, out, val0, val1);

25 else
26 break;

27 //the carry from the first k bits = 1:;

28 ψc1 := (a[k − 1, 0] + b[k − 1, 0])[k] = 1;

29 ϕ := ψc1 ∧ψ ∧ (∆ = y | |x ⊕ y′ | |x ′);
30 ψ1 := (ϕ ⇒ ((∆ & out = val0) ∨ (∆ & out = var1)));

31 ψ2 := ((ϕ ∧ ∆ & out = val0) ⇒ a[k] = 0);

32 ψ3 := ((ϕ ∧ ∆ & out = val1) ⇒ a[k] = 1);

33 Φc1 := ψδ ∧ψ1 ∧ψ2 ∧ψ3;

34 V := all variables involved in Φc1;

35 if ∀V \{out, δ, val0, val1 } : Φc1 is satisfiable then
36 let output1 = (k, 1, δ, x, y, out, val0, val1);
37 save to file: output0 and output1;
38 counter++;

39 else
40 break;

41 if counter= 8 then
42 return true;

43 return false;

a file, which means: when carry is 0, the kth bit of the target node

a can be obtained by injecting fault mask δ in vulnerable node and

observing the output mask ∆. If ∆ & out = var0, a[k] = 0 and if

∆ & out = var1, a[k] = 1. Similarly, when the attack for carry bit

Xiaolu Hou, Jakub Breier, Fuyuan Zhang, and Yang Liu

= 1 is successful, the tuple (k, 1,δ ,x ,y, out, var0, var1) is saved to

a file.

Note that the attack on the kth bit assumes the knowledge of

the first k − 1 bits of both of the operands. Thus, if one bit cannot

be attacked, the algorithm goes to next known node directly (line

13, 26, 40). Moreover, the algorithm for attacking ADD contains an
extra step in SMT solver module such that it only returns true for

the attack when both inputs of addition can be retrieved or when

one can be retrieved and the other is known.

The attack for ADC can be obtained by minor modifications of

Algorithm 3. For example, the analysis of the 0th bit needs to con-

sider two cases: the carry bit is 1 and the carry bit is 0. Furthermore,

for attacking the addition with carry, it is necessary to require that

the node representing carry is a known node.

Table lookup. If the vulnerable instruction corresponds to Sbox

table lookup, the attack follows Algorithm 5. The algorithm aims

to construct the 8 pairs (δ1,∆1), (δ2,∆2), . . . , (δ8,∆8), where δi (1 ≤

i ≤ 8) are 8 different fault masks that satisfy the constraint given in

Equation (3), and ∆j (1 ≤ j ≤ 8) denote the corresponding output

masks. First we identify the variables that change when input mask

δ changes and store them in list (lines 1 − 4). Next we make 8

copies of ϕ (line 9). They are identical to ϕ except for the variables

in list, which are replaced by 8 different variables in each of the 8

copies. For example, δ is replaced by δ1,δ2, . . . ,δ8 in ϕ1,ϕ2, . . . ,ϕ8
respectively. If the attack on the kth bit is successful, (k,x) is saved
to file (line 16 − 18).

(δ1 = 1) ∧ (δ2 = 2) ∧ (δ3 = 4) ∧ (δ4 = 8) ∧ (δ5 = 16)

∧ (δ6 = 32) ∧ (δ7 = 64) ∧ (δ8 = 128). (3)

This pair (k,x) means that by flipping the bits of vulnerable node b
and observing the change in the known node x , the eight pairs of
input and output masks can uniquely identify the kth bit of a. If all
8 bits of the target node a can be obtained by attacking vulnerable

node b, the algorithm returns true (line 19 − 20).

Multiplication with a constant. When the vulnerable instruc-

tion is multiplication and one of the input operands is a constant,

the algorithm for the attack is obtained from Algorithm 3 with the

following changes:

Since the product of two 8−bit variables is stored in two 8−bit vari-

ables, we consider each pair of known nodes instead of only one

known node. Lines 1 − 2 are changed to

for x ,y ∈ S,x , y do
ϕ := ψ ∧ (∆ = y | |x ⊕ y′ | |x ′)

Accordingly, the output to a file (line 11) is changed to (k,δ ,x ,y, out,
var0, var1), which indicates the kth bit of target node a can be ob-

tained by injecting fault mask δ in vulnerable node b and observing

the output mask ∆ = y | |x ⊕ y′ | |x ′. If ∆ & out = var0, a[k] = 0 and

if ∆ & out = var1, a[k] = 1.

4 EVALUATION
In this section, we will present evaluations of four ciphers using

TADA: SIMON [6], SPECK [6], AES [17] and PRIDE [3]. Results are

summarized in Table 4. More details are presented in Appendix C.

The analysis was done on a standard laptop computer with Intel

Haswell family CORE i7 and 8 GB RAM. For SIMON, SPECK and

PRIDE, we were able to find implementation specific attacks that

Algorithm 5: The algorithm for attacking table lookup.

Input :ψ : DFA equations and the equation for fault mask; b :
vulnerable node; a: target node; S : the list of knowns nodes
in the DFA equations; ψδ : constraint for fault masks as in

Equation (3).

Output :boolean: true if a can be obtained by attacking b .
1 list= {δ, ∆};
2 for c : variables in DFA do
3 if b affects c then
4 list.add(c);

5 for x in S do
6 counter = 0;

7 for k = 0, 1, . . . , 7 do
8 ϕ := ψ ∧ (∆ = x ⊕ x ′);
9 make 8 copies of ϕ w.r.t. list;

10 let ϕi denote the ith copy of ϕ ;
11 ψ := ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8;
12 V := all variables in ψ ;

13 V ′
:= V \{δ1, ..., δ8, ∆1, ..., ∆8 };

14 C0 := ∀V ′
: ψ ⇒ a[k] = 0;

15 C1 := ∀V ′
: ψ ⇒ a[k] = 1;

16 if (ψδ ∧ (∀{∆1, ..., ∆8 } : C0 ∨C1)) is satisfiable then
17 counter++;

18 save to file (k, x);

19 if counter=8 then
20 return true;

21 return false;

Table 4: Evaluation by TADA on different implementations.

Cipher implementation SIMON SPECK AES PRIDE

of lines of code (unrolled) 1,272 663 2,057 1590

of nodes in DFG 1,595 843 2,060 1763

of edges in DFG 2,709 1,562 3,209 2586

evaluation time (min) 17.2 9.8 298.7 4.6

fault attack found new new [26] new

of known nodes before attack 66 32 69 16

of known nodes after attack 162 117 149 196

of round keys found 2 2 1 2

have not been presented yet, since it is not possible to identify

such attack from the cipher-level. For AES, a previously published

DFA [26] was found.

It is to be noted that while AES uses a full key length in each

round, SIMON, SPECK and PRIDE only use half of it. Therefore, for

a full key recovery, it is necessary to attack consecutive two rounds

of these ciphers. In case of DFA, the first step is to recover the last

round key, then peel-off this round, and continue with the attack

on the penultimate round.

SIMON. SIMON is an ultra-lightweight block cipher, based on the

balanced Feistel structure. It supports block sizes from 32 up to 128

bits, with key sizes ranging from 64 to 256 bits. Number of rounds

depends on the key size, and ranges between 32 and 72. In each

round, it uses three operations – bitwise AND, bitwise shift, and

XOR. Schematic of SIMON is depicted in Figure 5.

Fully Automated Differential Fault Analysis on Software Implementations of Cryptographic Algorithms

For SIMON implementation
3
, TADA found 8 vulnerable bitwise

AND instructions that are all exploitable. The last round key and

the second last round key were recovered. This attack is implemen-

tation specific. The flaw in this implementation is that the key xor

operation was implemented before the xor of left and right side of

the intermediate values – opposite as the specification. Thus, pre-

senting a DFA vulnerability which cannot be seen from the cipher

design level.

SPECK. Similarly to SIMON, it is an ultra-lightweight block cipher.

It offers the same block and key sizes, however the number of

rounds ranges from 22 to 34. It follows ARX structure – each round

consists of a modular addition, rotations, and XORs. Schematic of

SPECK is depicted in Figure 6.

For SPECK implementation
3
, TADA found 11 vulnerable instruc-

tions, among which 9 are exploitable. These 9 consist of 8 additions

(with carry) and 1 multiplication. The other 2 vulnerable instruc-

tions are additions with carry which can only give 7 bits of the

target nodes. Details are summarized in Table 5. Here “keyx[y]”
denotes the (y + 1)th byte of round key in round x .

The attack on multiplication is novel and implementation spe-

cific. This particular multiplication instruction (no. 595 in Table 5)

multiplies a value with constant 8, which corresponds to 3−bit

rotation to the left in the second last round of the cipher design.

Attack details output by TADA suggests fault masks 0x10, 0x40 for
retrieving the 0th and 1st bit of target node and 0x08 for retrieving
the 2−7th bits. If a fault mask 0x08 is injected in the constant 8, the

operation will be changed to multiplication by 0. We emphasize that

such attack cannot be seen from a cipher design level, which only

shows the rotations, but leaves it to implementer on how to realize

them. Normally, rotation is a linear operation and therefore, cannot

be attacked by DFA – the input and output difference would remain

the same, it would only change the position, giving no information

on the processed data. We note that multiplication by 8 is not the

only way to implement 3−bit rotation. Only after the implementa-

tion analysis by TADA, one can observe the vulnerability caused

by using the multiplication by a constant.

Remark 4. If we consider the attack to be successful with only 7
bits recovered, the analysis time on SPECK is reduced to 1.9minutes. In
such case, TADA gave us the state-of-the-art attack published in [48].
It found 8 vulnerable addition (with carry) operations, recovered the
last round key and the second last round key. But 2 bits of brute force
is required. Details are outlined in Table 8.

AES.AES is the current NIST standard for symmetric cryptography

and therefore, widely used in real world applications. The block size

of AES is 128 bits, while the key sizes can be chosen between 128,

192, and 256-bit variants. Number of rounds varies accordingly, and

can be either 10, 12, or 14. It is based on substitution-permutation

network structure (SPN) and consists of four operations per round:

AddRoundKey, SubBytes, MixColumns, and ShiftRows. Schematic

of AES is depicted in Figure 7 (picture was drawn with a usage of

library from [30]).

For AES implementation taken from Ecrypt II public repository
4
,

TADA found the same attack as in [26]. The attack takes advantage

3
https://github.com/openluopworld/simon_speck_on_avr/tree/master/AVR

4
https://perso.uclouvain.be/fstandae/source_codes/lightweight_ciphers/source/AES.

asm

Li Ri

≪ 1

≪ 8

&

≪ 2 Ki

Li+1 Ri+1

Legend

& bitwise AND

bitwise XOR

≪ m m-bit rotation
to the left

Figure 5: Schematic of one round of SIMON block cipher.

Li Ri

≫ 8

Ki ≪ 3

Li+1 Ri+1

Legend

modular addition

bitwise XOR

≪ m m-bit rotation
to the left

≫ m m-bit rotation
to the right

Figure 6: Schematic of one round of SPECK block cipher.

of SubBytes operation, implemented as a table lookup, which is

the only non-linear part of the algorithm. With successful attacks

on 16 table lookups, TADA recovered the last round key.

PRIDE. As another SPN representative, we have chosen light-

weight cipher PRIDE. The block size is 64 bits, while the key size

is 128 bits. Number of rounds is 20, where the first 19 rounds are

identical and the last round ends with a substitution layer. In the

implementation taken from public repository
5
, the Sbox is imple-

mented in algebraic form, therefore, unlike in AES implementation,

no table lookup is necessary. Details on this implementation are

shown in Appendix B. Schematic of PRIDE is depicted in Figure 8.

TADA found a new attack that exploits the bitwise AND opera-
tions, which are used for the implementation of Sbox (see Appen-

dix B). 10 of such operations are analyzed and exploited, revealing

the last two round keys.

We note that there are multiple countermeasure schemes pro-

posed to thwart single fault injections in software [5, 37, 41, 42].

However, there is no full protected cipher implementation publicly

available to date, only code snippets targeting single operations.

Therefore, to mitigate the threat, we suggest the implementer to pro-

tect the cipher operations one by one while continuously checking

the resulting code with TADA.

5 RELATEDWORK
In this section we outline several works that present automated

approaches to fault analysis with different focus.

5
https://github.com/FreeDisciplina/BlockCiphersOnAVR/tree/master/PRIDE_64_

128_AVR

https://github.com/openluopworld/simon_speck_on_avr/tree/master/AVR
https://perso.uclouvain.be/fstandae/source_codes/lightweight_ciphers/source/AES.asm
https://perso.uclouvain.be/fstandae/source_codes/lightweight_ciphers/source/AES.asm
https://github.com/FreeDisciplina/BlockCiphersOnAVR/tree/master/PRIDE_64_128_AVR
https://github.com/FreeDisciplina/BlockCiphersOnAVR/tree/master/PRIDE_64_128_AVR

Xiaolu Hou, Jakub Breier, Fuyuan Zhang, and Yang Liu

AddRoundKey

Ki

SubBytes

Sbox

x
x
x
x

ShiftRows

⊗c(x)

x
x

x
x

MixColumns

Xi Xi+1

Figure 7: Schematic of one round of AES block cipher.

S S S S S S S S S S S S S S S S

L0 L1 L2 L3

Ki

Figure 8: Schematic of one round of PRIDE block cipher.

No. Mnemonics

of known

Key nodes recovered

nodes

606 ADD 43 key22[0]
607 ADC 52 key22[1]
608 ADC 63 key22[2]
578 ADD 72 -

579 ADC 81 key21[1]
580 ADC 90 key21[2]
595 MUL 99 key21[0],key22[3]
550 ADD 108 -

551 ADC 117 key21[3]

Table 5: Attack on SPECK found by TADA
- Each row corresponds to a vulnerable in-
struction with sequence number “No.” and
operation “Mnemonics” such that after the
attack on this instruction, the number of
known nodes is given by “# of known nodes”
and the key nodes that are retrieved are
given by the last column.

Assembly Analysis. To the best of our knowledge, the only work

on automation of DFA in assembly implementation is [15], where

the authors automated the search for vulnerable instructions ac-

cording to user input. However, whether the found instruction is

really exploitable and how to exploit it has to be done manually.

Therefore, the developed tool outputs larger number of vulnerable

instructions while only a small subset might be actually exploitable.

Moreover, the vulnerability criteria for finding these instructions

have to be defined by the user.

Cipher level fault analysis. Khanna et al. [33] recently proposed
XFC – a framework for exploitable fault characterization in block

ciphers. It takes a cipher specification as input and analyzes it w.r.t.

DFA by coloring the fault propagation throughout the cipher state.

While the authors show that this approach works when analyzing a

high-level representation of a cipher, it is not sufficient to discover

vulnerabilities that are implementation specific. Agosta et al. [1]

utilized an approach that works on intermediate representations

in order to identify single bit-flip vulnerabilities in the code. While

this approach takes the analysis one level lower, it still aims at

detecting spots that can be exploited from the cipher level instead

of finding implementation specific vulnerabilities.

Hardware level analysis. Dureuil et al. [22] presented a fault

model inference approach that outputs vulnerability rate for a par-

ticular hardware. By observing the possible fault models and their

occurrence probabilities, they could estimate a robustness of embed-

ded software. The main aim of their approach was to approximate

a time that is needed to successfully inject a required fault model.

SAT related. There are several automation works for algebraic

fault attacks on cipher level [50, 51] utilizing SAT solver. The main

idea is to describe the cipher algorithm as well as the fault attack in

algebraic equations, then use SAT solver to solve for the key. But

this also limits the attack to a particular key. The tool developed

needs either one or several pairs of ciphertext and plaintext. An-

other work utilizing SAT solver was automation of DFA on circuit

level [23]. They describe the circuit as well as the fault in conjunc-

tive normal form and use SAT to solve for the key. Similarly to

previous works, the developed tool aims to solve one key at a time.

Fault injections in dependable systems. Parallel to cryptographic
fault attacks, there is an area of dependable systems that analyzes

errors and their transitions in computer systems. The same ter-

minology applies here, such as fault injection, fault model, fault

resilience etc. These works (e.g. [24, 45, 49]) however do not focus

on exploiting deliberately injected faults. They analyze the prop-

agation in software and possible consequences, such as program

failing to produce the output or corrupting the data. Similar to these

works, Goubet et al. [27] introduced a framework for evaluating

countermeasures against fault attacks. It is based on comparing

two code snippets – with and without protection. However, it does

not focus on cryptographic implementations, only on determining

the robustness of countermeasures.

In comparison to these approaches, TADAworks on an assembly

level in a way that makes it possible to discover implementation-

specific vulnerabilities. Furthermore, it does not require any ciphertext-

plaintext pairs. It analyzes the implementation without knowledge

of the data being processed.

6 DISCUSSION
Countermeasures. Software countermeasures can be based for

example on coding theory [14, 16], instruction redundancy [37, 42],

or infection [25]. As mentioned before, TADA is capable of analyz-

ing single bit flip vulnerabilities, however, fault countermeasures

are normally intended to protect against such models. To be able

to evaluate other fault models or even multiple faults during one

encryption, an extension to SMT solver module would have to

be done, which is the aim of the future work. Nevertheless, it is

Fully Automated Differential Fault Analysis on Software Implementations of Cryptographic Algorithms

possible to check for the potential flaws in these countermeasure

implementations by running the analysis with TADA.

Jumps and loops. As stated in previous sections, TADA conducts

the analysis on an unrolled implementation. While for standard

static code analysis, the conditional branches constitute a non-

trivial problem, in our case we do not need to consider implementa-

tions with these or other types of jumps and branches. The reason

is that these implementations are inherently vulnerable against

physical attacks and the attacker can target them with much sim-

pler methods than those considered in this work. For example, a

conditional branch decides on a jump based on processed variables,

and therefore leaks a timing information [35, 39]. Jump to a sub-

routine can be skipped entirely, resulting to a trivial analysis [36].

Similarly, round counters used in loops can be attacked to reduce

the number of rounds [20].

7 CONCLUSIONS
In this work, we proposed a method for fully automated DFA attack

on assembly implementations of symmetric key cryptographic algo-

rithms. The automation of this approach was implemented in TADA
– Tool for Automated DFA on Assembly. To show the practicality

of TADA, we presented novel implementation-specific attacks on

SIMON, SPECK, and PRIDE that were not published before. We also

provided evaluation on AES, where TADA was able to find existing

DFA attack published in literature.

In the future, we would like to focus on other fault analysis

methods than DFA. Also, we would like to implement a multi-fault

adversarial model, allowing injecting more than one fault during

one encryption/decryption routine. Such model is necessary for de-

feating wide range of fault countermeasures based on redundancy.

REFERENCES
[1] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale.

2014. Differential Fault Analysis for Block Ciphers: An Automated Conserva-

tive Analysis. In Proceedings of the 7th International Conference on Security of
Information and Networks (SIN ’14). ACM, New York, USA, Article 137.

[2] Michel Agoyan, Jean-Max Dutertre, Amir-Pasha Mirbaha, David Naccache, Anne-

Lise Ribotta, and Assia Tria. 2010. How to flip a bit?. InOn-Line Testing Symposium
(IOLTS), 2010 IEEE 16th International. IEEE, 235–239.

[3] Martin R Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander, Christof

Paar, and Tolga Yalçın. 2014. Block ciphers–focus on the linear layer (feat. PRIDE).

In International Cryptology Conference. Springer, 57–76.
[4] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. 2006. The

Sorcerer’s Apprentice Guide to Fault Attacks. Proc. IEEE 94, 2 (2006), 370–382.

[5] Alessandro Barenghi, Gerardo Pelosi, Luca Breveglieri, Francesco Regazzoni, and

Israel Koren. 2010. Low-Cost Software Countermeasures Against Fault Attacks:

Implementation and Performances Trade Offs. (2010).

[6] R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and L. Wingers. 2015.

The SIMON and SPECK lightweight block ciphers. In 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC). 1–6.

[7] Arthur Beckers, Benedikt Gierlichs, and Ingrid Verbauwhede. 2017. Fault Analysis

of the ChaCha and Salsa Families of Stream Ciphers. Lecture Notes in Computer
Science (2017).

[8] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, AmirMoradi, Thomas

Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. 2016. The SKINNY

Family of Block Ciphers and its Low-Latency Variant MANTIS. Cryptology

ePrint Archive, Report 2016/660. (2016). https://eprint.iacr.org/2016/660.

[9] Daniel J Bernstein. 2008. ChaCha, a variant of Salsa20. In Workshop Record of
SASC, Vol. 8.

[10] Sarani Bhattacharya and DebdeepMukhopadhyay. 2016. Curious case of rowham-

mer: flipping secret exponent bits using timing analysis. In International Confer-
ence on Cryptographic Hardware and Embedded Systems. Springer, 602–624.

[11] Eli Biham and Adi Shamir. 1991. Differential cryptanalysis of DES-like cryptosys-

tems. In Advances in Cryptology-CRYPTO, Vol. 90. Springer, 2–21.

[12] Eli Biham and Adi Shamir. 1997. Differential fault analysis of secret key cryp-

tosystems. In Advances in Cryptology - CRYPTO ’97. Springer, 513–525.
[13] Alex Biryukov and Leo Perrin. 2017. State of the Art in Lightweight Symmetric

Cryptography. Cryptology ePrint Archive, Report 2017/511. (2017).

[14] Jakub Breier and Xiaolu Hou. 2016. Feeding Two Cats with One Bowl: On

Designing a Fault and Side-Channel Resistant Software Encoding Scheme (Ex-

tended Version). Cryptology ePrint Archive, Report 2016/931. (2016). http:

//eprint.iacr.org/2016/931.

[15] Jakub Breier and Xiaolu Hou. 2017. Automated Fault Analysis of Assembly Code

(With a Case Study on PRESENT Implementation). Cryptology ePrint Archive,

Report 2017/829. (2017). https://eprint.iacr.org/2017/829.

[16] Julien Bringer, Claude Carlet, HervÃľ Chabanne, Sylvain Guilley, and Houssem

Maghrebi. 2014. Orthogonal Direct Sum Masking: A Smartcard Friendly Com-

putation Paradigm in a Code, with Builtin Protection against Side-Channel

and Fault Attacks. Cryptology ePrint Archive, Report 2014/665. (2014). http:

//eprint.iacr.org/2014/665.

[17] Joan Daemen and Vincent Rijmen. 2002. The Design of Rijndael. Springer-Verlag
New York, Inc., Secaucus, NJ, USA.

[18] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability Modulo Theories:

Introduction and Applications. Commun. ACM 54, 9 (Sept. 2011), 69–77. https:

//doi.org/10.1145/1995376.1995394

[19] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT

Solver. In Proceedings of the 14th International Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS 2008), Budapest, Hungary. 337–
340. https://doi.org/10.1007/978-3-540-78800-3_24

[20] Amine Dehbaoui, Amir-Pasha Mirbaha, Nicolas Moro, Jean-Max Dutertre, and

Assia Tria. 2013. Electromagnetic Glitch on the AES Round Counter. In Construc-
tive Side-Channel Analysis and Secure Design, Emmanuel Prouff (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 17–31.

[21] Anh Nguyen Duc, Ronald Jabangwe, Pangkaj Paul, and Pekka Abrahamsson. 2017.

Security Challenges in IoT Development: A Software Engineering Perspective. In

Proceedings of the XP2017 Scientific Workshops (XP ’17). ACM, Article 11, 5 pages.

[22] Louis Dureuil, Guillaume Petiot, Marie-Laure Potet, Thanh-Ha Le, Aude Crohen,

and Philippe de Choudens. 2016. FISSC: A Fault Injection and Simulation Se-

cure Collection. In Computer Safety, Reliability, and Security: 35th International
Conference, SAFECOMP 2016, Trondheim, Norway. Springer, 3–11.

[23] M. Gay, J. Burchard, J. Horacek, A.S.M. Ekossono, T. Schubert, B. Becker, I. Polian,

and M Kreuzer. 2016. Small scale AES toolbox: Algebraic and propositional

formulas, circuit implementations and fault equations. FCTRU. (2016). http:

//hdl.handle.net/2117/99210.

[24] Giorgis Georgakoudis, Ignacio Laguna, Dimitrios S Nikolopoulos, and Martin

Schulz. 2017. REFINE: realistic fault injection via compiler-based instrumentation

for accuracy, portability and speed. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. ACM, 29.

[25] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. 2012. Infective

Computation and Dummy Rounds: Fault Protection for Block Ciphers without

Check-before-Output. In Progress in Cryptology – LATINCRYPT 2012, Alejandro
Hevia and Gregory Neven (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

305–321.

[26] Christophe Giraud. 2005. DFA on AES. In Proceedings of the 4th International
Conference on Advanced Encryption Standard (AES’04). Springer, 27–41.

[27] Lucien Goubet, Karine Heydemann, Emmanuelle Encrenaz, and Ronald De Keu-

lenaer. 2015. Efficient Design and Evaluation of Countermeasures against Fault

Attacks Using Formal Verification. In Smart Card Research and Advanced Appli-
cations: 14th International Conference, CARDIS 2015, Bochum, Germany, Naofumi

Homma and Marcel Medwed (Eds.). Springer, Cham, 177–192.

[28] Yuming Huo, Fan Zhang, Xiutao Feng, and Li-Ping Wang. 2015. Improved differ-

ential fault attack on the block cipher SPECK. In Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2015 Workshop on. IEEE, 28–34.

[29] Dirmanto Jap and Jakub Breier. 2015. Differential Fault Attack on LEA. In

Information and Communication Technology, Ismail Khalil, Erich Neuhold, A Min

Tjoa, Li Da Xu, and Ilsun You (Eds.). Springer International Publishing, Cham,

265–274.

[30] Jérémy Jean. 2016. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/.

(2016).

[31] Kitae Jeong, Yuseop Lee, Jaechul Sung, and Seokhie Hong. 2013.

Improved differential fault analysis on PRESENT-80/128. Interna-
tional Journal of Computer Mathematics 90, 12 (2013), 2553–2563.

arXiv:http://dx.doi.org/10.1080/00207160.2012.760732

[32] Marc Joye and Michael Tunstall. 2012. Fault Analysis in Cryptography. Springer
Publishing Company, Incorporated.

[33] Punit Khanna, Chester Rebeiro, and Aritra Hazra. 2017. XFC: A Framework for

eXploitable Fault Characterization in Block Ciphers. In Proceedings of the 54th
Annual Design Automation Conference 2017 (DAC ’17). ACM, Article 8, 6 pages.

[34] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.

In Advances in Cryptology — CRYPTO’ 99: 19th Annual International Cryptology
Conference, California, USA. Springer, 388–397.

https://eprint.iacr.org/2016/660
http://eprint.iacr.org/2016/931
http://eprint.iacr.org/2016/931
https://eprint.iacr.org/2017/829
http://eprint.iacr.org/2014/665
http://eprint.iacr.org/2014/665
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1007/978-3-540-78800-3_24
http://hdl.handle.net/2117/99210
http://hdl.handle.net/2117/99210
https://www.iacr.org/authors/tikz/
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207160.2012.760732

Xiaolu Hou, Jakub Breier, Fuyuan Zhang, and Yang Liu

[35] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems. In Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO ’96). Springer-Verlag,
London, UK, UK, 104–113. http://dl.acm.org/citation.cfm?id=646761.706156

[36] SV Dilip Kumar, Sikhar Patranabis, Jakub Breier, Debdeep Mukhopadhyay,

Shivam Bhasin, Anupam Chattopadhyay, and Anubhab Baksi. 2017. A prac-

tical fault attack on ARX-like ciphers with a case study on ChaCha20. In 2017
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC, Taipei, Taiwan.

[37] Benjamin Lac, Anne Canteaut, Jacques J.A. Fournier, and Renaud Sirdey. 2017.

Thwarting Fault Attacks using the Internal Redundancy Countermeasure (IRC).

Cryptology ePrint Archive, Report 2017/910. (2017). http://eprint.iacr.org/2017/

910.

[38] Sam Lucero. 2016. IoT platforms: enabling the Internet of Things. IHS Technology

– Whitepaper. (2016), 21 pages. https://cdn.ihs.com/www/pdf/enabling-IOT.pdf

[39] Baolei Mao, Wei Hu, Alric Althoff, Janarbek Matai, Jason Oberg, Dejun Mu, Tim-

othy Sherwood, and Ryan Kastner. 2015. Quantifying Timing-Based Information

Flow in Cryptographic Hardware. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD ’15). IEEE Press, Piscataway, NJ,

USA, 552–559. http://dl.acm.org/citation.cfm?id=2840819.2840896

[40] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz. 2013.

Electromagnetic Fault Injection: Towards a Fault Model on a 32-bit Microcon-

troller. In 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography. 77–88.
https://doi.org/10.1109/FDTC.2013.9

[41] N. Moro, K. Heydemann, A. Dehbaoui, B. Robisson, and E. Encrenaz. 2014. Ex-

perimental evaluation of two software countermeasures against fault attacks.

In 2014 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST). 112–117. https://doi.org/10.1109/HST.2014.6855580

[42] Conor Patrick, Bilgiday Yuce, Nahid Farhady Ghalaty, and Patrick Schaumont.

2016. Lightweight Fault Attack Resistance in Software Using Intra-Instruction

Redundancy. Cryptology ePrint Archive, Report 2016/850. (2016). http://eprint.

iacr.org/2016/850.

[43] Matthieu Rivain. 2009. Differential Fault Analysis on DES Middle Rounds. In

Cryptographic Hardware and Embedded Systems - CHES 2009: 11th International
Workshop Lausanne, Switzerland, September 6-9, 2009 Proceedings, Christophe
Clavier and Kris Gaj (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 457–

469. https://doi.org/10.1007/978-3-642-04138-9_32

[44] Sayandeep Saha, Debdeep Mukhopadhyay, and Pallab Dasgupta. 2018. Exp-

Fault: An Automated Framework for Exploitable Fault Characterization in

Block Ciphers. Cryptology ePrint Archive, Report 2018/295. (2018). https:

//eprint.iacr.org/2018/295.

[45] Behrooz Sangchoolie, Karthik Pattabiraman, and Johan Karlsson. 2017. One Bit is

(Not) Enough: An Empirical Study of the Impact of Single and Multiple Bit-Flip

Errors. In Dependable Systems and Networks (DSN), 2017 47th Annual IEEE/IFIP
International Conference on. IEEE, 97–108.

[46] C. E. Shannon. 1949. Communication theory of secrecy systems. The Bell System
Technical Journal 28, 4 (Oct 1949), 656–715. https://doi.org/10.1002/j.1538-7305.
1949.tb00928.x

[47] Michael Tunstall and Debdeep Mukhopadhyay. 2009. Differential Fault Analysis

of the Advanced Encryption Standard using a Single Fault. Cryptology ePrint

Archive, Report 2009/575. (2009).

[48] H. Tupsamudre, S. Bisht, and D. Mukhopadhyay. 2014. Differential Fault Analysis

on the Families of SIMON and SPECK Ciphers. In 2014 Workshop on Fault Diagno-
sis and Tolerance in Cryptography. 40–48. https://doi.org/10.1109/FDTC.2014.14

[49] Erik van der Kouwe and Andrew S Tanenbaum. 2016. HSFI: accurate fault

injection scalable to large code bases. In Dependable Systems and Networks (DSN),
2016 46th Annual IEEE/IFIP International Conference on. IEEE, 144–155.

[50] Fan Zhang, Shize Guo, Xinjie Zhao, Tao Wang, Jian Yang, Francois-Xavier Stan-

daert, and Dawu Gu. 2016. A framework for the analysis and evaluation of

algebraic fault attacks on lightweight block ciphers. IEEE Transactions on Infor-
mation Forensics and Security 11, 5 (2016), 1039–1054.

[51] Fan Zhang, Xinjie Zhao, Shize Guo, Tao Wang, and Zhijie Shi. 2013. Improved

algebraic fault analysis: A case study on piccolo and applications to other light-

weight block ciphers. In International Workshop on Constructive Side-Channel
Analysis and Secure Design. Springer, 62–79.

A ATTACK DETAILS FOR Fex

Here we present more details output by TADA for Fex (in Table 2).

Table 6 summaries the attack details on vulnerable instruction 4.

After the analysis of instruction 4, both key bytes are recovered

and the cipher is broken. Figure 9 shows the updated DFG after the

attack on instruction 4. We can see that all the nodes are known

now.

target vulnerable

(k, δ, x, out, val0, val1)
retrieved

node node key byte

r1(1) r0(0)

(0, 1, r0(5), 0x01, 0x00, 0x01)

key1[1]

(1, 2, r0(5), 0x02, 0x00, 0x02)
(2, 4, r0(5), 0x04, 0x00, 0x04)
(3, 8, r0(5), 0x28, 0x00, 0x08)
(4, 16, r0(5), 0x10, 0x00, 0x10)
(5, 32, r0(5), 0x20, 0x00, 0x20)
(6, 64, r0(5), 0x40, 0x00, 0x40)
(7, 128, r0(5), 0x80, 0x00, 0x80)

r0(0) r1(1)

(0, 1, r0(5), 0x01, 0x00, 0x01)

key1[0]

(1, 2, r0(5), 0x02, 0x00, 0x02)
(2, 4, r0(5), 0x04, 0x00, 0x04)
(3, 8, r0(5), 0x08, 0x00, 0x08)
(4, 16, r0(5), 0x10, 0x00, 0x10)
(5, 32, r0(5), 0x20, 0x00, 0x20)
(6, 64, r0(5), 0x40, 0x00, 0x40)
(7, 128, r0(5), 0x80, 0x00, 0x80)

Table 6: Summary of TADA output for DFA attacks on Fex
in Table 2 (values of x , out, var0, var1 are in hexadecimal for-
mat)

X+ (0)

r0 (0)

ld (0)

r1 (1)

ld (1)

r0 (4)

and (4) and (4)

r1 (6)

eor (6)

key1+ (2)

r2 (2)

ld (2)

r3 (3)

ld (3)

r0 (5)

eor (5) eor (6)eor (5)

x+ (7)

st (7)

x+ (8)

st (8)

Figure 9: Updated graph generated by TADA after two suc-
cessful attacks on vulnerable instruction 4 of example ci-
pher Fex in Table 2.

B PRIDE SBOX IMPLEMENTATION
The equations for Sbox of PRIDE [3] are as follows:

A = c ⊕ (a&b) (4)

B = d ⊕ (b&c) (5)

C = a ⊕ (A&B) (6)

D = b ⊕ (B&C), (7)

where the input is a 4−bit variable with bits a,b, c,d and the output

is a 4−bit variable with bits A,B,C,D.

C ATTACK DETAILS
In this part, we provide the attack details on cipher implementa-

tions that were chosen for TADA evaluation in Section 4. Each of

the tables provides the information on which instructions were

identified as vulnerable and what was the attack flow leading to

secret key retrieval.

http://dl.acm.org/citation.cfm?id=646761.706156
http://eprint.iacr.org/2017/910
http://eprint.iacr.org/2017/910
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
http://dl.acm.org/citation.cfm?id=2840819.2840896
https://doi.org/10.1109/FDTC.2013.9
https://doi.org/10.1109/HST.2014.6855580
http://eprint.iacr.org/2016/850
http://eprint.iacr.org/2016/850
https://doi.org/10.1007/978-3-642-04138-9_32
https://eprint.iacr.org/2018/295
https://eprint.iacr.org/2018/295
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1109/FDTC.2014.14

Fully Automated Differential Fault Analysis on Software Implementations of Cryptographic Algorithms

Table 7 shows the attack on SIMON, Table 8 shows attack on

SPECK (see Remark 4), additionally to one described in Section 4.

Table 9 provides attack details on AES, and finally Table 10 details

attack on PRIDE. Here “keyx[y]” refers to the (y + 1)th byte of

round key in round x .

No. # of known nodes key nodes recovered

1136 73 -

1137 83 -

1138 92 -

1139 106 -

1174 115 key32[3]

1175 129 key31[1], key32[0]

1176 142 key31[2], key32[1]

1177 162 key31[0], key31[3], key32[2]

Table 7: Attack on SIMON found by TADA - Each row cor-
responds to a vulnerable instruction with sequence number
“No.” such that after the attack on this instruction, the num-
ber of known nodes is given by “# of known nodes” and the
key nodes that are retrieved are given by the third column.

No. # of known nodes key nodes recovered brute force

606 43 key22[0] -

607 52 key22[1] -

608 63 key22[2] -

609 68 key22[3] 1

578 79 key21[0] -

579 88 key21[1] -

580 99 key21[2] -

581 104 key21[3] 1

Table 8: Attack on SPECK found by TADA (considering ob-
taining 7 bits as successful attack) - Each row corresponds to
a vulnerable instruction with sequence number “No.” such
that after the attack on this instruction, the number of
known nodes is given by “# of known nodes” and the key
nodes that are retrieved are given by the third column, in
case only 7 bits of the target node are obtained, the brute
force complexity is indicated by 1.

No. # of known nodes key nodes recovered

1806 73 key11[0]

1808 77 key11[1]

1810 81 key11[2]

1812 85 key11[3]

1814 91 key11[7]

1816 96 key11[4]

1818 101 key11[5]

1820 106 key11[6]

1822 112 key11[10]

1824 118 key11[11]

1826 123 key11[8]

1828 128 key11[9]

1830 133 key11[13]

1832 138 key11[14]

1834 143 key11[15]

1836 149 key11[12]

Table 9: Attack on AES found by TADA - Each row corre-
sponds to a vulnerable instruction with sequence number
“No.” such that after the attack on this instruction, the num-
ber of known nodes is given by “# of known nodes” and the
key nodes that are retrieved are given by the third column.

No. # of known nodes key nodes recovered

1504 21 -

1506 27 -

1508 32 -

1516 54 -

1522 106

key20[0],key20[1],
key20[2],key20[3],
key20[4],key20[5],
key20[6],key20[7]

1422 111 -

1424 117 -

1426 122 -

1434 144 -

1440 196

key19[0],key19[1],
key19[2],key19[3],
key19[4],key19[5],
key19[6],key19[7]

Table 10: Attack on PRIDE found by TADA - Each row cor-
responds to a vulnerable instruction with sequence number
“No.” such that after the attack on this instruction, the num-
ber of known nodes is given by “# of known nodes” and the
key nodes that are retrieved are given by the third column.

	Abstract
	1 Introduction
	2 Background
	2.1 Symmetric Block Cipher
	2.2 Differential Fault Analysis
	2.3 Satisfiability Modulo Theories

	3 TADA Methodology
	3.1 Fault Models
	3.2 Attacks on Target Instructions
	3.3 TADA Usage
	3.4 TADA Design
	3.5 SMT Solver Module

	4 Evaluation
	5 Related work
	6 Discussion
	7 Conclusions
	References
	A Attack details for Fex
	B PRIDE Sbox implementation
	C Attack details

