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Abstract

Understanding whether public-key encryption can be based on one-way functions is a funda-
mental open problem in cryptography. The seminal work of Impagliazzo and Rudich [STOC’89]
shows that black-box constructions of public-key encryption from one-way functions are im-
possible. However, this impossibility result leaves open the possibility of using non-black-box
techniques for achieving this goal.

One of the most powerful classes of non-black-box techniques, which can be based on one-
way functions alone, is Yao’s garbled circuit technique [FOCS’86]. As for the non-black-box
power of this technique, the recent work of Döttling and Garg [CRYPTO’17] shows that the use
of garbling allows us to circumvent known black-box barriers in the context of identity-based
encryption.

We prove that garbling of circuits that have one-way function (or even random oracle) gates
in them are insufficient for obtaining public-key encryption. Additionally, we show that this
model also captures (non-interactive) zero-knowledge proofs for relations with one-way function
gates. This indicates that currently known one-way function based non-black-box techniques
are perhaps insufficient for realizing public-key encryption.

∗University of California, Berkeley. Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award, DARPA and SPAWAR under contract
N66001-15-C-4065, and research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity
(CLTC, UC Berkeley). The views expressed are those of the author and do not reflect the official policy or position
of the funding agencies.
†University of California Berkeley and University of Virginia. Supported by NSF award CCF-1350939 and AFOSR

Award FA9550-15-1-0274.
‡University of Virginia. Supported by NSF CAREER award CCF-1350939, a subcontract on AFOSR Award

FA9550-15-1-0274, and University of Virginia’s SEAS Research Innovation Award.
§Kuwait University. Work done while at University of Virginia. Supported by Kuwait University and the Kuwait

Foundation for the Advancement of Science.

1



Contents

1 Introduction 3
1.1 Our Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Related Work and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Technical Overview 6
2.1 Big Picture: Reducing the Problem to the Result of [IR89] . . . . . . . . . . . . . . . 6
2.2 Our Separating Idealized GC-OWF Oracle . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Compiling Out the Garbling Power of O from the Construction . . . . . . . . . . . . 7

3 Preliminaries 10
3.1 Some Useful Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Public-Key Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Garbled Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Black-box Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Separating Public-Key Encryption from OWF-based Garbling 13
4.1 Removing Garbling Evaluation Queries from Encryption . . . . . . . . . . . . . . . . 17

4.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2 Compilation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3 Correctness and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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1 Introduction

Public-key encryption (PKE) [DH76, RSA78] is a fundamental primitive in cryptography and un-
derstanding what assumptions are sufficient for realizing it is a foundational goal. Decades of
research have provided us with numerous constructions of PKE from a variety of assumptions; see
a recent survey by Barak [Bar17]. However, all known constructions of PKE require computational
assumptions that rely on rich structure and are stronger than what is necessary and sufficient for
private-key cryptography, namely the mere existence of one-way functions (OWF). The seminal
work of Impagliazzo and Rudich [IR89] provides some evidence that this gap between the assump-
tion complexity of private-key and public-key encryption may be inherent. In particular, the work
of [IR89] shows that there is no black-box construction of PKE from OWFs.1

When studying the impossibility of basing PKE on OWFs, focusing on a class of constructions
(e.g., black-box constructions as in [IR89]) is indeed necessary. The reason is that to rule out “OWFs
implying PKE” in a logical sense, we have to first prove the existence of OWFs unconditionally
(thus, proving P 6= NP) and then rule out the existence of PKE altogether (thus breaking all
assumptions under which PKE exists). That is why this line of separation results focuses on
ruling out the possibility of using certain techniques or generic proof methods (here black-box
proofs/techniques) as possible natural paths from OWFs to PKE.

Garbled circuits. Over the past few decades, garbling techniques [Yao86, LP09, BHR12, App17]
(or randomized encodings [IK00] more generally) have been extensively used to build many crypto-
graphic schemes. Roughly speaking, in a circuit garbling mechanism, a PPT encoder Garb(C) takes
a circuit C as input, and outputs a garbled circuit C̃ and a set of input labels {labeli,b}i∈[m],b∈{0,1}
where m is the number of input wires of C. Using another algorithm Eval(·), one can use the garbled
circuit C̃ and input labels {labeli,xi}i∈[m] for an input x = (x1, ..., xm), to compute C(x) without
learning any other information. Note that if the original circuit C needs to run a cryptographic
primitive f internally (e.g., a circuit C for a pseudorandom generator built from a OWF f), this
use of garbling leads to a non-black-box construction. This is because the algorithm Garb needs to
work with an actual circuit description of C, whose circuit description is in turn obtained by the
circuit description of f , hence making non-black-box use of f .

Garbling, as a primitive, may itself be realized using one-way functions [Yao86, LP09]. This
puts forward the intriguing possibility of basing PKE solely on OWFs by making black-box use
of garbling mechanisms over circuits that can run the one-way function. As stated above, such
constructions will make non-black-box use of the underlying OWF (caused by garbling circuits
that run the OWF internally) and hence the impossibility result of Impagliazzo and Rudich [IR89]
has no bearing on such potential constructions. In fact, such non-black-box garbling techniques,
combined with the Computational Diffie-Hellman assumption, have recently been used by Döttling
and Garg [DG17] to circumvent black-box impossibility results [BPR+08, PRV12] in the context
of identity-based encryption (IBE). Thus, it is natural to ask:

Can non-black-box garbling techniques be used to realize PKE from OWFs?

Our model. We study the above question in the model of Brakerski, Katz, Segev and Yerukhi-
movich [BKSY11] (see also follow up works [AS15, AS16, BDV17]) which gives a general way of

1A (fully) black-box construction is one that treats the OWF as an oracle, and the security proof uses the OWF
and the adversary both as oracles; see the surveys of [RTV04, BBF13] for formal definitions.
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capturing non-black-box techniques via circuits with cryptographic gates (e.g., OWF gates). More
formally, we will model the above-stated garbling-based non-black-box use of one-way functions as
black-box use of garbling mechanisms that can take as input circuits C with one-way function (or
even random oracle) gates planted in them. Such constructions are indeed non-black-box according
to the taxonomy of [RTV04] if viewed as standalone constructions solely based on the OWF itself.
We stress that the allowed access to the garbling mechanism itself is black-box; the non-black-box
feature arises from the fact that circuits with OWF gates may now be garbled.

A more sophisticated scenario is when the circuits being garbled have garbling gates, in addition
to OWF gates, planted in them. We do not, however, consider such a recursive scenario and we leave
it to future work. It is crucial to note that, to the best of our knowledge, all known constructions
that make use of garbling schemes together with one-way functions (e.g., [Bea96, LO13, GLOS15])
fall into our model, and thus, understanding the limitations of such techniques towards obtaining
PKE is impactful.

1.1 Our Result

In this work, we show that black-box use of garbling mechanisms that allow circuits with OWF
gates to be garbled is not sufficient for constructing PKE. More precisely, we prove the following.

Theorem 1.1 (Main result – informally stated). There exists no black-box construction of public-
key encryption schemes from any one-way function (or even a random oracle) f together with a
garbling mechanism that can garble oracle-aided circuits with f -gates embedded in them.

Comparison with prior work: Impossibility from weaker garbling. The work of Asharov
and Segev [AS15] showed that secret-key functional encryption with one-way function gates cannot
be used (as a black-box) to obtain public-key encryption (or even key agreement). This result
implies that for the special case of such weaker garbling schemes, called non-decomposable garbling,
where the entire input is considered as a single unit (rather that as bit-by-bit input labels) is
insufficient for realizing PKE.

On the other hand, throughout this work we use garbling to refer to a notion that supports
bit-by-bit input labels, a notion that Bellare, Hoang and Rogaway [BHR12] refer to as projective
garbling (a.k.a. decomposable garbling). Under projective garbling, for a circuit C of input size
m, one generates two garbled label {labeli,b}i∈[m],b∈{0,1} for the ith input wire of the circuit. An
important property enabled by this bit-by-bit garbling is the decomposability property: one can
pick a garbled label for each input wire to form a garbled input for a long string. In contrast,
under non-decomposable garbling, for each input X to the circuit, one independently generates a
corresponding garbled input X̃. As a result, different strings have independent garbled inputs.

We note that projective garbling is crucial for many applications of garbling. For example,
even the most basic application of garbling in two party secure computation based on oblivious
transfer uses the projective property. We refer the reader to [BHR12, Figure 3] for a detailed
list of applications that require projective garbling. As a recent example, we note that the IBE
construction of Döttling and Garg [DG17] (that circumvents a black-box impossibility result of
Papakonstantinou et al. [PRV12] using garbling) uses projective garbling crucially. Specifically,
in [DG17] the encryptor provides a sequence of garbled circuits with no knowledge of what input
each of those garbled circuits are later evaluated on by the decryptor. This input-obliviousness
property is enabled by the encryptor sending all the bit-by-bit garbled labels in some encrypted
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form to the decryptor. Later, the decryptor can open exactly one garbled label for each input wire,
hence obtaining a garbled input for the whole string. This input-obliviousness technique cannot be
enabled using non-decomposable garbling. This is because a whole garbled input cannot be formed
there by putting together smaller pieces. As a result, the party who generates a garbled circuit
must be aware of the input on which this garbled circuit is to be evaluated on, in order for him to
be able to provide the corresponding garbled input.

1.2 Extensions

Extension to key agreements. Our proof extends to rule out any black-box construction of
constant-round key-agreement protocols from OWFs and garbling schemes for oracle-aided circuits.
However, the proof of the separation for key-agreement beyond the case of two message protocols
(which are equivalent to PKE) becomes much more involved. Therefore, for clarity of the presen-
tation, and because the most interesting special case of constant-round key-agreement protocols
happens to be PKE itself, in this presentation, we focus on the case of separation for PKE. See
Section A for more details.

Resolving an open question of [BKSY11]. The work of [BKSY11] proved non-black-box
limitations for one-way functions when used as part of zero knowledge (ZK) proofs for relations
with one-way function gates. They showed that key-agreement protocols with perfect completeness
cannot be realized in a ‘black-box’ way from oracles that provide a one-way function f together with
ZK proofs of satisfiability for f -aided circuits. They left ruling out the possibility of protocols with
imperfect (e.g., negligible) completeness as an open problem, as their techniques indeed crucially
relied on the perfect completeness assumption. We demonstrate the power of our new techniques in
this work by resolving the open problem of [BKSY11] along the way, for the case of PKE schemes
(or even constant-round key-agreement schemes). In particular, in Section B, we observe that the
oracles we use for proving our separations for the case of garbling, indeed imply the existence of
NIZK proofs for satisfiability of circuits with OWF-gates. The extension of the result of [BKSY11]
explained above then follows from the above observation.

1.3 Related Work and Future Directions

There are quite a few results that prove limitations for a broad class of non-black-box techniques
[Pas11, PTV11, GW11], so long as the security reduction is black-box. In other words, these results
are proved against basing certain primitives on any falsifiable assumption. However, when it comes
to the case of non-black-box constructions of PKE from OWFs, no such general separations are
known (and proving such results might in fact be impossible).

As described earlier, the works of [BKSY11, AS15] proved limitations of certain non-black-box
constructions of PKE from OWFs. This is indeed the direction pursued in this work. The work of
Dachman-Soled [Dac16] takes yet another path, showing that certain non-black-box uses of one-way
functions in the security proof are incapable of obtaining PKE from OWFs.

We note that we only consider a setting in which circuits with random oracle gates are garbled.
We do not allow garbling of circuits which themselves include garbling gates. Such techniques
are captured by the so called monolithic model of Garg, Mahmoody, and Mohammed [GMM17a,
GMM17b]. We leave open the problem of ruling out such constructions.
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Finally, as noted above, the extension of our results to the key-agreement setting, discussed in
Section A only cover the constant-round case. The reason is that, during the proof of our main
result, we modify the protocol iteratively, once for each round, which increases the parameters of
the protocol by a polynomial factor each time. We leave the extension to general polynomial-round
protocols as an interesting future direction.

Organization. In Section 2 we give an overview of our approach and techniques. In Section 3
we give some definitions and basic lemmas. In Section 4 we will prove our main impossibility result.
In Sections A and B we will describe extensions of our results.

2 Technical Overview

For brevity, we refer to the primitive of a one-way function f and garbling circuits with f gates as
GC-OWF. As usual in black-box separation results, we will prove our main theorem by providing
an oracle O relative to which secure GC-OWF exists, but secure PKE does not.

2.1 Big Picture: Reducing the Problem to the Result of [IR89]

At a very high level, our approach is to reduce our problem to the result of [IR89]. Namely, we aim
to show that one can always modify the PKE construction that is based on the GC-OWF oracle
O into a new one that is almost as secure, but which no longer uses the garbling part of the oracle
O. In other words, we modify the construction so that it becomes a construction from an OWF
oracle alone. Our main result, then, follows from the impossibility result of [IR89] which rules
out the possibility of getting PKE from one-way (or even random) functions. We call this process
‘compiling out the garbling part’ from the PKE construction.

As a technical remark, our transformation does not result in a normal black-box construction
of PKE from OWFs, but rather results in an inefficient one which nonetheless makes a polynomial
number of queries to the OWF oracle. The key point is that the proof of the work of Impagliazzo and
Rudich [IR89] allows us to break any such (even inefficient, but still polynomial-query) constructions
of PKE in the random oracle model using a polynomial number of queries during the attack.
Our actual result follows by combining our compilation result with the result of [IR89], to get
a polynomial query attack against the security of the original PKE. This will be sufficient for a
black-box separation.

At a high level, our approach also bears similarities to recent impossibility results for in-
distinguishability obfuscation [GMM17a] as we also compile out the more powerful (and struc-
tured) parts of the oracle, ending up with a scheme that uses a much simpler oracle, for which
an impossibility is known. However, there is a subtle distinction here. Unlike the results of
[CKP15, MMN+16b, MMN16a, GMM17a], when we compile out the garbling-related queries from
the PKE construction, we end up with an inefficient scheme that potentially runs in exponential
time but nevertheless makes a polynomial number of queries. However, as mentioned above, this is
fine for deriving our separation, because we can still rely on the fact that the result of [IR89] does
something stronger and handles inefficient constructions as well.
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2.2 Our Separating Idealized GC-OWF Oracle

In this subsection, we will first describe our oracle O that gives an intuitive way of obtaining GC-
OWFs. The natural first version of this oracle is too strong as it also implies virtual black-box
(VBB) obfuscation. We will then add a careful weakening subroutine to this oracle O to prevent
it from implying obfuscation. In the next subsection we describe the ideas behind how to compile
out the garbling-related subroutines of O from the PKE construction, while keeping the PKE
construction “secure”.

Our 1st oracle for GC-OWF. Our first version of the separating oracle O = (f, Lf ) will
consist of a random oracle f (giving the OWF part) as well a garbling part Lf = (gc, evalf )
with two subroutines. The encoding/garbling subroutine gc(s,C) is simply a random (injective)
function that takes a seed s and a circuit C and maps them into a garbled circuit C̃ as well as
labels {labeli,b}i∈[n],b∈{0,1} for the input wires of C where n is the number of input wires in C.2 The

evaluation subroutine evalf takes as input a garbled circuit C̃ as well as a vector of input labels
X̃ = (x̃1 · · · x̃n) and only if they were all encoded using the same seed s, evalf returns the right
output Cf (x1, . . . , xn). Note that we include f in the representation of evalf but not in that of gc;
the reason is gc is simply a random oracle (independent of f), while evalf needs to call f in order
to compute Cf (x1, . . . , xn).

Adding the weakening subroutine rev. It is easy to see that this first version of the oracle
O as described above can realize a secure GC-OWF, but it can do much more than that! In
fact this oracle implies even VBB obfuscation of circuits with f gates (which in turn does imply
PKE [SW14]). We will, therefore, weaken the power of the oracle O later on by adding an extra
subroutine to it (which we will call rev), which roughly speaking allows an attacker to break the
garbling scheme if she has access to two labels for the same wire. We will describe this subroutine
after it becomes clear how it will be useful for our main goal of compiling out the garbling aspect of
O. Also note that, since we are defining our oracle after the (supposed) construction of PKE from
GC-OWF is fixed, without loss of generality, the PKE construction from GC-OWF does not call
the extra subroutine rev. This separation technique was also used before in the work of [GMR01]
and is reminiscent of the “two-oracle” approach that was first formalized in [HR04].

2.3 Compiling Out the Garbling Power of O from the Construction

Suppose EO = (GO, EO, DO) is a fully black-box construction of PKE using the oracle O described
above. Our goal here is to ‘reduce’ our problem (of breaking EO using a polynomial number of
queries) to the result of [IR89] by compiling out the ‘garbling power’ of the oracle O from the
scheme EO. But what subroutines do we have to compile out from E? As it turns out, we do not
have to eliminate both gc and evalf subroutines; removing only evalf queries will suffice.

Compiling out evalf queries from PKE constructions EO. If we make sure that (the modi-
fied but “equally”-secure version of) E does not make any calls to the evalf subroutine of the oracle
O, it would be sufficient for our purposes, because the oracle O′ = (f, gc) is just a random oracle,

2In the main body, we will use two separate subroutines gc, gi for encoding circuits vs input labels, but for brevity
here we combine them into one subroutine.
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and by the result of [IR89] we know that such oracle is not enough for getting PKE in a black-box
way. Therefore, in what follows, our goal reduces to (solely) removing the evalf queries from PKE
constructions EO in a way that we can argue the new construction is ‘as secure’ as the original one.

In order to make our proof more modular, we compile out evalf queries from the different
components (i.e., key-generation G, encryption E, and decryption D) of the construction EO =
(GO, EO, DO) one at a time. First, we may easily see that GO does not need to call evalf at all.
This is because GO is the first algorithm to get executed in the system, and so GO knows all the
generated garbled circuits/labels. Therefore, GO can, instead of calling evalf queries, simply run
Cf (X) on its own by further calls to f .3 Now, we proceed to compile out evalf queries from the
remaining two subroutines E and D in two steps. In each step, we assume that we are starting off
with a construction that has no evalf queries in some of its subroutines, and then we modify the
construction to remove evalf queries from the next subroutine.

• Step 1: Starting with E = (Gf,gc, EO, DO), we will compile E into a new scheme Ė =
(Ġf,gc, Ėf,gc, DO), removing evalf queries asked by EO. We have to make sure Ė is ‘almost
as secure’ as the original scheme E . This step is detailed in Section 4.1.

• Step 2: Given E = (Gf,gc, Ef,gc, DO), we compile E into a new Ë = (G̈f,gc, Ëf,gc, D̈f,gc),
removing evalf queries asked by DO. Again, we have to make sure Ë is ‘almost as secure’ as
the original one. This step is detailed in Section 4.2.

Once we accomplish both of the steps above, we will combine them into a single compiler that
removes evalf queries from EO, obtaining another PKE construction that is secure in the random
oracle model (which we already know is impossible by the result of [IR89]).

Overview of Step 1. Let us start by looking at eval queries of the encryption algorithm
EO(pk, b). Since the subroutine gc of oracle O is just a random mapping, for any eval query
on inputs (C̃, X̃), denoted qu = ((C̃, X̃) −−→

eval
?), made by EO and whose answer is not trivially ⊥,

we must have either of the following cases. Either (a) C̃ was produced as a result of a gc query
during the execution of E itself or (b) C̃ was produced during the execution of G which has led to
the generation of the public key pk. If case (a) holds, then E does not need to make that particular
eval query at all. If case (b) holds, then in order to allow Ėf,gc to simulate EO without calling evalf ,
the algorithm Ėf,gc will resort to some ‘hint list’ H attached to pk by Ġf,gc. That is, a compiled
public key ṗk produced by Ġf,gc will now contain the original pk as well as a hint list H. Below,
we further explain how the hint H is formed.

How Ġf,gc forms the hint list H. A naive idea is to let H contain all the query/response pairs
made by Gf,gc to generate pk. This method hurts security. A better idea is to provide in H answers
to individual eval queries like eval(C̃, X̃) that are likely to be asked by EO(pk, b), and where C̃ was
generated by Gf,gc. That is, Ġf,gc would run EO(pk, b) many times and would let H contain all
encountered eval queries as well as their answers. Note that Ġf,gc could simulate almost perfectly
a random execution of EO(pk, b) without calling eval since Ġ knows the randomness seeds of all
the garbled circuits so far. However, this approach also fails! To see the difficulty, recall that a
whole garbled input X̃ = (x̃1, . . . , x̃m) is made up of a sequence of garbled labels x̃i, one for each

3More formally, because of the huge output space of gc, calling evalf on a garbled circuit C̃ that is produced on
the fly is bound to be responded with ⊥ with overwhelming probability as C̃ will not be an encoding of any circuit.
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input wire. Now imagine that for a garbled circuit C̃ that was generated by Ġ, any new execution
of EO(pk, b) calls the oracle eval on C̃ and on a new garbled input X̃ that is formed by picking
each of the garbled labels uniformly at random from the set of two lables for that corresponding
input wire. If E behaves this way, then no matter how many (polynomial) times we sample from
EO(pk, b), we cannot hope to predict the garbled-input part of the eval query of the next execution
of EO(pk, b). We refer to this as the garbled-input unperdictability problem, which stems from the
decomposability nature of our garbling oracle. This is what makes our results different from those
of [AS15], which dealt with non-decomposable garbling, for which such a complication is absent.

In short, we could only hope to predict the garbled circuit part of an eval query of EO(pk, b), and
not necessarily the garbled-input part. To fix this garbled-input unpredictability problem, Ġf,gc

will do the following trick: while sampling many executions of EO(pk, b), if Ġf,gc comes across two

different eval queries eval(C̃, X̃1), eval(C̃, X̃2) that are both answered with a value that is not ⊥ (i.e.,
both are valid garbled circuits and inputs), then Ġf,gc releases the corresponding seed s and the
plain circuit C of C̃. That is, if gc(s,C) = (C̃, · · · ), then G̃f,gc puts the tuple (s,C, C̃) into the hint
list H. If, however, during these sampling, C̃ is evaluated upon at most one matching X̃, then Ġf,gc

simply provides the answer to the query eval(C̃, X̃) in H.
Looking ahead, the algorithm Ėf,gc((pk,H), b), when facing an eval query qu = eval(C̃, X̃),

will check whether qu is already answered in the list H, or whether the corresponding seed s and
plain-circuit C of C̃ could be retrieved from H. If so, Ėf,gc will reply to qu accordingly; otherwise,
it will reply to qu with ⊥.

Using the weakening subroutine rev to reduce the security of Ė to E. Note that Ġf,gc

does not query any oracle subroutines beyond f and gc in order to form the hint list H attached
to pk. This is because Ġf,gc has all the (otherwise-hidden) query-answer pairs used to produce
pk, and thus for any encountered valid garbled circuit C̃ during those sampled executions of E,
Ġf,gc already knows the corresponding seed s and plain circuit C. Now we are left to show that
this additional information H attached to pk does not degrade the security of the compiled scheme
significantly. To this end, we will use the new weakening oracle intended to capture the natural use
of garbling: the security of a garbled circuit C̃ is guaranteed to hold so long as C̃ is evaluated only
on one garbled input. Capturing this, our new oracle rev takes as input a garbled circuit C̃ and two
garbled inputs X̃1 and X̃2, and if all of C̃, X̃1 and X̃2 are encoded using the same seed s, then rev
simply outputs (s,C), where gc(s,C) = C̃. For security, we will show that any adversary against the
semantic security of Ė may be used in a black-box way, along with oracle access to (f, gc, eval, rev),
to mount an attack against the original scheme E . This shows that the leakage caused by revealing
H was also attainable in the original scheme (in which all parties including the attacker do have
access to eval) if, in addition, access to the oracle rev — which reflects the intuitive way in which
garbled circuits are supposed to be used — was also granted to the adversary. In our security proof
we will crucially make use of the rev subroutine in order to construct tuples (s,C, C̃) to store in
the simulated hint list whenever C̃ should be evaluated on two different inputs. Tuples of the form
(C̃, X̃, y) can in turn be simulated using oracle access to eval.

Overview of Step 2. The main idea is similar to Step (1): Ëf,gc(pk, b) would first run Ef,gc(pk, b)
to get the ciphertext c and then appropriately attach a hint H to c. The idea is that H should allow
the eval-free algorithm D̈f,gc((sk,H), c) to simulate Df,gc,eval(sk, c) well enough. Again, since we
cannot simply copy the entire private view of Ëf,gc(pk, b) into H (as that cannot be simulated by the
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security reduction, and therefore would hurt security) we should instead ensure that w.h.p. all eval
queries during the execution of DO(sk, c), whose garbled circuits were generated by Ëf,gc(pk, b),
can be answered using H. Let us call these eval queries Ë-tied queries. Unfortunately, when
implementing this idea, we run into the following problem: Ëf,gc(pk, b) cannot simply run DO(sk, c)
to get a sense of eval queries because sk is private. This challenge was absent in Step (1).

In order to resolve this new challenge, the algorithm Ëf,gc(pk, b) needs to do some more offline
work in order to get an idea of Ë-tied eval queries that come up during DO(sk, c). The main idea is
that although the true secret key sk is unknown to Ëf,gc(pk, b), in the eyes of Ëf,gc(pk, b), the value
of sk is equally likely to be any sk′ that agrees with the entire view of Ëf,gc(pk, b). Put differently,
the probability that an Ë-tied garbled circuit comes up during DO(sk, c) is close to the probability
that it comes up during the execution of DO′(sk′, c), where O′ is an offline oracle that agrees with
all the private information of Ë, and also relative to which (pk, sk′) is valid public-key/secret-key.
As a result, such a fake sk′ that is consistent with the view of Ëf,gc(pk, b) will be used to learn the
answers of the evaluation queries asked by DO′(sk′, c)4.

This is the main idea behind the second-step compilation. The full proof needs to take care of
many subtle challenges, which we will defer to the main body.

Putting things together. Taken together, Steps (1) and (2) in conjunction with the result of
Imagliazzo and Rudich [IR89] imply the following.

Lemma 2.1 (Informal). The (claimed) semantic security of any candidate PKE construction
Ef,gc,eval can be broken by a poly-query adversary Af,gc,eval,rev.

Moreover, we can show that the oracle rev does not break the one-wayness/garbling aspects of
(f, gc, eval).

Lemma 2.2 (Informal). The function f is one way against all poly-query adversaries with oracle
access (f, gc, eval, rev). Moreover, there exists a garbling scheme Lf,gc,eval for garbling circuits with
f gates that remains secure against all poly-query adversaries Bf,gc,eval,rev.

Now Lemmas 2.1 and 2.2 imply our main theorem, Theorem 1.1.

3 Preliminaries

We use κ for the security parameter. By PPT we mean a probabilistic polynomial time algorithm.
By an oracle PPT/algorithm we mean a PPT that may make oracle calls. For any oracle algorithm
A that has access to some oracle O, we denote a query qu asked by A to a subroutine T of O as
(qu −→

T
?). If the returned answer is β, then we denote the resulting query-answer pair as (qu −→

T
β).

For a set S of query/answer pairs, we will use intuitive notation such as (∗ −→
T
β) ∈ S to mean that

there exists a query qu such that (qu −→
T
β) ∈ S. We use || to concatenate strings and we use “,” for

attaching strings in a way they could be retrieved. Namely, one can uniquely identify x and y from
(x, y). For example (00||11) = (0011), but (0, 011) 6= (001, 1). For any given string x, we denote

xi to be the i’th string of x. For (family of) random variables {Xκ, Yκ}κ, by X
c
≈ Y we denote

that they are computationally indistinguishable; namely, for any poly(κ)-time adversary A there is

4Note that the process of discovering such an sk′ is what makes Ė an inefficient algorithm.
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a negligible function negl(κ) such that |Pr[A(Xκ) = 1]− Pr[A(Yκ) = 1]| ≤ negl(κ). When writing
the probabilities, by putting an algorithm A in the subscript of the probability (e.g., PrA[·]) we
emphasize that the probability is over A’s randomness. For any given probability distribution D, we
denote x← D as sampling from this distribution and obtaining a sample x from the support of D.
We may also use x ∈ D to mean that x is in the support of D. For any two random variables X,Y ,
we denote ∆(X,Y ) to be the statistical distance between the two random variables. Throughout
the paper, whenever we write f1(κ) ≤ f2(κ) we mean that this inequality holds asymptotically; i.e.,
there exists κ0 such that for all κ ≥ κ0, f1(κ) ≤ f2(κ).

3.1 Some Useful Lemmas

The following lemma shows that hitting the image of a sparse injective random function without
having called the function on the corresponding preimage happens with negligible probability.

Lemma 3.1 (Hitting the image of random injective function). Let A be an arbitrary polynomial-
query algorithm with access to an oracle O : {0, 1}κ → {0, 1}2κ chosen uniformly at random from
the set of all injective functions from {0, 1}κ to {0, 1}2κ. We have

Pr[y ← AO(1κ) | for some x : y = O(x) ∧ (∗ −→
O
y) /∈ QA] ≤ 2−κ/2,

where the probability is taken over the random choice of O as well as A’s random coins, and where
QA is the set of all A’s query-answer pairs.

We will also use the following standard information theoretic lemma frequently in the paper.

Lemma 3.2. Let X1, . . . , Xt+1 be independent, Bernoulli random variables, where Pr[Xi = 1] = p,
for all i ≤ t+ 1. Then

Pr[X1 = 0 ∧ · · · ∧Xt = 0 ∧Xt+1 = 1] ≤ 1

t
.

3.2 Public-Key Encryption

Definition 3.3. A public-key single-bit encryption (PKE) scheme is a triple of PPT algorithms
(G,E,D), defined as follows:

• G(1κ) takes as input a security parameter and outputs a pair (pk, sk) of public/secret keys.

• E(pk, b) takes as input a public key pk and a bit b ∈ {0, 1} and outputs a ciphertext c.

• D(sk, c) takes as input a secret key sk and a ciphertext c and deterministically outputs a
value b′ ∈ {0, 1} ∪ {⊥}.

We define the following notions.

• Correctness. For a δ = δ(κ) we say that (G,E,D) is (12 + δ)-correct if for all b ∈ {0, 1}:

Pr[D(sk,E(pk, b)) = b] ≥ 1

2
+ δ,

where the probability is taken over the choice of (pk, sk)← G(1κ) and the randomness of E.
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• Semantic security. For γ = γ(κ) we say that an adversary A γ-breaks (G,E,D) if

Pr[A(1κ, pk, c) = b] ≥ γ,

where (pk, sk) ← G(1κ), b
$←− {0, 1} and c ← E(pk, b). We say that A breaks the semantic

security of (G,E,D) if A (12 + p)-breaks the semantic security of the scheme for some polyno-
mial p. We say that (G,E,D) is semantically secure if there does not exist a PPT adversary
A that breaks the semantic security of (G,E,D).

3.3 Garbled Circuits

In this section we define the notion of garbling for oracle-aided circuits. First, we start by defining
oracle-aided circuits.

Oracle aided circuits. A binary-output oracle-aided circuit C is a circuit with Boolean gates as
well as oracle gates, and where the output of the circuit is a single bit. The input size, inpsize(C),
is the number of input wires. The circuit size, denoted |C|, denotes the number of gates and input
wires of the circuit. For a fixed function f we write Cf to denote the circuit C when the underlying
oracle is fixed to f .

Definition 3.4 (Garbling schemes for oracle-aided circuits). Fix a function f . A circuit gar-
bling scheme for oracle-aided circuits relative to f (or with f gates) is a triple of algorithms
(Garb,Eval,Sim) defined as follows:

• Garb (1κ,C): takes as input a security parameter κ, an oracle-aided circuit C and outputs a
garbled circuit C̃ with a set of labels {labeli,b}i∈[m],b∈{0,1}, where m = inpsize(C).

• Evalf
(

C̃, {labeli,bi}i∈[m]

)
: takes as input a garbled circuit C̃ and a garbled input as a sequence

of input labels {labeli,bi}i∈[m], and outputs y ∈ {0, 1}∗ ∪ {⊥}.

We define the following notions.

• Correctness. For any oracle-aided circuit C and input x ∈ {0, 1}m, where m = inpsize(C):

Pr
[
Cf (x) = Evalf

(
C̃, {labeli,xi}i∈[m]

)]
= 1

where the probability is taken over Garb (1κ,C) 7→ (C̃, {labeli,b}i∈[m],b∈{0,1}).

• Security. For any polynomial m = m(κ), any poly-size oracle circuit C with input size m,
and any input x ∈ {0, 1}m:(

C̃, {labeli,xi}i∈[m]

)
c
≈ Sim

(
1|C|,m,Cf (x)

)
where (C̃, {labeli,b}i∈[m],b∈{0,1})← Garb (1κ,C).

Remark 3.5. As mentioned before, we will consider projective garbling in our work (as defined
above and in [BHR12]) where we are allowed to produce bit-by-bit garblings of inputs as opposed
to only being allowed to garble the entire input, as was considered in the model of [AS15].

12



3.4 Black-box Constructions

Now, we recall the standard notion of black-box constructions [IR89, RTV04, BBF13]. We do so
in the context of building PKE from one-way functions and garbling.

Definition 3.6 (Black-box constructions of PKE from GC-OWF). A fully black-box construction
of a PKE scheme from a one-way function and a garbling scheme for circuits with one-way function
gates (shortly, from GC-OWF) consists of a triple of PPT oracle algorithms (G,E,D) and a PPT
oracle security-reduction S = (S1, S2) such that for any function f and any correct garbling scheme
L = (Garb,Eval, Sim) relative to f , both the following hold:

• Correctness: Ef,L = (Gf,L, Ef,L, Df,L) is a (1− 1
2κ )-correct PKE scheme. (See the remark

after this definition.)

• Security: For any adversary any A that breaks the semantic security of the PKE scheme
Ef,L, either

– Sf,L,A1 breaks the one-wayness of f ; or

– Sf,L,A2 breaks the security of the scheme L = (Garb,Eval, Sim) relative to f . That is,

for some oracle-aided circuit C and input x, Sf,L,A2 can distinguish between the tuple(
C̃, {labeli,xi}i∈[m]

)
and Sim

(
1|C|, 1|x|,Cf (x)

)
, where m = inpsize(C) and we are given

that (C̃, {labeli,b}i∈[m],b∈{0,1})← Garb (1κ,C).

Remark about the correctness condition in Definition 3.6. In Definition 3.6, for correct-
ness we require that the constructed PKE be (1− 1

2κ ) correct. This is without loss of generality
since one may easily boost correctness using standard techniques; i.e., let the new public key be
a tuple of public keys under the original scheme. Encrypt a given plaintext bit under each indi-
vidual public key. For decryption, we decrypt all the ciphertexts and go with the majority bit.
The semantic security of this expanded scheme reduces to that of the base scheme using a hybrid
argument, which is a fully-black-box reduction.

Calling the base primitives on the same security parameter. For simplicity of exposition,
for any given black-box construction Ef,L we assume that Ef,L on the security parameter 1κ always
calls f and L on the same security parameter 1κ. There are standard techniques for doing away
with this restriction, but those extensions will only complicate the proofs further. Looking ahead,
when we define our oracles (O′, rev)κ,n in Definition 4.3, which are parameterized over a security
parameter κ and a circuit size n = n(κ), the above restriction means that EO′ on the security
parameter 1κ always calls O′ on parameters such as (κ, n1), (κ, n2), etc. That is, the value of κ will
be the same across all queries, but each query may use a different value for n.

4 Separating Public-Key Encryption from OWF-based Garbling

In this section, we state our main impossibility result and describe at a high-level the steps that
we will take in order to prove our main theorem.
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Theorem 4.1 (Main theorem). There exists no fully black-box construction of a public-key encryp-
tion scheme from GC-OWFs; namely garbling schemes that garble circuits with one-way function
gates in them (see Definition 3.6).

Our theorem above follows from the following lemma.

Lemma 4.2. There exists an oracle O = (f, gc, gi, eval, rev) for which the following holds (in what
follows, let O′ = (f, gc, gi, eval)):

1. f is one-way relative to (O′, rev). That is, f is one-way against all polynomial query (and
even sub-exponential query) adversaries AO′,rev.

2. There exists a PPT GC-OWF construction (GarbO
′
,EvalO

′
,SimO′) for f -aided circuits that is

secure against any poly-query adversary AO′,rev.

3. For any PKE construction EO′ with access to the oracle O′, there exists an attacker AO′,rev
that breaks the semantic security of EO′ using a polynomial number of queries.

Note that Lemma 4.2 immediately implies Theorem 4.1.

Roadmap: Proof of Lemma 4.2. As common in black-box impossibility results, we will show
the existence of the oracles required by Lemma 4.2 by proving results with respect to oracles chosen
randomly according to a distribution. We will describe our oracle distribution below and will then
outline the main steps we will take in order to prove Lemma 4.2.

Definition 4.3 (The ideal model/oracle). Let O = (f, gc, gi, eval, rev)κ,n be an ensemble of oracles
parameterized by (κ, n), where κ denotes the security parameter and n denotes the size of a circuit
which we want to garble. We describe the distribution O from which these oracles are sampled for
fixed values of (κ, n).

• f : {0, 1}κ → {0, 1}κ: a uniformly chosen random function.

• gc(s, F ) : {0, 1}κ × {0, 1}n → {0, 1}2(κ+n): an injective random function that, given a key
s ∈ {0, 1}κ and a single-bit-output oracle-aided circuit F , outputs an encoding F̃ .

• gi(s, i, xi) : {0, 1}κ × {0, 1}logn × {0, 1} → {0, 1}2(κ+logn): an injective random function that,
given a key s ∈ {0, 1}κ, an index i ∈ {0, 1}logn, an input-wire bit value xi ∈ {0, 1}, outputs an
encoding x̃i. As notation, for any X = (x1, ..., xn), we denote gi(s,X) := (gi(s, i, xi))i∈[n] = X̃.

• eval(F̃ , X̃): given as input F̃ and X̃ = (x̃1, ..., x̃m), if there is a string s ∈ {0, 1}κ and circuit F
such that gc(s, F ) = F̃ , that m = inpsize(F ) and that for every i ∈ [m] there exists xi ∈ {0, 1}
such that gi(s, i, xi) = x̃i, then it outputs F f (x1|| · · · ||xm). Otherwise, it outputs ⊥.

• rev(F̃ , X̃, X̃ ′): if there exists s ∈ {0, 1}κ and circuit F such that gc(s, F ) = F̃ and that there
exists X,X ′ ∈ {0, 1}inpsize(F ) such that X 6= X ′, gi(s,X) = X̃ and gi(s,X ′) = X̃ ′, then it
outputs (s, F ). Otherwise, it outputs ⊥.

Remark 4.4. The size of a garbled circuit outputted by the gc oracle is roughly twice the size of
the corresponding input circuit. Current garbled circuits constructions are not capable of achieving
such a short expansion factor. We are able to do this as we model the garbling mechansim as a
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totally random function. Nonetheless, working with such a short size expansion is without loss
of generality, because a general black-box PKE construction out of GC-OWF should work with
respect to any oracle that implements the GC-OWF securely. We should also mention that all
our results hold (without having to make any changes) if the output of gc is bigger than the one
specified in Definition 4.3.

First, we show that a random oracle O = (f, gc, gi, eval, rev) chosen according to the distribution
O allows us to implement an ideal version of garbling for circuits with f gates. This is not surprising
as O is indeed an idealized form of implementing this primitive.

Lemma 4.5 (Secure OWF and garbling exists relative to O). Let O = (f, gc, gi, eval, rev) be as in
Definition 4.3 and let O′ = (f, gc, gi, eval). Then, with probability (measure) one over the choice of
O, the function f is one-way relative to O — i.e., f is one-way against any PPT oracle adversary
with access to the oracle O. Moreover, there exists a PPT GC-OWF construction (GarbO

′
,EvalO

′
)

for f -aided circuits which is secure relative to O with probability one over the choice of O ← O.

Proof. The fact that f is one-way relative to O with probability one over the choice of O is now
standard (see [IR89]). Given any oracle O = (O′, eval), we now show how to construct a PPT
garbling scheme LO

′
= (GarbO

′
,EvalO

′
, SimO′) for f -aided circuits. The algorithm GarbO

′
on input

(1κ, C) samples s ← {0, 1}κ, sets m = inpsize(C) and outputs the garbled circuit C̃ = gc(s, C) as
well as a sequence of garbled inputs (x̃1,0, x̃1,1, . . . , x̃m,0, x̃m,1), where for i ∈ m and b ∈ {0, 1} we
have x̃i,b = gi(s, i, b).

The algorithm EvalO
′
(C̃, x̃1|| · · · ||x̃m) simply outputs eval(C̃, x̃1|| · · · ||x̃m). Correctness holds by

definition of the oracle.
For security, we will define SimO′ as follows: on input (1κ, n,m, y ∈ {0, 1}), where n denotes

the size of the circuit, m denotes the number of input wires and y denotes the output value, we
set C0 to be a canonical circuit of size n and with m input wires that always outputs y. Sample
s ← {0, 1}κ and let C̃ = gc(s, C) and X̃ = gi(s, 0m). Output (C̃, X̃). Simulation security follows
from the random nature of the oracles. That is, for any polynomial-query distinguisher AO′,rev, for
any n, m and any circuit C of size n and of input size m and any input X ∈ {0, 1}m, we have∣∣∣Pr[AO′,rev(C̃, X̃) = 1]− Pr[AO′,rev(C̃ ′, X̃ ′) = 1]

∣∣∣ = negl(κ), (1)

where s ← {0, 1}κ, C̃ = gc(s, C), X̃ = gi(s,X) and (C̃ ′, X̃ ′) ← SimO′(1κ, n,m,Cf (X)). We omit
the details of the proof of Equation 1 as it is a simple information theoretic argument.

We are left with proving Part 3 of Lemma 4.2. Proving this part is the main technical contribu-
tion of our paper, and is done via an oracle reducibility technique. In order to state this reducibility
statement formally, we first need to define the notions of correctness and attack advantage in the
ideal model.

Definition 4.6 (Correctness in the ideal model). For a polynomial p = p(κ) we say that a single-bit
PKE scheme EO = (GO, EO, DO) is 1

2 + 1
p correct in the ideal model if for both b ∈ {0, 1}:

Pr[DO(sk, c) = b] ≥ 1

2
+

1

p
, (2)

where the probability is taken over O ← O, (pk, sk)← GO(1κ) and c← EO(pk, b).
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Definition 4.7 (Ideal model attack advantage). We say that an adversary A breaks the semantic
security of a single-bit PKE (GO, EO, DO) in the ideal model with probability γ (or with advantage
γ) if Pr[A(pk, c) = b] ≥ γ, where the probability is taken over O ← O, (pk, sk) ← GO(1κ),
b← {0, 1}, c← EO(pk, b) and over A’s random coins.

We are now ready to describe our oracle reducibility lemma.

Lemma 4.8 (Reducibility to the random oracle model). Let E be a given PKE construction pos-
sibly making use of all the oracles O′ = (f, gc, gi, eval). There exists a compilation procedure and
a polynomial-query security-reduction Red such that the compilation transforms EO′ into a new
polynomial-query PKE construction Ëf,gc,gi, where Ë makes no eval queries and for which both the
following hold:

• Correctness: If EO′ is (1 − 1
2κ ) correct in the ideal model, the compiled scheme Ëf,gc,gi has

at least (1− 1
κ7

) correctness in the ideal model.

• Security reduction. For any constant c the following holds: if there exists an adversary A
that breaks the semantic security of Ëf,gc,gi in the ideal model with probability η, the algorithm
RedO

′,rev,A breaks the semantic security of EO′ in the ideal model with probability η − 1
κc .

Let us first show how to use lemmas 4.5 and 4.8 to establish Lemma 4.2.

Completing proof of Lemma 4.2 and Theorem 4.1. Let E = (G,E,D) be a candidate PKE
construction. We will show that with probability one over the choice of (O′, rev) ← O, the PKE
construction EO′ can be broken by a polynomial number of queries to (O′, rev). Let us first show
how to use this claim to complete the proof of Theorem 4.1, and we will then prove this claim. By
Lemma 4.5, we know that with probability one over the choice of O we have (a) f is one-way relative
to (O′, rev) and (b) (GarbO

′
,EvalO

′
, SimO′) is a secure GC-OWF construction for f -aided circuits

against all polynomial-query adversaries with access to the oracles (O′, rev). Thus, the foregoing
claim coupled with Lemma 4.5 implies Lemma 4.2. In what follows we prove the foregoing claim.

By Definition 3.6 we know that EO′ has (1 − 1
2κ )-correctness in the ideal model. Thus, by

Lemma 4.8 there exists a compiled scheme Ëf,gc,gi that has at least (1− 1
κ7

)-correctness in the ideal
model. Note that the oracles f, gc and gi are nothing but three independent random oracles. By
the results of [IR89, BMG09] there exists a polynomial query adversary Af,gc,gi which breaks the
semantic security of Ëf,gc,gi in the ideal model with probability (1 − 1

κ6
).5 (See Definition 4.7 for

the notion of “break in the ideal model.”) Invoking Lemma 4.8 again and choosing the constant
c appropriately, we will obtain a polynomial query adversary BO′,rev which breaks the semantic
security of EO′ in the ideal model with probability (1− 1

κ5
). That is,

Pr
O=(O′,rev),pk,b,c

[
BO′,rev(pk, c) = b

]
≥ 1− 1

κ5
, (3)

where (pk, sk)← GO
′
(1κ), b← {0, 1} and c← EO

′
(pk, b).

Using a simple averaging argument we have

5The results of [IR89, BMG09] show how to break the semantic security of any key exchange (and hence PKE)
construction in the random oracle model with a probability that is at most 1

κc′ less than the correctness probability,

for any arbitrary constant c′ > 0.
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Pr
O=(O′,rev)

[
Pr
pk,b,c

[
BO′,rev(pk, c) = b

]
≥ 1− 1

κ3

]
≥ 1− 1

κ2
. (4)

Equation 4 implies that for at most 1
κ2

fraction of the oracles O = (O′, rev), the adversary

BO′,rev(pk, c), on security parameter κ, recovers b with probability less than 1− 1
κ3

. Since
∑∞

i=1
1
i2

converges, by the Borel-Cantelli Lemma we have that for a measure-one fraction of oracles O =
(O′, rev) ← O, the adversary BO′,rev breaks the semantic security of EO′ . The proof is now com-
plete.

Roadmap for the proof of Lemma 4.8. Finally, all that remains is proving Lemma 4.8 which
shows that we can compile out eval queries from any PKE scheme without significantly hurting
correctness or security. In the remainder of this paper, we show that such a compilation procedure
exists. We obtain the compiled eval-free scheme (G̈f,gc,gi, Ëf,gc,gi, D̈f,gc,gi) in two steps. First, in
Section 4.1, we show how to compile out eval queries from EO

′
only. In particular, we will prove

the following lemma.

Lemma 4.9 (Compiling out eval from E). Let δ be an arbitrary polynomial and parse O =
(O′, rev). There exists a compilation procedure that achieves the following for any constant c.
Given any (12 + δ)-ideally-correct PKE scheme E = (GO

′
, EO

′
, DO′), the compiled PKE scheme

Ė = (Ġf,gc,gi, Ėf,gc,gi, DO′) is (12 + δ − 1
κc )-ideally-correct. Moreover, there exists a polynomial-

query algorithm SecRed that satisfies the following: for any adversary A that breaks the semantic
security of Ė in the ideal model with advantage η, the adversary SecRedA,O breaks the semantic
security of E in the ideal model with advantage at least η − 1

κc .

Then, in Section 4.2 we show how to compile out eval from DO′ , assuming neither of the
algorithms G and E call eval. That is, we prove the following lemma.

Lemma 4.10 (Compiling out eval from D). Let δ be an arbitrary polynomial. There exists a com-
pilation procedure that achieves the following for any constant c. Given any (12 + δ)-ideally-correct

PKE scheme E = (Gf,gc,gi, Ef,gc,gi, Df,gc,gi,eval), the compiled PKE scheme Ë = (G̈f,gc,gi, Ëf,gc,gi, D̈f,gc,gi)
is (12 + δ − 1

κc )-ideally-correct. Moreover, there exists a polynomial-query algorithm SecRed that sat-

isfies the following: for any adversary A that breaks the semantic security of Ë in the ideal model
with advantage η, the adversary SecRedA,O breaks the semantic security of E in the ideal model
with advantage at least η − 1

κc .

Th proof of Lemma 4.8 immediately follows from Lemmas 4.9 and 4.10.

4.1 Removing Garbling Evaluation Queries from Encryption

In this section, we will prove Lemma 4.9. Namely, we will show how to compile the PKE scheme
E = (Gf,gc,gi,eval, Ef,gc,gi,eval, Df,gc,gi,eval) into a new PKE scheme Ė = (Ġf,gc,gi, Ėf,gc,gi, Df,gc,gi,eval)
with correctness and security comparable to the original scheme E but where Ė would not ask any
eval queries. First, we may assume without loss of generality that G does not make queries to eval
— it can predict the answer itself. Thus, we will focus on removing eval queries from E assuming
that G does not make any eval queries.
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4.1.1 Definitions

Before we describe the compilation process, we will first present some definitions that will be used
throughout this section.

Definition 4.11 (Valid outputs). For any oracle O = (f, gc, gi, eval, rev), we say that F̃ is a valid
garbled circuit with respect to O if there exists (s, F ) such that gc(s, F ) = F̃ . Similarly, we say
that X̃ is a valid garbled input with respect to O if there exists (s,X) such that gi(s,X) = X̃.

We also define the notion of normal form with respect to oracle-aided algorithms. At a high-
level, a normal form algorithm avoids asking any redundant queries if it already knows the answer
to such queries.

Definition 4.12 (Normal form). Let A be an oracle algorithm that accepts as input a query-
answer set QS and let QA be the query-answer pairs that A has asked so far. We say that A is in
normal-form if it satisfies the following conditions:

1. A never asks duplicate queries.

2. Before it asks an ((F̃ , X̃) −−→
eval

?) query qu, A first checks if there exists a query-answer pair

((s, F ) −→
gc

F̃ ) in QA∪QS. If that is the case then it would not issue qu to the oracle but would

instead run F f (X) on its own where X can be obtained bit-by-bit by searching gi(s, i, xi) for
every index position i ∈ n and every bit xi ∈ {0, 1}.

Recall that our goal is to remove eval queries from E to obtain an eval-free algorithm Ė. To
make this transformation possible, the new algorithm Ė needs some help from its associated key
generation algorithm Ġ so as to make up for its lack of access to eval. This help is sent to Ė as
part of a hint list H, attached to the public key, by the key generation algorithm Ġ. The following
definition describes how Ġ forms the hint list H based on its inside information Aux and based on
some information Q that G has collected about random executions of E.

Definition 4.13 (Constructing helper tuples). We define a function ConstHelp that takes as input
a query-answer set Q along with some query-answer set Aux and outputs a set H as follows:

• If there exists ((F̃ , X̃) −−→
eval

y 6= ⊥) ∈ Q such that for no X̃ ′ 6= X̃ do we have ((F̃ , X̃ ′) −−→
eval

y′ 6= ⊥) ∈ Q, then add ((F̃ , X̃) −−→
eval

y) to H.

• If for two distinct X̃1 and X̃2 we have ((F̃ , X̃1) −−→
eval

y1 6= ⊥) ∈ Q and ((F̃ , X̃2) −−→
eval

y2 6=

⊥) ∈ Q, then if for some (s, F ) we have ((s, F ) −→
gc

F̃ ) ∈ Aux, add ((s, F ) −→
gc

F̃ ) to H.

Having a hint list H, we give the following definition that describes the idea of how the receiving
algorithm Ė may use it to avoid making eval queries. In the following definition one may think of
Q as a hint list.

Definition 4.14 (Emulating eval queries). For any oracle O = (f, gc, gi, eval, rev), we define the
function HandleEvalf,gi to be a subroutine that takes as input a set Q of query-answer pairs to O
and a query qu of the form ((F̃ , X̃) −−→

eval
?) then performs the following steps to answer qu:
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• If there exists a tuple ((F̃ , X̃) −−→
eval

y) in Q, then output y.

• If there exists ((s, F ) −→
gc

F̃ ) ∈ Q, then find X such that gi(s,X) = X̃ and output y = F f (X).

• If neither of the above cases happen, then return ⊥ as the answer to qu.

We will also define the notion of a mixed oracle that uses O on non-eval queries but uses
HandleEval to answer eval queries without resorting to O. This oracle is constructed and used in
the newly compiled algorithms when we want to avoid asking eval queries to O.

Definition 4.15 (Mixed oracle). For an oracle O = (f, gc, gi, eval) and a set of query-answer pairs
S, we denote O[S] to be an Eval-mixed oracle that answers all f, gc, and gi queries by forwarding
them to the real oracle O, but for any eval query qu it will emulate the answer by calling and
returning y = HandleEvalf,gi(S, qu).

4.1.2 Compilation Procedure

Let E = (Gf,gc,gi, Ef,gc,gi,eval, Df,gc,gi,eval) be the give construction for which we want to remove eval
queries from E. Without loss of generality, we assume that all the algorithms of E are in normal
form (see Definition 4.12).

For simplicity, we keep O as a superscript to all the algorithms of E , but it should be understood
that the actual oracle access is of the form above.

We need the following definition as we will need to choose parameters in the compilation con-
struction based on the query complexity of the given construction.

Definition 4.16 (Parameter q = q(κ): size-upperbound). Throughout this section, fix q = q(κ) to
be an arbitrary polynomial that satisfies the following.

1. q ≥ κ;

2. q is greater than the total number of queries that each of the algorithms (GO, EO, DO) make
on inputs corresponding to the security parameter 1κ and on O ← O; and

3. q is greater than the size of any query made by any of (GO, EO, DO) on inputs corresponding
to the security parameter 1κ and on O ← O.

Construction 4.17 (The compiled scheme Ė .). The compiled scheme (Ġ, Ė,D) is parameterized
over a function t = t(κ), which we will instantiate later.

• Ġ(1κ) : Perform the following steps:

1. Run (pk, sk)← GO(1κ). Add all query-answer pairs generated in this step to OrigG.

2. Generating helper set H for Ė: Set LocalE = ∅.

(a) For i = [1, t], do the following: Run EO[OrigG](pk, 0) and EO[OrigG](pk, 1) and keep
adding all the resulting query-answer pairs to LocalE.

(b) Set H := ConstHelp(LocalE,OrigG ∪ LocalE).

3. Output ṗk = (pk,H) and ṡk = sk.

• Ė(ṗk, b): Parse ṗk = (pk,H). Run ċ ← EO[H](pk, b) and add all the query-response pairs to
OrigE. Return ċ.
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Remark about Ė. We note that, by the definition of O[H], all the eval queries of EO[H](pk, b)
will be emulated using H. Thus, Ė will not issue any eval queries.

Query complexity of Ė. It is immediate to see that the query complexity of each of the compiled
algorithms is polynomial in q and t, where q the query complexity of (G,E,D).

Lemma 4.18. Let q be the size-upperbound of (G,E,D) as given in Definition 4.16. The query
complexity of Ė = (Ġ, Ė,D) is at most q + (2q2)t ≤ 3tq2.

4.1.3 Correctness and Security

In this section we give the correctness and security statements regarding the compiled scheme
Ė = (Ġ, Ė,D) and prove them. By doing so, we complete the proof of Lemma 4.9.

Lemma 4.19 (Correctness of Ė). Suppose the original scheme (G,E,D) is (12 + δ) correct in the

ideal model. The compiled scheme (ĠO, ĖO, DO) has at least (12 + δ − 2q
t − negl(κ)) correctness in

the ideal model, where t is the number of iterations performed in Ġ.
In particular, for any constant c > 0 by taking t = qc+2, the compiled scheme (ĠO, ĖO, DO)

has at least (12 + δ − 1
κc ) correctness.

Lemma 4.20 (Security of Ė). There exists a polynomial-query algorithm SecRed that satisfies the
following. For any adversary A that breaks the semantic security of (ĠO, ĖO, ḊO) in the ideal model
with probability at least γ, the algorithm SecRedA,O breaks the semantic security of (GO, EO, DO)
with probability at least γ − 1

2κ/4
− 1

κc for any constant c > 0.

We prove Lemma 4.19 in Section 4.1.4 and Lemma 4.20 in Section 4.1.5.

4.1.4 Proof of Correctness for Ė

In this section, we will prove Lemma 4.19, which states that Ė = (Ġ, Ė,D) is still a correct PKE
after having removed the eval queries from E.

Parsing ṗk = (pk,H), recall that ĖO(ṗk, b) simply runs EO[H](pk, b). With this in mind, to
prove Lemma 4.19, we give the following lemma, which shows that the probability that the outputs
of EO[H](pk, b) and EO(pk, b) are different is small.

Lemma 4.21. For b ∈ {0, 1} we have

Pr
O,r,pk,H

[EO(pk, b; r) 6= EO[H](pk, b; r)] ≤ 2q

t
+

1

2κ/3

where O ← O, ((pk,H), sk)← ĠO(1κ) and r ← {0, 1}∗.
We first show how to derive Lemma 4.19 from Lemma 4.21.

Proof of Lemma 4.19. Parse ṗk = (pk,H). All the probabilities below are taken over the random
choices of ṗk, O and r. We have

Pr[DO(sk, ĖO(ṗk, b; r)) 6= b] = Pr[DO(sk,EO[H](pk, b; r)) 6= b]

≤ Pr[DO(sk,EO(pk, b; r)) 6= b] + 2q/t+ negl(κ)

≤ 1

2
− δ + 2q/t+ negl(κ)

where the first inequality follows from Lemma 4.21.
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We now focus on proving Lemma 4.21. Fix b ∈ {0, 1}. For compactness, we define the following
experiment that outputs some random variables that will be later used to define some events.

Experiment Expr(1κ) for fixed b ∈ {0, 1}: Output Vars = (pk,OrigG, LocalE,H, r), where
pk,OrigG, LocalE and H are sampled as in Ġ(1κ) and r ← {0, 1}∗ is the randomness to Ė(pk, b).

We define the following bad events. Note that all these bad events as well as those that appear
later are defined based on the output of Vars, and so we make this dependence implicit henceforth.

• Bad1: The event that EO(pk, b; r) makes a query qu = ((F̃ , X̃) −−→
eval

?), where ((∗, ∗) −→
gc

F̃ ) /∈

OrigG and eval(F̃ , X̃) 6= ⊥.

• Bad2: The event that the execution of EO(pk, b; r) queries qu = ((F̃ , X̃) −−→
eval

?) for which we

have ((∗, ∗) −→
gc

F̃ ) ∈ OrigG, eval(F̃ , X̃) 6= ⊥ and O[H](qu) = HandleEval(H, qu) = ⊥.

Roadmap for the proof of Lemma 4.21. The proof of Lemma 4.21 now follows from the
following lemmas.

Lemma 4.22. PrO,Vars[E
O(pk, b; r) 6= EO[H](pk, b; r)] ≤ Pr[Bad1∨Bad2] where O ← O and Vars =

(pk,OrigG, LocalE,H, r)← Expr(1κ).

Lemma 4.23. PrO,Vars[Bad1] ≤ 1
2κ/3

where O ← O and Vars← Expr(1κ).

Lemma 4.24. PrO,Vars[Bad2 ∧ Bad1] ≤ 2q
t where O ← O and Vars← Expr(1κ)

The proof of Lemma 4.21 follows immediately from Lemmas 4.22, 4.23, and 4.24. We now
prove all these lemmas below.

Proof of Lemma 4.22. Let Bad be the event EO(pk, b; r) 6= EO[H](pk, b; r). We show that whenever
Bad holds, then either Bad1 happens or Bad2 happens, hence proving the lemma. Notice that the
only difference between the executions of EO(pk, b; r) and EO[H](pk, b; r) is how eval queries are
handled. Specifically, in EO[H](pk, b; r), the eval queries are simulated with respect to the set H
whereas in EO(pk, b; r), the real oracle O is used to reply to these queries. All of f, gc, and gi
queries will be handled identically in both experiments by forwarding them to O. Thus, we only
need to consider what happens in either execution when a new query qu = ((F̃ , X̃) −−→

eval
?) is asked.

Suppose Bad holds and let qu = ((F̃ , X̃) −−→
eval

?) be the first eval query that will be answered

differently between the two executions. That is, qu will be replied to with ⊥ under O[H], but
receives an answer y 6= ⊥ from the real oracle O. We will now show that either Bad1 or Bad2 must
hold. Consider two cases:

1. ((∗, ∗) −→
gc

F̃ ) /∈ OrigG: In this case, the fact that eval(F̃ , X̃) 6= ⊥ implies that Bad1 holds.

2. ((∗, ∗) −→
gc

F̃ ) ∈ OrigG: In this case the facts that eval(F̃ , X̃) 6= ⊥, that qu is a query during

the execution of EO(pk, b; r), and that O[H](qu) = ⊥ imply that Bad2 holds.
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Proof of Lemma 4.23. The proof of this lemma follows by a simple reduction to Lemma 3.1. Letting
α = Pr[Bad1], we will show how to build an adversary Af,gc,gi(1κ) in the sense of Lemma 3.1 that
will win with probability α · 1

poly(κ) .

Let i be the index of the first query qu during the execution of EO(pk, b; r) for which the event
Bad1 holds. Note that up to the query index i, the executions of EO(pk, b; r) and EO[OrigG](pk, b; r)
are identical. With this in mind, we build the adversary Af,gc,gi(1κ) as follows.

The adversary Af,gc,gi(1κ) samples (pk, sk) ← Gf,gc,gi(1κ), forming the set of query/response
pairs OrigG. Then Af,gc,gi guesses i ← [q] and runs EO[OrigG](pk, b; r) for a random r. Notice that
A makes no queries to eval whatsoever, as it handles eval queries using OrigG. If the ith query of
this execution is ((F̃ , ∗) −−→

eval
?) for some F̃ , then Af,gc,gi returns F̃ ; otherwise, A returns ⊥.

Af,gc,gi(1κ) wins with probability at least α · 1q . On the other hand, by Lemma 3.1 we know A’s

success probability is at most 1
2κ/2

. Thus, we have α ≤ 1
2κ/3

, and the proof is complete.

Proof of Lemma 4.24. We claim that whenever the event Bad2 ∧ Bad1 holds then the event Miss,
defined below, must necessarily hold. Miss is the event that during the execution of EO[OrigG](pk, b; r)
there is a query qu = ((F̃ , X̃) −−→

eval
?), such that

1. ((∗, ∗) −→
gc

F̃ ) ∈ OrigG;

2. eval(F̃ , X̃) 6= ⊥;

3. ((∗, ∗) −→
gc

F̃ ) /∈ H and ((F̃ , X̃) −−→
eval
∗) /∈ H.

The reason for the above claim is that if Bad2 ∧ Bad1 holds, then Bad1 must necessarily hold,
and thus the two executions EO(pk, b; r) and EO[OrigG](pk, b; r) are identical. The rest follows by
the definition of the event Bad2. We will prove

Pr[Miss] ≤ 2q

t
, (5)

which will yield the proof of this lemma. Thus, in the sequel we focus on proving Equation 5.
We break the event Miss into smaller events. For that, we need some notation. Let i ∈ [n],

d ∈ {0, 1}, F be circuit with input size n and let F̃ = gc(s, F ), for some s. We say that a garbled
input X̃ = (x̃1, . . . , x̃n) is an (i, d)-match for F̃ if X̃ is a valid garbled input of F̃ and the ith
garbled bit of X̃ corresponds to the bit d. Formally,

• for all j ∈ [n] and j 6= i: x̃j = gi(s, j, 0) or x̃j = gi(s, j, 1);

• x̃i = gi(s, i, d).

We say that a set of query/response pairs U contains an (i, d)-match for F̃ if there exists
((F̃ , X̃) −−→

eval
∗) ∈ U such that X̃ is an (i, d)-match for F̃ .

We also give the following notation. Recalling the way in which LocalE is constructed in Ġ
through t iterations, for i ∈ [t] let LocalEi be the set formed after the i-th iteration. Also, let
OrigE∗ be the set of all query/response pairs during the execution of EO[OrigG](pk, b; r).

We now define a series of events, Missi,d, for i ∈ [q] and d ∈ {0, 1}, and will show that if Miss
holds then for some i and d the event Missi,d must hold.
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Event Missi,d is the event that for some F̃ that ((∗, ∗) −→
gc

F̃ ) ∈ OrigG, both the following hold:

1. OrigE∗ contains an (i, d)-match for F̃ ;

2. none of the sets LocalE1, · · · , LocalEt do contain an (i, d)-match for F̃ .

We claim that if Miss holds then Missi,d must hold, for some i ∈ [q] and d ∈ {0, 1}. Suppose

the event Miss holds for the query qu = ((F̃ , X̃) −−→
eval

?) (see above for the definition of Miss). We

consider all possible cases:

• For no (i, d) does the set LocalE = LocalE1 ∪ · · · ∪ LocalEt contain an (i, d)-match for F̃ . In
this case, since the set OrigE∗ contains ((F̃ , X̃) −−→

eval
∗), there exists an (i, d)-match for F̃ for

all i ∈ [q] and so Missi,d holds for some d and all i ∈ [q].

• There is one and only one garbled input X̃1 which is valid for F̃ and for which we have
((F̃ , X̃1) −−→

eval
?) ∈ LocalE. In this case, we must have X̃1 6= X̃, because otherwise we would

have ((F̃ , X̃) −−→
eval
∗) ∈ H, a contradiction to the fact that Miss holds. Thus, for some (i, d)

both the following must hold: (A) X̃ is an (i, d)-match for F̃ and (B) X̃1 is not an (i, d)-match
for F̃ . Thus, for some i and d, the event Missi,d must hold.

• There are at least two different garbled inputs X̃1 and X̃2 which both are valid for F̃ and
which ((F̃ , X̃1) −−→

eval
?) ∈ LocalE and ((F̃ , X̃2) −−→

eval
?) ∈ LocalE: This case cannot happen

because otherwise we would have (∗, ∗ −→
gc

F̃ ) ∈ H, a contradiction to the fact that Miss holds.

Having proved Pr[Miss] ≤
∑

i,d Pr[Missi,d], we bound the probability of each individual Missi,d.
To bound the probability of the event Missi,d, note that since all of LocalE1, . . . , LocalEt and OrigE∗

are obtained via independent and identical processes, by Lemma 3.1 we have

Pr[Missi,d] ≤
1

t
.

Using a union bound, Pr[Miss] ≤ 2q
t , and Equation 5 is now proved. This completes the proof.

4.1.5 Proof of Security for Ė

Proof of Lemma 4.20. To define the reduction algorithm SecRed we need to introduce the following
procedure, overloading the definition of ConstHelp (Definition 4.13). In Definition 4.13 the proce-
dure ConstHelp was given as input an auxiliary information set Aux which helps the procedure in
finding answers to the eval queries provided in the given set Q. In the definition below, however,
there is no auxiliary information set, but the procedure could use the oracle rev.

Definition 4.25. Procedure ConstHelp:

• Input: A set of query/answer pairs Q.

• Oracle: O = (f, gc, gi, eval, rev).
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• Output: A “hint” set H formed as follows:

– If there exists ((F̃ , X̃) −−→
eval

y 6= ⊥) ∈ Q such that for no X̃ ′ 6= X̃ do we have ((F̃ , X̃ ′) −−→
eval

y′ 6= ⊥) ∈ Q, then add ((F̃ , X̃) −−→
eval

y) to H.

– If for two distinct X̃1 and X̃2 we have ((F̃ , X̃1) −−→
eval

y1 6= ⊥) ∈ Q and ((F̃ , X̃2) −−→
eval

y2 6=

⊥) ∈ Q, then add (((s, F )) −→
gc

F̃ ) to H, where (s, F ) = rev(F̃ , X̃1, X̃2).

We will now describe the attack oracle-aided algorithm SecRed against the semantic security
of (GO, EO, DO). The input to SecRed is pair of challenge (pk, c) sampled under EO. Moreover,
SecRed has oracle access to O as well as an adversary against ĖO.

Description of SecRedA,O(pk, c):

1. Initialize LocalE∗ = ∅. For i = [1, t], do the following: Run EO(pk, 0) and EO(pk, 1) and add
all the resulting query-answer pairs to LocalE∗.

2. Set H∗ ← ConstHelpO(LocalE∗).

3. Return b′ ← A(pk,H∗, c).

We will now show that the following holds for both b = 0 and b = 1: The distribution Dist1 =
(pk,H∗, c) is statistically close to Dist2 = (ṗk, ċ), where (pk, sk) ← GO(1κ), c ← EO(pk, b), and
(ṗk, ∗) ← ĠO(1κ) and ċ ← ĖO(ṗk, b). Also, H∗ is sampled as in the execution of the security
reduction SecRedA,O(pk, c). Let all the variables that appear below be sampled as in the above.
First, it is easy to show that

∆((pk,H∗), ṗk) ≤ poly(κ)× 1

2κ/2
≤ 1

2κ/3
.

Moreover, by Lemma 4.22 we have

∆(c, ċ) ≤ 2q

t
+

1

2κ/3
. (6)

Thus, SecRedA,O(pk, c) breaks the semantic security of (GO, EO, DO) with probability at least
γ − 2q

t −
1

2κ/4
.

4.2 Removing Garbling Evaluation Queries from Decryption

In this section, we will prove Lemma 4.10. Namely, we will show the existence of a compilation
procedure that compiles a PKE scheme E = (Gf,gc,gi, Ef,gc,gi, Df,gc,gi,eval) into a new PKE scheme
Ë = (G̈f,gc,gi, Ëf,gc,gi, D̈f,gc,gi) with correctness and security comparable to the original scheme E ,
but where D̈ will not ask any eval queries.

Again, for simplicity we use the following convention where we keep the entire oracle O as a
superscript to all the algorithms (GO, EO, DO) as well as (G̈O, ËO, D̈O) with the understanding
that the actual oracle access is of the form given above. We also make the following assumption
without loss of generality.
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Assumption 4.26. We assume that all the algorithms (G,E,D) are in normal form (Defini-
tion 4.12). Also, we assume w.l.o.g. that the secret key outputted by G contains all the query-
response pairs made by G.

4.2.1 Definitions

Here, we give some notation and definitions used in the compilation procedure.

Definition 4.27 (Query set). For an oracle-aided algorithm AO we write Query(AO(x; r)) when
referring to the set of all queries asked during the execution of AO on the input x and randomness
r. We write Query(AO(x)) to indicate the random variable formed by returning Query(AO(x; r))
for r ← {0, 1}∗.

Definition 4.28 (Valid partial oracles). We say that a partial oracle O1 is valid if for some
O2 ∈ Supp(O): O1 ⊆ O2.

Definition 4.29 (Oracle consistency/sampling notation). We say a partial oracle O1 is consistent
with a set of query/response pairs S if O1 ∪ S is valid.

For a partial oracle O1 and randomness r we say that (O1, r) agrees with a public key pk if (1)
GO1(r) = (pk, ∗) and (2) all the queries in Query(GO1(r)) are defined in O1. We say that (O1, r)
minimally agrees with pk if (1) (O1, r) agrees with pk and (2) O1 is defined only on the queries that
occur during the execution and nothing more: namely, O1(qu) is defined iff qu ∈ Query(GO1(r)).

We let Partial(pk, S) denote the set of all (O1, r) where (1) (O1, r) minimally agrees with pk
and (2) O1 agrees with S. We sometimes abuse notation and write (O1, sk) ← Partial(pk,S) to
mean the following sampling: (O1, r)← Partial(pk, S) and (pk, sk) = GO1(r).

Definition 4.30 (Composed oracle). Given a partial oracle Op and full oracle O (an oracle that
is defined on all points in its domain) we define Op♦O to be the composed oracle that uses Op to
reply if the corresponding query is defined there, and uses O otherwise. Note that Op♦O is not
necessarily in Supp(O).

4.2.2 Compilation Procedure

Construction 4.31. The scheme Ë = (G̈, Ë, D̈) is parameterized over two functions ε = ε(κ) and
t = t(κ), which we will instantiate later.

• G̈(1κ) : Do the following steps:

1. Set OrigG = ∅. Run (pk, sk) ← GO(1κ), and add all query-answer pairs that are
encountered during this execution to OrigG.

2. Set LearnG = ∅. While there exists a query qu /∈ LearnG such that

Pr
O′←O

[qu ∈ Query(GO
′
(1κ)) | pk, LearnG] ≥ ε,

then choose the lexicographically first such qu and add (qu −→
T
O′(qu)) to LearnG. Note

that T ∈ {f, gc, gi}.
3. Output p̈k = (pk, LearnG) and s̈k = sk. (By Assumption 4.26, s̈k contains OrigG.)
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• Ë(p̈k, b): Given p̈k = (pk, LearnG) and b ∈ {0, 1} do the following:

1. Set OrigE = ∅. Run c← EO(pk, b) and add all the query-answer pairs that are observed
during this execution to OrigE.

2. Generating helper set H for D̈: Sample t′ ← [1, t]. Set S = OrigE ∪ LearnG. For
i ∈ [1, t′], do the following:

(a) Offline phase: Sample (Ôi, ŝki)← Partial(pk, S).

(b) Semi-online phase: Execute DÔi♦O[S](ŝki, c) and add all query/response pairs

made to the oracle O to the set S. Let ÔrigDi be the set of all query-answer pairs
made by this execution.

After all iterations, set H := ConstHelp(ÔrigD,S), where ÔrigD = ÔrigD1∪· · ·∪ ÔrigDt′ .

3. Output c̈ = (c,H).

• D̈(p̈k, s̈k, c̈) : Given p̈k = (pk, LearnG), s̈k, and c̈ = (c,H), Output b̃← DO[H∪LearnG](s̈k, c).

Query complexity of Ë. The following lemma follows from the description of the compilation
procedure of Construction 4.31.

Lemma 4.32. Let q be as in Definition 4.16. Assuming ε = 1
poly(κ) and t = poly(κ), all the

algorithms of ËO make qO(1) queries. Concretely, the algorithm Ë makes at most ν := 4tq2 queries.

We note that by taking ε = 1
poly(κ) the learning process of G̈ (i.e., for sampling LearnG) could

be done by making a polynomial number of queries [BMG07].

4.2.3 Correctness and Security

In this section we give the correctness and security statements regarding the compiled scheme
Ë = (G̈, Ë, D̈) and prove them. By doing so, we complete the proof of Lemma 4.10. The following
lemma gives the correctness bound for the compiled scheme. We prove the lemma in Section 4.2.4.

Lemma 4.33 (Correctness of Ë). Suppose the original PKE scheme (G,E,D) is (12 + δ)-correct

in the ideal model. The compiled PKE scheme (G̈, Ë, D̈) has at least (12 + δ − η) correctness in the
ideal model, where

η =
1

2κ/5
+

2q

t
+ 3ενt.

That is,

Pr[D̈O(sk, c̈) 6= b] ≤ 1
2 − δ + η (7)

where the probability is taken over O ← O, (p̈k, sk) ← G̈O(1κ), b ← {0, 1} and c̈ = (c,H) ←
ËO(p̈k, b). Here t and ε are the underlying parameters of the compilation procedure, and ν is
defined in Lemma 4.32. In particular, for any constant c > 0 by taking t = 2qc+2 and ε = 1

q3c+8 ,

the compiled scheme (G̈, Ë, D̈) has at least (12 + δ − 1/κc) correctness in the ideal model.

The following lemma gives the security loss for the compiled scheme Ë = (G̈, Ë, D̈). We give
the proof in Section 4.2.5.
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Lemma 4.34 (Security of Ë). Let p be an arbitrary polynomial which satisfies

8tq2ε+ 1
2κ/2−1 ≤ 1

p .

There exists a polynomial-query algorithm SecRed that satisfies the following. For any adversary
A that breaks the semantic security of (G̈O, ËO, D̈O) in the ideal model O with probability at least
γ, the adversary SecRedA,O breaks the semantic security of (GO, EO, DO) with probability at least
γ − β where

β = t · ( 1
p−1 + 4tq2ε+ 1

q2c+4 + 1
2κ/2−1 ).

In particular, for any constant c by taking t = 2qc+2 and ε = 1
q3c+8 we will have the follow-

ing: For any adversary A breaking the semantic security of (G̈O, ËO, D̈O) in the ideal model with
probability at least γ, the (polynomial-query) adversary SecRedA,O breaks the semantic security of
(GO, EO, DO) with probability at least γ − 22

κ2+c
.

4.2.4 Proving Lemma 4.33: Correctness for Ë

In this section, we will prove Lemma 4.33, which states that Ë = (G̈, Ë, D̈) is still a correct PKE
after having removed the eval queries from D.

Proof roadmap. Consider the variables sampled in Lemma 4.33. Parse p̈k = (pk, LearnG).
Notice that D̈O(sk, c̈) simply runs DO[H∪LearnG](sk, c).6 Thus, to prove Lemma 4.33 we prove the
following lemma, which shows that the probability that DO[H∪LearnG](sk, c) 6= DO(sk, c) is small.

Lemma 4.35. For any b ∈ {0, 1}

Pr[DO[H∪LearnG](sk, c) 6= DO(sk, c)] ≤ 1

2κ/5
+

2q

t
+ 3ενt, (8)

where O ← O, ((pk, LearnG), sk)← G̈O(1κ) and (c,H)← ËO(p̈k, b).

We first show how to derive Lemma 4.33 from Lemma 4.35.

Proof of Lemma 4.33. Let all the variables below be sampled as in Lemma 4.33. We have

Pr[D̈O(sk, c̈) 6= b] = Pr[DO[H∪LearnG](sk, c) 6= b]

≤ Pr[DO(sk, c) 6= b] + η

≤ 1

2
− δ + η,

where the first inequality follows from Lemma 4.35 and the second inequality follows from the
correctness bound assumed for the original scheme (G,E,D). Notice that for the second inequality
we made use of the fact that (pk, sk, c) is identically distributed to a random triple (pk′, sk′, c′)
produced under the original scheme: That is, (pk′, sk′)← GO(1κ) and c′ ← EO(pk′, b).

To prove Lemma 4.35 we define the following two undesirable events that are defined based
on the variables sampled in Lemma 4.35. We will then show that the probability of the event in
Lemma 4.35 is at most the probability of the union of the following two events.

6Note that a secret key under the compiled scheme has the same format as the one under the original scheme.
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Definition 4.36 (Event Miss). Let OrigD be the set of query/response pairs for the execution of
DO(sk, c). The event Miss holds if there is a query qu = ((F̃ , X̃) −−→

eval
?) ∈ OrigD such that:

1. eval(F̃ , X̃) = y 6= ⊥, and

2. ((F̃ , X̃) −−→
eval
∗) /∈ H and (∗ −→

gc
F̃ ) /∈ H, and

3. ((s, F ) −→
gc

F̃ ) ∈ OrigE for some s and F .

Definition 4.37 (Event Surprise). There exists a query qu = ((F̃ , X̃) −−→
eval

?) ∈ OrigD such that:

• (∗ −→
gc

F̃ ) /∈ OrigG ∪ LearnG ∪ OrigE

The proof of Lemma 4.35 now follows from the following three lemmas.

Lemma 4.38. For any b ∈ {0, 1}

Pr[DO[H∪LearnG](sk, c) 6= DO(sk, c)] ≤ Pr[Miss ∨ Surprise],

where O ← O, ((pk, LearnG), sk)← G̈O(1κ) and (c,H)← ËO(p̈k, b).

Lemma 4.39. Pr[Surprise] ≤ 1
2κ/2

, where O ← O, ((pk, LearnG), sk) ← G̈O(1κ) and (c,H) ←
ËO(p̈k, b).

Lemma 4.40. Pr[Miss] ≤ 1
2κ/4

+ 2q
t + 3ενt, where O ← O, ((pk, LearnG), sk) ← G̈O(1κ) and

(c,H)← ËO(p̈k, b).

Proof of Lemma 4.35. The proof follows directly from Lemmas 4.38, 4.39 and 4.40.

We first prove Lemma 4.38.

Proof of Lemma 4.38. Let Bad be the event that DO[H∪LearnG](sk, c) 6= DO(sk, c). We show if Miss
and Surprise hold, then Bad must necessarily hold, hence proving the lemma. Suppose Miss∧Surprise
hold and to the contrary that Bad holds and consider the first query qu on which the two executions
DO[H∪LearnG](sk, c) and DO(sk, c) are different. Since all non-eval queries are handled the same in
both executions, we must have qu = ((F̃ , X̃) −−→

eval
?) for some F̃ and X̃. Now since Surprise holds we

have (∗ −→
gc

F̃ ) ∈ OrigG∪LearnG∪OrigE. On the other hand, by Assumption 4.26 and Definition 4.12

we cannot have (∗ −→
gc

F̃ ) ∈ OrigG because the secret key sk contains OrigG and thus by the normal-

form restriction the query qu will not be issued to the oracle in both executions. Also, we cannot
have (∗ −→

gc
F̃ ) ∈ LearnG because in that case we will have O[H ∪ LearnG](qu) = O(qu). Thus,

(∗ −→
gc

F̃ ) ∈ OrigE. Now a simple inspection shows that Miss holds, a contradiction.

Proof of Lemma 4.39. As in the proof of Lemma 4.23 we can easily show that whenever the event
Surprise happens, we can win in the sense of Lemma 3.1. The bound now follows from Lemma 3.1.
We omit the details.
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Proving Lemma 4.40. We now focus on proving Lemma 4.40. We first start by giving a general
lemma that we will use during the proof.

Lemma 4.41 (Hitting unlearned queries). Let p̈k = (pk, LearnG) ← G̈(1κ) and let OrigG be the
query-answer pairs asked by G during G̈. Let Af,gc,gi be an arbitrary randomized q-query algorithm
that takes as input (1κ, p̈k) and define QA to be the query-answer pairs asked by A. Then:

Pr
O,A

[∃qu ∈ QA ∩ OrigG \ LearnG] ≤ qε

Proof. Consider an alternative experiment where we replace A with another algorithm A′ that,
instead of issuing its queries to the oracle, would instead simulate the answers to these queries
consistently with LearnG. That is, if the answer of a query is included in LearnG then it will use this
answer, otherwise it will sample a new uniformly random answer (consistently with LearnG) and
store this answer in QA′ . Note that the execution of Af,gc,gi(1κ, p̈k) and A′(1κ, p̈k) would proceed
statistically the same up until the point when a query qu is asked such that qu ∈ OrigG \ LearnG.
In that case, A would answer consistently with OrigG, whilst A′ would use a uniformly random
answer. Since these two executions proceed the same up until this bad event, the probability of this
event happening is the same in both experiments, so we will bound this event in the A′ experiment.

Since the query-answer pairs of A′ depend only on pk and LearnG (and hence QA′ is independent
of OrigG given LearnG and pk), we can in fact sample LearnG first conditioned on pk followed
by sampling QA′ conditioned on LearnG and pk. Finally, we will sample OrigG conditioned on
LearnG and pk. Now we compute the following probability that any query qu in QA′ is sampled in
OrigG \ LearnG as follows:

Pr
O,A′

[∃ qu ∈ QA′ ∩ (OrigG \ LearnG)] ≤
∑

qu∈QA′

Pr[qu ∈ QA′ ∧ qu ∈ (OrigG \ LearnG)]

≤
∑

qu∈QA′

Pr[qu ∈ OrigG \ LearnG]

≤
∑

qu∈QA′

Pr[qu ∈ Query(GO) | pk, LearnG]

≤ |QA′ | × ε ≤ qε

We give Definitions 4.42 and 4.43 below to describe more compactly the random variables
sampled during the compilation. We will then give some notation and terminology. We will then
give a few lemmas from which Lemma 4.40 is easily derived. We will then prove those lemmas.

Definition 4.42. Procedure DistGen(pk, c, S)

• Offline phase: Sample (ÔrigG, ŝk)← Partial(pk, S)

• Semi-online phase: Execute DÔrigG♦O[S](ŝk, c) and update S by adding all query/response

pairs made to the oracle O. Let ÔrigD be the set of all query/response pairs during this
decryption execution.

• Return (S, ÔrigG, ŝk, ÔrigD)
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Definition 4.43. Procedure DistGen1(1
κ):

• Output: a tuple

Dist := (OrigG, sk, pk, LearnG,OrigE,OrigD),

as well as a sequence of tuples of the form

Disti := (ÔrigGi, ŝki, pk, LearnG,OrigE, ÔrigDi).

• Operations

1. Sample (pk, sk)← GO(1κ) and let OrigG be the set of all query/response pairs.

2. Sample LearnG as in G̈.

3. Sample c← EO(pk, b) and let OrigE be the set of all query/response pairs

4. Let OrigD be the set of all query/response pairs during the execution of DO(sk, c).

5. Let S1 = LearnG ∪ OrigE. For i ≥ 1 sample

(Si+1, ÔrigGi, ŝki, ÔrigDi)← DistGen(pk, c, Si).

Invalid samples. We say that a value

(ÔrigGi, ŝki, pk, LearnG,OrigE, ÔrigDi)

of the random variable Disti is invalid if

(LearnG ∪ ÔrigGi ∪ OrigE ∪ ÔrigDi)

is not a valid partial oracle (Definition 4.28). We let invalidi be the event that Disti is invalid. We
also define

invalid = invalid1 ∨ · · · ∨ invalidt′ (9)

Let D̂isti,good to be the induced distribution on D̂isti conditioned on invalidi.

Lemma 4.44. Let t′ be as in the compilation procedure. The distributions Dist and D̂istt′+1,good

are identically distributed.

Proof. The proof can be easily done by inspection.

The proof of Lemma 4.40 now follows from the following two lemmas.

Lemma 4.45. We have Pr[Miss | invalid] ≤ 2q
t , where the probability is taken over the variables

sampled by DistGen1(1
κ) (see Definition 4.43).

Lemma 4.46. We have Pr[invalid] ≤ 1
2κ/4

+ 3ενt, where the probability is taken over the variables
sampled by DistGen1(1

κ).

Proof of Lemma 4.40. The proof follows immediately from Lemmas 4.45 and Lemma 4.46.
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Proving Lemmas 4.45 and Lemma 4.46.

Proof of Lemma 4.45. The proof is done similarly to the proof of Lemma 4.24. Relying on the
notation (i, d)-match defined in the proof of Lemma 4.24, as in that proof we break the event Miss
into smaller events Missh,d, for h ∈ [q] and d ∈ {0, 1}, defined as follows:

Event Missh,d. The event that for some F̃ that ((∗, ∗) −→
gc

F̃ ) ∈ OrigE, both the following hold:

1. OrigD contains an (h, d)-match for F̃ ;

2. none of the sets ÔrigD1, . . . , ÔrigDt′ do contain an (h, d)-match for F̃ .

As in the proof of Lemma 4.24, we can show that if Miss holds then Missh,d must hold, for some
h ∈ [q] and d ∈ {0, 1}. In the sequel we show

Pr[Missh,d | invalid] ≤ 1

t
,

which will imply the desired bound for the value of Pr[Miss | invalid].
Fix h ∈ [q] and d ∈ {0, 1} for which we want to bound the event Missh,d. Some notation first. For

a sequence of tuples (Dist1,Dist2, . . . , ) sampled from (Dist1,Dist2, . . . , ) given in Definition 4.43,
we define a random variable Firsth,d which takes a value in {1, . . . , t+ 1} ∪ {⊥} as follows:

• Firsth,d = i for i ∈ [1, t+ 1] if

1. ÔrigDi contains an (h, d)-match for F̃ ;

2. none of the sets ÔrigD1, . . . , ÔrigDi−1 do contain an (h, d)-match for F̃ .

• Firsth,d = ⊥ if none of the sets ÔrigD1, . . . , ÔrigDt+1 do contain an (h, d)-match for F̃ .

Now applying Lemma 4.44 we have that, for any (h, d):

Pr[Missh,d | invalid] = Pr[Firsth,d = t′ + 1]

where the random variable Firsth,d is defined over the sequence (Dist1,Dist2, . . . ,Distt+1), where

the i’th tuple is sampled as Disti ← D̂isti,good.
The random variable Firsth,d takes a value in [1, t + 1] ∪ {⊥} according to some arbitrary

distribution. However, since t′ is chosen uniformly at random from [1, t] we have:

Pr[Firsth,d = t′ + 1] ≤ 1

t

Proof of Lemma 4.46. We show that for all i ∈ [t],

Pr[invalidi] ≤
1

2κ/3
+ 3εν. (10)
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The proof of the lemma then follows by the union bound. Fix i. We want to bound the probability
that the tuple Tupi sampled as

Tupi = (LearnG ∪ ÔrigGi ∪ OrigE ∪ ÔrigDi)← Disti

is invalid. Note that by design the set

W = LearnG ∪ ÔrigGi ∪ OrigE

makes up a valid partial oracle. This is because ÔrigGi is chosen in a manner consistent with

LearnG∪OrigE. We first claim that if Tupi is invalid then ÔrigGi∪ ÔrigDi must be invalid. To prove

this, suppose ÔrigGi ∪ ÔrigDi is valid and suppose to the contrary that Tupi is invalid. Noting that

W is valid and also, by assumption, that ÔrigGi ∪ ÔrigDi is valid, we consider all possible cases for
the inconsistency of Tupi:

1. For some T ∈ {f, gc, gi} we have (qu −→
T
ans1) ∈ ÔrigDi and (qu −→

T
ans2) ∈ LearnG ∪ OrigE

and ans1 6= ans2: Since (qu −→
T
ans1) ∈ ÔrigDi this means that either (qu −→

T
ans1) ∈ ÔrigGi

or O(qu) = ans1. The first case contradicts the fact that ÔrigGi agrees with LearnG ∪ OrigE
and the second case contradicts the fact that LearnG ∪ OrigE agree with O.

2. For some T ∈ {f, gc, gi} we have (qu1 −→
T
ans) ∈ ÔrigDi and (qu2 −→

T
ans) ∈ LearnG ∪ OrigE

and qu1 6= qu2: Like above, it can be proved this case cannot happen either.

3. For some and F̃ and X̃, qu = ((F̃ , X̃) −−→
eval
⊥) ∈ ÔrigDi and qu is inconsistent with LearnG ∪

OrigE: In order to have inconsistency, for some s we must at least have ((s, F ) −→
gc

F̃ ) ∈
LearnG∪OrigE. Now by design in that case for any S we will have O[LearnG∪OrigE∪S](qu) =
O(qu) and thus we will also have O(qu) = ⊥. Thus, there cannot be any inconsistencies.

Thus, to prove Equation 10 it suffices to show

Pr[ÔrigGi ∪ ÔrigDi is invalid] ≤ 1

2κ/3
+ 3εν. (11)

We now focus on proving Equation 11. As the first observation, we note that we cannot

have any input inconsistencies in ÔrigGi ∪ ÔrigDi: namely, a query qu for which we have (qu −→
T

an1) ∈ ÔrigGi ∪ ÔrigDi and (qu −→
T

an2) ∈ ÔrigGi ∪ ÔrigDi for an1 6= an2. The reason that this

cannot happen is because of the normal-form restriction and the definition of composed oracles

(Definition 4.30). Thus, it suffices to bound the probability of output collisions in ÔrigGi ∪ ÔrigDi.

That is, we consider the inconsistencies between ÔrigGi and ÔrigDi that could happen as a result
of having two different queries that have the same answer. We consider all possible case that an
output collision may occur.

1. Col1: There exists ((s1, F1) −→
gc

F̃ ) ∈ ÔrigGi such that ((s, F ) −→
gc

F̃ ) ∈ ÔrigDi \ ÔrigGi and

that (s, F ) 6= (s1, F1).
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2. Col2: There exists ((s1, x1) −→
gi
x̃) ∈ ÔrigGi such that ((s, x) −→

gi
x̃) ∈ ÔrigDi \ ÔrigGi and that

(s, x) 6= (s1, x1).

3. Col3: There exists ((F̃ , X̃) −−→
eval
⊥) ∈ ÔrigDi such that eval(F̃ , X̃) 6= ⊥ and ((s, F ) −→

gc
F̃ ) ∈

ÔrigGi ∪ ÔrigDi for some s and F .

We mention that the event Col3 may not necessarily cause an inconsistency by itself, but if

some query qu = ((F̃ , X̃) −−→
eval
⊥) ∈ ÔrigDi does cause an inconsistency in ÔrigGi ∪ ÔrigDi, then

the conditions in Case 3 must hold.
We will now show that each of the events Col1, Col2 and Col3 may occur with probability at

most 1
2κ/2

+ εν, proving Equation 11.

Bounding the event Col1: We show

Pr[Col1] ≤ 1
2κ/2

+ νε. (12)

To prove this, first note that Col1 implies that F̃ is a valid garbled circuit, and that we indeed

have gc(s, F ) = F̃ . This is because the real oracle O agrees with ÔrigDi \ ÔrigGi. We claim

Pr[((s, F ) −→
gc

F̃ ) ∈ OrigG] ≥ 1− 1
2κ/2

. (13)

We first show how to derive Equation 12 from Equation 13. Notice that ((s, F ) −→
gc

F̃ ) /∈ LearnG.

This is because ÔrigGi agrees with LearnG and so we could not have had ((s1, F1) −→
gc

F̃ ) ∈ ÔrigGi.

Thus, from Equation 13 we have Pr[((s, F ) −→
gc

F̃ ) ∈ OrigG \ LearnG] ≥ 1 − 1
2κ/2

. Now recall that,

by the definition of the event Col1 we have ((s, F ) −→
gc

F̃ ) ∈ ÔrigDi. Now applying Equation 13

along with Lemma 4.41 and Lemma 4.32, Equation 12 is established.
We now prove Equation 13. Let Surp′ be the event that ((s, F ) −→

gc
F̃ ) /∈ OrigG. We will show

Pr[Surp′] ≤ 1
2κ/2

by reducing it to Lemma 3.1. First, note that F̃ is valid garbed circuit under gc,

and that it is constructible using ÔrigGi and that

(ÔrigGi, ŝki)← (O, sk | pk, LearnG ∪ Si−1).

for some set Si which completely agrees with O and so we cannot have the query/response
((∗, ∗) −→

gc
F̃ ) ∈ Si. Thus, the occurrence of the event Surp′ implies we could forge a valid F̃ “on

the fly” and so by Lemma 3.1 we have Pr[Surp′] ≤ 1
2κ/2

.

Bounding the event Col2. As in Col1, we can show that Pr[Col2] ≤ 1
2κ/2

+ εν.
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Bounding the event Col3 . Suppose Col3 holds: Namely, there exists ((F̃ , X̃) −−→
eval
⊥) ∈ ÔrigDi

such that eval(F̃ , X̃) 6= ⊥ and ((s, F ) −→
gc

F̃ ) ∈ ÔrigGi ∪ ÔrigDi for some s and F . First, we

argue that we cannot have ((s, F ) −→
gc

F̃ ) ∈ ÔrigGi. This is because, otherwise, the query/response

((s, F ) −→
gc

F̃ ) will be included in ŝki, and so by Assumption 4.12, during DÔi♦O[S](ŝki, c) the query

((F̃ , X̃) −−→
eval

?) will never be asked.

Now since ((s, F ) −→
gc

F̃ ) /∈ ÔrigGi, we have ((s, F ) −→
gc

F̃ ) ∈ ÔrigDi and since ÔrigDi 6= ÔrigGi

agrees with O on all non-eval queries we have gc(s, F ) = F̃ . Thus, F̃ is a valid garbled circuit.
Thus, it suffices to bound the probability of the following event that we call Col′: there exists

((F̃ , X̃) −−→
eval

⊥) ∈ ÔrigDi such that F̃ is valid and ((s, F ) −→
gc

F̃ ) ∈ ÔrigDi for some s and F .

Notice that by the normal-form restriction, the event Col′ happens only when the query/response

((F̃ , X̃) −−→
eval

∗) ∈ ÔrigDi is added to ÔrigDi before the query/response ((s, F ) −→
gc

F̃ ) is created.

Now exactly as in Col1 we can show that the probability that Col′ happens is at most 1
2κ/2

+ νε.
The proof of Lemma 4.46 is now complete.

4.2.5 Proving Lemma 4.34: Security for Ë

In this section, we will prove Lemma 4.34, which states that the security of the compiled scheme
Ë = (G̈, Ë, D̈) can be reduced to the security of E .

First, note that for a random public key p̈k = (pk, LearnG) produced as ((pk, LearnG), ∗) ←
G̈(1κ), the variable LearnG can be perfectly sampled solely based on pk and that pk is identically
distributed to a random public key produced under the original G(1κ). With this in mind, given
an attacker A against E , we give a poly-query attacker SecRedA,O that, given (pk, LearnG, c),
where (pk, c) are produced under the original scheme (GO, EO, DO) will sample H∗ then run
A(pk, LearnG, c,H∗). We will then show that for both b ∈ {0, 1} the following holds: the joint distri-
bution of (pk, LearnG, c,H) is close to (pk, LearnG, c,H∗), where ṗk = (pk, LearnG)← Ġ(1κ), (c,H)←
ËO(ṗk, b) and the hint list H∗ is generated during the security reduction SecRedA,O(pk, LearnG, c).

Challenges and overview of techniques. Let us first start with a high level description of the
main challenges and how we overcome them. Consider a random public key p̈k = (pk, LearnG) ←
G̈(1κ) and a random ciphertext (c,H)← ËO(p̈k, b) for some unknown plaintext bit b. Notice that c
is identically distributed to a random ciphertext outputted by EO(pk, b). Thus, the main challenge
is to sample a simulated H∗ which is close enough to the real H, and to do this solely based on
(pk, LearnG, c), and in particular without knowing OrigE, the set of query/response pairs used to
sample c← EO(pk, b).

Recall the random variables (Ôi, ŝki) sampled during the real execution of ËO(p̈k, b). In order

to be able to sample H∗ we should be able to sample (O∗i , sk
∗
i ) that is close to (Ôi, ŝki). The main

challenge in doing so is that (Ôi, ŝki) is conditioned on LearnG ∪ OrigE, and OrigE is not available
to SecRedO(pk, LearnG, c). We will show that if we sample (O∗i , sk

∗
i ) based on (pk, LearnG), then

(O∗i , sk
∗
i ) and (Ôi, ŝki) will be reasonably close enough, assuming that LearnG has captured all ε

heavy queries for small enough values of ε.
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Now assuming that (O∗i , sk
∗
i ) is close to (Ôi, ŝki), letting S = LearnG ∪ OrigE, the algorithm

SecRedA,O(pk, LearnG, c) needs to be able to run the execution of DO∗i ♦O[S](sk∗i , c) in order to be

able to simulate that of DÔi♦O[S](ŝki, c). For simplicity of exposition, in the following assume

that (O∗i , sk
∗
i ) and (Ôi, ŝki) are identically distributed, and so we show how SecRedA,O simulates

the execution of DÔi♦O[S](ŝki, c), assuming that it knows (ŝki, Ôi). The main challenge in this
simulation is that SecRedA,O(pk, LearnG, c) does not know what S is. A simple way around for
SecRedA,O is to use its full access to the oracle eval to make up for its lack of access to S. That is,

SecRedA,O would perform DÔi♦O(ŝki, c). But this idea runs into the following problem: The oracle
Ôi♦O[S] may reply to an encountered query qu = ((F̃ , X̃) −−→

eval
?) with ⊥, but we may have that

eval(F̃ , X̃) 6= ⊥, in which case we will have Ôi♦O[S](qu) = ⊥ but Ôi♦O(qu) 6= ⊥. To overcome
this problem, it seems that the algorithm SecRedA,O, during the execution of DO∗i ♦S(sk∗i , c) should

only resort to its eval oracle for a query eval(F̃ , X̃) if indeed O[S](qu) 6= ⊥. But checking for
this seems difficult, mainly because SecRedA,O(pk, LearnG, c) does not know what S is. Let us
call this event bad. We resolve this bad event as follows. Notice that whenever bad happens for
a query qu = ((F̃ , X̃) −−→

eval
?), then w.h.p. F̃ must have been generated in OrigG as a result of a

gc query. Moreover, if this F̃ appears during the decryption execution of DÔi♦O(ŝki, c), it should
appear during many other random executions of the same kind. Thus, we perform the following
experiment to collect all such F̃ : Sample OrigE′ by running c′ ← EO(pk, b′) for both b′ ∈ {0, 1}; let

S′ = LearnG∪OrigE′; and sample (Ô, ŝk) consistent with (pk, LearnG∪OrigE′) and run the execution

of DÔ♦O[S′](sk′, c′) and record in a set HidG all F̃ such that we see a query ((F̃ , X̃) −−→
eval

?) for which

we have eval(F̃ , X̃) 6= ⊥ but Ô♦O[S′](F̃ , X̃) = ⊥.

Then, in the simulated execution of DÔi♦O(ŝki, c) whenever SecRedA,O sees a query ((F̃ , x̃) −−→
eval

?), it will forward this query to O only if F̃ /∈ HidG. If F̃ ∈ HidG then SecRedA,O replies to that
query with ⊥.

Procedure SecRedA,O(pk, LearnG, c) with output bit b′:

1. Finding hidden garbled circuits in OrigG: Let HidG := ∅. Do the following qτ times.

(a) For both b ∈ {0, 1} do the following:

i. Sample c′ ← EO(pk, b) and let OrigE′ be the set of all query/response pairs during
this execution.

ii. Let ÔrigD′1, . . . , ÔrigD′t be sampled as in DistGen1(pk, LearnG,OrigE′) and let

ÔrigD = ÔrigD′1 ∪ · · · ∪ ÔrigD′t.

iii. If there is qu = ((F̃ , X̃) −−→
eval
⊥) ∈ ÔrigD but eval(F̃ , X̃) 6= ⊥, then add F̃ to HidG.

2. Sampling H∗:

(a) Sample t′ ← [1, t]. For i ∈ [t′]:

i. Sample (O∗i , sk
∗
i )← (O, sk | pk ∪ LearnG).
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ii. Execute DOlim(sk∗i , c), where Olim(qu) replies exactly as O∗i♦O(qu), except for the
following case in which Olim replies with ⊥:

• qu = ((F̃ , X̃) −−→
eval

?) and F̃ ∈ HidG

When the execution is over,

• Let EvalD∗i := ∅. For any eval query qu = ((F̃ , X̃) −−→
eval

?) during the execution

for which F̃ /∈ HidG and eval(F̃ , X̃) = y 6= ⊥, add ((F̃ , X̃) −−→
eval

y) to EvalD∗i

(b) Set H∗ ← ConstHelpO(EvalD∗1∪· · ·∪EvalD∗t′), where the procedure ConstHelpO is defined
in Definition 4.25.

3. Output b′ ← A(pk, LearnG, c,H∗)

To describe our statement about the closeness of H and H∗, we define the following experiment
outputting random variables over which we later state some events and probability statements.

Experiment Expr1(1
κ) for bit b ∈ {0, 1}: Output

Vars = (OrigG,OrigE, c, (Si, Ôi, ŝki)i∈[t],H, (O
∗
i , sk

∗
i )i∈[t],HidG,H∗),

where

1. ((pk, LearnG), sk)← GO(1κ).

2. (c,H) ← Ë((pk, LearnG), b) with OrigE and (Ôi, ŝki) being the random variables sampled

inside this execution, and Si is the value of S in the ith iteration based on which (Ôi, ŝki) is

sampled — i.e., (Ôi, ŝki)← Partial(pk, Si).

3. H∗, HidG and (O∗i , sk
∗
i ) are sampled as in the execution of SecRedA,O(pk, LearnG, c).

We will prove the following lemma which shows that our proposed reduction SecRed does a
good job of simulating H.

Lemma 4.47. Let p be an arbitrary polynomial which satisfies

8tq2ε+ 1
2κ/2−1 ≤ 1

p .

We have
∆(H,H∗) ≤ t( 1

p−1 + 4tq2ε+ 1
qτ−1 + 1

2κ/2−1 ),

where H and H∗ are sampled as in Expr1(1
κ).

The proof of Lemma 4.47 follows from Lemmas 4.48 and 4.49, given below.

Lemma 4.48. Let p be a polynomial as in Lemma 4.47. For any i ∈ [t] we have

∆((O∗i , sk
∗
i , LearnG,OrigE, c), (Ôi, ŝki, LearnG,OrigE, c)) ≤ 1

p−1 ,

where all the variables are sampled as in Expr1(1
κ).
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Lemma 4.49. Fix i ∈ [t]. Let O′lim be defined as follows: O′lim replies to a query qu exactly as

Ôi♦O except for the following case in which O′lim replies with ⊥: qu = ((F̃ , ∗) −−→
eval

?) and F̃ ∈ HidG.

Let Evnt: be the event that Trace(DO′lim(ŝki, c)) = Trace(DÔi♦O[OrigE∪LearnG∪Si](ŝki, c)). Then

Pr[Evnt] ≤ 4tq2ε+ 1
qτ−1 + 1

2κ/2−1 ,

where all the variables inside Evnt are sampled as in Expr1(1
κ).

We will first how to prove of Lemma 4.47 using Lemmas 4.48 and 4.49. We will then prove
Lemma 4.48 and Lemma 4.49.

Proof of Lemma 4.47. Fix i ∈ [t]. Let Olim be defined as in the execution of the security reduction
SecRedA,O(pk, LearnG, c): Namely, Olim replies to a query qu exactly as O∗i♦O except for the

following case in which Olim replies with ⊥: qu = ((F̃ , ∗) −−→
eval

?) and F̃ ∈ HidG.

Let T1 = Trace(DOlim(sk∗i , c)) and T2 = Trace(DÔi♦O[LearnG∪OrigE∪Si](ŝki, c)), where Trace de-
notes the set of query/response pairs made during a given execution. We show

∆(T1,T2) ≤ 1
p−1 + 4tq2ε+ 1

qτ−1 + 1
2κ/2−1 . (14)

Using a union bound we will then obtain the desired upper bound for ∆(H,H∗).
We show how to obtain Equation 14 based on Lemmas 4.48 and 4.49. By Lemma 4.48 we have

∆((O∗i , sk
∗
i , LearnG,OrigE, c), (Ôi, ŝki, LearnG,OrigE, c)) ≤ 1

p−1 . (15)

Note that since HidG is sampled independently of all the variables in Equation 15 we have

∆((O∗i , sk
∗
i ,OrigE, c,HidG), (Ôi, ŝki,OrigE, c,HidG)) ≤ 1

p−1 . (16)

Define the oracle O′lim as in Lemma 4.49: O′lim replies to a query qu exactly as Ôi♦O except

for the following case in which O′lim replies with ⊥: qu = ((F̃ , ∗) −−→
eval

?) and F̃ ∈ HidG. Define

T′1 = Trace(DO′lim(sk∗i , c))
From Equation 16 we have

∆(T1,T
′
1) ≤

1

p− 1
. (17)

By Lemma 4.49 we have

∆(T′1,T2) ≤ 4tq2ε+ 1
qτ−1 + 1

2κ/2−1 . (18)

Combining Equations 17 and 18 implies the bound in Equation 14, as desired.
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Roadmap for the proof of Lemma 4.48. We now focus on proving Lemma 4.48. Fix an
arbitrary iteration i ∈ [t] for which we want to show Dist1 = (O∗i , sk

∗
i , LearnG,OrigE, c) and Dist2 =

(Ôi, ŝki, LearnG,OrigE, c) are statistically close. Recall that

(O∗i , sk
∗
i )← D1 := (O, sk | pk ∪ LearnG),

and
(Ôi, ŝki)← D2 := (O, sk | pk ∪ LearnG ∪ OrigE ∪ Si).

Define
Diff := (OrigE ∪ Si \ LearnG).

Comparing the ways in which (O∗i , sk
∗
i ) and (Ôi, ŝki) are sampled, Diff is the only extra set on

which Ôi is conditioned on. With this in mind, to prove that Dist1 and Dist2 are close, we first
define a notion of disjointedness between two sets of query/response pairs. We will then show that
if (a) O∗i and Diff are disjoint and (b) Ôi and Diff are disjoint, then the induced distributions Dist1
and Dist2 are identical. We will then bound the probability that (a) or (b) does not hold.

The notion of disjointness is described below.

Definition 4.50. Let S1, S2 be partial oracles (i.e., two sets of query/response pairs). We say

• S1 hits S2 if there is some query qu on which both S1(qu) and S2(qu) are defined. We stress
that even if the outputs are the same (i.e, S1(qu) = S2(qu)) we still call this event a hit.

• S1 and S2 are disjoint if S1 and S2 do not hit and that S1 ∪ S2 is a valid oracle.

Define the following two disjoint events:

• Disjoint1 := O∗i is disjoint of Diff.

• Disjoint2 := Ôi is disjoint of Diff.

We show the following lemma.

Lemma 4.51. Let p be as in Lemma 4.47. That is, 8tq2ε+ 1
2κ/2−1 ≤ 1

p . Then:

1. ((O∗i , sk
∗
i , LearnG,OrigE, c) | Disjoint1) ≡ ((Ôi, ŝki, LearnG,OrigE, c) | Disjoint2),

2. Pr[Disjoint1] ≥ 1− 1
p ,

3. Pr[Disjoint2] ≥ 1− 1
p−1 ,

where all the variables are sampled as in Expr1(1
κ).

Proof of Lemma 4.48. The proof follows in a straightforward way from Lemma 4.51.

We now focus on proving Lemma 4.51.

Proof of Lemma 4.51, Part 1. the proof of this part follows from the definition of disjointness.

38



Roadmap for the proof of Lemma 4.51, Part 2. We first describe three events Bad1,Bad2

and Bad3 in Definition 4.52. Then the proof of this part of the lemma will be divided into two
lemmas. First, in Lemma 4.53 we will show that Pr[Disjoint1] ≥ Pr[Bad1 ∨ Bad2 ∨ Bad3]. Then, in
Lemma 4.54 we will show that Pr[Bad1 ∨ Bad2 ∨ Bad3] ≤ 8tq2ε + 1

2κ/2−1 . These two will complete
the proof of Part 2 of Lemma 4.51.

Definition 4.52. We define the following bad events. Informally, Bad1 is the event that the output
of some gc or gi query defined by O∗i is at the range of the actual oracles gc and gi but that output
does not appear in OrigG. Also, Bad2 is the event that some non-heavy query in OrigG also does
appear in Diff. Finally, Bad3 is defined as in Bad2 by replacing OrigG with O∗i .

• Bad1: the event that at least one of the following occurs:

1. There exists (∗ −→
gc

F̃ ) ∈ O∗i such that for some (s, F ): gc(s, F ) = F̃ and that ((s, F ) −→
gc

F̃ ) /∈ (OrigG ∪ LearnG).

2. There exists (∗ −→
gi

x̃) ∈ O∗i such that that for some (s, i, b): gi(s, i, b) = x̃ and that

((s, i, b) −→
gi
x̃) /∈ (OrigG ∪ LearnG).

• Bad2: the event that there exists a query that appears in both OrigG and Diff. That is, for
some T ∈ {f, gc, gi} there exists a query qu such that (qu −→

T
∗) ∈ OrigG and (qu −→

T
∗) ∈ Diff.

• Bad3: the event that there exists a query that appears both in O∗i and Diff. That is, for some
T ∈ {f, gc, gi} there exists a query qu such that (qu −→

T
∗) ∈ O∗i and (qu −→

T
∗) ∈ Diff.

Lemma 4.53. We have
Pr[Disjoint1] ≥ Pr[Bad1 ∨ Bad2 ∨ Bad3],

where all the variables are sampled as in Expr1(1
κ).

Proof. We show whenever Bad1 ∨ Bad2 ∨ Bad3 then the event Disjoint1 must necessarily hold. Sup-
pose toward a contradiction that Disjoint1 holds, or in other words O∗i and Diff are not disjoint.
Recalling the notion of disjointedness from Definition 4.50 we consider all possible cases, deriving
a contradiction for each case:

1. O∗i hits Diff or in other words there is a query that appears in both O∗i and Diff: This
contradicts the fact that Bad3 holds.

2. O∗i does not hit Diff but O∗i ∪ Diff is not a valid partial oracle: if this happens then at least
one of the following must happen:

(a) for some qu1 6= qu2 we have (qu1 −→
gc

F̃ ) ∈ O∗i and (qu2 −→
gc

F̃ ) ∈ Diff: in this case we

claim (qu2 −→
gc

F̃ ) ∈ OrigG, which contradicts the fact that Bad2 holds. To prove the

claim suppose to the contrary that (qu2 −→
gc

F̃ ) /∈ OrigG. Firs, note that since (qu2 −→
gc

F̃ ) ∈ Diff we have gc(qu2) = F̃ . Also, note that we must have (qu2 −→
gc

F̃ ) /∈ LearnG

because we know O∗i agrees with LearnG and so we could not have had (qu1 −→
gc

F̃ ) ∈ O∗i
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for qu1 6= qu2. Now we reach a contradiction to the fact that Bad1 holds, because we
now have F̃ is a valid garbled circuit, (qu1 −→

gc
F̃ ) ∈ O∗i and (∗ −→

gc
F̃ ) /∈ OrigG∪ LearnG.

(b) for some qu1 6= qu2 we have (qu1 −→
gc

x̃) ∈ O∗i and (qu2 −→
gc

x̃) ∈ Diff: in exactly the same

way as in the previous case we can show that this case is also impossible.

Lemma 4.54. We have Pr[Bad1∨Bad2∨Bad3] ≤ 8tq2ε+ 1
2κ/2−1 , where all the variables are sampled

as in Expr1(1
κ).

Proof. We can bound the probability of any of these events using ideas discussed extensively before,
and so we outline the main ideas. First, note that whenever the event Bad1 holds, we have hit
the image of a sparse random function, which in our case is either gc or gi. This is because O∗i is
sampled in offline mode while conditioning solely on OrigG∪ LearnG. Thus, by Lemma 3.1 we have
Pr[Bad1] ≤ 2× 1

22κ
.

Recall that Diff = OrigE \ LearnG. The event Bad2 is the event that there is a query qu ∈ OrigG
which is at most ε heavy, but that it appears during a process which is independent of that used
to produce OrigG and which consists of at most 4tq2 queries. (See Lemma 4.32.) Thus, we have
Pr[Bad2] ≤ 4tq2ε. Finally, the event Bad3 can be bounded in exactly the same way.

Proof of Lemma 4.51, Part 2. the proof of this part follows from Lemmas 4.53 and 4.54.

Proof of Lemma 4.51, Part 3. Recall the distributions D1 and D2:

(O∗i , r
∗
i )← D1 := (O, sk | pk ∪ LearnG).

(Ôi, r̂i)← D2 := (O, sk | pk ∪ LearnG ∪ OrigE ∪ Si).

Recall that Diff = (OrigE ∪ Si) \ LearnG.
In what follows we write (O′, r′) ∈ D1 to mean that (O′, r′) is in the support set of D1. Consider

the following partitioning of the worlds:

• S1: the set of all (O′, r′) ∈ D2 such that GO
′
(r′) does not hit Diff.

• S2: the set of all (O′, r′) ∈ D2 such that GO
′
(r′) hits Diff.

• S3: the set of worlds generated by D1 which disagree with Diff. Namely, for all (O′, r′) ∈ S3

we have O′ ∪ Diff is an invalid partial oracle.

Note that S1 ∪ S2 ∪ S3 covers all the worlds in the support set of D1. Also, S1 ∪ S2 covers all
the worlds in the support set of D2. By Part 2 of Lemma 4.51 we have

|S2|+ |S3|
|S1|+ |S2|+ |S3|

≤ 1

p
.

We want to bound |S2|/(|S1|+ |S2|). We have

|S2|
|S1|+ |S2|

≤ |S2|+ |S3|
|S1|

≤
|S2|+|S3|

|S1|+|S2|+|S3|
|S1|

|S1|+|S2|+|S3|

≤
1
p
p−1
p

=
1

p− 1
.
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We now focus on proving Lemma 4.49.

Proof of Lemma 4.49. Let ÔrigDi be the set of all queries issued during the execution of the pro-

cedure DÔi♦O[OrigE∪LearnG∪Si](ŝki, c). Define the following events:

• Miss: the event that there exists F̃ such that (∗ −→
gc

F̃ ) ∈ OrigG, that (∗ −→
gc

F̃ ) /∈ LearnG ∪

OrigE∪Si, that F̃ /∈ HidG and that for some X̃: ((F̃ , X̃) −−→
eval

?) ∈ ÔrigDi and eval(F̃ , X̃) 6= ⊥.

• Bad4: the event that there exists F̃ such that (∗ −→
gc

F̃ ) /∈ OrigG ∪ LearnG ∪ OrigE ∪ Si, that

((F̃ , ∗) −−→
eval

?) ∈ ÔrigDi for some s and F : gc(s, F ) = F̃ .

• Bad5: the event that there is F̃ such that F̃ ∈ HidG and (∗ −→
gc

F̃ ) /∈ OrigG.

• Bad6: the event that there exists a query qu such that (qu −→
gc
∗) ∈ OrigG∩Diff, where recall

that Diff = (OrigE ∪ Si) \ LearnG.

We show that if Evnt holds, then Miss ∨ Bad4 ∨ Bad5 ∨ Bad6 holds, or equivalently, if Miss ∧
Bad4 ∧ Bad5 ∧ Bad6 holds then Evnt holds. We will then show that the probability that Miss ∨
Bad4 ∨ Bad5 ∨ Bad6 holds is at most qε+ 1

q15
+ 2× 1

2κ/2
.

Suppose Miss ∧ Bad4 ∧ Bad5 ∧ Bad6 holds and suppose to the contrary that Evnt holds. Let

S := LearnG ∪ OrigE ∪ Si. Let T1 = Trace(DOext (ŝki, c)) and let T2 = Trace(DÔi♦O[S](ŝki, c)).
Consider the first point in which T1 and T2 become different: this point must be an eval query
qu = ((F̃ , X̃) −−→

eval
?), where gc(s, F ) = F̃ for some (s, F ) and for which one of the following holds:

We show that each case leads to a contradiction.

1. Oext(qu) = ⊥ and Ôi♦O[S](qu) 6= ⊥: The fact that Oext(qu) = ⊥ implies F̃ ∈ HidG. Since
Bad5 holds we have (∗ −→

gc
F̃ ) ∈ OrigG. Also, by the way in which HidG is designed, we

have (∗ −→
gc

F̃ ) /∈ LearnG. Now the fact that Ôi♦O[S](qu) 6= ⊥ and that (∗ −→
gc

F̃ ) /∈ LearnG

imply that (∗ −→
gc

F̃ ) ∈ S \ LearnG = Diff. Now the facts that (∗ −→
gc

F̃ ) ∈ Diff and that

(∗ −→
gc

F̃ ) ∈ OrigG imply that Bad6 holds, which is a contradiction.

2. Oext(qu) 6= ⊥ and Ôi♦O[S](qu) = ⊥: Since Ôi♦O[S](qu) = ⊥ and eval(qu) 6= ⊥ we have
(∗ −→

gc
F̃ ) /∈ S. Also, since Bad4 holds, we have (∗ −→

gc
F̃ ) ∈ OrigG ∪ S, and thus by the

preceding condition we have (∗ −→
gc

F̃ ) ∈ OrigG. Moreover, Oext(qu) 6= ⊥ implies F̃ /∈ HidG.

Now the facts that (∗ −→
gc

F̃ ) ∈ OrigG \ S, that F̃ /∈ HidG, that ((F̃ , X̃) −−→
eval

?) ∈ ÔrigDi and

that eval(F̃ , X̃) 6= ⊥ imply Miss holds, which is a contradiction.

We now show how to bound each of the events above. We can easily show that each of the
events Bad4 and Bad5 happens with probability at most 1

2κ/2
because the occurrence of each of

them implies that we have obliviously hit a valid point in the image of gc. Also, the event Bad6 is
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a special case of the event Bad2 (Definition 4.52), which we have shown in Lemma 4.54 that this
event occurs with probability at most 4tq2ε.

We now bound the probability of the event Miss. To this end, we define a Bernoulli random
variable for any F̃ such that ((∗ −→

gc
F̃ )) ∈ OrigG and then show that the event Miss is the event

that for some F̃ where ((∗ −→
gc

F̃ )) ∈ OrigG: the first qτ trials of that Bernoulli variable fails, but

the last one succeeds. We obtain the desired bound of q× 1
qτ from Lemma 3.1 and a union bound.

Fix F̃ for which ((∗ −→
gc

F̃ )) ∈ OrigG. Define the following Bernoulli trial.

Bernoulli Trial:

1. For both b ∈ {0, 1} do the following:

(a) Sample c′ ← EO(pk, b) and let OrigE′ be the set of all query/response pairs during this
execution.

(b) Let ÔrigDi be sampled as in DistGen1(pk, LearnG,OrigE′).

• We say the Bernoulli trial succeeds if there is a query qu = ((F̃ , X̃) −−→
eval
⊥) ∈ ÔrigDi

but eval(F̃ , X̃) 6= ⊥. Otherwise, we say the Bernoulli trial fails.

Now suppose the event Miss holds. This means that there exists F̃ such that (∗ −→
gc

F̃ ) ∈ OrigG,

that F̃ /∈ HidG, that (∗ −→
gc

F̃ ) /∈ LearnG∪OrigE∪Si, and that for some X̃ the query ((F̃ , X̃) −−→
eval

?)

appears during the execution of DÔi♦O[LearnG∪OrigE∪Si](ŝki, c) and that eval(F̃ , X̃) 6= ⊥. This means

that this particular Bernoulli trial (based on OrigE, Ôi and ŝki) succeeds. Moreover, F̃ /∈ HidG
means that all the previous qτ Bernoulli trials performed to form the random variable HidG failed.
The proof is now complete.
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A Extension to Constant-Round Key Agreement

Our main result showed that PKE, which is equivalent to 2-round key agreement, cannot be ob-
tained from one-way functions and garbling. In this section, we describe how our main result can
in fact extend to m-round key agreement protocols for any constant m. Unfortunately, the proof
becomes more involved when handling protocols with more than 2 messages (which are equivalent
to PKE schemes), and that is why in the main body of the paper we describe the full proof for the
case of PKE schemes. Here we sketch the arguments needed for the extension to the constant-round
KE protocols.

The reason that our techniques, at least in their current form, do not extend beyond the
constant-round (in the context of KE) is that, every time that we compile the protocol into a new
one (with almost the same security) and get rid of the garbling queries for a round, it blows up the
parameters (e.g., the communication complexity) of the protocol by a polynomial factor. Going
beyon this limitation is an interesting future direction.

We start by first introducing some notation and definitions related to key agreement protocols.

A.1 Notation and Definitions

Interactive protocols. For any pair of interactive oracle-aided algorithms (A,B) and oracle O,
we use 〈AO(1κ), BO(1κ)〉 to denote a random execution of an interactive protocol between an initia-
tor A and a successor B, both with access to oracle O and both with no initial inputs. We denote
by AMsgi the i’th message of A and by BMsgi the i’th message of B. We use Trans〈AO(1κ), BO(1κ)〉
to refer to the transcript of the protocol, which is (AMsg1,BMsg1, . . . , ). We may sometimes refer
to A as Alice and to B as Bob.

Secret state of algorithms. For an interactive protocol 〈A,B〉 between A := (A1, . . . , Am) and
B := (B1, . . . , Bm) we assume the following: the input to Ai, for any i ∈ [m], is (StA,Tr), where
Tr is the existing transcript at the time and StA is passed on privately to Ai from Ai−1, consisting
of all the randomness values as well as all the query/response pairs made by (A1, . . . , Ai−1). We
use StAqu to refer to all query/response pairs contained in StA and use StArand to refer to the
randomness part of StA. We assume a similar convention for B.

Notation. Let 〈A,B〉 be an m-round protocol and m ≥ 2i. We write

(Tr, state = (StA, StB))← 〈A[1, · · · , i], B[1, · · · , i]〉

to indicate that after running i executions of each of the algorithms (i.e., 2i rounds in total) the
resulting transcript is Tr and the current secret states of A and B are, respectively, StA and StB.
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Transcript. For any given transcript Tr = (AMsg1,BMsg1, . . . ,AMsgm,BMsgm), we let TrA :=
(AMsg1, · · · ,AMsgm) be A’s portion of the transcript, and define TrB, B’s portion, similarly.

Half-fixed executions. Let AliceM := (AMsg1, . . . ,AMsgm) be a given sequence of Alice’s mes-
sages during the protocol. We use 〈AliceM, BO(1κ)〉 to represent a random execution of the protocol
in which Alice’s ith message, for i ∈ [m], is fixed to AMsgi. We use 〈AliceM, BO(r1; . . . ; rm)〉 to
refer to the above execution, but in which the randomness of B’s i’th algorithm is fixed to ri. We
let Query(〈AliceM, BO(1κ)〉) denote the set of all Bob’s query/answer pairs during the execution of
〈AliceM, BO(1κ)〉.

Protocol output. At the end of an interactive protocol 〈A,B〉, each A and B output a value.
We use (outA, outB)← out(〈AO(1κ), BO(1κ)〉) to indicate that outA and outB are, respectively, A’s
and B’s output values.

Definition A.1 (Key Agreement Protocol). For any security parameter κ ∈ N and any m ∈
N, an 2m-round key agreement protocol consists of two PPT interactive algorithms (A,B) such
that 〈A(ra), B(rb)〉(1κ) = (ka, kb) for (private) randomness ra, rb. The following completeness and
security conditions must be satisfied:

Correctness. For any function δ(.), we say that a key agreement protocol is (1− δ)-correct if the
following holds for any security parameter κ:

Pr[ka = kb] ≥ 1− δ(κ)

where the probability is over the randomness (A,B). We say that the protocol is correct if it is
(1− δ)-correct where δ = 1/p(κ) for some polynomial p(.).

Security. For any function γ(.), we say that a key agreement protocol is γ-secure if, for all PPT
adversaries E and any security parameter κ the following holds:

Pr[E(1κ,Tr) = k] ≤ γ(κ)

where k ← 〈A(ra), B(rb)〉(1κ), Tr← Trans〈A(ra), B(rb)〉 and the probability is over the randomness
of E and (A,B). We say that the protocol is secure if there exists a negligible function negl(.) such
that it is γ-secure for some γ(κ) = negl(κ).

Definition A.2 (Alice-consistency and Bob-consistency). Let

Tr := (AMsg1,BMsg1, . . . ,AMsgi−1,BMsgi−1)

be a partial transcript.
Let (O′, rB) consist of a partial oracle O′ and a sequence of Bob’s randomness values rB :=

(rB,1, . . . , rB,i−1). We define the following notions.

• Bob-consistency: We say that (O′, rB) Bob-agrees with Tr (or is Bob-consistent with Tr) if

Trans(〈TrA, B
O′(rB,1; . . . ; rB,i−1)〉) = Tr.
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• Bob-minimal-consistency: We say that (O′, rB) minimally Bob-agrees with Tr if (a) (O′, rB)
Bob-agrees with Tr and (b) O′ is defined only on the queries that Bob makes during the
execution of 〈TrA, B

O′(rB,1; . . . ; rB,i−1)〉, and nothing more.

• Generalized consistency: Letting S be a set of query/answer pairs, we say (O′, rB) is

Bob-consistent with (Tr, S), denoted (O′, rB)
Bob
` Tr, if (a) O′ agrees with S and (b) (O′, rB)

is Bob-consistent with Tr.

Similarly, we may define the notion of Alice-consistency by
Alice
` .

In our compilation procedure we need to have a procedure that allows us to return a consistent
sample of the next hidden state of Bob based on a given transcript and a set of query/response
pairs. Recall that the secret state of each Bob and Alice at any point consists of all their previous
randomness values as well as all their previous query/answer pairs. We have the following definition
for our sampling purposes.

Definition A.3 (Next-Bob sampler, next-Alice sampler). Let S be a set of query/answer pairs and

Tr := (AMsg1,BMsg1, . . . ,AMsgi−1,BMsgi−1),

be a partial transcript. The sampler NextBSamp(Tr, S) samples uniformly at random a pair

(O′, rB := (rB,1, . . . , rB,i−1)) that minimally Bob-agrees with (Tr, S) and outputs (O′, ŜtB :=
(O′, rB)). We may similarly define the procedure NextASamp.

A.2 Compilation procedure

Given a key agreement protocol (A,B) in the O = (f, gc, gi, eval) where the first ν steps do not
make calls to eval but the (ν + 1) step might potentially do, we will show how to compile out eval
from that step. We assume WLOG that the ν’th step is Alice’s turn to send a message.

Parameters. The compilation is parameterized over two polynomials t = t(κ) and ε = ε(κ),
which we will instantiate later.

Compilation

• Ȧν(StA := (StAqu, StArand),Tr) : Do the following steps:

1. Learning previous heavy queries of Bob: Set LearnB := ∅. While there exists a
query qu /∈ LearnB such that

Pr
O′←O

rB←{0,1}∗

[
qu ∈ Query(〈TrA, B

O′(rB)〉) | (O′, rB)
Bob
` (Tr, LearnB)

]
≥ ε

choose the lexicographically first such qu and add (qu −→
T
O(qu)) to LearnB, where T is

the type of the query.

2. Running original Alice Aν: Let OrigA = StAqu. Run AMsgν ← AOν (StA,Tr) and add
all the query-answer pairs to OrigA.
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3. Generating Helper Set H for Ḃν+1: Sample t′ ← [1, t]. Set S = OrigA ∪ LearnB. For
i ∈ [1, t′], do the following:

(a) Offline phase: Sample (Ôi, ŝtatei)← NextBSamp(Tr,S).

(b) Semi-online phase: Execute B
Ôi♦O[S]
ν+1 (ŝtatei,Tr||AMsgν) and add all query-answer

pairs made to the oracle O to the set S. Let ÔrigBi be the set of all query-answer
pairs made by this execution.

When all the iterations are over, set H← ConstHelp(ÔrigB, S), where ÔrigB = ÔrigB1 ∪
· · · ∪ ÔrigBt′ .

4. Output ˙AMsgν = (LearnB,AMsgν ,H).

• Ḃν+1(StB,Tr|| ˙AMsgν): Parse

˙AMsgν := (LearnB,AMsgν ,H).

Run B
O[H∪LearnB]
ν+1 (StB,Tr||AMsgν) and output whatever this outputs.

A.3 Correctness and Security

In this section we give the correctness and security statements about our compiled protocol.
The proof of security follows almost exactly the same as in the PKE case. The proof of correct-

ness require us to deal with some new cases, that we did not have before, and so we give a sketch
of the proof below.

A.4 Proof of Correctness

The following lemma will help us establish correctness for the compiled protocol by relating the
correctness of the compiled protocol to that of the original one.

Lemma A.4. We have

Pr
[
B
O[H∪LearnB]
ν+1 (StB,Tr||AMsgν) 6= BO

ν+1(StB,Tr||AMsgν)
]
≤ negl(κ) (19)

where O ← O,
(Tr, state = (StA,StB))← 〈A[1 · · · ν − 1], B[1 · · · ν − 1]〉,

and (LearnB,AMsgν ,H)← ȦOν (StA,Tr).

To prove Lemma A.4 we define the following two undesirable events that are defined based
on the variables sampled in Lemma A.4. We will then show that the probability of the event in
Lemma A.4 is at most the probability of the union of the following two events.

Definition A.5 (Event Miss). Let OrigB be the set of all query/response pairs during the execution
of BO

ν+1(StB,Tr||AMsgν).

We define the event Miss to hold if there is a query qu = ((F̃ , X̃) −−→
eval

?) ∈ OrigB such that:

1. eval(F̃ , X̃) = y 6= ⊥, and
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2. ((F̃ , X̃) −−→
eval
∗) /∈ H and (∗ −→

gc
F̃ ) /∈ H, and

3. ((s, F ) −→
gc

F̃ ) ∈ OrigA for some s and F .

Definition A.6 (Event Surprise). There exists a query qu = ((F̃ , X̃) −−→
eval

?) ∈ OrigB such that:

• (∗ −→
gc

F̃ ) /∈ StB ∪ LearnB ∪ OrigA.

The proof of Lemma A.4 now follows from the following three lemmas.

Lemma A.7. Pr
[
B
O[H∪LearnB]
ν+1 (StB,Tr||AMsgν) 6= BO

ν+1(StB,Tr||AMsgν)
]
≤ Pr[Miss ∨ Surprise],

where O ← O,
(Tr, state = (StA,StB))← 〈A[1 · · · ν − 1], B[1 · · · ν − 1]〉,

and (LearnB,AMsgν ,H)← ȦOν (StA,Tr).

Lemma A.8. Pr[Surprise] ≤ 1
2κ/2

, where O ← O,

(Tr, state = (StA,StB))← 〈A[1 · · · ν − 1], B[1 · · · ν − 1]〉,

and (LearnB,AMsgν ,H)← ȦOν (StA,Tr).

Lemma A.9. Pr[Miss] ≤ 1
2κ/4

+ 2q
t + 3ενt, where O ← O,

(Tr, state = (StA, StB))← 〈A[1 · · · ν − 1], B[1 · · · ν − 1]〉,

and (LearnB,AMsgν ,H)← ȦOν (StA,Tr).

Proof of Lemma A.4. The proof follows in a straightforward from Lemmas A.7, A.8 and A.9.

We first prove Lemma A.7.

Proof of Lemma A.7. Let Bad be the event that

B
O[H∪LearnB]
ν+1 (StB,Tr||AMsgν) 6= BO

ν+1(StB,Tr||AMsgν).

For notational convenience we let Ext1 and Ext2 be the whole executions traces of the following
two executions:

Ext1 := B
O[H∪LearnB]
ν+1 (StB,Tr||AMsgν) and Ext2 := BO

ν+1(StB,Tr||AMsgν).

We show if Miss and Surprise hold, then Bad must necessarily hold, hence proving the lemma.
Suppose Miss∧ Surprise hold and to the contrary that Bad holds and consider the first query qu on
which the two executions Ext1 and Ext2 are different. Since all non-eval queries are handled the
same in both executions, we must have qu = ((F̃ , X̃) −−→

eval
?) for some F̃ and X̃. Now since Surprise

holds we have (∗ −→
gc

F̃ ) ∈ StB ∪ LearnB ∪ OrigA. On the other hand, by Assumption 4.26 and

Definition 4.12 we cannot have (∗ −→
gc

F̃ ) ∈ StB, because by the normal-form restriction the query

qu will not be issued to the oracle in both executions. Also, we cannot have (∗ −→
gc

F̃ ) ∈ LearnB

because in that case we will have O[H ∪ LearnB](qu) = O(qu). Thus, (∗ −→
gc

F̃ ) ∈ OrigA. Now a

simple inspection shows that Miss holds, a contradiction.
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Proof of Lemma A.8. As in the proof of Lemma 4.23 we can easily show that whenever the event
Surprise happens, we can win in the sense of Lemma 3.1. The bound now follows from Lemma 3.1.
We omit the details.

A.4.1 Proof of Lemma A.9.

We now focus on proving Lemma A.9. We first give Definitions A.10 and A.11 below to describe
more compactly the random variables sampled during the compilation. We will then give some
notation and terminology. We will then give a few lemmas from which Lemma A.9 is easily derived.
We will then prove each of those lemmas.

Definition A.10. DistGen(Tr,AMsgν ,S)

• Offline phase: Sample (Ô, ŝtate)← NextBSamp(Tr, S)

• Semi-online phase: ExecuteB
Ô♦O[S]
ν+1 (ŝtate,Tr||AMsgν) and update S by adding all query/response

pairs made to the oracle O. Let ÔrigB be the set of all query/response pairs during this de-
cryption execution.

• Return (S, ŝtate, ÔrigB)

Definition A.11. Procedure DistGen1(1
κ):

• Output: a tuple Dist := (StB,Tr, LearnB,OrigA,OrigB), as well as a sequence of tuples of

the form Disti := (ŜtBi,Tr, LearnB,OrigA, ÔrigBi), which are sampled as follows.

• Operations

1. Sample (Tr, state = (StA,StB))← 〈A[1 · · · ν − 1], B[1 · · · ν − 1]〉,
2. Sample LearnB as in Ȧν(StA,Tr).

3. Sample AMsgν ← AOν (StA,Tr) and let OrigA contain all query/response pairs in this
execution as well as all query/response pairs in StA.

4. Let OrigB be the set of all query/response pairs during the execution ofBO
ν+1(StB,Tr||AMsgν).

5. Let S1 = LearnB ∪ OrigA. For i ≥ 1 sample

(Si+1, ŜtBi, ÔrigBi)← DistGen(Tr,AMsgν , Si).

Invalid samples. We say that a value (ŜtBi,Tr, LearnB,OrigA, ÔrigBi) of the random variable

Disti is invalid if (ŜtBi ∪ LearnB ∪ OrigA ∪ ÔrigBi) is not a valid partial oracle (Definition 4.28).
We let invalidi be the event that Disti is invalid. We also define

invalid = invalid1 ∨ · · · ∨ invalidt′ (20)

Let D̂isti,good to be the induced distribution on D̂isti conditioned on invalidi.

Lemma A.12. Let t′ be as in the compilation procedure. The two distributions Dist and D̂istt′+1,good

are identically distributed.
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Proof. The proof can be easily done by inspection.

The proof of Lemma A.9 now follows from the following two lemmas.

Lemma A.13. We have Pr[Miss | invalid] ≤ 2q
t , where the probability is taken over the variables

sampled by DistGen1(1
κ) (Definition A.11).

Lemma A.14. We have Pr[invalid] ≤ 1
2κ/4

+ 3ενt, where the probability is taken over the variables
sampled by DistGen1(1

κ).

Proof of Lemma A.9. The proof follows immediately from Lemmas A.13 and Lemma A.14.

Proof of Lemma A.13. The proof is done similarly to the proof of Lemma 4.24. Relying on the
notation (i, d)-match defined in the proof of Lemma 4.24, as in that proof we break the event Miss
into smaller events Missh,d, for h ∈ [q] and d ∈ {0, 1}, defined as follows:

Event Missh,d. The event that for some F̃ that ((∗, ∗) −→
gc

F̃ ) ∈ OrigA, both the following hold:

1. OrigB contains an (h, d)-match for F̃ ;

2. none of the sets ÔrigB1, . . . , ÔrigBt′ do contain an (h, d)-match for F̃ .

As in the proof of Lemma 4.24, we can show that if Miss holds then Missh,d must hold, for some
h ∈ [q] and d ∈ {0, 1}. In the sequel we show

Pr[Missh,d | invalid] ≤ 1

t
,

which will imply the desired bound for the value of Pr[Miss | invalid].
Fix h ∈ [q] and d ∈ {0, 1} for which we want to bound the event Missh,d. Some notation first. For

a sequence of tuples (Dist1,Dist2, . . . , ) sampled from (Dist1,Dist2, . . . , ) given in Definition A.11,
we define a random variable Firsth,d which takes a value in {1, . . . , t+ 1} ∪ {⊥} as follows:

• Firsth,d = i for i ∈ [1, t+ 1] if

1. ÔrigBi contains an (h, d)-match for F̃ ; and

2. none of the sets ÔrigB1, . . . , ÔrigBi−1 do contain an (h, d)-match for F̃ .

• Firsth,d = ⊥ if none of the sets ÔrigB1, . . . , ÔrigBt+1 do contain an (h, d)-match for F̃ .

Now applying Lemma A.12 we have that, for any (h, d):

Pr[Missh,d | invalid] = Pr[Firsth,d = t′ + 1]

where the random variable Firsth,d is defined over the sequence of sampled tuples (Dist1,Dist2, . . . ,Distt+1),

where the ith tuple is sampled as Disti ← D̂isti,good.
The random variable Firsth,d takes a value in [1, t + 1] ∪ {⊥} according to some arbitrary

distribution. However, since t′ is chosen uniformly at random from [1, t] we have:

Pr[Firsth,d = t′ + 1] ≤ 1

t
.
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Proof of Lemma A.14. We show that for all i ∈ [t],

Pr[invalidi] ≤
1

2κ/3
+ 3εν. (21)

The proof of the lemma then follows by the union bound. Fix i.
We want to bound the probability that the tuple Tupi sampled as

Tupi = (LearnB ∪ ŜtBi ∪ OrigA ∪ ÔrigBi)← Disti

is invalid. Note that by design the set

W = LearnB ∪ ŜtBi ∪ OrigA

makes up a valid partial oracle. This is because ŜtBi is sampled in a manner consistent with
LearnB ∪ OrigA.

We first claim that if Tupi is invalid then ŜtBi ∪ ÔrigBi must be invalid. To prove this, suppose

ŜtBi ∪ ÔrigBi is valid and suppose to the contrary that Tupi is invalid. Noting that W is valid and

also by assumption that ŜtBi ∪ ÔrigBi is valid, we consider all cases for the inconsistency of Tupi:

1. For some T ∈ {f, gc, gi} we have (qu −→
T
ans1) ∈ ÔrigBi and (qu −→

T
ans2) ∈ LearnB ∪ OrigA

and ans1 6= ans2: Since (qu −→
T
ans1) ∈ ÔrigBi this means that either (qu −→

T
ans1) ∈ ŜtBi or

O(qu) = ans1. The first case contradicts the fact that ŜtBi agrees with LearnB ∪ OrigA and
the second case contradicts the fact that LearnB ∪ OrigA agree with O.

2. For some T ∈ {f, gc, gi} we have (qu1 −→
T
ans) ∈ ÔrigBi and (qu2 −→

T
ans) ∈ LearnB ∪ OrigA

and qu1 6= qu2: Like above, it can be proved this case cannot happen either.

3. For some and F̃ and X̃, qu = ((F̃ , X̃) −−→
eval
⊥) ∈ ÔrigBi and qu is inconsistent with LearnB ∪

OrigA: In order to have inconsistency, for some s we must at least have ((s, F ) −→
gc

F̃ ) ∈
LearnB∪OrigA. Now by design in that case for any S we will have O[LearnB∪OrigA∪S](qu) =
O(qu) and thus we will also have O(qu) = ⊥. Thus, there cannot be any inconsistencies.

Thus, to prove Equation 21 it suffices to show

Pr[ŜtBi ∪ ÔrigBi is invalid] ≤ 1

2κ/3
+ 3εν. (22)

We now focus on proving Equation 22. As the first observation, we note that we cannot have

any input inconsistencies in ŜtBi ∪ ÔrigBi: namely, a query qu for which we have (qu −→
T
ans1) ∈

ŜtBi∪ÔrigBi and (qu −→
T
ans2) ∈ ŜtBi∪ÔrigBi for ans1 6= ans2. The reason that this cannot happen

is because of the normal-form restriction and the definition of composed oracles (Definition 4.30).

Thus, it suffices to bound the probability of output collisions in ŜtBi ∪ ÔrigBi. That is, we

consider the inconsistencies between ŜtBi and ÔrigBi that could happen as a result of having two
different queries that have the same answer. We consider all possible cases that an output collision
may occur.
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1. Col1: There exists ((s1, F1) −→
gc

F̃ ) ∈ ŜtBi such that ((s, F ) −→
gc

F̃ ) ∈ ÔrigBi \ ŜtBi and that

(s, F ) 6= (s1, F1).

2. Col2: There exists ((s1, x1) −→
gi

x̃) ∈ ŜtBi such that ((s, x) −→
gi

x̃) ∈ ÔrigBi \ ŜtBi and that

(s, x) 6= (s1, x1).

3. Col3: There exists ((F̃ , X̃) −−→
eval
⊥) ∈ ÔrigBi such that eval(F̃ , X̃) 6= ⊥ and ((s, F ) −→

gc
F̃ ) ∈

ŜtBi ∪ ÔrigBi for some s and F .

We mention that the event Col3 may not necessarily cause an inconsistency by itself, but if

some query qu = ((F̃ , X̃) −−→
eval
⊥) ∈ ÔrigBi does cause an inconsistency in ŜtBi ∪ ÔrigBi, then the

conditions in Case 3 must hold.
We will now show that each of the events Col1, Col2 and Col3 may occur with probability at

most 1
2κ/2

+ εν, proving Equation 22.

Bounding the event Col1: We show

Pr[Col1] ≤ 1
2κ/2

+ νε. (23)

To prove this, first note that Col1 implies that F̃ is a valid garbled circuit, and that we indeed

have gc(s, F ) = F̃ . This is because the real oracle O agrees with ÔrigBi \ ŜtBi. We claim

Pr[((s, F ) −→
gc

F̃ ) ∈ StB] ≥ 1− 1
2κ/2

. (24)

We first show how to derive Equation 23 from Equation 24. Notice that ((s, F ) −→
gc

F̃ ) /∈ LearnB.

This is because ŜtBi agrees with LearnB and so we could not have had ((s1, F1) −→
gc

F̃ ) ∈ ŜtBi.

Thus, from Equation 24 we have Pr[((s, F ) −→
gc

F̃ ) ∈ StB \ LearnB] ≥ 1− 1
2κ/2

. Now recall that, by

the definition of the event Col1 we have ((s, F ) −→
gc

F̃ ) ∈ ÔrigBi. Now applying Equation 24 along

with Lemma 4.41 and Lemma 4.32, Equation 23 is established.
We now prove Equation 24. Let Surp′ be the event that ((s, F ) −→

gc
F̃ ) /∈ StB. We will show

Pr[Surp′] ≤ 1
2κ/2

by reducing it to Lemma 3.1. First, note that F̃ is valid garbed circuit under gc,

and that it is constructible using ŜtBi and that

ŜtBi ← NextBSamp(Tr, LearnB ∪ Si−1).

for some set Si which completely agrees with O and so we cannot have the query/response
((∗, ∗) −→

gc
F̃ ) ∈ Si. Thus, the occurrence of the event Surp′ implies we could forge a valid F̃ “on

the fly” and so by Lemma 3.1 we have Pr[Surp′] ≤ 1
2κ/2

.

Bounding the event Col2. Exactly as in Col1, we can show that Pr[Col2] ≤ 1
2κ/2

+ εν.
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Bounding the event Col3. Suppose Col3 holds: Namely, there exists ((F̃ , X̃) −−→
eval
⊥) ∈ ÔrigBi

such that eval(F̃ , X̃) 6= ⊥ and ((s, F ) −→
gc

F̃ ) ∈ ŜtBi∪ ÔrigBi for some s and F . First, we argue that

we cannot have ((s, F ) −→
gc

F̃ ) ∈ ŜtBi. This is because, otherwise, the query/response ((s, F ) −→
gc

F̃ )

will be included in ŜtBi, and so by Assumption 4.12, during B
Ôi♦O[S]
ν+1 (ŜtBi,Tr||AMsgν) the query

((F̃ , X̃) −−→
eval

?) will never be asked.

Now since ((s, F ) −→
gc

F̃ ) /∈ ŜtBi, we have ((s, F ) −→
gc

F̃ ) ∈ ÔrigBi and since ÔrigBi 6= ŜtBi agrees

with O on all non-eval queries we have gc(s, F ) = F̃ . Thus, F̃ is a valid garbled circuit.
Thus, it suffices to bound the probability of the following event that we call Col′: there exists

((F̃ , X̃) −−→
eval

⊥) ∈ ÔrigBi such that F̃ is valid and ((s, F ) −→
gc

F̃ ) ∈ ÔrigBi for some s and F .

Notice that by the normal-form restriction, the event Col′ happens only when the query/response

((F̃ , X̃) −−→
eval

∗) ∈ ÔrigBi is added to ÔrigBi before the query/response ((s, F ) −→
gc

F̃ ) is created.

Now exactly as in Col1 we can show that the probability that Col′ happens is at most 1
2κ/2

+ νε.
The proof of Lemma A.14 is now complete.

B NIWI from Ideal Garbling

Brakerski et al. [BKSY11] show that a certain class of non-black-box techniques, when applied to
one-way functions, is not sufficient to yield PKE. More specifically, they show that there exists
no fully black-box constructions of perfectly-complete PKE (and even perfectly-complete constant-
round key exchange protocols) from OWFs and non-interactive witness indistinguishability (NIWI)
protocols for relations with OWF gates.7 We will show that the class of garbling-based non-black-
box techniques that we rule out (i.e., GC-OWF, Definition 3.6) does in fact already capture NIWI
based techniques.

To proceed formally, we will first review the primitive of NIWI-OWF, which, as shown by
Brakerski et al. [BKSY11], does not imply perfectly-complete PKE in a black-box way. Afterward,
we will show that NIWI-OWF can be instantiated in a black-box way using our GC-OWF oracle
(Definition 4.3).

By doing this we will extend the result of [BKSY11] by ruling out all fully-black-box con-
structions of PKE (and constant-round key exchange protocols) — which may not necessarily be
perfectly complete — from NIWI-OWF.

We first start with some definitions to formalize the notion of PKE constructions from NIWI
and one-way functions.

Definition B.1 (Oracle circuit satisfiability). Fix an oracle f . The language Satf contains oracle-
aided binary-output circuits Cf , where Cf ∈ Satf iff there exists an input x such that Cf (x) = 1.
We call x a witness for Cf .

Definition B.2 (NIWI for Satf ). Fix an oracle f . We say that a non-interactive protocol 〈NIP,NIV〉
is complete, sound and witness indistinguishable for Satf if all the following hold:

7Whatever we say about NIWI also holds about NIZK, because one may use standard techniques [FLS90] to go
from NIWI to NIZK (in the CRS model).
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• Completeness: for any circuit Cf ∈ Satf and witness x for Cf we have

Pr[NIV(1κ,Cf , π) = 1] = 1,

where π ← NIP(1κ,Cf , x).

• Soundness: for any circuit Cf /∈ Satf and any (alleged) proof π∗, we have Pr[NIV(1κ,Cf , π∗) =
1] = negl(κ).

• Witness Indistinguishability: For any Cf ∈ Satf and any two witnesses x1 and x2 for Cf ,
the two distributions (x1, x2,NIP(Cf , x1)) and (x1, x2,NIP(Cf , x1)) are indistinguishable.

We now formally define a black-box construction of PKE from NIWI-OWF.

Definition B.3 (PKE from NIWI-OWF). A fully black-box construction of PKE from one-way
functions and NIWI protocols for circuits with one-way function gates (shortly, from NIWI-OWF)
consists of two oracle-aided PPT algorithms (PKE,Red := (Red1,Red2)) for which the following
holds: for any function f and any sound-and-complete non-interactive protocol NIWI = (NIP,NIV)
for Satf , we have

• PKEf,NIWI is a correct implementation of PKE;

• For any adversary A that breaks the semantic security of PKEf,NIWI, either Redf,NIWI,A
1 breaks

the one-wayness of f or Redf,NIWI,A
2 breaks the witness indistinguishability of NIWI for Satf .

We are now ready to state our extension of the result of Brakerski et al [BKSY11].

Theorem B.4 (Impossibility of PKE from NIWI+OWF). There exists no fully black-box construc-
tion of PKE from OWFs and NIWI protocols for circuits with one-way functions gates.

Brakerski et al. [BKSY11] proved the above theorem for the case of perfectly complete PKE.
Our extension relaxes this restriction to also rule out PKE possibly with decryption error.

Roadmap. We will show the existence of NIWI-OWF with respect to measure one of our oracles
O = (f, gc, gi, eval, rev). To this end, in Section B.1 we first show how to prove this for the case of
interactive WI protocols (which we simply refer to as WI protocols). Then, in Section B.2 we will
show how to make the protocol of Section B.1 non-interactive using our oracles.

B.1 WI-OWF Using Garbling

As mentioned earlier we will first show in this section how to build WI protocols for Satf . This
construction does not require the random nature of our oracles, and can in fact be realized using
any garbling scheme with natural specific properties, as we discuss below.

WI-OWF. Fix f . We give a three round WI protocol for Satf , built generically using oracle
access to (f,GS), where GS = (Garb,Eval) is a garbling scheme relative to f gates (Definition 3.4)
satisfying a specific property. We describe this property below.

Recall that correctness of a garbling scheme implies that the garbling of a non-satisfiable circuit
can never be evaluated to 1 if the corresponding garbled labels were generated honestly. The
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following definition extends this by demanding that even maliciously generated labels (i.e., those
that are not outputted by the garbling algorithm) cannot make the garbled circuit evaluate to
one. Moreover, we require that maliciously generated garbled circuits can never be evaluated to
anything but ⊥.

Definition B.5 (Non-ambiguous garbling schemes). Fix a function f and let GS = (Garb,Eval)
be a garbling scheme relative to f . We say that GS = (Garb,Eval) is non-ambiguous if both the
following properties hold.

1. For any C̃ for which there does not exist a seed s ∈ {0, 1}∗ and circuit C satisfying Garb(s,C) =
(C̃, ∗), we have that Evalf (C̃, X̃) = ⊥, for any (arbitrary generated) X̃.

2. For any oracle-aided circuit Cf /∈ Sat, any randomness s ∈ {0, 1}∗, assuming Garb(s,C) =
(C̃, ∗), for no (arbitrary generated) X̃ do we have Evalf (C̃, X̃) = 1.

Construction B.6 (WI protocol 〈P,V〉 for Satf using non-ambiguous garbling). We will now
describe our construction of a WI protocol for Satf using blackbox access to a non-ambiguous
garbling scheme GS := (Garb,Eval,Sim) for f -gate circuits.

• Common inputs of P and V: (1κ, r,C): a security parameter 1κ, a polynomial r = r(κ)
and a circuit C. The value of r will determine the soundness error. Also, let n := |C| and let
m denote the input size of C.

• Private input of P: x ∈ {0, 1}m, where Cf (x) = 1.

• Interactive Phase:

– Pf,GS:=(Garb,Eval)(Cf , x): for all i ∈ [r], choose randomness seedi ← {0, 1}∗ and make the
query ((seedi,C

f ) −−−→
Garb

?) to obtain

(C̃i, label
(i)
1,0, label

(i)
1,1, . . . , label

(i)
m,0, label

(i)
m,1) := Garb(seedi,C).

Return
msg := (C̃1, . . . , C̃r). (25)

– Vf,GS(Cf ,msg): return a challenge message ch← {0, 1}r.
– P(ch): send msg′ := (msg′1, . . . ,msg′r) to V, where for i ∈ [r], msg′i is formed as:

∗ if chi = 0, then msg′i := (label
(i)
1,x1

, · · · , label
(i)
m,xm)

∗ if chi = 1, then msg′i := seedi

• Decision Phase: Vf,GS(Cf ,msg, ch,msg′1, . . . ,msg′r): Parse msg := (C̃1, . . . , C̃r). Return 1 if
the following condition holds and return 0 otherwise: for all i ∈ [r] we must have:

– if chi := 0, then Eval(C̃i,msg′i) = 1;

– if chi = 1, then Garb(msg′i,C
f ) = (C̃i, ∗).

We will now prove all the properties required by the WI scheme.
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Perfect completeness. By simple inspection, we can see that for all circuits Cf , input x where
Cf (x) = 1 we have

Pr[〈Pf,GS(Cf , x),Vf,GS(Cf )〉 = 1] = 1.

Statistical soundness. Assuming GS = (Garb,Eval) is non-ambiguous, the following holds: for
all unbounded provers P∗ and for all Cf /∈ Sat:

Pr[〈P∗(Cf ),Vf,GS(Cf )〉 = 1] ≤ 1

2r
. (26)

Proof of statistical soundness. Fix P∗ and Cf /∈ Sat. We prove Equation 26. We first give some
terminologies. Call a garbled circuit C̃ matching if there exists some randomness seed for which we
have Garb(seed,Cf ) = (C̃, ∗). Call C̃ non-matching if C̃ is not matching.

Let (C̃1, . . . , C̃n) be the first message that P∗ sends to Vf,GS(Cf ). Let match be the set that
contains all indices i ∈ [r] where C̃i is matching. Let nonmatch contains all indices i ∈ [r] where C̃i
is non-matching. Note that match ∪ nonmatch = {1, . . . , r}.

Let ch ← {0, 1}r be the random challenge that Vf,GS(Cf ) sends. We now claim that the
probability that Vf,GS(Cf ) outputs 1 at the end of the protocol is the probability that chi = 1 for
all i ∈ match and that chj = 0 for all j ∈ nonmatch. Assuming this claim is true, our desired
probability bound of 1

2r follows. Thus in the sequel we will show why this claim holds.
To prove the above claim, we show if for some i ∈ match, chi = 0 then Vf,GS(Cf ) will definitely

reject. Similarly, if for some i ∈ nonmatch, chi = 1 then Vf,GS(Cf ) will definitely reject.

• For some i ∈ match we have chi = 0: In order for Vf,GS(Cf ) not to catch P∗ on this index i,
P∗ must send some string X̃ for which we have Eval(C̃, X̃) = 1. This is however impossible for
P∗ to do because i ∈ match means that C̃ is a valid garbled circuit for Cf , and since Cf /∈ Sat,
by non-ambiguity of GS the adversary P∗ cannot find such X̃.

• For some i ∈ nonmatch we have chi = 1: In order for Vf,GS(Cf ) not to catch P∗ on this index
i, P∗ must send some randomness seed which satisfies Garb(seed, C) = (C̃i, ∗). However, this
is impossible to do, because i ∈ nonmatch means that there exists no seed which satisfies
Garb(seed,Cf ) = (C̃, ∗).

Witness Indistinguishability. For any circuit Cf ∈ Sat, any two witnesses x0 and x1 for Cf ,
and any PPT (but not necessarily honest) Vf,GS1 we have

Pr[Expr(P,V1,C
f , x0, x1) = 1] ≤ 1

2
+ negl(κ),

where the experiment Expr(P,V1,C
f , x0, x1) is defined as follows.

1. b← {0, 1};

2. msg← Pf,GS(Cf , xb)

3. ch← Vf,GS1 (Cf , x0, x1,msg)
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4. msg′ ← Pf,GS(ch)

5. b′ ← Vf,GS1 (msg′)

6. output 1 if b = b′ and 0 otherwise.

Proof of witness indistinguishability. Let msg and msg′ be as in the above experiment. First, note
that msg is completely independent of the underlying challenge witness xb. This is because: to
generate msg, we sample r randomness values seed1, . . . , seedr, we set for i ∈ [r]

(C̃i, label
(i)
1,0, label

(i)
1,1, . . . , label

(i)
m,0, label

(i)
m,1) := Garb(seedi,C),

and we output msg := (C̃1, . . . , C̃n). Parse msg′ = (msg′1, . . . ,msg′r). For any i ∈ [r] where chi = 1,
we have msg′i = seedi, and thus msg′i is again completely independent of the challenge witness xb.
Thus, we only focus on msg′i where chi = 0. Suppose for an index i we have chi = 0. For rotational
simplicity, set y := xb. By the design of the protocol we have

msg′i := lb := (label
(i)
1,y1

, · · · , label(i)m,ym).

We now claim that msg′i is computationally independent of the challenge witness xb. The reason is

that by the simulation security of the garbling scheme we have (C̃i, lb) ≡c Sim(1κ, n,m,Cf (y)), and
since Cf (y) = 1 we obtain that lb is computationally independent of xb. The proof is complete.

B.2 Making the WI protocol Non-Interactive

We will now show that NIWI-OWF exists relative to measure one of our GC-OWF ideal oracles
(Lemma B.8). We will then use this to derive the following impossibility: there exists no fully
black-box construction of PKE from NIWI-OWF (Theorem B.4).

Construction B.7 (NIWI-OWF relative to our oracles). We now describe a non-interactive pro-
tocol NIWI := 〈NIP,NIV〉 for the language Satf , which is non-interactive version of the WI protocol
〈P := (P1,P2),V〉 in Construction B.6.

• NIPf,gc,gi,eval(Cf , x): send (msg,msg′) to NIV, where

msg← Pf,gc,gi,eval1 (Cf , x)

msg′ ← Pf,gc,gi,eval2 (ch), where ch = f(msg)

• NIVf,gc,gi,eval(msg,msg′): call (msg −→
f

?) to get ch and return the decision output bit of

Vf,gc,gi,eval(msg, ch,msg′).

Lemma B.8 (NIWI-OWF exists relative to our oracles). Let O be our garbling oracle distribution
(Definition 4.3). For measure one of oracles (f, gc, gi, eval, rev) outputted by O the following holds:
the non-interactive protocol NIWIf,gc,gi,eval above is witness indistinguishable for the language Satf .

Proof. We give a sketch of the proof. We need to prove completeness, soundness and witness
indistinguishability for (NIPf,gc,gi,NIVf,gc,gi,eval).

• Perfect completeness: Immediate by perfect completeness of WIf,gc,gi,eval.
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• Statistical soundness: This follows by the fact that our oracle (f, gc, gi, eval) provides non-
ambiguous garbling. Also, recall that the statistical soundness of WIf,gc,gi,eval depends on
the condition that the verifier’s challenge message ch is chosen uniformly at random and
independently of msg1. Now since under our NIWI protocol we have ch = f(msg1), for a
random f we will have this required condition.

• Witness indistinguishability: For any circuit Cf ∈ Sat, any two witnesses x0 and x1 for
Cf , no PPT adversary Af,gc,gi,eval,rev can distinguish between the outputs of NIPf,gc,gi(C, x1)
and NIPf,gc,gi(C, x2). We stress that this result holds even if the distinguisher A has oracle
access to rev.

Proof of Theorem B.4. Combine our main impossibility (that states PKE does not exist relative to
our oracles) with Lemma B.8.
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