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Abstract. Homomorphic Encryption for Arithmetic of Approximate
Numbers (HEAAN) with its vector packing technique proved its poten-
tial in cryptographic applications. In this paper, we propose MHEAAN
- a generalization of the HEAAN scheme to a multivariate case. Our
design takes advantage of the HEAAN scheme, that the precision losses
during the evaluation are limited by the depth of the circuit, and it
exceeds no more than one bit compared to unencrypted approximate
arithmetic, such as floating point operations. In addition, with a mul-
tivariate structure of the plaintext space, we suggest a general method
of packing multidimensional structures as matrices and tensors in a sin-
gle ciphertext. We provide a concrete two-dimensional construction and
show the efficiency of our scheme on several matrix operations, such as
matrix transposition, matrix multiplication, and inverse.
Keywords. Homomorphic encryption, approximate arithmetic, matrix
multiplication, matrix inverse, transposition

1 Introduction

Homomorphic encryption (HE) is a scheme that allows to perform certain arith-
metic operations in encrypted state. Following Gentry’s blueprint [19] a numer-
ous HE schemes have been proposed (e.g. [14, 5, 6, 3, 4, 20, 27, 2, 21, 12, 11,
16, 15, 9]). HE has plenty applications in evaluation of various algorithms on
encrypted financial, medical, or genome data [29, 26, 10, 37, 25, 24].

Packing is a common technique in cryptographic schemes that allows to en-
crypt several messages in a single ciphertext, providing more potential to SIMD
operations. Most of cryptographic schemes provide a vector packing, along with
rotation operations among slots. Some HE, such as HElib [22] also provide pack-
ing messages withing a hypercube structure, however this packing technique
highly depend on the structure of underlying primes factors of a modulus and is
not very intuitive.

Recently Cheon et. al. [9] presented a method to construct a HE scheme for
arithmetic of approximate numbers (named HEAAN as follows). The idea of the
construction is to treat an encryption noise as part of an error occurring during
approximate computations. That is, an encryption ct of a plaintext m ∈ R by
a secret key sk for an underline ciphertext modulus q will have a decryption
structure of the form 〈ct, sk〉 = m + e (mod q) for some small error e. HEAAN



showed its potential by providing the winning solution of Track 3 (Homomor-
phic encryption based logistic regression model learning) at iDASH privacy and
security competition 2017 [24]. In their solution authors packed a matrix of in-
puts in a vector. Even though the authors could provide all computations using
matrix to vector packing in that particular task, due to absence of row-wise ma-
trix rotation functionality they had to circumvent and consume additional level
during the computations.

Despite a diversity of HE schemes that achieve a variety of circuits evalua-
tion, practical matrix operations such as matrix multiplication is still a problem
in HE. With the growth of more complex algorithms, such as deep learning and
recommendation systems, which require lots of matrix operations, the possibility
of performing matrix operations becoming crucial for Homomorphic Encryption.
Some works as Duong et al. [17] suggested a method for a single matrix multi-
plication using special packing methods but its packing structure seems to have
problems with expanding to more complex computations. Another work of Hi-
romasa et al. [23] constructed a matrix version of GSW scheme, however it only
consider binary matrix case and requires a lot of matrix multiplications, and
seems not to be practical.

In this paper we suggest a generalization of HEAAN scheme with a new tensor
packing method, along with natural rotations in various dimensions and trans-
position operations. Our construction (named MHEAAN as follows) is based on a
Multivariate RLWE (m-RLWE) problem as an underline hard problem. Mul-
tivariate RLWE (m-RLWE) was introduced by Pedrouzo-Ulloa et al. [30, 31]
as a multidimensional variant of RLWE problem. The hardness of m-RLWE is
related to hardness problems over the tensor product of ideal lattices, and is
supposed to be more appropriate for cryptographic applications dealing with
multidimensional structures [32] including matrices.

Thus MHEAAN scheme enjoys all the benefits of HEAAN scheme such as rescal-
ing procedure, which enables us to preserve the precision of the message after
approximate computation and reduce the size of ciphertext significantly so the
scheme can be a reasonable solution for approximate computation over the com-
plex values. Moreover with a multivariate structure instead of packing a vector,
we provide a general technique for packing any dimensional tensor in a single
ciphertext. In particular we constructed a practical HE which supports matrix
operations as well as standard HE operations. For example it takes only 67 ms
to evaluate a transposition of a 64× 64 complex matrix. For homomorphic mul-
tiplication of two 64×64 complex matrices it takes about 29 seconds, and about
4 minutes to evaluate 16-th power of a 64× 64 complex matrix. Matrix inverse
is a more complicated problem even in unencrypted case [36, 35]. We provided
a method to evaluate inverse of a matrix for a special case. It takes about 7
minutes for a 64× 64 complex matrix.

2



2 Preliminaries

2.1 Basic Notations

All logarithms are base 2 unless otherwise indicated. We denote vectors in bold,
e.g. a, and every vector in this paper will be a column vector. We denote by
〈a,b〉 the usual dot product of two vectors. By bold capital letters we denote
matrices, e.g. A. For a real number r, bre denotes the nearest integer to r,
rounding upwards in case of a tie. For an integer q, we identify Z ∩ (−q/2, q/2]
as a representative interval and use breq to denote the reduction of an integer r
modulo q into that interval. We use a← χ to denote the sampling according to a
distribution χ. For a finite set D, a← D denotes the sampling from the uniform
distribution over D. For matrices A,B ∈ Cn×m denote by A � B component
wise product, and denote by rt(A, (r, c)) a matrix obtained from A by cyclic
rotating by r rows and c columns.

A =


a0,0 a0,1 · · · a0,m−1

a1,0 a1,1 · · · a1,m−1

...
...

. . .
...

an−1,0 an−1,1 · · · an−1,m−1



rt(A, (r, c)) =


ar,c ar,c+1 · · · ar,c+m−1

ar+1,c ar+1,c+1 · · · ar+1,c+m−1

...
...

. . .
...

ar+n−1,c ar+n−1,c+1 · · · ar+n−1,c+m−1


where indexes are taken modulus n and m respectively. Denote the security

parameter throughout the paper: all known valid attacks against the crypto-
graphic scheme under scope should take bit operations.

2.2 The Cyclotomic Ring and Canonical Embedding

For a power of two N , let M = 2N and ΦM (X) = XN + 1 be M -th cyclotomic
polynomial. Let R = Z[X]/(XN + 1). An element in S = R[X]/(XN + 1) can
be represented as a polynomial a(X) =

∑N−1
j=0 ajX

j of degree less than N and
identified with its coefficient vector (a0, . . . , aN−1) ∈ RN . We define the relevant
norms on the coefficient vector of a such as ‖a‖∞ and ‖a‖1.

Let Z?M = {x ∈ ZM : gcd(x,M) = 1} be the multiplicative group of units
in ZM . The canonical embedding σM of a ∈ Q[X]/(ΦM (X)) into CN is the
vector of evaluation values of a at the roots of ΦM (X). We naturally extend it
to the set of real polynomials S, σM : S → CN , so σM (a) will be defined as
(a(ξjM ))j∈Z?

M
∈ CN for any a ∈ R where ξM = exp(−2πi/M) is a primitive

M -th roots of unity. The `∞-norm of σM (a) is called the canonical embedding
norm of a, denoted by ‖a‖can∞ = ‖σM (a)‖∞. The canonical embedding norm
‖·‖can∞ satisfies the following properties:
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• For all a, b ∈ R, we have ‖a · b‖can∞ ≤ ‖a‖can∞ · ‖b‖can∞
• For all a ∈ R, we have ‖a‖can∞ ≤ ‖a‖1.
• For all a ∈ R, we have ‖a‖∞ ≤ ‖a‖can∞ .

Refer [13] for more details.

2.3 Learning With Errors and its Variants

Learning With Errors (LWE) problem introduced by Regev [34], proved itself as
a good underlying problem for many lattice-based cryptography schemes.

Definition 1 (LWE Distribution). Let N > 1, q ≥ 2. For s ∈ Zq (the
“secret”) and an error distribution χ over Zq, a sample from the LWE distribution
As,χ over ZNq × Zq is generated by choosing a ← ZNq uniformly at random,
choosing e← χ, and outputting (a, 〈a, s〉+ e (mod Zq)).
Definition 2 (LWE Search). The search version of the LWE problem is de-
fined as follows: given access to arbitrary number of independent samples from
LWE distribution As,χ for some arbitrary s ∈ Zq find s (with high probability)

Even though LWE has promising hardness assumption for cryptographic
primitives [34, 33], it is not efficient enough for practical applications. The Ring
LWE (RLWE) introduced by Lyubashevsky et al. [28] is an algebraic variant of
LWE which provides more attractive features for cryptographic applications. We
provide definition of RLWE for a power-of-two degree case.

Definition 3 (RLWE Distribution). Let N > 1 be a power-of-two, q ≥ 2,
R = Z[X]/(XN + 1), Rq = R/qR. For s ∈ R (the “secret”) and an error
distribution χ over Rq, a sample from the RLWE distribution As,χ over Rq×Rq
is generated by choosing a ← Rq uniformly at random, choosing e ← χ, and
outputting (a,a · s + e (mod Rq)).
Definition 4 (RLWE Search). The search version of the RLWE problem is
defined as follows: given access to arbitrary number of independent samples from
RLWE distribution As,χ for some arbitrary s ∈ R find s (with high probability)

Multivariate RLWE (m-RLWE) was introduced by Pedrouzo-Ulloa et al. [30,
31] as a multidimensional variant of RLWE problem. m-RLWE hardness is re-
lated to hardness problems over the tensor product of ideal lattices, and is
supposed to be more appropriate for cryptographic applications dealing with
multidimensional structures [32].

Definition 5 (m-RLWE Distribution). Let Ni > 1 be a powers-of-two for
i = 1, . . . , l, q ≥ 2, R = Z[X1, . . . , Xl]/(X

N
1 + 1, . . . , XN

l + 1), Rq = R/qR.
For s ∈ R (the “secret”) and an error distribution χ over Rq, a sample from
the m-RLWE distribution As,χ over Rq ×Rq is generated by choosing a ← Rq
uniformly at random, choosing e← χ, and outputting (a,a · s + e (mod Rq)).
Definition 6 (m-RLWE Search). The search version of the m-RLWE prob-
lem is defined as follows: given access to arbitrary number of independent sam-
ples from m-RLWE distribution As,χ for some arbitrary s ∈ R find s (with high
probability)
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2.4 HEAAN Scheme

The following is the instantiation of the RLWE-based HEAAN scheme [9, 8]. For
a power-of-two N , denote M = 2N , ΦM (X) = (XN + 1), R = Z[X]/ΦM (X).
For a positive integer `, denote R` = R/2`R = Z2` [X]/ΦM (X) the residue
ring of R modulo 2`. The integer 5 has the order of N/2 modulo M and with
(−1) spans Z∗M . Hence ξj , ξ̄j : 0 ≤ j < N/2 forms the set of primitive M -
th roots of unity for ξj := ξ5j

. Define an encoding map φN/2 as inverse of a
variant of the complex canonical embedding map defined as φ−1

N/2 : m(x) →
z = (z0, . . . , zN/2−1) such that zj = m(ξj). For a power-of-two n ≤ N/2 for
X ′ = XN/(2n) consider R′ = Z[X ′]/(X ′2n + 1) ⊂ R and define in a similar way
φ−1
n : m(x′) = m(xN/(2n)) → z = (z0, . . . , zn−1) such that zj = m(ξ′j), where
ξ′j = ξ

N/(2n)
j

• HEAAN.KeyGen(1λ).
- For an integer L that corresponds to the largest ciphertext modulus level,
given the security parameter λ, output the ring dimension N which is a
power of two.

- Set the small distributions χkey, χerr, χenc over R for secret, error, and
encryption, respectively.

- Sample a secret s ← χkey, a random a ← RL and an error e ← χerr.
Set the secret key as sk← (s, 1) and the public key as pk← (a, b) ∈ R2

L

where b← −as+ e (mod 2L).
• HEAAN.KSGensk(s′). For s′ ∈ R, sample a random a′ ← R2·L and an error
e′ ← χerr. Output the switching key as swk ← (a′, b′) ∈ R2

2·L where b′ ←
−a′s+ e′ + 2Ls′ (mod 22·L).
- Set the evaluation key as evk← HEAAN.KSGensk(s2).

• HEAAN.Encode(z, p). For a vector z ∈ Cn, with of a power-of-two n ≤ N/2
and an integer p < L corresponding to precision bits, output the polynomial
m← φn(2p · z) ∈ R.
• HEAAN.Decode(m, p). For a plaintext m ∈ R, the encoding of a vector con-

sisting of a power-of-two n ≤ N/2 complex messages and precision bits p,
output the vector z← φ−1

n (m/2p) ∈ Cn.
• HEAAN.Encpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output
v · pk + (e0, e1 +m) (mod 2L).
• HEAAN.Decsk(ct). For ct = (c0, c1) ∈ R2

` , output c0 · s+ c1 (mod 2`).

• HEAAN.Add(ct1, ct2). For ct1, ct2 ∈ R2
` , output ctadd ← ct1 + ct2 (mod 2`).

• HEAAN.CMultevk(ct, c, p). For ct ∈ R2
` and c ∈ Cn, compute c← HEAAN.Encode(c; p)

and output ct′ ← c · ct (mod 2`).
• HEAAN.PolyMultevk(ct, g, p). For ct ∈ R2

` and g ∈ R`, output ct′ ← g · ct
(mod 2`).

• HEAAN.Multevk(ct1, ct2). For ct1 = (a1, b1), ct2 = (a2, b2) ∈ R2
` , let (d0, d1, d2) =

(a1·a2, a1·b2+a2·b1, b1·b2) (mod 2`). Output ctmult ← (d1, d2)+b2−L · d0 · evke
(mod 2`).
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• HEAAN.ReScale(ct, p). For a ciphertext ct ∈ R2
` and an integer p, output

ct′ ← b2−p · cte (mod 2`−p).
• HEAAN.ModDown(ct, p). For a ciphertext ct ∈ R2

` and an integer p, output
ct′ ← ct (mod 2`−p).

For an integer k co-prime with M , let κk : m(X) → m(Xk) (mod ΦM (X)).
This transformation can be used to provide more functionalities on plaintext
slots.

• HEAAN.Conjugatecjk(ct). Set the conjugation key as cjk← HEAAN.KSGensk(κ−1(s)).
For ct = (a, b) ∈ R2

` encrypting vector z, let (a′, b′) = (κ−1(a), κ−1(b))
(mod 2`). Output ctcj ← (0, b′) + b2−L · a′ · cjke (mod 2`). ctcj is a cipher-
text encrypting z̄ - the conjugated plaintext vector of ct.

• HEAAN.Rotatertk(ct; r). Set the rotation key as rtk← HEAAN.KSGensk(κ5r (s)).
For ct = (a, b) ∈ R2

` encrypting vector z, let (a′, b′) = (κ5r (a), κ5r (b))
(mod 2`). Output ctrt ← (0, b′) + b2−L · a′ · rtke (mod 2`). ctrt is a cipher-
text encrypting rt(z, r) = (zr, . . . , zn−1, z0, . . . , zr−1) - rotated by r positions
plaintext vector of ct.

Refer [9] for the technical details and noise analysis.

3 Multivariate HEAAN Scheme

3.1 Structure of MHEAAN

Encryption process in MHEAAN scheme can be shown in the following outline: for
a powers-of-two Ni, ni, with ni ≤ Ni/2, i = 1, . . . , l encode a l-dimension tensor
Z ∈ Cn1×···×nl to a l-variable polynomial m(X1, . . . , Xl), using map φn1,...,nl

and mask the result with m-RLWE instance
(
a(X1, . . . Xl), b(X1, . . . Xl)

)
in the

corresponding ring R/qR.
We can treat HEAAN scheme as a special case of MHEAAN with l = 1:
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z =


z0

z1

...
zn−1

 φn−−−−→
Encode

m(X)
RLWE−−−→
Enc

ct

and for two-dimension MHEAAN we have:

Z =


z0,0 z0,1 · · · z0,ny−1

z1,0 z1,1 · · · z1,ny−1

...
...

. . .
...

znx−1,0 znx−1,1 · · · znx−1,ny−1

 φnx,ny−−−−→
Encode

m(X,Y )
2−RLWE−−−−→
Enc

ct

3.2 Canonical Embedding in Z[X,Y ]/(XNx + 1, Y Ny + 1)

In the rest of the paper we will use following notations. For a power-of-two
integers Nx, Ny denote Mx = 2Nx,My = 2Ny, ΦMx

(X) = XNx + 1, ΦMy
(Y ) =

Y Ny + 1, R = Z[X,Y ]/(ΦMx
(X), ΦMy

(Y )), S = R[X,Y ]/(ΦMx
(X), ΦMy

(Y )).
We can generalize σM defined in Section 2 to σMx,My

: S → CNx,Ny , so for
a ∈ S, σMx,My

(a) = (a(ξjxMx
, ξ
jy
My

))jx∈Z?
Mx

,jy∈Z?
My
∈ CNx×Ny . Two dimensional

canonical embedding norm is defined as ‖a‖mcan
∞ = ‖σMx,My

(a)‖∞. ‖·‖mcan
∞ sat-

isfies the following properties:

• For all a, b ∈ R, we have ‖a · b‖mcan
∞ ≤ ‖a‖mcan

∞ · ‖b‖mcan
∞

• For all a ∈ R, we have ‖a‖mcan
∞ ≤ ‖a‖1.

• For all a ∈ R, we have ‖a‖∞ ≤ ‖a‖mcan
∞ .

For a power-of-two integers nx ≤ Nx/2 and ny ≤ Ny/2, let X ′ = XNx/(2nx),
Y ′ = Y Ny/(2ny) andR′ = Z[X ′, Y ′]/(X ′2nx +1, Y ′2ny +1). We can also generalize
encoding map φn to a two-dimensional mapping φnx,ny

: Cnx×ny → R, defined
as

φ−1
nx,ny

: m(x′, y′) = m(xNx/(2nx), yNy/(2ny))→ Z

where Z ∈ Cnx×ny with Zij = m(ξ′x
5i

, ξ′y
5j

), ξ′x = ξ
Nx/(2nx)
Mx

, ξ′y = ξ
Ny/(2ny)
My

3.3 Concrete Construction

We present a construction of 2-RLWE-based MHEAAN scheme. For a positive in-
teger ` denote R` = R/2`R = Z2` [X,Y ]/(ΦMx

(X), ΦMy
(Y )) the residue ring of

R modulo 2`. For a real σ > 0, DG(σ2) samples a polynomial in R by drawing
its coefficient independently from the discrete Gaussian distribution of variance
σ2. For an positive integer h, HWT (h) is the set of signed binary matrices in
{0,±1}Nx×Ny whose Hamming weight is exactly h. For a real 0 ≤ ρ ≤ 1, the
distribution ZO(ρ) draws each entry in the matrix from {0,±1}Nx×Ny , with
probability ρ/2 for each of −1 and +1, and probability being zero 1− ρ.
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• MHEAAN.KeyGen(1λ).

- For an integer L that corresponds to the largest ciphertext modulus
level, given the security parameter λ, distribution parameters (ρ, σ, h),
output the power-of-two ring dimension N and choose Nx, Ny such that
Nx ·Ny = N

- Set the distributions χenc = ZO(ρ), χerr = DG(σ), χkey = HWT (h)
over R for secret, error, and encryption, respectively.

- Sample a secret s ← χkey, a random a ← RL and an error e ← χerr.
Set the secret key as sk← (s, 1) and the public key as pk← (a, b) ∈ R2

L

where b← −a · s+ e (mod 2L).
• MHEAAN.KSGensk(s′). For s′ ∈ R, sample a random a′ ← R2·L and an error
e′ ← χerr. Output the switching key as swk ← (a′, b′) ∈ R2

2·L where b′ ←
−a′ · s+ e′ + 2Ls′ (mod 22·L).
- Set the evaluation key as evk← MHEAAN.KSGensk(s2).

• MHEAAN.Encode(Z, p). For a matrix Z ∈ Cnx×ny , an integer p < L − 1
corresponding to precision bits, output the two-degree polynomial m ←
φnx,ny

(2p · Z) ∈ R.
• MHEAAN.Decode(m, p). For a plaintext m ∈ R, the encoding of a matrix of

complex messages Z ∈ Cnx×ny , precision bits p, output the matrix Z ′ ←
φ−1
nx,ny

(m/2p) ∈ Cnx,ny .
• MHEAAN.Encpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output

ct = v · pk + (e0, e1 +m) (mod 2L).
• MHEAAN.Decsk(ct). For ct = (c0, c1) ∈ R2

` , output c0 · s+ c1 (mod 2`).

• MHEAAN.Add(ct1, ct2). For ct1, ct2 ∈ R2
` - encryption of matrices Z1, Z2 ∈

Cnx×ny output ctadd ← ct1 + ct2 (mod 2`). ctadd is a ciphertext encrypting
matrix Z1 + Z2.

• MHEAAN.CMultevk(ct,C, p). For ct ∈ R2
` - encryption of Z ∈ Cnx×ny , and a

constant matrix C ∈ Cnx,ny , compute c← MHEAAN.Encode(C, p) the encod-
ing ofC and output ctcmult ← c·ct (mod 2`). ctcmult is a ciphertext encrypting
matrix Z�C.

• MHEAAN.PolyMultevk(ct, g, p). For ct ∈ R2
` - encryption of Z ∈ Cnx×ny , and

a constant g ∈ R` output ctcmult ← c · ct (mod 2`). ctcmult is a ciphertext
encrypting matrix Z�C, where C is decoding of g.

Multiplication by polynomial is similar to constant multiplication, however
in the next section we will show why it is important to define it separately.

• MHEAAN.Multevk(ct1, ct2). For ct1 = (a1, b1), ct2 = (a2, b2) ∈ R2
` - encryp-

tions of matrices Z1,Z2 ∈ Cnx,ny , let (d0, d1, d2) = (a1a2, a1b2 + a2b1, b1b2)
(mod 2`). Output ctmult ← (d1, d2) + b2−L · d0 · evke (mod 2`). ctmult is a
ciphertext encrypting matrix Z1 � Z2.

• MHEAAN.ReScale(ct, p). For a ciphertext ct ∈ R2
` and an integer p, output

ct′ ← b2−p · cte (mod 2`−p).
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Similar to HEAAN in MHEAAN scheme for an integers kx, ky co-prime with
Mx,My respectively, let

κkx,ky : m(X,Y )→ m(Xkx , Y ky ) (mod ΦMx
(X), ΦMy

(Y ))

This transformation can be used to provide conjugation, row and column rota-
tions on plaintext matrix.

• MHEAAN.Conjugatecjk(ct). Set the conjugation key as

cjk← MHEAAN.KSGensk(κ−1,1(s))

For ct = (a, b) ∈ R2
` encrypting matrix Z, let (a′, b′) = (κ−1,1(a), κ−1,1(b))

(mod 2`). Output ctcj ← (0, b′)+b2−L · a′ · cjke (mod 2`). ctcj is a ciphertext
encrypting Z̄ - the conjugated plaintext matrix of ct.

• MHEAAN.Rotatertk(ct; (rx, ry)). Set the rotation key as

rtk← MHEAAN.KSGensk(κ5rx ,5ry (s))

For ct = (a, b) ∈ R2
` encrypting matrix Z, let (a′, b′) = (κ5rx ,5ry (a), κ5rx ,5ry (b))

(mod 2`). Output ctrt ← (0, b′)+b2−L · a′ · rtke (mod 2`). ctrt is a ciphertext
encrypting rt(Z, (rx, ry)) - cyclic rotated plaintext matrix by r rows and c
columns.

In case of Nx = Ny let τ : m(X,Y )→ m(Y,X). This transformation can be
used to provide transposition functionality on plaintext matrix.

• MHEAAN.Transposetrk(ct). Set the transposition key as

trk← MHEAAN.KSGensk(τ(s))

For ct = (a, b) ∈ R2
` encrypting matrix Z, let (a′, b′) = (τ(a), τ(b)) (mod 2`).

Output cttrk ← (0, b′)+b2−L · a′ · trke (mod 2`). cttrk is a ciphertext encrypt-
ing ZT - transposed plaintext matrix of ct.

Throughout this paper, we use real polynomials as plaintexts for convenience
of analysis. A ciphertext ct ∈ R2

` will be called a valid encryption of m ∈ S with
the encryption noise bounded by B, and plaintext bounded by M , if 〈ct, sk〉 =
m+e (mod 2`) for some polynomial e ∈ S with ‖e‖mcan

∞ < B and ‖m‖mcan
∞ < M .

We will use a corresponding tuple (ct, B,M, `) for such an encryption of m. The
following lemmas give upper bounds on noise growth after encryption, rescaling
and homomorphic operations. Refer to Appendix A for proofs.

Lemma 1 (Encoding & Encryption). For m ← MHEAAN.Encode(Z, p) and
ct ← MHEAAN.Encpk(m) the encryption noise is bounded by Bclean = 8

√
2 · σN +

6σ
√
N + 16σ

√
hN .

Lemma 2 (Rescaling). Let (ct, B,M, `) be a valid encryption of m and ct′ ←
MHEAAN.ReScale(ct, p). Then (ct′, B/2p+Bscale,M/2p, `−p) is a valid encryption
of m/2p where Bscale = 6

√
N/12 + 16

√
hN/12
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Remark We can slightly change the public key generation and encryption pro-
cess, to obtain a ciphertext with initial noise reduced from Bclean to almost Bscale.
For this we generate public key in R2

2L instead of R2
L and in encryption process

we encode the plaintext m with p + L precision bits, instead of p bits with the
following rescaling the encryption ct of m by L bits. With a slightly slower en-
cryption process we end up with a valid encryption in R2

L, with the initial noise
bounded by Bclean/2

L +Bscale ≈ Bscale.

Lemma 3 (Addition & Multiplication). Let (cti, Bi,Mi, `) be encryptions of
mi ∈ S and let ctadd ← MHEAAN.Add(ct1, ct2) and ctmult ← MHEAAN.Multevk(ct1, ct2).
Then (ctadd, B1 + B2,M1 + M2, `) and (ctmult,M1 · B2 + M2 · B1 + B1 · B2 +
Bmult,M1 ·M2, `) are valid encryptions of m1 + m2 and m1 · m2, respectively,
where Bks = 8σN/

√
3 and Bmult = 2`−L ·Bks +Bscale.

Lemma 4 (Conjugation, Rotation & Transposition). Let (ct, B,M, `) be
encryption of m ∈ S that encodes matrix Z, rx, ry ∈ Z, and let ciphertexts
ctrt = MHEAAN.Rotatertk(ct; (rx, ry)), ctcj = MHEAAN.Conjugatecjk(ct) and cttr =
MHEAAN.Transposetrk(ct). Then (ctrt, B+B∗,M, `), (ctcj, B+B∗,M, `), (cttr, B+
B∗,M, `) are valid encryptions of plaintexts that encode matrices rt(Z, (rx, ry)),
Z̄ and ZT respectively where where Bks = 8σN/

√
3 and B∗ = 2`−L ·Bks +Bscale

Relative Error As was discussed in [9] the decryption result of a ciphertext
is an approximate value of plaintext, so it needs to dynamically manage the
bound of noise of ciphertext. It is sometimes convenient to consider the relative
error defined by β = B/M . For addition of two ciphertexts with relative errors
βi = Bi/Mi the output ciphertext has a relative error bounded by maxi(βi).
For multiplication of two ciphertexts with the following rescaling by p bits the
output ciphertext has a relative error bounded by

β′ = β1 + β2 + β1β2 +
Bmult + 2−p ·Bscale

M1M2

from Lemmas 2 and 3. This relative error is close to β1 + β2 similar to the
case of unencrypted floating-point multiplication under an appropriate choice of
parameters.

For convenience of analysis, we will assume that for two ciphertexts with
relatives errors β1 and β2 the relative error after multiplication and rescaling is
bounded by β1 + β2 + β∗ for some fixed β∗

4 Homomorphic Evaluations of Matrix Operations

Along with the algorithms for homomorphic evaluation of approximate circuits,
such as exponent, sigmoid, inverse, etc., described in Section 4 of [9], with the
structure of MHEAAN we can also provide algorithms for homomorphic evaluation
of approximate matrix multiplication and approximate matrix inverse.
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4.1 Extracting Diagonal from a Matrix

One simple way to extract diagonal (or any other subset of values) from en-
crypted n × n matrix is described in Algorithm 1. We multiply the ciphertext
by the identity matrix I ∈ Cn×n component wisely, with the following rescaling
procedure. Due to rescaling procedure this method cost us p bits of a modulus.

Algorithm 1 Simple Diagonal Extraction
1: procedure SimpleDiag(ctA,∈ R2

` , p)
2: ctD ← MHEAAN.CMult(ctA, I)
3: MHEAAN.ReScale(ctD, p)
4: return ctD
5: end procedure

If we consider the following polynomial

i(X,Y ) = XMx−Nx
2 + Nx

2n ·
(
X

Nx
4 + Y

Ny
4

)
·
(
X

Nx
8 + Y

Ny
8

)
. . .
(
X

Nx
2n + Y

Ny
2n

)
we can easily check that φ−1

n,n(i(X,Y )) = n·I which means i(X,Y ) exactly en-
codes the identity matrix with log n precision bits: i(X,Y ) = MHEAAN.Encode(I, log n).
So we can extract a diagonal from an encrypted matrix multiplying by the poly-
nomial i(X,Y ) and rescaling by log n bits. Normally in practice p is notably
larger than log n.

Algorithm 2 Diagonal Extraction
1: procedure Diag(ctA,∈ R2

`)
2: ctD ← MHEAAN.PolyMult(ctA, i)
3: MHEAAN.ReScale(ctD, log n)
4: return ctD
5: end procedure

By applying κ0,Ny/2−k to i(X,Y ) we obtain an encoding of a right shifted by k
bits identity matrix. We can then extract a right shifted by k position diagonal
from an encrypted matrix. We will call this procedure Diagk, where Diag0 is
diagonal extraction. We will use this procedure in the following sections.

4.2 Matrix Multiplication

We adapt Fox matrix multiplication algorithm [18] to encrypted matrix multipli-
cation. Let ctA, ctB be encryptions of matrices A,B ∈ Cn×n with power-of-two
n. Let I ∈ Cn×n be the identity matrix, and Diagk is procedure defined in
previous section.
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Algorithm 3 Matrix Multiplication
1: procedure MHEAAN.MatMult(ctA, ctB ∈ R2

` , p)
2: ctC ← 0
3: for k = 0 to n− 1 do
4: ctBk

← Diagk(ctB)
5: for j = 1 to log(n)− 1 do
6: ctBk

← MHEAAN.Add(ctBk
, MHEAAN.Rotate(ctBk

, (0, 2j))
7: end for
8: ctAk

← MHEAAN.ModDown(MHEAAN.Rotate(ctA, (
Nx

2 − k, 0)), log n)
9: ctCk

← MHEAAN.Mult(ctAk
, ctBk

)
10: ctC ← MHEAAN.Add(ctC, ctCk

)
11: end for
12: ctC ← MHEAAN.ReScale(ctC, p)
13: return ctC
14: end procedure

Lemma 5 (Matrix Multiplication). Let (ctA, βA · 2p, 2p, `) and (ctB, βB ·
2p, 2p, `) be encryptions of matrices A,B ∈ Cn×n respectively. The Algorithm 3
outputs (ctC, βC · n · 2p, n · 2p, ` − p − log n) the valid encryption of C = AB
where βC = βA + βB + β∗ + (log n) · β∗.

Remark The plain matrix multiplication algorithm has complexity O(n3). The
Algorithm 3 requires totally O(n) ciphertext multiplication (each of provides
multiplication in parallel of n2 values) and O(n log n) ciphertext rotations. This
is almost optimal, compare to unencrypted case.

Remark The Algorithm 3 can be generalized to multiplication of matrices with
arbitrary dimensions. We will omit the details as we need to consider many cases,
although they are essentially similar.

4.3 Matrix Inverse

For matrix inverse we can adapt Schulz algorithm [36] to encrypted approximate
inverse circuit. However for MHEAAN we use a matrix version algorithm described
in [7] and adopted in [9] as it more practical due to power-of-two degrees of
matrix in the circuit. The algorithm is described below.

Assume that invertible square matrix A satisfies ‖Â‖ ≤ δ < 1 for Â =
I− 1

2tA, for some t ≥ 0 then we get

1

2t
A(I + Â)(I + Â2) . . . (I + Â2r−1

) = 1− Â2r

We can see that ‖Â2r‖ ≤ ‖Â‖2r ≤ δ2r

, hence 1
2t

∏r−1
j=0(I + Â2j

) = A−1(1−
Â2r ) is an approximate inverse of A for δ2r � 1. We will slightly strengthen the
condition on δ in the following lemma:
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Algorithm 4 Matrix Inverse
1: procedure MHEAAN.MatInv(ctĀ ∈ R2

` , r, p ∈ Z)
2: i = MHEAAN.Encode(I, p)
3: ctA0 ← ctĀ
4: ctV0

← MHEAAN.ModDown(i+ ctĀ, p)
5: for j = 0 to r − 1 do
6: ctAj

← MHEAAN.MatMult(ctAj−1
, ctAj−1

)
7: ctVj+1 ← MHEAAN.MatMult(ctVj , i+ ctAj )
8: end for
9: ctVr

← MHEAAN.ReScale(ctVr
, t)

10: return ctVr

11: end procedure

Lemma 6 (Matrix Inverse). Let (ctĀ, β · δ2p/n, δ2p/n, `) be an encryption
of matrix Ā ∈ Cn×n, and ‖Ā‖ = ‖I− 1

2tA‖ ≤ δ < n−1
n for some t. The

Algorithm 4 outputs (ctVr , βVr ·n1/n2p−t, n1/n2p−t, `− (p+ log n)r− t) the valid
encryption of A−1 where βVr = 2β + β∗ + (r+ 1) · (β∗ + (log n)β∗). So we have
that the output message bound is close to 2p−t and error growth linearly in r.

5 Implementation Results

In this section, we present parameters sets with experimental results. We also
provide implementation results with concrete parameters. Our implementation
is based on the NTL C++ library running over GMP. Every experimentation
was performed on a machine with an Intel Core i5 running at 2.9 GHz processor
using a parameter set with 80-bit security level. All computations are done in a
single thread.

Parameters Setting The dimensions of a cyclotomic ring R are chosen fol-
lowing the security estimator of Albrecht et al. [1] for the learning with errors
problem, within an additional assumption that 2-RLWE sample with dimen-
sions Nx and Ny is indistinguishable from a sample belonging to RLWE with
N = NxNy (Prop. 1 in [30]). In the implementation, we used the Gaussian dis-
tribution of standard deviation σ = 3.2 to sample error polynomials, and set
h = 64 as the number of nonzero coefficients in a secret key s(X,Y ). We skip
the results of evaluation a component wise power, inverse, exponent, sigmoid
functions, etc. Please refer to [9] for more details on evaluating these circuits.

Evaluation of Matrix Circuits In Table 1, we present the parameter set-
ting and performance results for matrix transposition, multiplication, a 16-th
power, and inverse. Parameter γ corresponds to the input precision bits and was
calculated using Lemma 1. The average running times are only for ciphertext
operations, excluding encryption and decryption procedures.

The homomorphic evaluation of the circuit M16 for an n × n matrix M is
hard to be implemented in practice over the previous methods. Meanwhile, our
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Table 1. Implementation results for n× n matrices M, M1, M2

Function
Input params HE params Total

n γ Nx Ny L p time

MT 16

17

27 27

100

30

64ms
64 67ms

M1M2
16

100
6.2s

64 29.1s

M16 16
280

44.9s
64 3.9min

M−1 16
12 310 25

82.7s
64 6.8min

scheme can compute this circuit by squaring a matrix 4 times and it takes about
4 minutes for a 64× 64 matrix. Computing the matrix inverse homomorphically
is done by evaluating a matrix polynomial up to degree 15 as was shown in
Algorithm 4.

6 Conclusion

In this work, we presented MHEAAN scheme - a multidimensional variant of HEAAN
homomorphic encryption scheme which supports an approximate arithmetics
over ciphertexts. MHEAAN scheme takes advantage of the HEAAN scheme and pro-
vides a tensor packing method in a single ciphertext. We finally constructed a
practical HE that supports standard HE operations as well as operations with
matrices.

We believe that the idea of multidimensional variants could be applied to
other existing schemes, with a great potential to homomorphic computations on
matrices and tensors.
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A Noise Estimations

We follow the heuristic approach in [20] generalizing it to two variable polynomi-
als. Assume that a two variable polynomial a(X,Y ) ∈ R = Z[X,Y ]/(ΦM (X), ΦMy

(Y ))
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sampled from one of above distributions, so its nonzero entries are indepen-
dently and identically distributed. The value a(ξMx

, ξMy
) can be obtained by

first computing Ny inner products of vectors of coefficients of a corresponding
to a power Y j for j = 0, . . . , Ny − 1 by a fixed vector (1, ξMx , . . . , ξ

Nx

Mx
) of Eu-

clidean norm
√
Nx and then computing inner product of the results by a fixed

vector (1, ξMy , . . . , ξ
Ny

My
) of Euclidean norm

√
Ny. Then a(ξMx , ξMy ) has variance

V = σ2NxNy = σ2N , where σ2 is the variance of each coefficient of a. Hence
a(ξMx

, ξMy
) has the variances VU = 22`N/12, VG = σ2N and VZ = ρN , when

a is sampled from R`, DG(σ2), ZO(ρ) respectively. In particular, a(ξMx , ξMy )
has the variance VH = h when a(X) is chosen from HWT (h). Moreover, we can
assume that a(ξMx

, ξMy
) is distributed similarly to a Gaussian random variable

over complex plane since it is a sum of many inde- pendent and identically dis-
tributed random variables. Every evaluations at roots of unity (ξMx

, ξMy
) share

the same variance. Hence, we will use 6σ as a high-probability bound on the
canonical embedding norm of a when each coefficient has a variance σ2. For a
multiplication of two independent random variables close to Gaussian distribu-
tions with variances σ2

1 and σ2
2 , we will use a high-probability bound 16σ1σ2

Proof of Lemma 1.

Proof. We choose v ← ZO(ρ), e0, e1DG(σ), then set ct ← v · pk + (e0, e1 + m).
The bound Bclean of encryption noise is computed by the following inequality:

‖〈ct, sk〉 −m (mod 2L)‖mcan
∞ = ‖v · e+ e1 + e0 · s‖mcan

∞

≤ ‖v · e‖mcan
∞ + ‖e1‖mcan

∞ + ‖e0 · s‖mcan
∞

≤ 8
√

2 · σN + 6σ
√
N + 16σ

√
hN.

ut

Proof of Lemma 2.

Proof. It is satisfied that 〈ct, sk〉 = m + e (mod 2`) for some polynomial e ∈ S
such that ‖e‖mcan

∞ < B. The output ciphertext ct′ ← b2−p · cte satisfies 〈ct′, sk〉 =
2−p · (m + e) + escale (mod 2`−p) for the rounding error vector τ = (τ0, τ1) =
ct′ − 2−p · ct and the error polynomial escale = 〈τ, sk〉 = τ0 · s+ τ1.

We may assume that each coefficient of τ0 and τ1 in the rounding error vector
is computationally indistinguishable from the random variable in the interval
2−p · Z2p with variance ≈ 1/12. Hence, the magnitude of scale error polynomial
is bounded by

‖escale‖mcan
∞ ≤ ‖τ0 · s‖mcan

∞ + ‖τ1‖mcan
∞ ≤ 6

√
N/12 + 16

√
hN/12

as desired. ut

Proof of Lemma 3.

17



Proof. Let cti = (ai, bi) for i = 1, 2. Then 〈cti, sk〉 = mi + ei (mod 2`) for some
polynomials ei ∈ S such that ‖ei‖mcan

∞ ≤ Bi. Let (d0, d1, d2) = (a1a2, a1b2 +
a2b1, b1b2). This vector can be viewed as an encryption of m1 ·m2 with an error
m1 ·e2 +m2 ·e1 +e1 ·e2 with respect to the secret vector (s2, s, 1). It follows from
Lemma 2 that the ciphertext ctmult ← (d1, d2) + b2−L · (d0 · evk (mod 2`+L))e
contains an additional error e′′ = 2−L · d0e

′ and a rounding error bounded by
Bscale. We may assume that d0 behaves as a uniform random variable on R`, so
2L‖e′′‖can∞ is bounded by 16

√
Nq2

`/12
√
Nσ2 = 8Nσq`/

√
3 = Bks · 2`. Therefore,

ctmult is an encryption of m1 ·m2 with an error bounded by

‖m1e2 +m2e1 + e1e2 + e′′‖mcan
∞ +Bscale ≤

M1B2 +M2B1 +B1B2+2−L · 2` ·Bks +Bscale

as desired. ut

Proof of Lemma 4.

Proof. Let prove the lemma for conjugation, proofs of others are the same. The
vector (a′, b′) = (κ−1,1(a), κ−1,1(b)) (mod 2`) can be viewed as an encryption of
Z̄ with and error κ−1,1(e) with respect to the secret vector (κ−1,1(s), 1). Using
proof of Lemma 3 we can get that ctcj is an encryption of Z̄ with an error
bounded by

‖κ−1,1(e) + e′′‖mcan
∞ +Bscale ≤ B + 2−L · 2` ·Bks +Bscale

as desired. ut

Proof of Lemma 5.

Proof. From Lemma 4 and the following remark about the relative error we
can see that bound of message increase only after summations in line 10 of
Algorithm 3, so the boundM of the output is equal to n ·2p. Note also that these
summations do not increase the bound of the relative error. The relative error
increases by β∗ after rotation and increases by β∗ after multiplication. So the
relative error of each summand in line 10 is bounded by βA+βB+β∗+(log n)·β∗.

ut

Proof of Lemma 6.

Proof. From Lemma 5 the message of ctAj is bounded by δ2j

2p/n which implies
that the message of ctVr

is bounded by

2p−t
r−1∏
j=0

(1 + δ2j

/n) <
2p−t

(1− δ)1/n
< n1/n2p−t

18



The relative error βj of ctAj
is bounded by βj ≤ 2j(β + β∗ + (log n)β∗), which

implies that the relative error β′j of ctAj
+ i is bounded by

β′j ≤ βj/
(

1 +
n

δ2j

)
Using induction on j, we can show that a relative error β′′j of ctVj is bounded
by

β′′j ≤
( j−1∑
k=0

2kδ2k

n+ δ2k

)
· (β + β∗ + (log n)β∗) + (j − 1) · (β∗ + (log n)β∗) ≤

1

n

j−1∑
k=0

(2kδ2k

) · (β + β∗ + (log n)β∗) + (j − 1) · (β∗ + (log n)β∗) ≤

2

n(1− δ)
· (β + β∗ + (log n)β∗) + (j − 1) · (β∗ + (log n)β∗) ≤

2β + (j + 1) · (β∗ + (log n)β∗)

Finally after last rescaling we get the required result ut
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