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Abstract

We present a new method that produces bounded FHE schemes (see Definition 3),
starting with encryption schemes that support one algebraic operation. We use this
technique to construct examples of encryption schemes that, theoretically can handle
any algebraic function on encrypted data.1

1 Introduction

Homomorphic encryption was introduced in [28] as a machinery for arbitrary computations
over encrypted data. Since then, several attempts to produce such encryption schemes have
been made. Lately, a lot of attention has been drawn to this domain especially for the
following two reasons: first, globalization of information impose the need to work with huge
amount of data that is input for different users, but no information has to leak to a potential
competitor; second, a big breakthrough in this direction was obtained by C. Gentry in [14].

1.1 Short History

In the early 90’s, the authors of [13] and [3] independently proposed an algorithm, called
Polly Cracker, which was capable of performing algebraic computations on the encrypted
data without revealing the encrypted information. However, few years later, the algorithm
proved to be insecure and no modifications of the algorithm could solve this inconvenient
(cf. [11]). In the late 90’s, a secure and efficient algorithm to encrypt messages (NTRU)
was proposed in [25]. The algorithm has the same ring homomorphic feature as the previous
one, but only few operations can be performed on the encrypted data (with the parameters
suggested to be implemented, only few additions and no multiplications are allowed). A
major breakthrough was obtained by C. Gentry in his Ph.D. thesis [14], where he used the
error-based encryption technique for the purpose of achieving fully homomorphic encryption
(FHE) schemes. Gentry applied the cryptosystem proposed in [19] to the case of ideal
lattices, thus producing a scheme which accommodates a much larger (but bounded) number
of computations on the encrypted data (see also [15]). This leveled feature comes from the
fact that the algorithm is an error-based one, so that only circuits which keep the noise very
low can be applied to the encrypted data. He also proved that if an encryption scheme can
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European Patent Appln. No. EP 15193706.7

1



handle its own decryption algorithm (augmented by a single gate), in other words the scheme
is bootstrappable, then one can use it in a limiting process to produce a FHE scheme. The
word limiting is important from the practical implementation point of view because, in this
sense, one can achieve only leveled FHE, i.e. one has to prescribe from the beginning the
maximum degree (or the depth) of the polynomials to be computed on the encrypted data.
Since then an entire collection of fully homomorphic encryption schemes were constructed
[38], [35], [10], the methodology in Gentry’s seminal work being followed.

A second generation of schemes started with the work of Brakerski and Vaikuntanathan
[6], who established FHE in a simpler way, based on the learning with errors (LWE) as-
sumption. To accommodate multiplication and hence obtain (leveled) fully homomorphic
encryption schemes, the authors had to introduce the so-called re-linearization technique.
Also, the construction was refined using a modulus switching technique to obtain better
efficiency (see also [8]). Currently, perhaps the simplest (leveled) FHE scheme based on
the learning with errors assumption is by Brakerski [7] who builded on Regev’s public key
encryption scheme [29]. The most recent achievement in this direction was obtained in [18],
where the authors were able to construct a simpler (leveled) FHE scheme based on the LWE
assumption by removing the extensive and complicated step that involves the re-linearization
procedure. It is worth mentioning here that the error-based technique was borrowed by the
authors of [1] to construct a more secure variant of Polly Cracker. Their cryptosystem can be
seen both as a high-dimensional generalization of Regev’s LWE-based scheme and as a noisy
generalization of the Polly Cracker-style cryptosystems (cf. [24]). Also the re-linearization
technique was used to produce a more secure NTRU cryptosystem [37] (for a survey on
recent developments on NTRU cryptosystems see [36]).

The current state of the art in terms of FHE implementation is represented by a recent
software library (HElib), developed by Halevi and Shoup, which is available for public trial
at https://github.com/shaih/HElib. HElib is an implementation of the RLWE encryption
scheme described in [8], along with many other optimizations [22]. To achieve FHE, the
authors implemented a new recryption procedure with running times around 6 minutes [23].
The fact that bootstrapping takes such a large amount of time makes this implementation of
FHE unattractive. Future work in this direction will focus on minimizing the running time
of the FHE bootstrapping procedure [12].

1.2 Short discussion about practical encryption

Unfortunately, all error-based encryption schemes proposed until now are far from being
practical. But what exactly means practical? The security/efficiency of an algorithm cannot
just be considered as a function of the security parameter and prove polynomial asymptotics
about it. It is not feasible from the practical point of view. A practical implementation
has only a finite and well established range for the security parameter. A polynomial in the
security parameter can take much larger values than an exponential in the practical range
if, for example, the coefficients of that polynomial are large enough. It is also true that the
practical range of the security/efficiency parameter (for a given encryption scheme) varies in
time, i.e. an algorithm which proved unfeasible from the practical point of view 10 years ago,
now can be implemented successfully. This is why we promote and advocate a strategy to
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redefine the concepts of security and efficiency in a way to become practical for implementing
algorithms. The notions should depend on the computing power and the power to stock and
transmit information at a given time so one knows for example what ”practical” means for
an algorithm to be implemented and be able to predict the security/efficiency in the future
if for example one assumes Moore’s law.

1.3 Our results

In 2013 at the UCI conference ”Workshop on Lattices with Symmetry”, C. Gentry asked
if one can actually realize at least a leveled FHE but with an algorithm that is not error-
based. In our attempt to answer Gentry’s question we rediscovered an idea that goes back
to Grigoriev and Ponomarenko in [21], which from the mathematical point of view is very
natural. If one has an encryption scheme which supports one operation (such encryption
schemes are abundant in the literature), then one can use the group algebra theory to
obtain an encryption scheme that can handle any algebraic function on the encrypted data.
However, the algorithms presented in [21] do not produce FHE, i.e. ring homomorphic
encryptions over the field F2.
Our scheme is more general and flexible enough to overcome the weaknesses of Grigoriev
and Ponomarenko’ construction, proposing a blueprint to produce bounded FHE schemes,
which are less restrictive than (compact) FHE schemes (see Definition 3 bellow). We also
give in this paper several examples and analyze their properties.

We point out that the compactness property was introduced in order to avoid trivial
encryptions. But one has to notice that boundedness also eliminates the possibility of en-
crypting ”trivially”. Moreover, we shall prove that from a practical point of view, the
theoretical notions of compactness and boundedness are not different, and to be fair, none
of them guaranties efficiency.

1.4 Layout of the paper

In Section 2 we review background information from the theory of homomorphic encryption
schemes, introduce the notion of bounded schemes and prove that from the practical point of
view it is equivalent with the notion of compact schemes. In section 3, we give background
information about monoid algebras. In Section 4 we describe our main construction, which
gives the general recipe for producing ring HE schemes starting with encryption schemes
that have homomorphic properties with respect to one operation. We give examples of this
construction in Sections 5 and 6. The examples we give are, in some sense, complementary
to each other and reflect important instances of our blueprint. We conclude the paper in the
last section.

2 Homomorphic Encryption Schemes

The homomorphic encryption schemes in their generality were treated by different authors
and many treaties. We refer to [33] for a monograph treatment of the subject and to [2] for
a treatment of their security behavior. General encryption schemes are composed of three
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algorithms: KeyGen, Enc, Dec and two sets: the plaintext space P and the ciphertext space
C. Basically, one generates, given a security parameter λ, a secret and a public key (sk, pk)
by KeyGen, then the next two algorithms describe how to associate to a plaintext m ∈ P
a ciphertext c ∈ C using the public key pk and viceversa, using the secret key sk, how to
associate to a ciphertext c ∈ C a plaintext m = Dec(c), such that Dec(Enc(m)) = m. Since
in our work the key generation is made explicitly, we assume in what follows the existence
of this algorithm in all of the encryption schemes without mentioning it in the notation. We
will write for short such an encryption scheme by the quadruple (C, P , Enc, Dec).

Definition 1. Let AS be an algebraic structure, such as semigroup, monoid, group, ring,
etc. An AS homomorphic encryption scheme (G,H,Enc,Dec) is an encryption scheme such
that both plaintext space H and ciphertext space G are endowed with the algebraic structure
AS and such that Dec : G→ H is an AS -homomorphism.

We note that different authors give different names for such an encryption scheme, all
of them bearing the name homomorphic. Some authors give the name group homomorphic
encryption schemes to the above definition while they don’t require the plaintext (respec-
tively ciphertext) space to be an actual group but only to have operations compatible with
the decryption algorithm (which would actually correspond to semi-group homomorphic en-
cryption schemes in our definition).

It is also worth to mention that many of the encryption schemes already treated in the
literature are in fact group homomorphic schemes (RSA, ElGamal, Paillier, Goldwasser-
Micali, Benaloh, etc.), but one can produce other schemes where the spaces have only a
monoid structure or even a semigroup structure.

Practical encryption schemes require additional constraints on the algorithms KeyGen,
Enc and Dec such that the encryption and decryption processes are both feasible, secure
and efficient. For an AS-homomorphic encryption scheme the algorithms that compute the
algebraic structure on both plaintext and ciphertext spaces need also be efficient. This
means that there exists a fourth algorithm, called the Evaluation algorithm and denoted by
Eval(f, c̄), which takes as input any circuit f that can be represented only by AS-operations
and a corresponding number of ciphertexts and outputs a ciphertext. This algorithm is
required to be compatible with the decryption algorithm, i.e. Dec(Eval(f, c̄)) = f(Dec(c̄)).

Definition 2. An AS homomorphic encryption scheme (G,H,Enc,Dec) is called a leveled
AS homomorphic encryption scheme if the decryption algorithm is correct only for a certain
number of AS operations made on G.

We remark that so far all of the proposed secure ring homomorphic encryption schemes
are ”error”-based schemes which make them leveled for practical purposes. Even if the
scheme is bootstrapable (see [15]), the practical implementation of such a scheme is leveled,
because the construction of a fully homomorphic encryption scheme out of a bootstrapable
one is a limiting process. However, the authors of [17] where able to obtain a ”pure” fully
homomorphic encryption scheme by constructing a circular ladder of encryption keys, under
an additional assumption called circular security. The idea was implemented in HElib (see
[23] for more details).

The above definitions imply a parametrized set, HE(λ), of encryption schemes.
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Definition 3 (see also [6], Definition 3.4.). A homomorphic encryption scheme, HE(λ), is
called compact if there exists a function s = s(λ) such that:

1. The output length of EvalHE(λ)(C, c) is at most s(λ) bits long (regardless of the circuit
C or the number of inputs c).

2. As a function of λ, s is asymptotically polynomial.

A scheme where only condition 1. holds will be called bounded.

We would like to point out that all the ring homomorphic encryption schemes constructed
in this paper are bounded.

Remark 4. The initial name we used for bounded homomorphic encryption schemes was
quasi-compact. But this name was already used in Gentry’s thesis (see also [9] for the defi-
nition in quantum homomorphic encryption), to denote a class of homomorphic encryption
schemes for which s = s(λ, depth(C)) is polynomial both in the security parameter and in
the depth of the circuit. As one can easily see, the two notions are complementary in the
sense that a bounded and quasi-compact scheme is compact. The quasi-compact schemes
make sense from the practical point of view, but from a theoretical point of view they can
never be ”embedded” into a compact scheme if they are not already. The meaning of this
sentence will become apparent in the next theorem.

The following theorem shows that any bounded encryption scheme can always be fit into
a compact one, as long as there exists such a compact scheme.

Theorem 5. Let S(λ) be a bounded scheme and assume that there exists a compact scheme
S ′(λ). Let I = [λ0, λ1] be the practical (any finite for that matter) range of the security
parameter. Then, there exists a compact scheme S ′′ such that S ′′(λ) = S(λ) for all λ ∈ I.

Proof. The proof is constructible. We define S ′′(λ) to be S(λ) if λ ∈ I and to be S ′(λ) else.
Since the asymptotics of the scheme S ′′ is the same as the asymptotics of the scheme S ′ and
for a finite range of λ, any function can be bounded polynomially, we get our conclusion.

We end the section by recalling that the notion of fully homomorphic encryption scheme
(see for example [15]) is equivalent to the ring homomorphic encryption scheme, where the
plaintext space is the field with two elements F2. Indeed, this is due to the fact that any
boolean circuit with XOR and AND gates can be written as a polynomial over F2 with the
XOR and AND gates replaced by addition and multiplication (for more details see [16]).

3 Monoid Algebras

In this section we recall how one can associate to any monoid and any commutative ring
with unity a certain algebra and we will explore its properties. Let (M, ·) be a monoid and
let R be a commutative ring with unity. As an R-module the monoid algebra R[M ] is free
with a basis consisting of the symbols [x], x ∈ M , and the multiplication defined by the
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R-bilinear extension of [x] · [y] = [xy]. Therefore every element of a ∈ R[M ] has a unique
representation

a =
∑
x∈M

ax[x] (1)

in which ax = 0 for all but finitely many x ∈M , and the product of a, b ∈ R[M ] is given by

ab =
∑
x∈M

(∑
yz=x

aybz

)
[x]. (2)

Notice that the identity element of R[M ] with respect to multiplication is 1[e] where e is
the identity element of M . If M is a group then the monoid algebra above is called a group
algebra. Notice that the R-algebra R[M ] is commutative if and only if M is commutative.

Example 6. If M is the free monoid in one generator then R[M ] ∼= R[X] as R-algebras,
whereas if G is the free group in one generator then R[G] ∼= R[X, 1

X
] as R-algebras.

An R-character of a monoid M is a monoid homomorphism χ : M → A from M to
the multiplicative monoid of an R-algebra A, i.e. χ(xy) = χ(x)χ(y), for all x, y ∈ M , and
χ(e) = 1. The monoid algebra R[M ] is characterized up to isomorphism by the following
universality property: for every R-character χ : M → A, there exists a unique R-algebra
homomorphism R[M ] → A extending χ. If we also denote by χ the extension R[M ] → A
then:

χ

(∑
x∈M

ax[x]

)
=
∑
x∈M

axχ(x). (3)

Let M,N be monoids, and φ : M → N be a monoid homomorphism. Then φ induces an
R-algebra homomorphism φR : R[M ]→ R[N ] via

φR(
∑
x∈M

ax[x]) =
∑
x∈M

ax[φ(x)]. (4)

Notice that formula (4) defines φR as the R-linear extension of φ.
For any R-algebra A, there is a natural R-algebra homomorphism ε : R[A]→ A given by

ε

(∑
x∈R

rx[x]

)
=
∑
x∈R

rxx. (5)

4 Blueprint

Let R be a ring, which we will assume throughout the paper to be finite. Let also (G,H,E,D)
be a monoid homomorphic encryption scheme. Consider an efficiently computableR-character
χ : H → A, where A is a finite R-algebra, and consider also the monoid algebra R[G]. As
explained above, the monoid homomorphism D : G → H induces the R-algebra homomor-
phism DR : R[G] → R[H]. At the same time the R-character χ induces the R-algebra
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homomorphism χR : R[H] → R[A]. We define the R-algebra homomorphism Dec as the
composition Dec = ε ◦ χR ◦DR : R[G]→ R[H]→ R[A]→ A. It is easy to check that Dec is
defined by the following formula:

Dec

(∑
g∈G

ag[g]

)
=
∑
g∈G

agχ(D(g)).

Let us denote by S the image of χ in A. For Dec to remain secure, one needs the assumption
that |S| ≥ 2, i.e. χ is not the trivial character, a condition always assumed in our blueprint.
We shall suppose that the pair (A, S) satisfies the following condition: there exist a fixed
k-tuple (r1, . . . , rk) ∈ Rk, where k ≥ 1, such that the set containing the elements of the form∑k

i=1 risi with si ∈ S, ∀i (not necessarily distinct) is the whole R-algebra A. Notice that a
necessary condition for the existence of such a tuple is that A is generated as an R-module
by S. If this is not the case then A may be replaced by its R-submodule generated by S.
Indeed, since S is closed under multiplication the R-submodule of A generated by S is an
R-subalgebra of A. On the other hand, this necessary condition is not sufficient to ensure
the existence of a tuple as above, however if S contains 0 the two conditions are equivalent
because A is a finite ring.
Now, we describe the ring homomorphic encryption scheme (R[G], A,Enc,Dec) :

• Enc: Let S be the image of χ in A and consider a fixed tuple (r1, . . . , rk) ∈ Rk, where
k ≥ 2, such that the set containing the elements of the form

∑k
i=1 risi with si ∈ S is

the whole R-algebra A. For a plaintext m ∈ A consider (h1, . . . , hk) ∈ Hk such that
m =

∑k
i=1 riχ(hi). Then

Enc(m) =
k∑
i=1

ri[E(hi)].

• Dec: The decryption algorithm is given by:

Dec

(∑
g∈G

ag[g]

)
=
∑
g∈G

agχ(D(g)).

The main result of this section is the following:

Theorem 7. The encryption scheme (R[G], R,Enc,Dec) is a ring homomorphic encryption
scheme.

Proof. As we have seen above, given the homomorphic properties of D and χ we get that Dec
is actually a ring homomorphism. The security of the scheme is the same as the security of
the monoid encryption scheme (G,H,E,D) since no information and no additional security
was revealed or added through the steps describing the encryption algorithm. The choice
of the generating set (r1, . . . , rk) described in Enc ensures that the semantic security of
the ring homomorphic encryption scheme reduces to the semantic security of the monoid
homomorphic encryption scheme.
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One should make the difference (as we will notice in some examples bellow) between the
probability of plaintexts generated by choosing random elements in S and producing the
plaintext

∑k
i=1 risi and the probability of a certain plaintext to be encrypted. In essence the

choice of the set (r1, . . . , rk) ensures that no plaintext is left outside the encryption process.
The bigger the set S is inside R the smaller the number k can be chosen.

The efficiency of the encryption scheme is k times less than the efficiency of the monoid
homomorphic encryption scheme since basically the length of the ciphertext obtained by
Enc is approximately k times the length of a ciphertext obtained by E. In particular, the
encryption algorithm has polynomial size in the security parameter and the output has
polynomial length in the same parameter if and only if the monoid homomorphic encryption
scheme has. The decryption algorithm Dec has also the same efficiency as the algorithm D
in the monoid homomorphic encryption scheme.

Having fixed the encryption scheme, the length of the ciphertexts obtained by performing
algebraic computations is finite since all computations take place in R[G] which is a finite
ring, i.e. the scheme is bounded.

In conclusion, all of the algebraic properties as well as the properties required for privacy
and security are satisfied by the ring homomorphic encryption scheme constructed above if
one starts with a private and secure monoid homomorphic encryption scheme.

Remark 8. Even though the ciphertext resulted by computing a polynomial on cyphertexts
remains finite, its length is growing up to a certain point exponentially. The maximal length
of an element in R[G] is huge for practical purposes. Therefore, for implementation in cloud
computing, one needs an additional process to ensure a practical finiteness of an output after
an algebraic manipulation on ciphertexts.

Remark 9. In general the plaintext space P need not be the whole R-algebra A, but just a
subring of it. Therefore one can encrypt only the desired plaintexts. We will actually need
this remark in the next examples.

Remark 10. The idea of producing FHE schemes out of a group homomorphic encryption
scheme was also taken under consideration in [27]. However, the resulted encryption schemes
therein are not bounded.

We end this section by mentioning that the blueprint works word-by-word for the case of
semi-group homomorphic encryption schemes. The resulting scheme is a (non-unital) ring
homomorphic encryption scheme. Also, even if we start with a compact monoidal encryption
scheme, the above blueprint produces only a bounded ring homomorphic encryption scheme.

5 A ring HE scheme using Monoid Algebra

In this section we discuss the first example of a FHE scheme based on the above blueprint.
Hereafter the ring R is the field F2. If (G,H,E,D) is a group homomorphic encryption
scheme, since H is a group, the image of any character χ : H → A is also a group, so that
if A = F2 then any character is trivial. This is the reason why we need to consider an
F2-algebra A different from F2 itself and a group encryption scheme (G,H,E,D) such that
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there exist a nontrivial F2-character χ : H → A (in particular gcd(|H|, |A×|) > 1). The
simplest (but not the most efficient) example of such situation is the following variant of
Benaloh cryptosystem (cf. [5]), which is an extension of the Goldwasser-Micali cryptosystem
(cf. [20]).

We proceed to the explicit description of the group encryption scheme we are referring
to. Choose p, q two large primes such that p ≡ 1 (mod 3), p 6≡ 1 (mod 9), q ≡ 1 (mod 3),
and let N = p · q. Let G := (Z/NZ)× be the group of invertible elements mod N , and let
πp : (Z/NZ)× → (Z/pZ)× and πq : (Z/NZ)× → (Z/qZ)× be the projection maps. Fix two

primitive third roots of unity: ωp ∈ (Z/pZ)× and ωq ∈ (Z/qZ)×, i.e. let ωp = g
p−1
3

p , where gp
is a generator of the cyclic group (Z/pZ)×, and similarly for ωq. We let φ : (Z/pZ)× → Z/3Z

be the group homomorphism defined by: φ(x) = i if and only if x
p−1
3 = ω

i· p−1
3

p . The morphism
φ is efficiently computable because raising x to the power p−1

3
can be done in log p steps,

and then by Fermat’s Little Theorem x
p−1
3 is a third root of unity modulo p, therefore

x
p−1
3 ∈ {1, ωp, ω2

p}, so that φ is well defined if and only if p 6≡ 1 (mod 9).
For encryption, let η be the unique element of G, such that πp(η) = ωp and πq(η) = ωq .

The group encryption scheme (G,Z/3Z, E,D) is given as follows:

• Setup(1λ): Choose two large enough primes (to ensure semantic security) p = p(λ), q =
q(λ) such that p ≡ 1 (mod 3), p 6≡ 1 (mod 9), and q ≡ 1 (mod 3).

• PublicKeygen: Set N = pq. Fix a primitive third root of unity modulo p, say ωp, and
a primitive third root of unity modulo q, say ωq. Let η ∈ G be such that: πp(η) = ωp
and πq(η) = ωq. The public key is the pair (N, γ := η · u3), where u is a random
element of G.

• SecretKeygen: The secret key is the prime p.

• E: To encrypt m ∈ Z/3Z, choose a random y ∈ G and let E(m) = γmy3.

• D: The decryption of c ∈ G is given by D(c) = φ(πp(c)).

To describe the associated FHE scheme, let µ3 = {1, ω, ω2} be the group of third roots
of unity of F2 (the algebraic closure of F2). Then the field with four elements consists of
F4 = {0, 1, ω, ω2} (here ω satisfies the equation ω2 + ω + 1 = 0). Let A = F4 and let the
character χ : Z/3Z → F4 be defined by m 7→ ωm. Notice that χ : Z/3Z → F×4 is an
isomorphism of groups so that we shall denote by χ−1 its inverse. Now the encryption and
decryption algorithms of the FHE scheme are given by:

• Enc: To encrypt the bit m = 0 encode ω twice using the above scheme to get
E1(χ

−1(ω)), E2(χ
−1(ω)) and then set Enc(0) = [E1(χ

−1(ω))] + [E2(χ
−1(ω))].

For m = 1 let E1(χ
−1(ω)) and E2(χ

−1(ω2)) be encryptions of ω and ω2 respectively,
and set Enc(1) = [E1(χ

−1(ω))] + [E2(χ
−1(ω2))].

• Dec: For c =
∑

g∈G rg[g] ∈ F2[G], let Dec(c) =
∑

g∈G rgχ(D(g)).
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One sees easily that the homomorphic properties and the security of the scheme are
exactly as in the main theorem.

Remark 11. We notice that this encryption has another interesting feature. It detects with
high probability if the message sent for encryption has been altered during the transmission.
Concretely, for every bit encrypted as [g1] + [g2], if one changes randomly the elements g1
and g2 there is a 1/2 probability that the altered ciphertext does not decrypt to 0 or 1 (but
rather to ω or ω2). Of course, for a large text that has been tempered during the encryption,
the probability of detecting if the message has been altered or not is very high. This feature
is very useful in many applications and none of the ”error”-based encryptions have it.

6 A symmetric bounded FHE scheme

6.1 k = 1

As we mentioned above, there is a big amount of efficiency in the monoid algebra blueprint if
one starts with a nontrivial (surjective) monoid homomorphic encryption (G, (F2, ·), E,D).
In fact, we shall see in a moment that the efficiency of the monoid algebra encryption is the
same as for the monoid homomorphic encryption (i.e. one can choose k = 1 in the blueprint
encryption algorithm), while the size of the ciphertext which is an output of a circuit grows
by the number of additions in the associated polynomial. This phenomenon is exactly the
opposite to the growth in the size of the ciphertext encrypted by RLWE based schemes or
other previous methods (where the costly operation is the multiplication).

We start by describing a monoid homomorphic encryption scheme, which is the most
natural example for a scheme as in the blueprint with k = 1. Unfortunately, this scheme, in
its incipient form, is vulnerable for the statistical attacks described bellow. We will describe
afterwords an improvement which takes care of this vulnerability. We choose to present the
simple scheme for the sake of the reader to follow better the ideas involved.

Let G be the set Fn
2 , with the monoid structure defined by component-wise multiplica-

tion. Basically, G is the commutative monoid generated by n idempotents with no ”extra”
relations. The scheme is defined as follows:

• Setup(1λ): Choose the dimension parameter n = n(λ), and the integers d = d(λ),
s = s(λ) such that n = 2sd.

• SecretKeygen: Choose a subset S of {1, 2, ..., n} of size s. Set the secret key to be S.

• E: To encrypt a bit m ∈ F2, choose d random numbers i1, i2, ..., id from the set
{1, 2, ..., n} such that there are exactly m of them in the secret key set S. Set E(m)
to be the vector in G, whose components corresponding to the indices i1, i2, ..., id are
equal to 0 and the others are equal to 1.

• D: To decrypt a cyphertext c using the secret key S, set D(c) = 0 if c has at least one
component equal to 0 corresponding to a index from S and D(c) = 1, otherwise.

10



Correctness. It is an easy exercise to check that D(c1 · c2) = D(c1) · D(c2), so that the
above scheme is a compact monoid homomorphic encryption scheme.

Security. We discuss first the security of the scheme under brute-force attack. To achieve 2λ

security against brute-force attacks we require the parameters n, d, s to satisfy the following
conditions s, d = Θ(λ), and since n = 2sd we obtain n = Θ(λ2). Using brute-force attack an
adversary needs to try

(
n
s

)
subsets of {1, 2, ..., n} in order to find the secret key S. Since by

Stirling’s formula
(
n
s

)
= 2ω(λ log λ) we obtain the required security. A more skilfull adversary

that has access to an encrypted text can try the following attack: compute the relative
frequency of occurrence of 0 on the ith component of ciphertexts. Of course, if the text is large
enough, these relative frequencies are approximately equal to the corresponding probabilities.
If i ∈ S then the probability that the ith component equals 0 is: 1

2
· 1
s
+ 1

2
·0 = 1

2s
. On the other

hand, if i 6∈ S then the probability equals 1
2
· d
n−s+ 1

2
· d−1
n−s = 2d−1

2(n−s) . These two expressions must
be equal, otherwise the adversary learns whether a component is in S or not, which gives non-
negligible information about S (in fact it almost determines S). Equating the expressions we
get that n = 2sd, which is the obstruction required in the Setup. Unfortunately, the above
monoid encryption scheme is vulnerable to Known Plaintext Attack, Chosen Plaintext Attack
and Chosen Ciphertext Attack (we refer to [4] for definitions). Indeed, a list of encryptions
of 1 reveals information about certain components that are not in S, so that if the list is
long enough then the secret key S can be determined with high accuracy. The scheme can
be modified in order to achieve security against the above attacks but not without affecting
the efficiency in cloud computing.

The above scheme as it is presented above, seems to take care also of the above mentioned
statistical attack. Unfortunately, this is not the case for an attack based on a even more
attentive analysis of the statistics of the encrypted text. As we saw above, the condition
n = 2sd imposed in the Setup, already guaranties that no information about the secret
key (or the plaintext in that matter) can be drawn if one tries to use the mere statistical
appearance of 0’s and 1’s in the plaintext by analyzing the 0 and 1 appearance in the
cyphertext on a certain position. We call this, the first moment statistical attack. However,
more information can be drawn if one considers pairs of indices (positions), or more generally,
l-tuples of indices and compute for each of the 2l possible configurations of 0 and 1 appearing
on this tuples, the statistics in the cyphertext. We will call this the lth-moment attack.
Observing statistical differences can be useful in deducing information about the secret key
with high probability. For example, in the above scheme, no two indices corresponding to
the secret key are ever both equal to 0, so for such pair, the statistical appearance of (0, 0)
is mathematically 0, while for any other type of pair of indices, the statistical appearance of
(0, 0) is NOT zero.

On the other hand, if we can take care of the lth-moment attack for any l ≥ 1, then
we can be sure that no other attack based on statistical analysis of the ciphertext can be
designed since the statistics in this case is determined by its moments.

In what follows, we present the improved version of the above scheme. The algorithms
that we will modify are the setup algorithm and the encryption algorithm. We shall discuss
afterwords the security against the lth-moment attack.

Setup(1λ): Choose the dimension parameter n = n(λ), and the integers d = d(λ) < s =
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s(λ) to be defined as follows: Use the Simplex algorithm to solve the following problem: set

P (k, u, v) :=
(v−k
u−k)
(v
u)

. Fix ε an acceptable statistical error (of order 1/D, where D is the size

of the document in clear).
Fix X = (X(1), . . . , X(d)) a random variable with probabilities to be determined by the
simplex algorithm. For each r = 1, . . . ,

√
2d and each i = 1, . . . , r, set the expression

E(X, i, r, s, d, n) :=
d∑

k=1

X(k)(P (i, k, s)P (r−i, d−k, n−s)−P (r,d−k,n−s))

where P (k, u, v) is set to be 0 if k > min(u, v). The system of approximate equations to be
solved takes the form: ∣∣∣∣E(X, i, r, s, d, n)− 1

2
P (r, d, n− s)

∣∣∣∣ < ε,

for all i, r in the given range, X(k) ≥ 0 for all k and
∑d

k=1X(k) = 1
2
.

SecretKeygen: Choose a subset Sk of {1, 2, ..., n} of size s. Set the secret key to be Sk.

E: To encrypt 1 ∈ F2, choose d random numbers i1, i2, . . . , id from the set {1, 2, ..., n}
such that none of them is in the secret key set, Sk. Set E(1) to be the vector of length n
with zeroes on the chosen positions and 1 everywhere else. To encrypt 0 ∈ F2, choose k
in {1, . . . , d} with probability 2X(k). Choose k random positions in Sk and d − k random
positions outside Sk and set E(0) to be the vector of length n with zeroes on the chosen
positions and 1 everywhere else.

D: To decrypt a cyphertext c using the secret key Sk, set D(c) = 0 if c has at least one
component equal to 0 corresponding to an index from Sk and D(c) = 1, otherwise.

Efficiency. Now, let’s see how this improves the efficiency in the FHE scheme obtained
from the above monoid homomorphic scheme. First of all, we can take R to be equal to F2,
H = R and χ to be the identity character. In this case, k in the Enc algorithm can be taken
to be equal to 1, so that the size of an encrypted message will be O(λ). For a polynomial
P associated to a circuit, the size of the encryption P (c1, . . . , cr) will be at most L(P ) · n,
where L(P ) is the number of monomials of the polynomial P . Indeed, since each ciphertext
ci has length n, each monomial will still have n bits since the multiplication is done within
G. Next, we formally add the monomials resulting in a length at most L(P ) · n.

This feature is very effective compared to other leveled FHE in the literature because the
size of an output of a circuit applied to fresh ciphertexts is linear in the number of monomials
of the polynomial associated to the circuit, which for a lot of applications is much smaller
than its total depth (number of additions and multiplications).

In fact, in practice, the above scheme is far more efficient than the mathematical predic-
tion since in practice one works only within a fixed range of values for the security parame-
ter, etc. We ran the above simplex algorithm where we fixed as acceptable statistical error
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ε = 2−30 and found an acceptable range of solutions for (d, s, n) = (22, 31, 1010). The solu-
tion is found almost instantaneously on a regular PC (our algorithm, which can be improved,
found it in 0.17 sec on a 2.66 GHz I7, 8Gb RAM). In fact, the solution will guaranty that
no r-tuple statistics will reveal significant information because already at the 6th moment
(which is guarantied by the simplex algorithm to reveal no information), the probability of
encryption with a fixed 6-tuple is less than ε. The brute force attack is also impossible since(
1010
31

)
is of order 2196, which is far beyond today’s (or near future) capacity of processing.

Therefore, for documents of size of Gb-order, our encryption is proved to be secure and
sufficiently efficient.

6.2 k = 2

There is a simple way to improve the scheme so it becomes secure for KPA, CPA, etc: one
can choose k = 2 in the blueprint, i.e. Enc(0) := [E1(0)] + [E2(0)] or [E1(1)] + [E2(1)] while
Enc(1) := [E1(0)] + [E2(1)] or [E1(1)] + [E2(0))], where by ”or”, we mean uniformly chosen.

Now the scheme becomes resistant to KPA and CPA because one is unable to separate
the components of Enc(m) which correspond to E(0) or to E(1). Thus the only possible
attacks would be those discussed above.

The drawback of this scheme, besides the fact that fresh ciphertexts have double sizes,
is that the size of the ciphertext grows exponentially (up to some finite point) with the
multiplicative depth of a circuit, making the practical implementation rather unattractive.
The scheme behaves exactly as the scheme presented in section 5.

The ring homomorphic encryption scheme described above can be transformed into a
public key encryption scheme using lists of encryptions of 0 and 1 (see [30]). However, the
size of fresh ciphertexts will become too large to practically implement the scheme.

It becomes clear that for a practical implementation of encryption schemes produced by
the blueprint presented above, one needs yet another algorithm, which may be called generi-
cally ”compactification”, that takes as input a large size ciphertext and outputs an equivalent
ciphertext with lower (practically manageable) size. This process is similar in essence with
the reliniarization/key switching processes in the RLWE-based algorithms. The drawback in
the later algorithms is the growth of the noise which is solved using the techniques mentioned
earlier. In our case the drawback is the size of the ciphertext after evaluation.

6.3 A previous example

The example in the previous section is not the first monoid homomorphic encryption scheme
over the monoid (F2, ·). The first one, to our knowledge, is the scheme presented in [31].
This scheme is secure but there is a downside; more precisely the scheme is capable to
decode correctly any ”AND” operation with overwhelming probability (more precisely, that
is 1 − 1

2l
). In other words, the scheme does not satisfy the equality D(x · y) = D(x) ·D(y)

for any ciphertexts x and y. To describe the scheme we shall use the group homomorphic
encryption scheme of Goldwasser-Micali. Since the scheme is well known we decided not to
recall it here (see [20] for details).
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• Setup(1λ): Choose two large primes p = p(λ), q = q(λ) to ensure security of the
Goldwasser-Micali scheme. Choose ` = `(λ) of size O(λ).

• Keygen: Compute N = pq. The public key is the same as in the Goldwasser-Micali
scheme. The secret key is p or q.

• E: If m = 1 set v = (0, ..., 0) ∈ F`
2. If m = 0 set v = (v1, ..., vn) ∈ F`

2, where the
components vi are randomly chosen in {0, 1}, such that not all are equal to 0. Encrypt

each component of v with the Goldwasser-Micali scheme to get a vector in [(Z/NZ)×]
`
.

• D: To recover the plaintext from the cyphertext c ∈ [(Z/NZ)×]
`
, first decrypt each

component of c, and then if the obtained vector is the 0-vector the message decrypts
to 1, else to 0.

It is easy to see that the semantic security of this scheme reduces down to the security of
the Goldwasser-Micali scheme. Let us describe the AND operation on the ciphertext space.
Let x and y be two ciphertexts then z := AND(x, y) is defined as follows:

1. Choose uniformly at random two ` × ` matrices over F2 until two nonsingular matrices
A = (aij) and B = (bij) are found.

2. Let x = (x1, ...x`), y = (y1, ...y`). Compute v = (v1, ..., v`), where

vi =
∏

j,aij=1

xj ·
∏

j,bij=1

yj.

3. Pick uniformly at random r1, ..., r` ∈ (Z/NZ)× and set z = (r21v1, ..., r
2
`v`).

Correctness. It is an easy exercise to check that the probability

P (D(AND(x, y)) = D(x) ·D(y)) > 1− 1

2`
.

We can apply our blueprint to this monoid encryption scheme to produce a ring ho-
momorphic encryption scheme over F2. A simple computation shows that in the resulted
scheme the decryption algorithm evaluates correctly a ciphertext obtained by a homomor-
phic evaluation of a circuit C with probability of size 1− L

2l
, where L = L(PC) is the number

of monomials (of degree at least 2) of the polynomial attached to C. Therefore, the resulted
scheme is only leveled.

7 Conclusions

1) In the case of the encryption scheme described in Section 5 the maximal length of an
output of a circuit is the cardinality of G . Using Goldwasser-Micali cryptosystem, in order
to achieve secure encryption, one takes n := Log(|G|) = 2048, therefore a maximal output
would have 2048 · 22048 bits which is totally unpractical (see the discussion in Section 1.2).
Our blueprint however, can use any group homomorphic encryption scheme. For a group
homomorphic encryption schemes which is based on the discrete logarithm problem, the size
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of the cyphertext space is required to be at least 2160 in size (see [32] and [34]), therefore
in our blueprint the maximal size of an output would require around 160 · 2160 bits which is
again not practical, but is much closer to what we mean by practical. This size is actually
reachable up to a small constant using ECC or HECC.

2) From a theoretical point of view, it is better to see the encryption process described in
section 6 as a stochastic process in order to get better performance. However, in the practical
range that our scheme works, it doesn’t seem to get much better than the scheme presented
above. One idea of making the encryption process to be stochastic is to attach to each of
the n positions a probability vector, where the component k corresponds to the extraction
probability of that position in the case the encryption has k zeroes corresponding to the
secret key. The simplex algorithm becomes a stochastic simplex algorithm, which in practice
is hard to compute. But this strategy doesn’t necessarily get stuck; one can use dynamic
procedures to compute on the run those probabilities: during the encryption process, modify
accordingly the probabilities so the moment’s deviation gets within the accepted error. (One
could call this, AI encryption strategy).

3) The authors’ work in progress can actually prove that in a very well defined manner
these two examples of encryption schemes are essential examples of commutative ring homo-
morphic encryption schemes over F2. These two examples correspond to semigroup algebra
homomorphic encryption schemes where the semigroup has only one idempotent, respectively
the semigroup is made up only of idempotents.

Acknowledgments

This work was partially supported by the Romanian National Authority for Scientific Re-
search (CNCS-UEFISCDI) under the project PN-II-PT-PCCA-2011-3 (ctr. 19/2012).

References

[1] Albrecht, M.R., Farshim, P., Faugère, J.-C., Perret, L.: Polly Cracker, Revisited, In Lee,
D.H. ed., ASIACRYPT 2011, Lecture Notes in Computer Science, vol. 7073, Springer,
2011, pp. 179196.

[2] Armknecht, F., Katzenbeisser, S., Peter, A.: Group Homomorphic Encryption: Char-
acterizations, Impossibility Results, and Applications , in Designs, Codes and Cryptog-
raphy, vol. 67, no. 2, 2013, pp. 209 - 232.

[3] Barkee, B., Can, D.C., Ecks, J., Moriarty, T., Ree, R.F.: Why you cannot even hope to
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