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Abstract

We study the problem of building a verifiable delay function (VDF).
A VDF requires a specified number of sequential steps to evaluate, yet
produces a unique output that can be efficiently and publicly verified.
VDFs have many applications in decentralized systems, including pub-
lic randomness beacons, leader election in consensus protocols, and
proofs of replication. We formalize the requirements for VDFs and
present new candidate constructions that are the first to achieve an
exponential gap between evaluation and verification time.

1 Introduction

Consider the problem of running a verifiable lottery using a randomness bea-
con, a concept first described by Rabin [62] as an ideal service that regularly
publishes random values which no party can predict or manipulate. A classic
approach is to apply an extractor function to a public entropy source, such
as stock prices [24]. Stock prices are believed to be difficult to predict for
a passive observer, but an active adversary could manipulate prices to bias
the lottery. For example, a high-frequency trader might slightly alter the
closing price of a stock by executing (or not executing) a few transactions
immediately before the market closes.

Suppose the extractor takes only a single bit per asset (e.g. whether
the stock finished up or down for the day) and suppose the adversary is
capable of changing this bit for k different assets using last-second trades.
The attacker could read the prices of the assets it cannot control, quickly



simulate 2* potential lottery outcomes based on different combinations of
the k outcomes it can control, and then manipulate the market to ensure its
preferred lottery outcome occurs.

One solution is to add a delay function after extraction, making it slow
to compute the beacon outcome from an input of raw stock prices. With
a delay function of say, one hour, by the time the adversary simulates the
outcome of any potential manipulation strategy, the market will be closed
and prices finalized, making it too late to launch an attack. This suggests
the key security property for a delay function: it should be infeasible for an
adversary to distinguish the function’s output from random in less than a
specified amount of wall-clock time, even given a potentially large number
of parallel processors.

A trivial delay function can be built by iterating a cryptographic hash
function. For example, it is reasonable to assume it is infeasible to compute
240 jterations of SHA-256 in a matter of seconds, even using specialized
hardware. However, a lottery participant wishing to verify the output of
this delay function must repeat the computation in its entirety (which might
take many hours on a personal computer). Ideally, we would like to design a
delay function which any observer can quickly verify was computed correctly.

Defining delay functions. In this paper we formalize the requirements
for a wverifiable delay function (VDF) and provide the first constructions
which meet these requirements. A VDF consists of a triple of algorithms:
Setup, Eval, and Verify. Setup(\,t) takes a security parameter A and de-
lay parameter ¢ and outputs public parameters pp (which fix the domain
and range of the VDF and may include other information necessary to
compute or verify it). Eval(pp,x) takes an input x from the domain and
outputs a value y in the range and (optionally) a short proof 7. Finally,
Verify(pp, x, y, m) efficiently verifies that y is the correct output on z. Cru-
cially, for every input x there should be a unique output y that will verify.
Informally, a VDF scheme should satisfy the following properties:

— sequential: honest parties can compute (y, ) < Eval(pp, x) in ¢ sequential
steps, while no parallel-machine adversary with a polynomial number of
processors can distinguish the output y from random in significantly fewer
steps.

— efficiently verifiable: We prefer Verify to be as fast as possible for honest
parties to compute; we require it to take total time O(polylog(t)).



A VDF should remain secure even in the face of an attacker able to perform
a polynomially bounded amount of pre-computation.
Some VDFs may also offer additional useful properties:

— decodable: An input x can be recovered uniquely from an output y. If the
decoding is efficient then no additional proof is required. For example, an
invertible function or permutation that is sequentially slow to compute
but efficient to invert could be used to instantiate an efficiently decodable
VDF.

— incremental: a single set of public parameters pp supports multiple hard-
ness parameters t. The number of steps used to compute y is specified in
the proof, instead of being fixed during Setup.

Classic slow functions Time-lock puzzles [64] are similar to VDFs in
that they involve computing an inherently sequential function. An elegant
solution uses repeated squaring in an RSA group as a time-lock puzzle.
However, time-lock puzzles are not required to be universally verifiable and
in all known constructions the verifier uses its secret state to prepare each
puzzle and verify the results. VDFs, by contrast, may require an initial
trusted setup but then must be usable on any randomly chosen input.
Another construction for a slow function dating to Dwork and Naor [31]
is extracting modular square roots. Given a challenge x € Zj (with p =3

(mod 4)), computing y = /z = ot (mod p) can be efficiently verified by
checking that y> = z (mod p). There is no known algorithm for computing
modular exponentiation which is sublinear in the bit-length of the exponent.
However, the difficulty of puzzles is limited to ¢t = O(log p) as the exponent
can be reduced modulo p — 1 before computation, requiring the use of a
very large prime p to produce a difficult puzzle. While it was not origi-
nally proposed for its sequential nature, it has subsequently been considered
as such several times [39, 46]. In particular, Lenstra and Wesolowski [46]
proposed chaining a series of such puzzles together in a construction called
Sloth, with lotteries as a specific motivation. Sloth is best characterized as a
time-asymmetric encoding, offering a trade-off in practice between computa-
tion and inversion (verification), and thus can be viewed as a pseudo-VDEF.
However, it does not meet our asymptotic definition of a VDF because it
does not offer asymptotically efficient verification: the ¢-bit modular expo-
nentiation can be computed in parallel time ¢, whereas the output (a t-bit
number) requires €(¢) time simply to read, and therefore verification cannot



run in total time polylog(¢). We give a more complete overview of related
work in Section 8.

Our contributions: In addition to providing the first formal definitions of
VDFs, we contribute the following candidate constructions and techniques:

1. A theoretical VDF can be constructed using incrementally verifiable
computation [66] (IVC), in which a proof of correctness for a com-
putation of length ¢ can be computed in parallel to the computation
with only polylog(t) processors. We prove security of this theoretical
VDF using IVC as a black box. IVC can be constructed from succinct
non-interactive arguments of knowledge (SNARKSs) under a suitable
extractor complexity assumption [14].

2. We propose a construction based on injective polynomials over alge-
braic sets that cannot be inverted faster than computing polynomial
GCDs. Computing polynomial GCD is sequential in the degree d of
the polynomials on machines with fewer than O(d?) processors. We
propose a candidate construction of time-asymmetric encodings from
a particular family of permutation polynomials over finite fields [37].
This construction is asymptotically a strict improvement on Sloth, and
to the best of our knowledge is the first encoding offering an exponen-
tial time gap between evaluation and inversion. We call this a decod-
able weak VDF because it requires the honest Eval to use greater than
polylog(t) parallelism to run in parallel time ¢ (the delay parameter).

3. We describe a practical boost to constructing VDFs from IVC using
time-asymmetric encodings as the underlying sequential computation,
offering up to a 20,000 fold improvement (in the SNARK efficiency)
over naive hash chains. In this construction decodability of the VDF
is maintained, however a SNARK proof is used to boost the efficiency
of verification.

4. We construct a VDF secure against bounded pre-computation attacks
following a generalization of time-lock puzzles based on exponentiation
in a group of unknown order.

2 Applications

Before giving precise definitions and describing our constructions, we first
informally sketch several important applications of VDFs in decentralized
systems.



Randomness beacons. VDFs are useful for constructing randomness
beacons from sources such as stock prices [24] or proof-of-work blockchains
(e.g. Bitcoin, Ethereum) [17, 60, 12]. Proof-of-work blockchains include
randomly sampled solutions to computational puzzles that network partic-
ipants (called miners) continually find and publish for monetary rewards.
Underpinning the security of proof-of-work blockchains is the strong belief
that these solutions have high computational min-entropy. However, similar
to potential manipulation of asset prices by high-frequency traders, powerful
miners could potentially manipulate the beacon result by refusing to post
blocks which produce an unfavorable beacon output.

Again, this attack is only feasible if the beacon can be computed quickly,
as each block is fixed to a specific predecessor and will become “stale” if not
published. If a VDF with a suitably long delay is used to compute the bea-
con, miners will not be able to determine the beacon output from a given
block before it becomes stale. More specifically, given the desired delay pa-
rameter ¢, the public parameters pp = (ek, vk) <* Setup(,¢) are posted on
the blockchain, then given a block b the beacon value is determined to be
r where (r,m) = Eval(ek, b), and anyone can verify correctness by running
Verify(vk, b, 7, 7). The security of this construction, and in particular the
length of delay parameter which would be sufficient to prevent attacks, re-
mains an informal conjecture due to the lack of a complete game-theoretic
model capturing miner incentives in Nakamoto-style consensus protocols.
We refer the reader to [17, 60, 12] for proposed models for blockchain ma-
nipulation. Note that most formal models for Nakamoto-style consensus
such as that of Garay et al. [34] do not capture miners with external incen-
tives such as profiting from lottery manipulation.

Another approach for constructing beacons derives randomness from a
collection of participants, such as all participants in a lottery [36, 46]. The
simplest paradigm is “commit-and-reveal” paradigm where n parties submit
commitments to random values 71, ..., 7, in an initial phase and subsequently
reveal their commitments, at which point the beacon output is computed as
r = @, ri. The problem with this approach is that a malicious adversary
(possibly controlling a number of parties) might manipulate the outcome by
refusing to open its commitment after seeing the other revealed values, forc-
ing a protocol restart. Lenstra and Wesolowski proposed a solution to this
problem (called “Unicorn”[46]) using a delay function: instead of using com-
mitments, each participant posts their r; directly and seed = H(r1,...,ry)
is passed through a VDF. The outcome of Eval is then posted and can be
efficiently verified. With a sufficiently long delay parameter (longer than the
time period during which values may be submitted), even the last party to



publish their r; cannot predict what its impact will be on the final beacon
outcome. The beacon is unpredictable even to an adversary who controls
n — 1 of the participating parties. It has linear communication complexity
and uses only two rounds. This stands in contrast to coin-tossing beacons
which use verifiable secret sharing and are at best resistant to an adversary
who controls a minority of the nodes [1, 65, 23]. These beacons also use
super-linear communication and require multiple rounds of interaction. In
the two party setting there are tight bounds that an r-round coin-flipping
protocol can be biased with O(1/r) bias [54]. The “Unicorn” construction
circumvents these bounds by assuming semi-synchronous communication,
i.e. there exists a bound to how long an adversary can delay messages.

Resource-efficient blockchains. Amid growing concerns over the long-
term sustainability of proof-of-work blockchains like Bitcoin, which consume
a large (and growing) amount of energy, there has been concerted effort
to develop resource-efficient blockchains in which miners invest an upfront
capital expenditure which can then be re-used for mining. Examples include
proof-of-stake [44, 52, 43, 28, 13], proof-of-space [58], and proof-of-storage
[53, 2]. However, resource-efficient mining suffers from costless simulation
attacks. Intuitively, since mining is not computationally expensive, miners
can attempt to produce many separate forks easily.

One method to counter simulation attacks is to use a randomness beacon
to select new leaders at regular intervals, with the probability of becoming a
leader biased by the quality of proofs (i.e. amount of stake, space, etc) sub-
mitted by miners. A number of existing blockchains already construct bea-
cons from tools such as verifiable random functions, verifiable secret sharing,
or deterministic threshold signatures [43, 28, 23, 4]. However, the security of
these beacons requires a non-colluding honest majority; with a VDF-based
lottery as described above this can potentially be improved to participation
of any honest party.

A second approach, proposed by Cohen [26], is to combine proofs-of-
resources with incremental VDFs and use the product of resources proved
and delay induced as a measure of blockchain quality. This requires a proof-
of-resource which is costly to initialize (such as certain types of proof-of-
space). This is important such that the resources are committed to the
blockchain and cannot be used for other purposes. A miner controlling N
units of total resources can initialize a proof m demonstrating control over
these IV units. Further assume that the proof is non-malleable and that in
each epoch there is a common random challenge ¢, e.g. a block found in



the previous epoch, and let H be a random oracle available to everyone. In
each epoch, the miner finds 7 = min;<;<y{H(c, 7,4)} and computes a VDF
on input ¢ with a delay proportional to 7. The first miner to successfully
compute the VDF can broadcast their block successfully. Note that this
process mimics the random delay to find a Bitcoin block (weighted by the
amount of resources controlled by each miner), but without each miner
running a large parallel computation.

Proof of data replication. Another promising application of VDFs is
proofs of replication, a special type of proof of storage of data which requires
dedicating storage even if the data is publicly available. For instance, this
could be used to prove that a number of replicas of the same file are being
stored. Classic proofs of retrievability [41] are typically defined in a private-
key client/server setting, where the server proves to the client that it can
retrieve the client’s (private) data, which the client verifies using a private
key.

Instead, the goal of a proof of replication [6, 2, 3] is to verify that a
given server is storing a unique replica of some data which may be publicly
available. Armknecht et al. [6] proposed a protocol in the private verifier
model using RSA time-lock puzzles. Given an efficiently decodable VDF,
we can adapt their construction to create proofs-of-replication which are
more transparent (i.e. do not rely on a designated verifier). Given a unique
replicator identifier id and public parameters pp <- Setup(\, t), the replica-
tor computes a unique slow encoding of the file that take sequential time ¢.
This encoding is computed by breaking the file into b-bit blocks B, ..., By,
and storing yi, ..., y, where (y;, L) = Eval(pp, B; ® H(id||i)) where H is a
collision-resistant hash function H : {0,1}* — {0,1}*. To verify that the
replicator has stored this unique copy, a verifier can query an encoded block
y; (which must be returned in significantly less time than it is feasible to
compute Eval). The verifier can quickly decode this response and check it for
correctness, proving that the replicator has stored (or can quickly retrieve
from somewhere) an encoding of this block which is unique to the identifier
id. If the unique block encoding y; has not being stored, the VDF ensures
that it cannot be re-computed quickly enough to fool the verifier, even given
access to B; . The verifier can query for as many blocks as desired; each
query has a 1 — p chance of exposing a cheating prover that is only storing a
fraction p of the encoded blocks. Note that in this application it is critical
that the VDF is decodable. Otherwise, the encoding of the file isn’t a useful
replica because it cannot be used to recover the data if all other copies are



lost.

Computational timestamping. All known proof-of-stake systems are
vulnerable to long-range forks due to post-hoc stakeholder misbehavior [44,
52, 43, 13]. In proof-of-stake protocols, at any given time the current stake-
holders in the system are given voting power proportionate to their stake in
the system. An honest majority (or supermajority) is assumed because the
current stakeholders are incentivized to keep the system running correctly.
However, after stakeholders have divested they no longer have this incentive.
Once the majority (eq. supermajority) of stakeholders from a point in time
in the past are divested, they can collude (or sell their key material to an
attacker) in order to create a long alternate history of the system up until
the present. Current protocols typically assume this is prevented through an
external timestamping mechanism which can prove to users that the genuine
history of the system is much older.

Incremental VDF's can provide computational evidence that a given ver-
sion of the state’s system is older (and therefore genuine) by proving that
a long-running VDF computation has been performed on the genuine his-
tory just after the point of divergence with the fraudulent history. This
potentially enables detecting long-range forks without relying on external
timestamping mechanisms.

We note however that this application of VDF's is fragile as it requires
precise bounds on the attacker’s computation speed. For other applications
(such as randomness beacons) it may be acceptable if the adversary can
speed up VDF evaluation by a factor of 10 using faster hardware; a higher
t can be chosen until even the adversary cannot manipulate the beacon
even with a hardware speedup. For computational timestamping, a 10-fold
speedup would be a serious problem: once the fraudulent history is more
than one-tenth as old as the genuine history, an attacker can fool participants
into believing the fraudulent history is actually older than the genuine one.

3 Model and definitions

We now define VDF's more precisely. In what follows we say that an algo-
rithm runs in parallel time ¢t with p processors if it can be implemented on
a PRAM machine with p parallel processors running in time t. We say total
time (eq. sequential time) to refer to the time needed for computation on a
single processor.



Definition 1. A VDF V = (Setup, Eval, Verify) is a triple of algorithms as
follows:

o Setup(\,t) — pp = (ek,vk) is a randomized algorithm that takes a se-
curity parameter A and a desired puzzle difficulty t and produces public
parameters pp that consists of an evaluation key ek and a verification
key vk. We require Setup to be polynomial-time in X. By convention,
the public parameters specify an input space X and an output space ).
We assume that X is efficiently sampleable. Setup might need secret ran-
domness, leading to a scheme requiring o trusted setup. For meaningful
security, the puzzle difficulty t is restricted to be sub-exponentially sized
in A.

o Eval(ek,z) — (y,m) takes an input x € X and produces an output y € Y
and a (possibly empty) proof m. Eval may use random bits to generate
the proof ™ but not to compute y. For all pp generated by Setup(\,t)
and all x € X, algorithm Eval(ek,z) must run in parallel time t with
poly(log(t), \) processors.

o Verify(vk, z,y, ) — { Yes, No} is a deterministic algorithm takes an input,
output and proof and outputs Yes or No. Algorithm Verify must run in
total time polynomial in logt and A. Notice that Verify is much faster
than Eval.

Additionally V' must satisfy Correctness (Definition 2), Soundness (Defini-
tion 3), and Sequentiality (Definition /).

Correctness and Soundness Every output of Eval must be accepted by
Verify. We guarantee that the output y for an input x is unique because Eval
evaluates a deterministic function on X. Note that we do not require the
proof 7 to be unique, but we do require that the proof is sound and that a
verifier cannot be convinced that some different output is the correct VDF
outcome. More formally,

Definition 2 (Correctness). A VDF V s correct if for all A, t, param-
eters (ek,vk) < Setup(A,t), and all v € X, if (y,7m) < Eval(ek,z) then
Verify(vk, z,y, ) = Yes.

We also require that for no input x can an adversary get a verifier to
accept an incorrect VDF output.



Definition 3 (Soundness). A VDF is sound if for all algorithms A that run
in time O (poly(t, \))

Verify(vk, z,y, ) = Yes | pp = (ek,vk) < Setup(\,t)

Pl % Eval(ek, 2) (z,y,7) < A(X, pp, t)

= negl()\)

Size restriction on ¢t Asymptotically ¢ must be subexponential in A. The
reason for this is that the adversary needs to be able to run in time at least
t (Eval requires this), and if ¢ is exponential in A\ then the adversary might
be able to break the underlying computational security assumptions that
underpin both the soundness as well as the sequentiality of the VDF, which
we will formalize next.

Parallelism in Eval The practical implication of allowing more paral-
lelism in Eval is that “honest” evaluators may be required to have this much
parallelism in order to complete the challenge in time ¢. The sequential-
ity security argument will compare an adversary’s advantage to this opti-
mal implementation of Eval. Constructions of VDFs that do not require
any parallelism to evaluate Eval in the optimal number of sequential steps
are obviously superior. However, it is unlikely that such constructions ex-
ist (without trusted hardware). Even computing an iterated hash function
or modular exponentiation (used for time-lock puzzles) could be computed
faster by parallelizing the hash function or modular arithmetic. In fact, for
an decodable VDF it is necessary that || > poly(t), and thus the challenge
inputs to Eval have size polylog(t). Therefore, in our definition we allow
algorithm Eval up to polylog(t) parallelism.

3.1 VDF Security

We call the security property needed for a VDF scheme o-sequentiality. Es-
sentially, we require that no adversary is able to compute an output for Eval
on a random challenge in parallel time o(t) < ¢, even with up to “many”
parallel processors and after a potentially large amount of pre-computation.
It is critical to bound the adversary’s allowed parallelism, and we incorpo-
rate this into the definition. Note that for an efficiently decodable VDF,
an adversary with |)| processors can always compute outputs in o(t) par-
allel time by simultaneously trying all possible outputs in ). This means
that for efficiently decodable VDFs it is necessary that |Y| > poly(t), and
cannot achieve o-sequentiality against an adversary with greater than ||
processors.

10



We define the following sequentiality game applied to an adversary A :=
(AOa -/41 ):

pp < Setup(A, t) // choose a random pp
L & Ap(\, pp,t) //adversary preprocesses pp
T X // choose a random input x
ya <~ A1(L,pp, z) //  adversary computes an output y4

We say that (A, A1) wins the game if y4 = y where (y, 7) := Eval(pp, x).

Definition 4 (Sequentiality). For functions o(t) and p(t), the VDF is
(p, 0)-sequential if no pair of randomized algorithms Ay, which runs in to-
tal time O(poly(t,\)), and Ay, which runs in parallel time o(t) on at most
p(t) processors, can win the sequentiality game with probability greater than

negl(\).

The definition captures the fact that even after Ay computes on the
parameters pp for a (polynomially) long time, the adversary A; cannot
compute an output from the input x in time o(t) on p(t) parallel processors.
If a VDF is (p, o)-sequential for any polynomial p, then we simply say the
VDF is o-sequential. In the sequentiality game we do not require the online
attack algorithm A; to output a proof m. The reason is that in many of
our applications, for example in a lottery, the adversary can profit simply
by learning the output early, even without being able to prove correctness
to a third party.

Values of o(t) Clearly any candidate construction trivially satisfies o(¢)-
sequentiality for some o (e.g. o(t) = 0). Thus, security becomes more
meaningful as o(t) — ¢. No construction can obtain o(t) = t because by
design Eval runs in parallel time ¢. Ideal security is achieved when o(t) =
t — 1. This ideal security is in general unrealistic unless, for example, time
steps are measured in rounds of queries to an ideal oracle (e.g. random
oracle). In practice, if the oracle is instantiated with a concrete program
(e.g. a hash function), then differences in hardware/implementation would
in general yield small differences in the response time for each query. An
almost-perfect VDF would achieve o(t) = t—o(t) sequentiality. Even o(t) =
t — et sequentiality for small e is sufficient for most applications. Security
degrades as € — 1. The naive VDF construction combining a hash chain
with succinct verifiable computation (i.e. producing a SNARG proof of

11



correctness following the hash chain computation) cannot beat ¢ = 1/2,
unless it uses at least w(t) parallelism to generate the proof in sublinear
time (exceeding the allowable parallelism for VDFs, though see a relaxation
to “weak” VDF's below).

Unpredictability and min-entropy Definition 4 captures an unpre-
dictability property for the output of the VDF, similar to a one-way function.
However, similar to random oracles, the output of the VDF on a given in-
put is never indistinguishable from random. It is possible that no depth
o(t) circuit can distinguish the output on a randomly sampled challenge
from random, but only if the VDF proof is not given to the distinguisher.
Efficiently decodable VDFs cannot achieve this stronger property.

For the application to random beacons (e.g. for lotteries), it is only nec-
essary that on a random challenge the output is unpredictable and also has
sufficient min-entropy' conditioned on previous outputs for different chal-
lenges. In fact, o-sequentiality already implies that min-entropy is Q(log \).
Otherwise some fixed output y occurs with probability 1/poly(A) for ran-
domly sampled input z; the adversary 4y can computes O(poly())) samples
of this distribution in the preprocessing to find such a 3’ with high proba-
bility, and then A; could output 3’ as its guess. Moreover, if o-sequentiality
is achieved for ¢ superpolynomial (sub-exponential) in A, then the prepro-
cessing adversary is allowed 20(%) samples, implying some o(\) min-entropy
of the output must be preserved. By itself, o-sequentiality does not imply
Q(\) min-entropy. Stronger min-entropy preservation can be demonstrated
in other ways given additional properties of the VDF, e.g. if it is a permuta-
tion or collision-resistant. Under suitable complexity theoretic assumptions
(namely the existence of subexponential 2°(") circuit lower bounds) a com-
bination of Nisan-Wigderson type PRGs and extractors can also be used to
generate poly(A) pseudorandom bits from a string with min-entropy log A.

Random “Delay” Oracle Intherandom oracle model, any unpredictable
string (regardless of its min-entropy) can be used to extract an unpredictable
A-bit uniform random string. For the beacon application, a random oracle
H would simply be applied to the output of the VDF to generate the bea-
con value. We can even model this construction as an ideal object itself,
a Random Delay Oracle, which implements a random function H’ and on
any given input x it waits for o(t) steps before returning the output H'(z).

'A randomness extractor can then be applied to the output to map it to a uniform
distribution.

12



Demonstrating a construction from a o-sequential VDF and random oracle
H that is provably indifferentiable [50] from a Random Delay Oracle is an
interesting research question.?

Remark: Removing any single property makes VDF construction easy.
We note the existence of well-known outputs if any property is removed:

o If Verify is not required to be fast, then simply iterating a one-way function
t times yields a trivial solution. Verification is done by re-computing
the output, or a set of ¢ intermediate points can be supplied as a proof
which can be verified in parallel time O(¢/¢) using ¢ processors, with total
verification time remaining O(t).

e If we do not require uniqueness, then the construction of Mahmoody et
al. [49] using hash functions and depth-robust graphs suffices. This con-
struction was later improved by Cohen and Pietrzak [19]. This construc-
tion fails to ensure uniqueness because once an output y is computed it
can be easily mangled into many other valid outputs vy’ # ¥, as discussed
in Section 8.1.

e If we do not require o-sequentiality, many solutions are possible, such as
finding the discrete log of a challenge group element with respect to a
fixed generator. Note that computing an elliptic curve discrete log can
be done in parallel time o(t) using a parallel version of the Pollard rho
algorithm [67].

Weaker VDFs For certain applications it is still interesting to consider a
VDF that requires even more than polylog(t) parallelism in Eval to compute
the output in parallel time ¢. For example, in the randomness beacon appli-
cation only one party is required to compute the VDF and all other parties
can simply verify the output. It would not be unreasonable to give this
one party a significant amount of parallel computing power and optimized
hardware. This would yield a secure beacon as long as no adversary could
compute the outputs of Eval in faster that t steps given even more paral-
lelism than this party. Moreover, for small values of ¢ it may be practical

2The difficulty in proving indifferentiability arises because the distinguisher can query
the VDF/RO construction and the RO itself separately, therefore the simulator must
be able to simulate queries to the random oracle H given only access to the Random
Delay Oracle. Indifferentiability doesn’t require the simulator to respond in exactly the
same time, but it is still required to be efficient. This becomes an issue if the delay ¢t is
superpolynomial.

13



for anyone to use up to O(t) parallelism (or more). With this in mind, we
define a weaker variant of a VDF that allows additional parallelism in Eval.

Definition 5. We call a system V = (Setup, Eval, Verify) a weak-VDF if it
satisfies Definition 1 with the exception that Eval is allowed up to poly(t, \)
parallelism.

Note that (p, o)-sequentiality can only be meaningful for a weak-VDF
if Eval is allowed strictly less that p(t) parallelism, otherwise the honest
computation of Eval would require more parallelism than even the adversary
is allowed.

4 VDFs from Incrementally Verifiable Computa-
tion

VDF's are by definition sequential functions. We therefore require the exis-
tence of sequential functions in order to construct any VDF. We begin by
defining a sequential function.

Definition 6 ((¢,€)-Sequential function). f: X — Y is a (¢, €)-sequential
function if for A = O(log(| X)), if the following conditions hold.

1. There exists an algorithm that for all x € X evaluates f in parallel
time t using poly(log(t), ) processors.

2. For all A that run in parallel time strictly less than (1 — €) -t with
poly(t, \) processors:

Plya=f(z) | ya < A\ @), o <~ X| < negl(\)

In addition we consider iterated sequential functions that are an iterative
composition of some other function with the same domain and image. The
key property of an iterated sequential function cannot be evaluated more
efficiently then through iteration of the round function.

Definition 7 (Iterated Sequential Function). Let g : X — X be a function

which satisfies (t,€)-sequentiality. A function f : N x X — X defined as

flk,z) = g™ (x) = gogo---o0g is called an iterated sequential function
k times

(with round function g) if for all k = 2°N) the function h : X — X such

that h(xz) = f(k,x) is (k- t, €)-sequential as per Definition 6.
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It is widely believed that a chain of a secure hash function (like SHA-
256) is an iterated sequential function with ¢t = O(\) and e negligible in .
The sequentiality of hash chains can be proved in the random oracle model
[45, 49]. We will use the functions g explicitly and require it to have an
arithmetic circuit representation. Modeling g as an oracle, therefore, does
not suffice for our construction.

Another candidate for an iterated sequential function is exponentiation
in a finite group of unknown order, where the round function is squaring in
the group. The fastest known way to compute this is by repeated squaring
which is an iterative sequential computation.

Based on these candidates, we can make the following assumption about
the existence of iterated sequential functions:

Assumption 1. For all X\ € N there exists an €,t with t = poly(\) and a
function gy : X — X s.t. log|X| = X and X can be sampled in time poly(\)
and gy is a (t,€)-sequential function, and the function f: N x X — X with
round function gy is an iterated sequential function.

An iterated sequential function by itself gives us many of the properties
needed of a secure VDF construction. It is sequential by definition and
the trivial algorithm (iteratively computing g) uses only poly(\) parallelism.
Such a function by itself, however, does not suffice to construct a VDEF.
The fastest generic verification algorithm simply recomputes the function.
While this ensures soundness it does not satisfy the efficient verification
requirement of a VDF. The verifier of a VDF needs to be exponentially
more efficient than the prover.

SNARGs and SNARKs A natural idea to improve the verification time
is to use verifiable computation. In verifiable computation the prover com-
putes a succinct argument (SNARG) that a computation was done correctly.
The argument can be efficiently verified using resources that are independent
of the size of the computation. A SNARG is a weaker form of a succinct
non-interactive argument of knowledge (SNARK) [35] for membership in an
NP language £ with relation R (Definition 8). The additional requirement
of a SNARK is that for any algorithm that outputs a valid proof of mem-
bership of an instance x € L there is also an extractor that “watches” the
algorithm and outputs a witness w such that (z,w) € R. In the special case
of providing a succinct proof that a (polynomial size) computation F was
done correctly, i.e. y is the output of F' on x, the NP witness is empty and
the NP relation simply consists of pairs ((x,y), L) such that F(z) = y.
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Definition 8 (Verifiable Computation / SNARK). Let L denote an NP lan-
guage with relation Ry, where x € L iff 3w Re(z,w) =1. A SNARK system
for Ry is a triple of polynomial time algorithms (SNKGen, SNKProve, SNK Verify)
that satisfy the following properties:

Completeness:

(vk, ek) < SNKGen(1*)

P NK Verify(vk =
Vi@, w) € Re, Pr - SNKVerify(vk, z,m) =0 7 < SNKProve(ek, z,w)

=0

Succinctness: The length of a proof and complezity of SNKVerify is
bounded by poly(\, log(|y| + |w])).

Knowledge extraction:[sub-exponential adversary knowledge extrac-
tor] For all adversaries A running in time 2°) there exists an extractor E4
running n time 20N such that for all A € N and all auxiliary inputs z of
size poly(\):

(vk, ek) < SNKGen(1*)
(x,m) « Az, ek) < negl(\)
w <+ E4(z, ek)

SNKVerify(vk, x,m) = 1

P Re(ew) #1

Impractical VDF from SNARGs. Consider the following construction
for a VDF from a t, e-sequential function f. Let pp = (ek,vk) = SNKGen(\)
be the public parameter of a SNARG scheme for proving membership in
the language of pairs (z,y) such that f(x) = y. On input € X the Eval
computes y = f(z) and a succinct argument m = SNKProve(ek, (z,y), L).
The prover outputs ((x,y), 7). On input ((z,y), ) the verifier checks y =
f(x) by checking SNKVerify(vk, (z,y),7) = 1.

This construction clearly satisfies fast verification. All known SNARK
constructions are quasi-linear in the length of the underlying computation f
[11]. Assuming the cost for computing a SNARG for a computation of length

tis k-tlog(t) then the SNARG VDF construction achieves o(t) = ﬁ
sequentiality. This does not even achieve the notion of (1 —¢€')t sequentiality
for any adversary. This means that the adversary can compute the output
of the VDF in a small fraction of the time that it takes the honest prover to
convince an honest verifier. If, however, SNKProve is sufficiently paralleliz-
able then it is possible to partially close the gap between the sequentiality
of f and the sequentiality of the VDF. The Eval simply executes SNKProve
in parallel to reduce the relative total running time compared to the com-

putation of f. SNARK constructions can run in parallel time polylog(t) on
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O(t - polylog(t)) processors. This shows that a VDF can theoretically be
built from verifiable computation.

The construction has, however, two significant downsides: In practice
computing a SNARG is more than 100,000 times more expensive than evalu-
ating the underlying computation [68]. This means that to achieve meaning-
ful sequentiality the SNARG computation would require massive parallelism
using hundreds thousands of cores. The required parallelism additionally
depends on the time t. Secondly, the construction does not come asymp-
totically close to the sequentiality induced by the underlying computation
f. We, therefore, now give a VDF construction with required parallelism
independent of ¢ and o-sequentiality asymptotically close to (1 — €)t where
€ will be defined by the underlying sequential computation.

Incremental Verifiable Computation (IVC). IVC provides a direc-
tion for circumventing the problem mentioned above. IVC was first studied
by Valiant [66] in the context of computationally sound proofs [51]. Bitansky
et al. [14] generalized IVC to distributed computations and to other proof
systems such as SNARKs. IVC requires that the underlying computation
can be expressed as an iterative sequence of evaluations of the same Turing
machine. An iterated sequential function satisfies this requirement.

The basic idea of IVC is that at every incremental step of the computa-
tion, a prover can produce a proof that a certain state is indeed the current
state of the computation. This proof is updated after every step of the
computation to produce a new proof. Importantly, the complexity of each
proof in proof size and verification cost is bounded by poly(\) for any sub-
exponential length computation. Additionally the complexity of updating
the proof is independent of the total length of the computation.

Towards VDFs from IVC. Consider a VDF construction that runs a
sequential computation and after each step uses IVC to update a proof
that both this step and the previous proof were correct. Unfortunately, for
IVC that requires knowledge extraction we cannot prove soundness of this
construction for ¢ > O(\). The problem is that a recursive extraction yields
an extractor that is exponential in the recursion depth [14].

The trick around this is to construct a binary tree of proofs of limited
depth [66, 14]. The leaf proofs verify computation steps whereas the internal
node proofs prove that their children are valid proofs. The verifier only needs
to check the root proof against the statement that all computation steps and
internal proofs are correct.
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We focus on the special case that the function f is an iterated sequential
function. The regularity of the iterated function ensures that the statement
that the verifier checks is succinct. We impose a strict requirement on our
1V C scheme to output both the output of f and a final proof with only an
additive constant number of additional steps over evaluating f alone.

We define tight IVC for an iterated sequential functions, which captures
the required primitive needed for our theoretical VDF. We require that
incremental proving is almost overhead free in that the prover can output the
proof almost immediately after the computation has finished. The definition
is a special case of Valiant’s definition [66].

Definition 9 (Tight IVC for iterated sequential functions). Let fy : NxX —
X be an iterated sequential function with round function g having (t,¢€)-
sequentiality. An IVC system for fy is a triple of polynomial time algorithms
(IVCGen, IVCProve, IVCVerify) that satisfy the following properties:

Completeness:

(vk, ek) <~ IVCGen(\, f)
(y, m) <~ IVCProve(ek, k, )

Ve € X, Pr|IVCVerify(vk, x,y,k,m) = Yes

Succinctness: The length of a proof and the complexity of SNKVerify
is bounded by poly(\,log(k - t)).

Soundness:[sub-exponential soundness] For all algorithms A running
in time 200 ;

IVCVerify(vk, z,y, k,m) = Yes
f(k.x) #y

(vk, ek) <& IVCGen(), f)

pr (x,y, k,m) < A(\, vk, ek) ] < negl(A)

Tight Incremental Proving: There exists a k' such that for all k > k'
and k = 2°V, IVCProve(ek, k,z) runs in parallel time k - t + O(1) using
poly(A, t)-processors.

Existence of tight IVC. Bitansky et al. [14] showed that any SNARK
system such as [59] can be used to construct IVC. Under strong knowledge
of exponent assumptions there exists an IVC scheme using a SNARK tree of
depth less than A (Theorem 1 of [14]). In every computation step the prover
updates the proof by computing A new SNARKSs each of complexity poly(\),
each verifying another SNARK and one of complexity ¢ which verifies one
evaluation of gy, the round function of f). Ben Sasson et al. [10] discuss the
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parallel complexity of the Pinocchio SNARK [59] and show that for a circuit
of size m there exists a parallel prover using O(m - log(m)) processors that
computes a SNARK in time O(log(m)). Therefore, using these SNARKSs
we can construct an IVC proof system (IVCGen, IVCProve, IVCVerify) where,
for sufficiently large ¢, IVCProve uses O()\ + t) parallelism to produce each
incremental IVC output in time A - log(t + A\) < ¢. If ¢ is not sufficiently
large, i.e. t > X -log(t + \) then we can construct an IVC proof system
that creates proofs for k' evaluations of gy. The IVC proof system chooses
k' such that ¢ < X -log(k’ -t + \). Given this the total parallel runtime
of IVCProve on k iterations of an (t,€)-sequential function would thus be
k-t+X-log(k'-t+X) =k-t+O(1). This shows that we can construct tight
IVC from existing SNARK constructions.

VDFyvyc construction. We now construct a VDF from a tight IVC. By
Assumption 1 we are given a family {f\}, where each f) : N x X — X, is
defined by fi(k,x) = gg\k) (z). Here gy is a (s, €)-sequential function on an
efficiently sampleable domain of size O(2%).

Given a tight IVC proof system (IVCGen, IVCProve, IVCVerify) for f we can
construct a VDF that satisfies o(t)-sequentiality for o(t) = (1—¢€)-t—O(1):

e Setup()\,t) : Let gy be a (¢, €)-sequential function and f the corresponding
iterated sequential function as described in Assumption 1. Run (ek, vk) <-
IVCGen(A, fy). Set k to be the largest integer such that IVCProve(ek, &, z)
takes time less than ¢. Output pp = ((ek, k), (vk)).

e Eval((ek, k), z): Run (y,m) < IVCProve(ek, k, z), output (y, ).
e Verify(vk, z, (y,7)): Run and output IVCVerify(vk, z,y, k, 7).

Note that ¢ is fixed in the public parameters. It is, however, also possible to
give t directly to Eval. VDFyc is, therefore, incremental.

Lemma 1. VDFjy¢ satisfies soundness (Definition 3)

Proof. Assume that an poly(¢, \) algorithm 4 outputs (with non-negligible
probability in A) a tuple (x,y,7) on input A, ¢, and pp <* Setup(A,t) such
that Verify(pp, z,y,7) = Yes but fi(k,z) # y. We can then construct an
adversary A’ that violates IVC soundness. Given (vk,ek) < IVCGen(], fy)
the adversary A’ runs A on A, ¢, and (vk,ek). Since (vk,ek) is sampled
from the same distribution as pp <- Setup(\,t) it follows that, with non-
negligible probability in A, A’ outputs (z, y, 7) such that Verify(pp, x,y,7) =
IVCVerify(vk, z,y, k,m) = Yes and fy(k,z) # y, which directly violates the
soundness of IVC. O
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Theorem 1 (VDFyc). VDFrye is a VDF scheme with o(t) = (1—e)t—0(1)
sequentiality.

Proof. First note that the VDFyc algorithms satisfy the definition of the
VDF algorithms. IVCProve runs in time (£ —1)- s+ s = ¢ using poly(\, s) =
poly(A) processors. IVCVerify runs in total time poly(A,log(¢)). Correctness
follows from the correctness of the IVC scheme. Soundness was proved in
Lemma 1. The scheme is o(t)-sequential because IVCProve runs in time
k-s+O(1) < t. If any algorithm that uses poly(¢, \) processors can produce
the VDF output in time less than (1 — e)t — O(1) he can directly break the
t, e-sequentiality of fy. Since s is independent of ¢ we can conclude that
VDFryc has o(t) = (1 — €)t — O(1) sequentiality.

0

5 A weak VDF based on injective rational maps

In this section we explore a framework for constructing a weak VDF sat-
isfying (2, o(t))-sequentiality based on the existence of degree ¢ injective
rational maps that cannot be inverted faster than computing polynomial
greatest common denominators (GCDs) of degree ¢ polynomials, which we
conjecture cannot be solved in parallel time less than ¢t — o(t) on fewer than
t? parallel processors. Our candidate map will be a permutation polynomial
over a finite field of degree t. The construction built from it is a weak VDF
because the Eval will require O(t) parallelism to run in parallel time ¢.

5.1 Injective rational maps

Rational maps on algebraic sets. An algebraic rational function on

finite vector spaces is a function F': Fy — Fy* such that F' = (f1,..., fm)
where each f; : Fj — Fy is a rational function in Fo(Xq,...,X,), for i =
L,...,m. An algebraic set Y C Fy is the complete set of points on which

some set S of polynomials simultaneously vanish, i.e. J = {z € Fy|f(z) =
0 for all f € S} for some S C Fy[X7,...,X,]. An injective rational map of
algebraic sets ) C Fg to X C Fg"” is an algebraic rational function F' that is
injective on Y, i.e. if X := F (), then for every € X there exists a unique
y € Y such that F(y) = z.

Inverting rational maps. Consider the problem of inverting an injective
rational map F = (fi,...., fm) on algebraic sets J C Fy to X C F;'. Here
Y C Fy is the set of vanishing points of some set of polynomials S. For
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xz € Fy', a solution to F(y) =z is a point § € [y such that all polynomials
in S vanish at § and f;(y) = x; for i = 1,...,m. Furthermore, each f;(y) =
9(y)/h(y) = x; for some polynomials g, h, and hence yields a polynomial
constraint z;(y) := g(y) — z;h(y) = 0. In total we are looking for solutions
to |S| + m polynomial constraints on .

We illustrate two special cases of injective rational maps that can be
inverted by a univariate polynomial GCD computation. In general, inverting
injective rational maps on Fg for constant d can be reduced to a univariate
polynomial GCD computation using resultants.

e Rational functions on finite fields. Consider any injective rational function
F(X) = g(X)/h(X), for univariate polynomials h, g, on a finite field F,,.
A finite field is actually a special case of an algebraic set over itself; it is
the set of roots of the polynomial X9 — X. Inverting F on a point ¢ € F,
can be done by calculating GCD(X?— X, g(X)—c-h(X)), which outputs
X — s for the unique s such that F(s) = c.

e Rational maps on elliptic curves. An elliptic curve E(F,) over F, is a
2-dimensional algebraic set of vanishing points in Fg of a bivariate poly-
nomial E(y,z) = y? — 2% — ax — b. Inverting an injective rational function
F on a point in the image of F(E(FF,)) involves computing the GCD of
three bivariate polynomials: F, z1, z9, where z; and z3 come from the two
rational function components of F. The resultant R = Res,(21,22) is a
univariate polynomial in 2 of degree deg(z1) - deg(z2) such that R(z) =0
iff there exists y such that (z,y) is a root of both z; and z9. Finally, taking
the resultant again R’ = Res, (R, E) yields a univariate polynomial such
that any root x of R’ has a corresponding coordinate y such that (z,y) is
a point on E and satisfies constraints z; and z. Solving for the unique
root of R’ reduces to a Euclidean GCD computation as above. Then given
x, there are two possible points (z,y) € E, so we can try them both and
output the unique point that satisfies all the constraints.

Euclidean algorithm for univariate polynomial GCD. Univariate
polynomials over a finite field form a Euclidean domain, and therefore the
GCD of two polynomials can be found using the Euclidean algorithm. For
two polynomials f and g such that deg(f) > deg(g) = d, one first reduces f
mod ¢ and then computes GCD(f,g) = GCD(f mod g, g). In the example
f = X%— X, the first step of reducing X? mod g requires O(log(gq)) mul-
tiplications of degree O(deg(g)) polynomials. Starting with X, we run the
sequence of repeated squaring operations to get X?, reducing the intermedi-
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ate results mod g after each squaring operation. Then running the Euclidean
algorithm to find GCD(f mod g, g) involves O(d) sequential steps where in
each step we subtract two O(d) degree polynomials. On a sequential ma-
chine this computation takes O(d?) time, but on O(d) parallel processors
this can be computed in parallel time O(d).

NC algorithm for univariate polynomial GCD. There is an algo-
rithm for computing the GCD of two univariate polynomials of degree d
in O(log?(d)) parallel time, but requires O(d*®) parallel processors. This
algorithm runs d parallel determinant calculations on submatrices of the
Sylvester matrix associated with the two polynomials, each of size O(d?).
Each determinant can be computed in parallel time O(log?(d)) on M(d) €
O(d*®5) parallel processors [25]. The parallel advantage of this method
over the euclidean GCD method kicks in after O(d*®°) processors. For
any ¢ < d/log?(d), it is possible to compute the GCD in O(d/c) steps on
clog?(d)M (d) processors.

Sequentiality of univariate polynomial GCD. The GCD can be cal-
culated in parallel time d using d parallel processors via the Euclidean al-
gorithm. The NC algorithm only beats this bound on strictly greater than
d?®> processors, but a hybrid of the two methods can gain an o(d) speedup
on only d? processors. Specifically, we can run the Euclidean method for
d — d?/3 steps until we are left with two polynomials of degree d?/3, then we
can run the NC algorithm using log®(d)M (d*/3) < (d?/3)? = d? processors
to compute the GCD of these polynomials in O(d*/3/log(d)) steps, for a
total of d — ed?/3 steps. This improvement can be tightened further, but
generally results in d — o(d) steps as long as M (d) € w(d?).

We pose the following assumption on the parallel complexity of calcu-
lating polynomials GCDs on fewer that O(d?) processors. This assumption
would be broken if there is an NC algorithm for computing the determinant
of a n x n matrix on o(n?) processors, but this would require a significant
advance in mathematics on a problem that has been studied for a long time.

Assumption 2. There is no general algorithm for computing the GCD of
two univariate polynomials of degree d over a finite field F, (where ¢ > d°)
in less than parallel time d — o(d) on O(d?) parallel processors.

On the other hand, evaluating a polynomial of degree d can be loga-
rithmic in its degree, provided the polynomial can be expressed as a small
arithmetic circuit, e.g. (az + b)? can be computed with O(log(d)) field op-
erations.

22



Abstract weak VDF from an injective rational map. Let F': Fy —
7" be a rational function that is an injective map from Y to & := F(Y). We
further require that X is efficiently sampleable and that F' can be evaluated
efficiently for all y € Y. When using F' in a VDF we will require that
|X| > At3 to prevent brute force attacks, where ¢t and A are given as input
to the Setup algorithm.

We will need a family F := {(¢, F, X,Y)}r+ parameterized by A and t.
Given such a family we can construct a weak VDF as follows:

e Setup(A,t): choose a (q,F,X,)) € F specified by A and ¢, and output
pp = ((¢. F), (¢, F)).

e Eval((q,F),z): for an output # € X C F* compute y € Y such that
F(y) = z; The proof 7 is empty.

[ ) Verlfy((q, F)a 3_77 ga 77) OUtPUtS Yes lf F(g) =

The reason we require that F' be injective on ) is so that the solution g
be unique.
The construction is a weak (p(t), o(t))-VDF for p(t) = t? and o(t) = t — o(t)
assuming that there is no algorithm that can invert of F' € F on a random
value in less than parallel time d — o(d) on O(d?) processors. Note that this
is a stronger assumption than 2 as the inversion reduces to a specific GCD
computation rather than a general one.

Candidate rational maps. The question, of course, is how to instantiate
the function family F so that the resulting weak VDF system is secure.
There are many examples of rational maps on low dimensional algebraic
sets among which we can search for candidates. Here we will focus on the
special case of efficiently computable permutation polynomials over Fy, and
one particular family of permutation polynomials that may be suitable.

5.2 Univariate permutation polynomials

The simplest instantiation of the VDF system above is when n = m = 1 and
Y = F,. In this case, the function F' is a univariate polynomial f : F, — IF,.
If f implements an injective map on F,, then it must be a permutation of
Fy, which brings us to the study of univariate permutation polynomials as
VDFs.

The simplest permutation polynomials are the monomials ¢ for e > 1,
where gcd(e,q — 1) = 1. These polynomials however, can be easily inverted

23



and do not give a secure VDF. Dickson polynomials [47] D, o € Fplx] are
another well known family of polynomials over I, that permute IF,,. Dickson
polynomials are defined by a recurrence relation and can be evaluated effi-
ciently. Dickson polynomials satisfy Dy on(Dp o(z)) = o for all n,t, o where
n-t=1mod p — 1, hence they are easy to invert over I, and again do not
give a secure VDF.

A number of other classes of permutation polynomials have been dis-
covered over the last several decades [38]. We need a class of permutation
polynomials over a suitably large field that have a tunable degree, are fast
to evaluate (i.e. have polylog(d) circuit complexity), and cannot be inverted
faster than running the parallelized Euclidean algorithm on O(d) processors.

Candidate permutation polynomial. We consider the following poly-
nomial of Guralnick and Muller [37] over Fym:

(¢° —az —a) - (z° — ax + a)* + ((¢° — az + a)* + da’x) T/
28

(5.1)

where s = p" for odd prime p and a is not a (s — 1)st power in F,m. This
polynomial is a degree s* permutation on the field Fym for all s,m chosen
independently.

Below we discuss why instantiating a VDF with nearly all other examples
of permutation polynomials would not be secure and why attacks on these
other polynomials do not work against this candidate.

Attacks on other families of permutation polynomials. We list here
several other families of permutation polynomials that can be evaluated in
O(polylog(d)) time, yet would not yield a secure VDF. We explain why each
of these attacks do not work against the candidate polynomial.

1. Sparse permutation polynomials. Sparse polynomials have a constant
number of terms and therefore can be evaluated in time O(log(d)).
There exist families of non-monomial sparse permutation polynomials,
c.g. X2 4 X3 4 X € Fonsa[X] [38, Thm 4.12]. The problem is
that the degree of this polynomial is larger than the square root of the
field size, which allows for brute force parallel attacks. Unfortunately,
all known sparse permutation polynomials have this problem. In our
candidate the field size can be made arbitrarily large relative to the
degree of the polynomial.
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2. Linear algebraic attacks. A classic example of a sparse permutation
polynomial of tunable degree over an arbitrarily large field, due to
Mathieu [33], is the family 2?" — az over F,m where a is not a p — 1st
power. Unfortunately, this polynomial is easy to invert because z
xP" is a linear operator in characteristic p so the polynomial can be
written as a linear equation over an m-dimensional vector space. To
prevent linear algebraic attacks the degree of at least one non-linear
term in the polynomial cannot be divisible by the field characteristic p.
In our candidate there are many such non-linear terms, e.g. of degree
s+ 1 where s = p".

3. Ezxceptional polynomials co-prime to characteristic. An exceptional
polynomial is a polynomial f € [F,[X] which is a permutation on Fym
for infinitely many m, which allows us to choose sufficiently large m to
avoid brute force attacks. However, all exceptional polynomials over
F,. of degree co-prime to ¢ can be written as the composition of Dick-
son polynomials and linear polynomials, which are easy to invert [56].
In our candidate, the degree s® of the polynomial and field size are
both powers of p, and are therefore not co-prime.

Additional application: a new family of one-way permutations.
We note that a sparse permutation polynomial of sufficiently high degree
over a sufficiently large finite field may be a good candidate for a one-way
permutation. This may give a secure one-way permutation over a domain
of smaller size than what is possible by other methods.

5.3 Comparison to square roots mod p

A classic approach to designing a sequentially slow verifiable function, dating

back to Dwork and Naor [31], is computing modular square roots. Given
1
a challenge = € Zj, computing y = 2 (mod p) can be efficiently verified

by checking that y?> = 2 (mod p) (for p = 3 (mod 4)). There is no known
way to compute this exponentiation in faster than log(p) sequential field
multiplications.

This is a special case of inverting a rational function over a finite field,
namely the polynomial f(y) = %2, although this function is not injective and
therefore cannot be calculated with GCDs. An injective rational function
with nearly the same characteristics is the permutation f(y) = y>. Since the
inverse of 3 mod p — 1 will be O(log p) bits, this requires O(logp) squaring
operations to invert. Viewed another way, this degree 3 polynomial can be
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inverted on a point ¢ by computing the GCD(y? — y,y? — ¢), where the
first step requires reducing y” — y mod y* — ¢, involving O(log p)) repeated
squarings and reductions mod 3% — c.

While this approach appears to offer a delay parameter of ¢ = log(p),
as t grows asymptotically the evaluator can use O(t) parallel processors to
gain a factor t parallel speedup in field multiplications, thus completing
the challenge in parallel time equivalent to one squaring operation on a
sequential machine. Therefore, there is asymptotically no difference in the
parallel time complexity of the evaluation and the total time complexity of
the verification, which is why this does not even meet our definition of a weak
VDEF. Our approach of using higher degree injective rational maps gives a
strict (asymptotic) improvement on the modular square/cubes approach,
and to the best of our knowledge is the first concrete algebraic candidate
to achieve an exponential gap between parallel evaluation complexity and
total verification complexity.

6 Practical improvements on VDF's from IVC

In this section we propose a practical boost to constructing VDFs from IVC
(Section 4). In an IVC construction the prover constructs a SNARK which
verifies a SNARK. Ben-Sasson et al. [11] showed an efficient construction
for IVC using “cycles of Elliptic curves”. This construction builds on the
pairing-based SNARK [59]. This SNARK system operates on arithmetic
circuits defined over a finite field I,. The proof output consists of elements
of an elliptic curve group E/F, of prime order p (defined over a field Fy).
The SNARK verification circuit, which computes a pairing, is therefore an
arithmetic circuit over F,. Since ¢ # p, the prover cannot construct a new
SNARK that directly operates on the verification circuit, as the SNARK
operates on circuits defined over F,. Ben-Sasson et. al. propose using two
SNARK systems where the curve order of one is equal to the base field of
the other, and vice versa. This requires finding a pair of pairing-friendly
elliptic curves E1, Es (defined over two different base fields F; and Fy) with
the property that the order of each curve is equal to the size of the base field
of the other.

The main practical consideration in VDF1y¢ is that the evaluator needs
to be able to update the incremental SNARK proofs at the same rate as com-
puting the underlying sequential function, and without requiring a ridiculous
amount of parallelism to do so. Our proposed improvements are based on
two ideas:
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1. In current SNARK/IVC constructions (including [59], [11]) the prover
complexity is proportional to the multiplicative arithmetic complex-
ity of the underlying statement over the field I, used in the SNARK
(p =~ 2'%). Therefore, as an optimization, we can use a “SNARK
friendly” hash function (or permutation) as the iterated sequential
function such that the verification of each iteration has a lower multi-
plicative arithmetic complexity over F,,.

2. We can use the Eval of a weak VDF as the iterated sequential function,
and compute a SNARK over the Verify circuit applied to each incre-
mental output instead of the Eval circuit. This should increase the
number of sequential steps required to evaluate the iterated sequential
function relative to the number of multiplication gates over which the
SNARK is computed.

An improvement of type (1) alone could be achieved by simply using
a cipher or hash function that has better multiplicative complexity over
the SNARK field F, than AES or SHA256 (e.g., see MiMC [5], which has
1.6% complexity of AES). We will explain how using square roots in F, or
a suitable permutation polynomial over F, (from Section 5) as the iterated
function achieve improvements of both types (1) and (2).

6.1 Iterated square roots in [,

Sloth A recent construction called Sloth [46] proposed a secure way to
chain a series of square root computations in Z, interleaved with a simple
permutation ® such that the chain must be evaluated sequentially, i.e. is an
iterated sequential function (Definition 7). More specifically, Sloth defines
two permutations on F,: a permutation p such that p(x)? = 4z, and a
permutation o such that o(x) = x + 1 depending on the parity of x. The
parity of x is defined as the integer parity of the unique z € {0,...,p — 1}
such that £ =z mod p. Then Sloth iterates the permutation 7 = poo.
The verification of each step in the chain requires a single multiplication
over Z, compared to the O(log(p)) multiplications required for evaluation.
Increasing the size of p amplifies this gap, however it also introduces an op-
portunity for parallelizing multiplication in Z, for up to O(log(p)) speedup.
Using Sloth inside VDF 1y would only achieve a practical benefit if p = ¢
for the SNARK field F,, as otherwise implementing multiplication in Z, in

3If square roots are iterated on a value = without an interleaved permutation then there
is a shortcut to the iterated computation that first computes v = (%)e mod p and then
the single exponentiation z*.
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an arithmetic circuit over F, would have O(log?(p)) complexity. On mod-
ern architectures, multiplication of integers modulo a 256-bit prime is near
optimal on a single core, whereas multi-core parallelized algorithms only
offer speed-ups for larger primes [8]. Computing a single modular square
root for a 256-bit prime takes approximately 570 cycles on an Intel Core i7
[46], while computing SHA256 for 256-bit outputs takes approximately 864
cycles?. Therefore, to achieve the same wall-clock time-delay as an iterated
SHA256 chain, only twice as many iterations of modular square roots are
needed.

The best known arithmetic circuit implementation of SHA256 has 27,904
multiplication gates[9]. In stark contrast, the arithmetic circuit over F,, for
verifying a modular square root is a single multiplication gate. Verifying
the permutation ¢ is more complex as it requires a parity check, but this
requires at most O(log(p)) complexity.

Sloth++ extension Replacing SHA256 with Sloth as the iterated func-
tion in VDFyc already gives a significant improvement, as detailed above.
Here we suggest yet a further optimization, which we call Sloth4++. The
main arithmetic complexity of verifying a step of Sloth comes from the fact
that the permutation o is not naturally arithmetic over F),, which was im-
portant for preventing attacks that factor 7¢(z) as a polynomial over F,.
Our idea here is to compute square roots over a degree 2 extension field I
interleaved with a permutation that is arithmetic over [, but not over F ..

In any degree r extension field IF,,» of F), for a prime p = 3 mod 4 a square
root of an element x € F,r can be found by computing @ +D/4 " This is
computed in O(rlog(p)) repeated squaring operations in F. Verifying a
square root requires a single multiplication over F,-. Elements of F» can be
represented as length r vectors over F,,, and each multiplication reduces to
O(r?) arithmetic operations over F,. For r = 2 the verification multiplicative
complexity over [F), is exactly 4 gates.

In Sloth++ we define the permutation p exactly as in Sloth, yet over
F,2. Then we define a simple non-arithmetic permutation o on F,. that
swaps the coordinates of elements in their vector representation over F,
and adds a constant, i.e. maps the element (z,y) to (y + c1,2 + ¢2). The
arithmetic circuit over IF,, representing the swap is trivial: it simply swaps
the values on the input wires. The overall multiplicative complexity of
verifying an iteration of Sloth-++ is only 4 gates over FF,,. Multiplication can
be parallelized for a factor 2 speedup, so 4 gates must be verified roughly

“http://www.ouah.org/ogay/sha2/
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every 1700 parallel-time evaluation cycles. Thus, for parameters that achieve
the same wall-clock delay, the SNARK verification complexity of Sloth++
is a 14,000 fold improvement over that of a SHA256 chain.

Cube roots The underlying permutation in both Sloth and Sloth-++ can
be replaced by cube roots over I, when ged(3,¢ — 1) = 1. In this case the
slow function is computing p(x) = 2V where 3v = 1 mod ¢ — 1. The output
can be verified as p(z)% = .

6.2 Iterated permutation polynomials

Similar to Sloth+, we can use our candidate permutation polynomial (Equa-
tion 5.1) over F, as the iterated function in VDFryc. Recall that Fy is an
extension field chosen independently from the degree of the polynomial.
We would choose ¢ ~ 2256 and use the same F, as the field used for the
SNARK system. For each O(d) sequential provers steps required to invert
the polynomial on a point, the SNARK only needs to verify the evalua-
tion of the polynomial on the inverse, which has multiplicative complexity
O(log(d)) over F,. Concretely, for each 10° parallel-time evaluation cycles
a SNARK needs to verify approximately 16 gates. This is yet another fac-
tor 15 improvement over Sloth—+. The catch is that the evaluator must use
10° parallelism® to optimize the polynomial GCD computation. We must
also assume that an adversary cannot feasibly amass more than 10'* parallel
processors to implement the NC parallelized algorithm for polynomial GCD.

From a theory standpoint, using permutation polynomials inside VDFy¢
reduces it to a weak VDF because the degree of the polynomial must be
super-polynomial in A to prevent an adversary from implementing the NC
algorithm on poly(\) processors, and therefore the honest evaluator is also
required to use super-polynomial parallelism. However, the combination
does yield a better weak VDF, and from a practical standpoint appears
quite promising for many applications.

5This is reasonable if the evaluator has an NVIDIA Titan V GPU, which can com-
pute up to 10'* pipelined arithmetic operations per second (https://www.nvidia.com/en-
us/titan/titan-v/).
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7 Towards VDFs from exponentiation in a finite
group

The sequential nature of large exponentiation in a finite group may appear
to be a good source for secure VDF systems. This problem has been used ex-
tensively in the past for time-based problems such as time-lock puzzles [64],
benchmarking [21], timed commitments [16], and client puzzles [31, 46].
Very recently, Pietrzak [61] showed how to use this problem to construct a
VDF that requires a trusted setup. The trusted setup can be eliminated by
instead choosing a sufficiently large random number N so that N has two
large prime factors with high probability. However, the large size of N pro-
vides the adversary with more opportunity for parallelizing the arithmetic.
It also increases the verifier’s running time. Alternatively, one can use the
class group of an imaginary quadratic order [20], which is an efficient group
of unknown order with a public setup [48].

7.1 Exponentiation-based VDF's with bounded pre-computation

Here we suggest a simple exponentiation-based approach to constructing

VDF's whose security would rely on the assumption that the adversary can-

not run a long pre-computation between the time that the public parame-

ters pp are made public and the time when the VDF needs to be evaluated.

Therefore, in terms of security this construction is subsumed by the more

recent solution of Pietrzak [61], however it yields much shorter proofs. We

use the following notation to describe the VDEF:

— let L = {¢1,0a,...,¢;} be the first t odd primes, namely ¢; = 3, ¢, = 5,
etc. Here ¢ is the provided delay parameter.

— let P be the product of the primes in L, namely P := {1 - {5 --- ;. This P
is a large integer with about tlogt bits.

With this notation, the trusted setup procedure works as follows: con-
struct an RSA modulus N, say 4096 bits long, where the prime factors are
strong primes. The trusted setup algorithm knows the factorization of N,
but no one else will. Let G := (Z/NZ)*. We will also need a random hash
function H : Z — G.

Next, for a given preprocessing security parameter B, say B = 220, do:

— fori=1,...,B: compute h; < H(i) € G and then compute g; := hg/P €
G.

— output

ek := (G, H, g1,...,9B) and  vk:= (G, H).
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Note that the verifier’s public parameters are short, but the evaluators
parameters are not.

Solving a challenge x: Algorithm Eval(ppey,, ) takes as input the public

parameters pp..,, and a challenge x € X.

— using a random hash function, map the challenge x to a random subset
L, C L of size A, and a random subset S, of A values in {1,..., B}.

— Let P, be the product of all the primes in L,, and let g be g := Hiesz g; €
G.

— the challenge solution y is simply y « ¢/ € G, which takes O(tlogt)
multiplications in G.

Verifying a solution y: Algorithm Verify(pPPyeyify, 7, y) works as follows:

— Compute P, and S, as in algorithm Eval(ppeya, ).

— let hbe h:=[];cq, H(i) €G.

— output yes if and only if y* = h in G.

Note that exactly one y € G will be accepted as a solution for a challenge
. Verification takes only O()\) group operations.

Security. The scheme does not satisfy the definition of a secure VDF, but
may still be useful for some of the applications described in Section 2. In
particular, the system is not secure against an adversary who can run a large
pre-computation once the parameters pp are known. There are several pre-
computation attacks possible that require tB group operations in G. Here
we describe one such instructive attack. It uses space O(sB), for some s > 0,
and gives a factor of s speed up for evaluating the VDF.
Consider the following pre-computation, for a given parameter s, say
5 =100. Let b = | P'/%], then the adversary computes and stores a table of
size sB: ,
foralli=1,...,B: 9, gl(b), cey gZ(bS) €G. (7.1)

Computing these values is comparable to solving B challenges. Once com-
puted, to evaluate the VDF at input z, the adversary uses the precomputed
table to quickly compute

gb, g(bQ), el g(bs) e G.

Now, to compute ¢*/%= it can write P/P, in base b as:
P/P, = ap + a1b + asb? + ... + asb® so that

gFPe = goo . (ghyer . (g®yoz . (g®)yes,
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This expression can be evaluated in parallel and gives a parallel adversary a
factor of s speed-up over a sequential solver, which violates the sequentiality
property of the VDF.

To mount this attack, the adversary must compute the entire table (7.1)
for all g1, ..., gp, otherwise it can only gain a factor of two speed-up with
negligible probability in A. Hence, the scheme is secure for only B challenges,
after which new public parameters need to be generated. This may be
sufficient for some applications of a VDF.

8 Related work

Taking a broad perspective, VDFs can be viewed as an example of mod-
erately hard cryptographic functions. Moderately hard functions are those
whose difficulty to compute is somewhere in between ‘easy’ (designed to be
as efficient as possible) and ‘hard’ (designed to be so difficult as to be in-
tractable). The use of moderately hard cryptographic functions dates back
at least to the use of a deliberately slow DES variant for password hashing
in early UNIX systems [55]. Dwork and Naor [31] coined the term moder-
ately hard in a classic paper proposing client puzzles or “pricing functions”
for the purpose of preventing spam. Juels and Brainard proposed the re-
lated notion of a client puzzle, in which a TCP server creates a puzzle which
must be solved before a client can open a connection [42]. Both concepts
have been studied for a variety of applications, including TLS handshake
requests [7, 29], node creation in peer-to-peer networks [30], creation of dig-
ital currency [63, 27, 57| or censorship resistance [18]. For interactive client
puzzles, the most common construction is as follows: the server chooses a
random /¢-bit value z and sends to the client H(x) and z[¢ —logy t — 1]. The
client must send back the complete value of x. That is, the server sends the
client H(x) plus all of the bits of = except the final log, t + 1 bits, which the
client must recover via brute force.

8.1 Inherently sequential puzzles

The simple interactive client puzzle described above is embarrassingly par-
allel and can be solved in constant time given ¢ processors. In contrast,
the very first construction of a client puzzle proposed by Dwork and Naor
involved computing modular square roots and is believed to be inherently
sequential (although they did not discuss this as a potential advantage).
The first interest in designing puzzles that require an inherently sequen-
tial solving algorithm appears to come for the application of hardware bench-
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marking. Cai et al. [21, 22] proposed the use of inherently sequential puzzles
to verify claimed hardware performance as follows: a customer creates an
inherently-sequential puzzle and sends it to a hardware vendor, who then
solves it and returns the solution (which the customer can easily verify)
as quickly as possible. Note that this work predated the definition of client
puzzles. Their original construction was based on exponentiation modulo an
RSA number N, for which the customer has created N and therefore knows
@(N). They later proposed solutions based on a number of other compu-
tational problems not typically used in cryptography, including Gaussian
elimination, fast Fourier transforms, and matrix multiplication.

Time-lock puzzles Rivest, Shamir, and Wagner [64] constructed a time-
lock encryption scheme, also based on the hardness of RSA factoring and
the conjectured sequentiality of repeated exponentiation in a group of un-
known order. The encryption key K is derived as K = 22 € Zy for an
RSA modulus N and a published starting value x. The encrypting party,
knowing (), can reduce the exponent e = 2! mod ¢(N) to quickly derive
K = z°mod N. The key K can be publicly recovered slowly by 2! iter-
ated squarings. Boneh and Naor [16] showed that the puzzle creator can
publish additional information enabling an efficient and sound proof that K
is correct. In the only alternate construction we are aware of, Bitansky et
al. [15] show how to construct time-lock puzzles from randomized encodings
assuming any inherently-sequential functions exist.

Time-lock puzzles are similar to VDF's in that they involve computing
an inherently sequential function. However, time-lock puzzles are defined
in a private-key setting where the verifier uses its private key to prepare
each puzzle (and possibly a verification proof for the eventual answer). In
contrast to VDF's, this trusted setup must be performed per-puzzle and each
puzzle takes no unpredictable input.

Proofs of sequential work Mahmoody et al.[49] proposed publicly ver-
ifiable proofs of sequential work (PoSW) which enable proving to any chal-
lenger that a given amount of sequential work was performed on a specific
challenge. As noted, time-lock puzzles are a type of PoSW, but they are not
publicly verifiable. VDFs can be seen as a special case of publicly verifiable
proofs of sequential work with the additional guarantee of a unique output
(hence the use of the term “function” versus “proof”).

Mahmoody et al.’s construction uses a sequential hash function H (mod-
eled as a random oracle) and depth robust directed-acyclic graph G. Their
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puzzle involves computing a labeling of G using H salted by the challenge
c. The label on each node is derived as a hash of all the labels on its parent
nodes. The labels are committed to in a Merkle tree and the proof involves
opening a randomly sampled fraction. Very briefly, the security of this con-
struction is related to graph pebbling games (where a pebble can be placed
on a node only if all its parents already have pebbles) and the fact that
depth robust graphs remain sequentially hard to pebble even if a constant
fraction of the nodes are removed (in this case corresponding to places where
the adversary cheats). Mahmoody et. al. proved security unconditionally in
the random oracle model. Depth robust graphs and parallel pebbling hard-
ness are use similarly to construct memory hard functions [40] and proofs
of space [32]. Cohen and Pietrzak [19] constructed a similar PoSW using a
simpler non-depth-robust graph based on a Merkle tree.

PoSWs based on graph labeling don’t naturally provide a VDF because
removing any single edge in the graph will change the output of the proof,
yet is unlikely to be detected by random challenges.

Sequentially hard functions The most popular solution for a slow func-
tion which can be viewed as a proto-VDF, dating to Dwork and Naor [31],
is computing modular square roots. Given a challenge z € Zj;, comput-

ing y = o (mod p) can be efficiently verified by checking that y?> = x
(mod p) (for p = 3 (mod 4)). There is no known algorithm for computing
modular exponentiation which is sublinear in the exponent. However, the
difficulty of puzzles is fixed to t = logp as the exponent can be reduced
modulo p — 1 before computation, requiring the use of a very large prime p
to produce a difficult puzzle.

This puzzle has been considered before for similar applications as our
VDFs, in particular randomness beacons [39, 46]. Lenstra and Wesolowski
[46] proposed creating a more difficult puzzle for a small p by chaining a
series of such puzzles together (interleaved with a simple permutation) in a
construction called Sloth. We proposed a simple improvement of this puzzle
in Section 6. Recall that this does not meet our asymptotic definition of a
VDF because it does not offer (asymptotically) efficient verification, however
we used it as an important building block to construct a more practical VDF
based on IVC. Asymptotically, Sloth is comparable to a hash chain of length
t with ¢ checkpoints provided as a proof, which also provides O(polylog(t))-
time verification (with ¢ processors) and a solution of size O(¢ - A).
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9 Conclusions

Given their large number of interesting applications, we hope this work
stimulates new practical uses for VDFs and continued study of theoretical
constructions. We still lack a theoretically optimal VDF, consisting of a
simple inherently sequential function requiring low parallelism to compute
but yet being very fast (e.g. logarithmic) to invert. These requirements
motivate the search for new problems which have not traditionally been
used in cryptography. Ideally, we want a VDF that is also post-quantum
secure.
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