Slow-timed hash functions

Benjamin Wesolowski

Ecole Polytechnique Fédérale de Lausanne, EPFL IC LACAL, Switzerland

Abstract. We construct an efficiently verifiable slow-timed hash func-
tion. A slow-timed hash function is a hash function with the guarantee
that its evaluation requires to run a given number of sequential steps,
but the result can be efficiently verified. They have applications in decen-
tralised systems, such as the generation of trustworthy public random-
ness in a trustless environment. To construct a slow-timed hash function,
we actually build a trapdoor slow-timed hash function. A trapdoor slow-
timed hash function is essentially a slow-timed hash function which can
be evaluated efficiently by parties who know a secret (the trapdoor). By
setting up this scheme in a way that the trapdoor is unknown (not even
by the party running the setup), we obtain a simple slow-timed hash
function.

1 Introduction

We describe a hash function that is slow to compute and easy to verify:
a slow-timed hash function in the sense of [12]. These functions should
be computable in a prescribed amount of time A, but not faster (the
time measures an amount of sequential work, that is work that cannot be
performed faster by running on a large number of cores), and the result
should be easy to verify (i.e., for a cost polylog(A)). These special hash
functions are used in [12] to construct a trustworthy randomness bea-
con: a service producing publicly verifiable random numbers, which are
guaranteed to be unbiased and unpredictible. These randomness beacons,
introduced by Rabin in [13], are a valuable tool in a public, decentralised
setting, as it is not trivial for someone to flip a coin and convince their
peers that the outcome was not rigged. The slow-timed hash proposed
n [12], sloth, is not asymptotically efficiently verifiable: the verification
procedure (given x and y, verify that sloth(x) = y) is faster than the
evaluation procedure (given x, compute the value sloth(x)) only by a
linear factor. The new construction provides an exponentially faster ver-
ification.

Independently from the present work, the paper [4] was recently pub-
lished, where the authors describe verifiable delay functions (VDF). This

notion essentially coincides with the notion of slow-timed hash. In addi-
tion to compiling a variety of interesting applications of such functions in
decentralised systems, the authors of [4] propose practical constructions
that also achieve an exponential gap between evaluation and verification.
These constructions, however, do not strictly achieve the requirements of
a VDF. For one of them, the evaluation requires an amount polylog(A)
of parallelism to run in parallel time A. The other one is insecure against
an adversary that can run a large (but feasible) pre-computation, so the
setup must be regularly updated. The construction we propose is secure
against pre-computation attacks, and the evaluation requires a small, con-
stant number of cores to run in optimal time A.

Trapdoor slow-timed hash function. To construct a slow-timed hash func-
tion, we first construct a trapdoor slow-timed hash function. A party, Al-
ice, holds a secret key sk (the trapdoor), and an associated public key pk.
Given a piece of data m, a trapdoor slow-timed hash allows to compute
a hash h of m such that anyone can easily verify that either h has been
computed by Alice (i.e., she used her secret trapdoor), or the computa-
tion of h required an amount of time at least A (where, again, time is
measured as an amount of sequential work). The verification that h is the
correct hash of m should be efficient, for a cost polylog(A).

We propose a practical construction based on groups G of unknown
order (such at an RSA group (Z/NZ)*, where N is a product of two
large primes, or the class group of an imaginary quadratic field). The
trapdoor is the order of the group. The security of the construction is
proven assuming the classic time-lock assumption of [14] (but in G instead
of necessarily in an RSA group), and the difficulty of extracting roots in G.

Deriving a slow-timed hash function. Suppose that a public key pk for a
trapdoor slow-timed hash function is given without any known associated
private key. This results in a simple slow-timed hash function, where the
evaluation requires a prescribed amount of time A for everyone (because
there is no known trapdoor).

Now, how to publicly generate a public key without any known asso-
ciated private key? In the construction we provide, this amounts to the
public generation of a group of unknown order. A standard choice for
such groups are RSA groups, but it is hard to generate an RSA num-
ber (a product of two large primes) with a strong guarantee that nobody
knows the factorisation. It is possible to generate a random number large
enough that with high probability it is divisible by two large primes (as
done in [15]), but this approach severely damages the efficiency of the

construction, and leaves more room for parallel optimisation of the arith-
metic modulo a large integer. It is also possible to generate a modulus
by a secure multiparty execution of the RSA key generation procedure
among independent parties contributing some secret random seeds (as
done in [5]), but a third party would have to assume that the parties in-
volved in this computation did not collude to retrieve the secret. A better
approach would be to use the class group of an imaginary quadratic order.
Indeed, one can easily generate an imaginary quadratic order by choosing
a random discriminant, and when the discriminant is large enough, the
order of the class group cannot be computed. These class groups were
introduced in cryptography by Buchmann and Williams in [8], exploit-
ing the difficulty of computing their orders (and the fact that this order
problem is closely related to the discrete logarithm problem and the root
problem in this group). To this day, the best know algorithms for comput-
ing the order of the class group of an imaginary quadratic field of discrim-
inant d are still of complexity L|q(1/2) under the Generalised Riemann
Hypothesis, for the usual function Ly(s) = exp (O (log(t)* loglog(t)' %)),
as shown in [11] and [16].

1.1 Time-sensitive cryptography and related work

Rivest, Shamir and Wagner [14] introduced in 1996 the use of time-locks
for encrypting data that can be decrypted only in a predetermined time
in the future. This was the first time-sensitive cryptographic primitive
taking into account the parallel power of possible attackers. Other timed
primitives appeared in different contexts: Bellare and Goldwasser [1, 2]
suggested time capsules for key escrowing in order to counter the problem
of early recovery. Boneh and Naor [6] introduced timed commitments: a
hiding and binding commitment scheme, which can be forced open by
a procedure of determined running time. More recently, and as already
mentioned, the notion of slow-timed hash function was introduced in [12]
and was used to provide trust to the generation of public random numbers.
These slow-timed hash functions were recently revisited and formalised
in the paper [4] under the name of verifiable delay functions.

1.2 Notation

Throughout, the integer k denotes a security level (typically 128,192,
or 256), and H : {0,1}* — {0, 1}%* denotes a secure cryptographic hash
function. For simplicity of exposition, the function H is regarded as a map
from A* to {0,1}?*, where A* is the set of strings over some alphabet A

such that {0, 1} C A. The alphabet A contains at least all nine digits and
twenty-six letters, and a special character x. Given two strings sy, so € A*,
denote by s1||s2 their concatenation, and by s1]|||s2 their concatenation
separated by . The function int : {0,1}* — Z>o maps = € {0,1}* in
the canonical manner to the non-negative integer with binary representa-
tion z, and bin : Z>¢ — {0,1}* maps any non-zero integer to its binary
representation with no leading 0-characters, and bin(0) = 0.

2 Trapdoor slow-timed hash functions

Let A : Z-g — R be a function of the (implicit) security parameter k.
This A is meant to represent a time duration, and what is precisely meant
by time is explained in Section 3 (essentially, it measures an amount of
sequential work). A party, Alice, has a public key pk and a secret key sk.
Let m be a piece of data. Alice, thanks to her secret key sk, is able to
quickly evaluate a function trapdoory, on m. On the other hand, other
parties knowing only pk can compute evalp(m) in time A, but not faster
(and important parallel computing power does not give a substantial ad-
vantage in going faster; remember that A measures the sequential work),
such that the resulting value evaly(m) is the same as trapdoorg, (m). We
call this output the timed-hash of m (with respect to the key pk).

More formally, a trapdoor slow-timed hash function consists of the
following components:

keygen — (pk,sk) is a key generation procedure, which outputs Alice’s
public key pk and secret key sk. As usual, the public key should be
publicly available, and the secret key is meant to be kept secret.

trapdoorg (m, A) — h takes as input the data m € M (for some input
space M), and uses the secret key sk to produce the timed-hash h
of m. The parameter A is the amount of sequential work required to
compute the same hash without knowledge of the secret key.

evalpk(m, A) — h is a procedure to evaluate the hash function on m using
only the public key pk, for a targeted amount of sequential work A.
This procedure is meant to be infeasible in time less than A (this will
be expressed precisely in the security requirements).

verify, (m, h, A) — true or false is a procedure to check if h is indeed the
timed-hash of m, associated to the public key pk and the evaluation
time A.

Note that the security parameter k is implicitly an input to each of
these procedures. Given any key pair (pk,sk) generated by the keygen

procedure, the functionality of the scheme is the following. Given any
data m and time parameter A, we have trapdoorg (m, A) = evaly(m, A),
and if h = evalyi(m, A) then verify,, (m, h, A) outputs true.

We also require the protocol to be sound. Intuitively, we want that if
h" # evalp(m, A) then verify,, (m,h’, A) outputs false. We however allow
the holder of the trapdoor to generate such misleading values h'.

Definition 1 (Soundness). A trapdoor slow-timed hash function is sound
if any polynomially bounded algorithm solves the following task with neg-
lrgible probability: given as input the public key pk, output a message m
and a value h' such that h' # evalp(m, A) and verify, (m, h', A) = true.

The required security property is that the correct output cannot be
produced in time less than A without knowledge of the secret key sk. This
is formalised in the next section via the A-evaluation race game. A trap-
door slow-timed hash function is A-secure if any polynomially bounded
adversary wins the A-evaluation race game with negligible probability.

3 Wall-clock time and computational assumptions

Primitives such as slow-timed hash functions or time-lock puzzles wish
to deal with the delicate notion of real-world time. This section discusses
how to formally handle this concept. Given an algorithm, or even an im-
plementation of this algorithm, its actual running time will depend on the
hardware on which it is run. If the algorithm is executed independently on
several different single-core general purpose CPUs, the variations in run-
ning time between them will be reasonably small as overclocking records
on clock-speeds barely achieve 9GHz (cf. [10]), only a small factor higher
than a common personal computer. Then, parallelization has to be taken
into consideration. Some parallelizable algorithms can run significantly
faster on multiple parallel cores, up to a threshold where additional cores
do not improve the running time anymore. Then, specialized hardware
can be built to run an algorithm much more efficiently than any general
purpose hardware.

Therefore a precise notion of wall-clock time is difficult to capture for-
mally. However, for most applications, a good enough approximation is
sufficient. Such an approximation can be obtain based on the choice of a
model of computation, and defining time as an amount of sequential work
in this model. A model of computation is a set of allowable operations,
together with their respective costs. For instance, working with circuits

with gates V, A and — which each have cost 1, the notion of time complex-
ity of a circuit € can be captured by its depth d(C), i.e., the length of the
longest path in €. The time-complexity of a boolean function f is then
the minimal depth of a circuit implementing f, but this does not reflect
the time it might take to actually compute f in the real world where one
is not bound to using circuits. A random access machine might perform
better, or maybe a quantum circuit.

A good model of computation for analysing the actual time it takes
to solve a problem should contain all the operations that one could use
in practice (in particular the adversary). From now on, we suppose the
adversary works in a model of computation M. We do not define exactly
M, but only assume that it allows all operations a potential adversary
could perform, and that it comes with a cost function ¢ and a time-cost
function t. For any algorithm A and input z, the cost C(A, x) measures
the overall cost of computing A(x) (i.e., the sum of the costs of all the
elementary operations that are executed), while the time-cost T'(A, z)
abstracts the notion of time it takes to run A(x) in the model M. For the
model of circuits, one could define the cost as the size of the circuit and
the time-cost as its depth. For concreteness, one can think of the model
M as the model of parallel random-access machines.

All forthcoming security claims are (implicitly) made with respect
to the model M. The time-lock assumption of Rivest, Shamir and Wag-
ner [14] can be expressed as Assumption 1 below.

Definition 2 ((0,t¢)-time-lock game). Let k € Z~(be a difficulty pa-
rameter, and A be an algorithm playing the game. The parameter t is a
positive integer, and § : Zso — Rsq is a function. The (0,t)-time-lock
game goes as follows:

1. An RSA modulus N is generated at random by an RSA key-generation
procedure, for the security parameter k;

2. A(N) outputs an algorithm B;

3. An element x € Z/NZ is generated uniformly at random;

4. B(x) outputs y € Z/NZ.

Then, A wins the game if y = x2 mod N and T(B,z) < t6(k).

Assumption 1 (Time-lock assumption) There is a cost function ¢ :
Z~o — R~q such that the following two statements hold:

1. There is an algorithm S such that for any modulus N generated by
an RSA key-generation procedure with security parameter k, and any

element © € Z/NZ, the output of S(N,z) is the square of z, and
T(S,(N,z)) < d(k);

2. For any t € Zwq, no algorithm A of polynomial cost' wins the (8,t)-
time-lock game with non-negligible probability (with respect to the dif-
ficulty parameter k).

The function § encodes the time-cost of computing a single modular
squaring, and Assumption 1 expresses that without knowledge of the
factorization of N, there is no faster way to compute 22 mod N than
performing ¢ sequential squarings.

With this formalism, we can finally express the security notion of
trapdoor slow-timed hash functions.

Definition 3 (A-evaluation race game). Let A be a party playing the
game. The parameter A : Z-o — Rsg is a function of the (implicit)
security parameter k. The A-evaluation race game goes as follows:

1. The random procedure keygen is run and it outputs a public key pk;

2. A(pk) outputs an algorithm B;

3. Some data m € M is generated according to some random distribution
of min-entropy at least k;

4. BO(m) outputs a value h, where O is an oracle that outputs the hash
trapdoorg (m/, A) on any input m’ # m.

Then, A wins the game if T(B,m) < A and verify, (m,h, A) = true.

Definition 4 (A-security). A trapdoor slow-timed hash function is A-
secure if any polynomially bounded player (with respect to the implicit
security parameter) wins the above A-evaluation race game with negligible
probability.

Observe that it is useless to allow A to adaptively ask for hashes dur-
ing the execution of A(pk): for any data m’, the procedure evalp (m/, A)
produces the same output as trapdoorg (m’, A), so any such request can
be computed by the adversary in time O(A).

Remark 1. Suppose that the message m is hashed as H(m) (by a standard
cryptographic hash function) before being timed-hashed (as is the case in
the construction we present in the next section), i.e.

trapdoorg, (m, A) = ts(H (m), A),

Yie., C(A,z) = O(f(len(z))) for a polynomial f, with len(z) the binary length of z.

for some procedure t, and similarly for eval and verify. Then, it becomes
unnecessary to give to B access to the oracle O. We give a proof in Ap-
pendix A when H is modelled as a random oracle.

Remark 2. At the third step of the game, the bound on the min-entropy
is fixed to k. The exact value of this bound is arbitrary, but forbiding low
entropy is important: if m has a good chance of falling in a small subset
of M, the adversary can simply precompute the timed-hashes of all the
elements of this subset.

4 Construction of a slow-timed hash function

Let m € A* be the message to be timed-hashed. Alice’s secret key sk is
the order of a group G, and her public key is a description of G allowing
to compute the group multiplication efficiently. We also assume that any
element g of G can efficiently be represented in a canonical way as binary
strings bin(g). Also part of Alice’s public key is a hash function Hg :
A* = G

Remark 8 (RSA setup). A natural choice of setup is the following: the
group G is (Z/NZ)* where N = pq for a pair of distinct prime numbers
p and ¢, where the secret key is (p — 1)(¢ — 1) and the public key is N,
and the hash function Hg(m) = int(H (“residue”||m)) mod N. For a
technical reason explained later in Remark 5, we actually need to work
in (Z/NZ)*/{£1}, and we call this the RSA setup.

Remark 4 (Class group setup). For a public setup where we do not want
the private key to be known by anyone, one could choose G to be the
class group of an imaginary quadratic field. The construction is simple.
Choose a random, negative, square-free integer d, of large absolute value,
and such that d =1 mod 4. Then, let G = Cl(d) be the class group of
the imaginary quadratic field Q(\/&) Just as we wish, there is no known
algorithm to efficiently compute the order of this group. The multipli-
cation can be performed efficiently, and each class can be represented
canonically by its reduced ideal. Note that the even part of |Cl(d)| can be
computed if the factorisation of d is known. Therefore one should choose
d to be a negative prime, which ensures that |Cl(d)| is odd. See [7] for
a review of the arithmetic in class groups of imaginary quadratic orders,
and a discussion on the choice of cryptographic parameters.

Given any string s, we denote by Hprine(s) the first odd prime number
in the sequence H (“prime”||bin(j)|||s), for j € Z>o. Consider a targeted

evaluation time given by A = 27§ for a timing parameter 7, where ¢ is
the time-cost (i.e., the amount of sequential work) of computing a single
squaring in the group G (as done in Assumption 1 for the RSA setup).

To compute the timed-hash of m, first let h = Hg(m). The basic
idea (which finds its origins in [14]) is that for any ¢ € Z~(, Alice can
efficiently compute h%" with two exponentiations, by first computing z =
2! mod |G|, followed by h®. The running time is logarithmic in ¢. Any
other party who does not know |G| can also compute h2' by performing
t sequential squarings, with a running time linear in ¢. Therefore anyone
can compute h2' but only Alice can do it fast, and any other party has
to spend a time linear in . However, verifying that the published value is
indeed h?' is long: there is no shortcut to the obvious strategy consisting
in recomputing h2" and checking if it matches.

A first solution to this issue is discussed in [6], in the RSA setup. Let

t = 27, and rather than just publishing hQQT, publish the sequence of 7
elements

(b1, b2, by, ooy by) = <h2,h4,h16, ...,h22T> ,

and prove via a zero-knowledge protocol that each triple (h, b;, bi11) is of
the form (h, h*, hxz) for some integer x. The protocol the authors describe
is inspired from the classic zero-knowledge proof that (g, A, B,C) is a
Diffie-Hellman tuple [9]. The modified version in [6] is not perfectly zero-
knowledge with respect to Alice’s secret G = ¢(N). Indeed, to prove that
the scheme of [6] is zero-knowledge, the authors refer to the result of [9].
But [9] proves the zero-knowledge property with respect to the exponent,
not to the order of the group (the exponents are secret in the Diffie-
Hellman setting, and the group order is not), whereas in [6] (as well as in
the present situation) the order of the group is secret and the exponent is
not. In particular, the protocol of [6] is not perfectly simulatable without
knowledge of the group order.

Furthermore, the evaluation of the hash function cannot be interac-
tive; unfortunately there is no obvious way to make the suggested protocol
non-interactive while allowing evaluation without the secret key. There-
fore the following introduces a new approach. The procedures trapdoor,
verify and eval are fully described in Algorithms 1, 2 and 3 respectively,
and explained in detail below.

4.1 The basic construction

The timed-hash value on input m is the tuple

(hl, hg, ceny hT, Pl, ...,PTfl),

Data: a public key pk = (G, Hg) and a secret key sk = |G|, some data m € A*,
a targeted evaluation time A = 274.

Result: the timed-hash h.

h + Hg(m) € G,

fori=1,...,7 do

yi < 2272 mod |G;

h; < hy’,

end

fori=1,..,7—1do

B < Hprine(bin(4)|||bin(h:)|||bin(i 4+ 1));

T < 2y

r < least residue of 2% ~' modulo B;

B+ (x—7)B™' mod|G|; // since B is a large random prime, it

is invertible modulo |G| with overwhelming probability

P; « (b, h"P);

end
return h = (h1, h2,...,hr, P1, ..., Pr_1);
Algorithm 1: trapdoory (m,7) — h

where h; = h¥ ° € G for i = 1,...,7 (where h = Hg(m)), and P; is a
(non-interactive) proof that (h, h?, hit1) is a triple of the form (h, h?, h**).
The algorithm is synthesised in Algorithm 1. The construction of the
proofs P; will be discussed in the following Section 4.2.

The verifier can check that h; = h2* 7% as follows: first check that
hi = h = Hg(m); then for each i = 1,...,7 — 1, check the proof P;. If
h; = h2* ™ and P; is correct, then (h, h?, h;11) is of the form (h, h®, hIQ),
and o,

92" -2 i+1_
his1 = h(”) _ 2 2
Therefore, by induction, if all the proofs are correct, we indeed have that
h, = h2* ~*. The verification procedure is synthesised in Algorithm 2.

4.2 The proofs P;

The following focuses on the problem of proving efficiently that (h, by, b2)
is of the form (h, h*, hxz), without revealing any information about |G|.
The exponent z is not meant to be secret: everybody knows it is congruent
to some 227! (yet any other representation of that integer modulo |G|
should not be leaked: that would allow to compute a multiple of |G|). But
checking the form of (h, by, by) simply by exponentiating by x and 2 is
inefficient. What will actually be produced is a tuple P which asserts that
either P was produced by Alice, or (h, b, bs) is of the form (h, h*, th).

10

Data: a public key pk = (G, Hg), some data m € A", a targeted evaluation
time A = 27§, and a timed-hash value h.
Result: true if h is the correct hash of m, false otherwise.
(hl, hz, ceey hT, Pl, . P7—71) — h;
h <+ Hg(m) € G;
if h1 # h then
‘ return false;
end
fori=1,...,7—1do
B <= Hprine(bin(i)||[bin(h:)||[bin(Rit1));
r < least residue of 2% '
(Cl, C2) < Pi;
if h2 # cBh™ or hig1 # cZhi®" then
‘ return false;
end

modulo B;

end
return true;
Algorithm 2: verify,, (m,h,7) — true or false

First, consider an interactive protocol. The verifier first receives h, by
and by, and then sends a (large) random odd prime number B to the
prover. The prover then computes the least residue 7 of 22~ modulo B,
and finally ¢; = h” and ¢y = h*# where? = (z — r)B™' mod |G|. The
proof is the pair P = (¢, ¢2). Such a proof can be forged by a party who
does not know Alice’s secret; this fact might be surprising at first given
that such a party cannot compute B~! mod |G|. The procedure will be
described later (in Section 4.3). Then, the verifier simply computes r and
checks that by = cPh" and by = cBb]. It is straightforward to check that
this holds if the prover is honest.

Now, what can a dishonest prover do? That question is answered
formally in Section 5, but the intuitive idea is easy to understand. Given
x such that by = h*, only Alice can produce misleading proofs. Indeed,
suppose that the proof passes the verification, i.e., by = c¢Ph" and by =
cBb, where r is the least residue of 92'~1 modulo B. Exponentiating the
first equality by z yields b¥ = ¢#Bh*" and the second can be written as
by = ch*". Therefore b¥ /by = (c¥/ca)®. When publishing by and by, the
element o = b7 /by is determined but the prover does not know already
about B. Once B is revealed, the prover must be able to produce values
c1 and co that will pass the tests with a good probability, which implies

2 Note that this step requires B to be invertible modulo |G|. A malicious verifier could

exploit this, but in the forthcoming construction, B is generated in a non-interactive
way via a hash function, so is invertible with overwhelming probability.

11

Data: a public key pk = (G, Hg), some data m € A", a targeted evaluation
time A = 274.
Result: the timed-hash value h.
h + Hg(m) € G,
hi < h;
fori=1,...,7—1do
B ¢ Hyesno (bin(0)|[bin(h) |[bin(his1));
c1 < eval_rec(h, B,7) ; // this function is described in Algorithm 4

92'—1
Co < C7 ;

Pi + (c1,¢2);
hi+1 — h?Zl
end
return h = (hl,hg, ...,h7—,P17 ...,Pffl);
Algorithm 3: evaly(m,7) — h

i+1_
92" 2
=h

€ G,

Data: an element h in a group G (with identity 1¢), a prime number B and a
positive integer ¢. ‘
Result: 1B, where 8 is the quotient of the euclidean division of 22'—1 by B.
if 22 7' < B then
‘ return lg;
else
x « eval_rec(h, B,i — 1);
y < eval_rec(z, B,i — 1);
a+ 271 -1 mod B —1;
r < least residue of 2% modulo B;
g < quotient of the euclidean division of 2r? by B:;
return y?Pr4"ha;
end

Algorithm 4: eval_rec(h, B,i) — h¥

that ¢f/ca is a B-th root of a. For a prover to cheat and succeed with
good probability, he must be able to extract B-th roots of a for arbitrary
values of B.

Remark 5. Observe that in the RSA setup, this task is easy if @ = +1,
ie. by = £b] = +h*”, Tt is however a difficult problem, given an RSA
modulus N, to find an element o« mod N other than +1 from which
B-th roots can be extracted for any B. This explains why we need to
work in the group G = (Z/NZ)* /{£1} instead of (Z/NZ)* in the RSA
setup. This problem is formalized (and generalised to other groups) in
Definition 6.

Recall that given a string s, Hprime(s) denotes the first prime number
in the sequence H(“prime”||bin(j)|||s). The above protocol can be made

12

non-interactive by letting B be, for instance, the prime number
Hprine(bin(i)|[[bin(by)||[bin(b2)),

where 7 is the index of P;. This simulates a choice of B uniform among the
primes in [0, 22%). If H is considered to be a random function with uniform
distribution, let p denote the probability distribution of the output of

Hprime(s)-

4.3 Evalutation in total time O(27)

This section shows that the procedure evaly(m,7) described in Algo-
rithm 3 is correct and runs in total time O(27). The asymptotic estimates
in this section are given in terms of the time parameter 7, for a fixed secu-
rity parameter k. Proving that there is no way to produce a valid output
with less than A = 27§ sequential operations is the matter of the security
analysis in Section 5.

As observed in the previous section, since B~! mod |G| cannot be
computed without knowledge of the private key, an alternative strategy
is needed for the evaluation without the trapdoor. Assuming the correct-
ness of the function eval_rec(h, B,i) (described in Algorithm 4), which
computes h” where 3 is the quotient of the euclidean division of 22 ~1 by
B, it is easy to check that the function evaly(m, 7) is correct. The func-
tion eval_rec(h, B, i) deserves more explanations. It operates by recursion
on i. The base case is easy: if 227! is smaller than B, then f is zero,
so_hﬁ is the identity element of the group. In particular, if ¢ = 1, then
2¥-1=1<B.

For the general step of the recursion, let 5’ be the quotient of the
euclidean division of 22"~ 1 by B, and r the remainder. Observe that

7 1— 2
2271 =2 (22771) = 2(F B+ 1)? = (287 B + 487)B + 2°.

Therefore, if ¢ is the quotient of the euclidean division of 212 by B, then
B = 28" B+4'r+q. We can recursively compute #°" = eval_rec(h, B,i—1)
and hP° = eval,rec(hﬁl, B,i—1). Then hB can be computed as

he = (h5’2>23 <h5’>4T B
Besides the recursive calls, the most expensive step is the computation

of the remainder of the euclidean division of 92712 by B. But all these
remainders of 2% 72, j < 4, that will be used in the recursion, can be

13

computed at once at the beginning for a total time in O(4): simply com-
pute all the values 22 mod B, for j < i by successive squarings, multiply
all of them by 272 mod B (recall that B is an odd prime number), and
store the results for later use. Therefore, leaving this operation aside as
a preprocessing step, the processing time of a single step of the recursion
is bounded above by a constant ¢ (it actually depends on the bit-length
of B, (almost) bounded by the bit-length of the output of the hash func-
tion H; it does not depend on the time parameter 7). If R(7) denotes the
running time of eval_rec(h, B, i), then

R(i) <2R(i — 1) + ¢ < 27'R(1) + (277! — 1)e < 2'c.

This function is called in the evaluation algorithm for any i < 7 (with
different values of B). The total time of these calls is therefore in O(27).
It is then easy to see that the total time of the evaluation is also in O(27).

5 Security analysis

In this section, the proposed construction is proven to be sound and
27§-secure, meaning that no polynomially bounded player can win the
associated 27J-evaluation race game with non-negligible probability (in
other words, the timed-hash cannot be computed in time less than 274).
For the RSA setup, it is proved under the classic time-lock assumption
of Rivest, Shamir and Wagner [14] (formalised in Assumption 1), and a
new assumption expressing that it is hard to find an integer u # 0,+1
for which B-th roots modulo an RSA modulus N can be extracted for
arbitrary B’s following a distribution u, when the factorisation of IV is
unknown. More generally, it is secure for groups where a generalisation
of these assumptions hold.

5.1 Generalised time-lock assumptions

The following game generalises the classic time-lock assumption to arbi-
trary families of groups of unknown orders.

Definition 5 (Generalised (0,¢)-time-lock game). Consider a se-
quence (Si)kez-,, where each Gy is a set of finite groups (supposedly
of unknown orders), associated to a “difficulty parameter” k. Let keygen
be a procedure to generate a random group from Gy, according to the dif-
ficulty k.

Fix the difficulty parameter k € Z~q, and let A be an algorithm playing
the game. The parameter t is a positive integer, and § : Z~g — Rsqg is a
function. The (6,t)-time-lock game goes as follows:

14

1. A group G is generated by keygen;

2. A(G) outputs an algorithm B;

3. An element x € G is generated uniformly at random;
4. B(z) outputs y € G.

Then, A wins the game if y = x2 and T(B, z) < t6(k).

Assumption 2 (Generalised time-lock assumption) The generalised
time-lock assumption for a given family of groups (S)kez., is the follow-
ing. There is a cost function § : Zi~g — Rxsq such that the following two
statements hold:

1. There is an algorithm S such that for any group G € Gy (for the
difficulty parameter k), and any element x € G, the output of S(G, x)
is the square of x, and T'(S, (G, z)) < §(k);

2. For any t € Z~q, no algorithm A of polynomial cost wins the (9,t)-
time-lock game with non-negligible probability (with respect to the dif-
ficulty parameter k).

The function & encodes the time-cost of computing a single squaring in
a group of Gi, and Assumption 2 expresses that without more specific
knowledge about these groups (such as their orders), there is no faster
way to compute 22 than performing ¢ sequential squarings.

5.2 The root finding problem

The following game formalises the root finding problem.

Definition 6 (The root finding game G™°). Let A be a party playing
the game. The root finding game G™°(A) goes as follows: first, the keygen
procedure is run, resulting in a group G wish is given to A (G is supposedly
of unknown order). The player A then outputs an element u of G. An
integer B is generated according to the distribution u and given to A.
The player A outputs an integer v and wins the game if v2 =u # 1g.

In the RSA setup, the group G is the quotient (Z/NZ)* /{£1}, where
N is a product of two random large prime numbers. It is not known if
this problem can easily be reduced to a standard assumption such as the
difficulty of factoring N or the RSA problem, for which the best known
algorithms have complexity Ly (1/3). It is however definitely closely re-
lated, and seems as difficult when p is the uniform distribution over the
primes in (0, 22k). Recall that k is the security parameter, which is im-
plicitly passed as a parameter to the procedure keygen.

15

Similarly, in the class group setting, this problem is not known to
reduce to a standard assumption, but it is closely related to the order
problem and the root problem (which are tightly related to each other,
see [3, Theorem 3]), for which the best known algorithms have complexity
Lyg/(1/2) where d is the discriminant.

We now prove that to win this game G™°, it is sufficient to win the
following game GR°".

Definition 7 (The oracle root finding game GR°%). Let A be a party
playing the game. Let X be a function that takes as input a group G and a
string s in A*, and outputs an element X (G, s) € G. Let O : A* — Z~g be
a random oracle with distribution p. The player has access to the random
oracle O. The oracle root finding game G°Y(A, O) goes as follows: first,
the keygen procedure is run and the resulting group G is given to A. The
player A then outputs a string s € A*, and an element v of G. The game
is won if vO©) = X (G, s) # 1¢.

Lemma 1. If there is a function X and an algorithm A limited to g
queries to the oracle O winning the game GR°(A, Q) with probability
Pwin, there is an algorithm B winning the game G™°(B) with probability
at least pwin/(q+1), and same running time, up to a small constant factor.

Proof. Let A be an algorithm limited to ¢ oracle queries, and winning
the game with probability pwin. Build an algorithm A’ which does exactly
the same thing as A, but with possibly additional oracle queries at the
end to make sure the output string s’ is always queried to the oracle, and
the algorithm always does exactly ¢ + 1 (distinct) oracle queries.

Build an algorithm B playing the game G™°, using A’ as follows.
Upon receiving pk = G, B starts running A’ on input pk. The oracle
O is simulated as follows. First, an integer ¢ € {1,2,...,¢+ 1} is chosen
uniformly at random. For the first i — 1 (distinct) queries from A’ to O,
the oracle value is chosen at random according to distribution p. When
the i¢th string s € A* is queried to the oracle, the algorithm B outputs
u = X(G,s), concluding the first round of the game G™°. The game
continues as the integer B is received, following the distribution p. This B
is then used as the value for the ith oracle query O(s), and the algorithm
A’ can continue running. The subsequent oracle queries are handled like
the first ¢ — 1 queries, by picking random integers with distribution pu.
Finally, A’ outputs a string s’ € A* and an element v of G. To conclude
the game G™°(B), B returns v.

16

Since O simulates a random oracle with distribution u, A’ outputs
with probability pwin a pair (s,v) such that vO¢) = X(G,s) # 1g;
denote this event win . If s = &', this condition is exactly v® = u # 1¢,
where u = X (G, s) is the output for the first round of G, and O(s) = B
is the input for the second round. If these conditions are met, the game
G"°Y(B) is won. Therefore

Pr[B wins G"% > pwin - Pr [s = §'|win] .

Let Q = {s1, 52, ..., Sq+1} be the ¢ + 1 (distinct) strings queried to O by
A’, indexed in chronological order. By construction, we have s = s;. Let
J be such that s’ = s; (recall that A" makes sure that s’ € Q). Then,

Pr[s = s'|wing] = Pr[i = jlwin /]

The integer i is chosen uniformly at random in {1,2,...,¢ + 1}, and the
values given to A’ are independent from i (the oracle values are all in-
dependent random variables with distribution). So Pr[i = jlwing] =
1/(q+ 1). Therefore Pr[B wins G > pyin/(q+ 1). Since B mostly con-
sists in running A and simulating the random oracle, it is clear than both
have the same running time, up to a small constant factor. O

5.3 Security in the random oracle model

Proposition 1 (Security of the trapdoor slow-timed hash func-
tion in the random oracle model). Let A be a player winning with
probability pwin the (276)-evaluation race game associated to the proposed
scheme, assuming Hg and Hprine are random oracles and A is limited to
q oracle queries®. Then, there is a player Ay for the (generalised) (8,27)-
time-lock game, and As for the root finding game G™°, with respective
winning probabilities py and pz with p1/(1 —q/2F) 4+ (¢ + 1)p2 > Puin, and
with same running time as A (up to a constant factor*).

Proof. Let A be a player winning with probability pwin the A-evaluation
race game. Let pl. be the probability that A wins with an output

h= (h1,....hs, Pp, ..., Pr_1) where hy = Hg(m) and h, = h2> ",

3 In this game, the output of A is another algorithm B. When we say that A is limited
to g queries, we limit the total number of queries by A and B combined. In other
words, if A did z < g queries, then its output B is limited to ¢ — = queries.

* Note that this constant factor does not affect the chances of A1 to win the (§,27)-
time-lock game, since it concerns only the running time of A; itself and not of the
algorithm output by A1 (G)

17

Constructing A;. Build A; as follows. Upon receiving pk = (G, Hg),
Ay starts running A on input G. The random oracles Hg and Hpripe
are simulated in a straightforward manner, maintaining a table of values,
and generating a random outcome for any new request (with distribution
uniform and g respectively). When A(G) outputs an algorithm B, A;
generates a random m € M according to distribution v. If m has been
queried by the oracle already, Ay aborts; this happens with probability at
most q/2", where h is the min-entropy of the distribution of messages in
the (270)-evaluation race game (it is at least k). Otherwise, .4; outputs
the following algorithm B;. When receiving as input the challenge x, B;
adds x to the table of oracle Hg, for the input m (i.e., Hg(m) = z).
As discussed in Remark 1, we can assume that the algorithm B does
not call the oracle trapdoory,(—,h, A). Then B; can invoke B on input
m while simulating the oracles Hg and Hprige. Whenever B outputs

h = (h1,...,hs, P, ..., Pr_1), B1 outputs h2, which equals 22*" whenever
h: = 22" 7. We assume that simulating the oracle has a negligible cost,
so Bi(x) has essentially the same time-cost as B(m). Then, A; wins the

(6,27)-time-lock game with probability p; > pl. (1 — ¢/2%).

Constructing Aj. Instead of directly building A, we build an algo-
rithm A} playing the game G'R°*(A, O), and invoke Lemma 1. Define the
function X as follows. Recall that for any group G that we consider in
the construction, each element g € G admits a canonical binary represen-
tation bin(g). For any such group G, any elements by,by € G, and any
integer © € Z~g, let

X(G,bin(i)|[bin(by)||[bin(bs)) = b7 /b,

and let X(G,s) = 1g for any other string s. When receiving pk, Af
starts running A with input pk. The oracle Hg is simulated by generating
random values in the straightforward way, and Hprige is set to be exactly
the oracle O. When A outputs an algorithm B, A} generates a random
message m and runs B on input m. Again, we can assume based on
Remark 1 that B does not call the timed-hashing oracle. Then, B(m)
outputs (h1,...,hr, P1,...;P-—_1). Let i > 1 be the smallest index such

that h; # h%z) ~*_ If there is no such index, abort. Otherwise, output s =

bin(i — 1)||[bin(hi_1)|||bin(h;) and v = & ' /ea, where (c1,c2) = Pi_1.
If such an index was found, and A won the simulated evaluation game,
then v90) = X(G,s) # 1g, so A}, wins the game. This happens with

18

probability
/ . 227——2
Py > Pr [.A wins and h; # hj }
. 227 -2
= pwin — Pr [A wins and h, = hj }
= Pwin — p\//vin‘
Since A was limited to g oracle queries, A} also does not do more than g
queries. Applying Lemma 1, there is an algorithm A, winning the game
G"°Y(B) with probability ps > p,/(q¢+1). To conclude the proof, we have

p1
Pwin < Pyin + P < T g2k + (g + 1)po.

O

Remark 6. The soundness of the construction can be proven in exactly
the same way, by relating it to the game G"™°. Indeed, an algorithm A
breaking the soundness leads to an algorithm playing G™° (or G'?°") via
essentially the same construction as A, except that instead of generating

a random message m, A} uses the output m of A.

Acknowledgements

The author wishes to thank Serge Vaudenay, Alexandre Gélin, and Arjen
K. Lenstra for interesting discussions about the present work.

References

[

M. Bellare and S. Goldwasser. Encapsulated key escrow. Technical report, 1996.

2. M. Bellare and S. Goldwasser. Verifiable partial key escrow. In Proceedings of the
4th ACM Conference on Computer and Commaunications Security, CCS 97, pages
78-91, New York, NY, USA, 1997. ACM.

3. I. Biehl, J. Buchmann, S. Hamdy, and A. Meyer. A signature scheme based on the
intractability of computing roots. Designs, Codes and Cryptography, 25(3):223~
236, 2002.

4. D. Boneh, J. Bonneau, B. Biinz, and B. Fisch. Verifiable delay functions. Advances
in Cryptology — CRYPTO’ 18, 2018.

5. D. Boneh and M. Franklin. Efficient generation of shared rsa keys. In Annual
International Cryptology Conference, pages 425-439. Springer, 1997.

6. D. Boneh and M. Naor. Timed commitments. In M. Bellare, editor, Advances in
Cryptology, CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science,
pages 236—254. Springer Berlin Heidelberg, 2000.

7. J. Buchmann and S. Hamdy. A survey on iq cryptography. In In Proceedings of

Public Key Cryptography and Computational Number Theory, pages 1-15, 2001.

19

8. J. Buchmann and H. C. Williams. A key-exchange system based on imaginary
quadratic fields. Journal of Cryptology, 1(2):107-118, 1988.

9. D. Chaum and T. Pedersen. Wallet databases with observers. In E. Brickell, editor,
Advances in Cryptology CRYPTO 92, volume 740 of Lecture Notes in Computer
Science, pages 89-105. Springer Berlin Heidelberg, 1993.

10. CPU-Z OC world records. http://valid.canardpc.com/records.php, 2015.

11. J. L. Hafner and K. S. McCurley. A rigorous subexponential algorithm for compu-
tation of class groups. Journal of the American mathematical society, 2(4):837-850,
1989.

12. A. K. Lenstra and B. Wesolowski. Trustworthy public randomness with sloth,
unicorn and trx. International Journal of Applied Cryptology, 2016.

13. M. O. Rabin. Transaction protection by beacons. Journal of Computer and System
Sciences, 27(2):256 — 267, 1983.

14. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. 1996.

15. T. Sander. Efficient accumulators without trapdoor extended abstract. In Interna-
tional Conference on Information and Communications Security, pages 252—262.
Springer, 1999.

16. U. Vollmer. Asymptotically fast discrete logarithms in quadratic number fields.
In International Algorithmic Number Theory Symposium (ANTS), pages 581-594.
Springer, 2000.

A Proof of Remark 1
Model H as a random oracle. Suppose that

trapdoorll (m, A) = ty(H(m), A),
evalﬁ(m, A)

verify, (m, h, A)

epk(H(m), A), and
vpk(H (m), h, A),

for procedures t, e and v that do not have access to H.

Let A be a player of the A-evaluation race game. Assume that the
output B of A is limited to a number ¢ of queries to O and H. We are
going to build an algorithm A’ that wins with same probability as A when
its output B’ is not given access to O.

Let (Y;){_, be a sequence of random hash values (i.e., uniformly dis-
tributed random values in {0,1}?¥). First observe that A wins the A-
evaluation race game with the same probability if the last step runs the
algorithm B " instead of B | where

1. H’ is the following procedure: for any new requested input z, if x has
previously been requested by A to H then output H'(z) = H(z); oth-
erwise set H'(x) to be the next unassigned value in the sequence (Y;);

2. @' is an oracle that on input x outputs te(H'(m), A).

20

With this observation in mind, we build A’ as follows. On input pk,
A’ first runs AM which outputs A (pk) = B. Let X be the set of inputs
of the requests that A made to H. For any z € X, A" computes and
stores the pair (H(z),evalyk(z, A)) in a list L. In addition, it computes
and stores (Y, epk(Y;, A)) for each i =1,...,¢q, and adds them to L.

Consider the following procedure @’: on input x, look for the pair of
the form (H'(z),0) in the list L, and output o. The output of A’ is the
algorithm B’ = B Tt does not require access to the oracle © anymore:
all the potential requests are available in the list of precomputed values.
Each call to O is replaced by a lookup in the list L, so B’ has essentially
the same running time as B. Therefore A’ wins the A-evaluation race
game with same probability as A even when its output B’ is not given
access to a timed-hashing oracle.

21

