
Dynamic Searchable Symmetric Encryption
Schemes Supporting Range Queries with

Forward (and Backward) Security

Cong Zuo1,2, Shi-Feng Sun1,2,?, Joseph K. Liu1, Jun Shao3, and Josef
Pieprzyk2

1 Faculty of Information Technology, Monash University, Clayton, 3168, Australia
2 Data61, CSIRO, Australia

{cong.zuo1,shifeng.sun,joseph.liu}@monash.edu,
josef.pieprzyk@data61.csiro.au

3 School of Computer and Information Engineering, Zhejiang Gongshang University,
Zhejiang, 310018, China
chn.junshao@gmail.com

Abstract. Dynamic searchable symmetric encryption (DSSE) is a use-
ful cryptographic tool in the encrypted cloud storage. However, it has
been reported that DSSE usually suffers from the file-injection attacks
and content leak of deleted documents. To mitigate these attacks, for-
ward security and backward security have been proposed. Nevertheless,
the existing forward/backward-secure DSSE schemes can only support
single keyword queries. To address this problem, in this paper, we pro-
pose two DSSE schemes supporting range queries. One is forward-secure
and supports a large number of documents. The other can achieve both
forward security and backward security, while it can only support a lim-
ited number of documents. Finally, we also give the security proofs of
the proposed DSSE schemes in the random oracle model.

Keywords: Dynamic searchable symmetric encryption, forward secu-
rity, backward security, range queries

1 Introduction

Searchable symmetric encryption (SSE) is a useful cryptographic primitive that
can encrypt the data to protect its confidentiality while keeping its searchability.
Dynamic SSE (DSSE) further provides data dynamics that allows the client to
update data over the time without losing data confidentiality and searchability.
Due to this property, DSSE is highly demanded in encrypted cloud. However,
many existing DSSE schemes [14, 8] suffer from the file-injection attacks [7, 22],
where the adversary can compromise the privacy of a client query by injecting a
small portion of new documents to the encrypted database. To resist this attack,
Zhang et al. [22] highlighted the need of forward security that was informally

? Corresponding author.

2

introduced by Stefanov et al. [19]. The formal definition of forward security for
DSSE was given by Bost Bos16 who also proposed a concrete forward-secure
DSSE scheme. Furthermore, Bost et al. [6] demonstrated the damage of content
leak of deleted documents and proposed the corresponding security notionback-
ward security. Several backward-secure DSSE schemes are also presented in [6].

Nevertheless, the existing forward/backward-secure DSSE schemes only sup-
port single-keyword queries, which is not expressive enough in data search service
[13, 12]. To solve this problem, in this paper, we aim to design forward/backward-
secure DSSE schemes supporting range queries. Our design starts from the reg-
ular binary tree in [13] to support range queries. However, the binary tree in
[13] cannot be applied directly to the dynamic setting. It is mainly because that
the keywords in [13] are labelled according to the corresponding tree levels that
will change significantly in the dynamic setting. A näıve solution is to replace
all old keywords by the associated new keywords. This is, however, not efficient.
To address this problem, we have to explore new approaches for our goal.
Our Contributions. To achieve above goal, we propose two new DSSE con-
structions supporting range queries in this paper. The first one is forward-secure
but with a larger client overhead in contrast to [13]. The second one is a more
efficient DSSE which achieves both forward and backward security at the same
time. In more details, our main contributions are as follows:

– To make the binary tree suitable for range queries in the dynamic set-
ting, we introduce a new binary tree data structure, and then present the
first forward-secure DSSE supporting range queries by applying it to Bost’s
scheme [5]. However, the forward security is achieved at the expense of suf-
fering from a large storage overhead on the client side.

– To reduce the large storage overhead, we further propose another DSSE
scheme supporting range queries by leveraging the Paillier cryptosystem [17].
With its homomorphic property, this construction can achieve not only for-
ward security, but also backward security. Notably, due to the limitation of
the Paillier cryptosystem, it cannot support large-scale database consisting
a large number of documents. Nevertheless, it suits well for certain scenar-
ios where the number of documents is moderate. The new approach may
give new lights on designing more efficient and secure dynamic searchable
symmetric encryptions.

– Also, the comparison with related works in Table 1 and detailed security
analyses are provided, which demonstrate that our constructions are not
only forward (and backward)-secure but also with an comparable efficiency.

1.1 Related Works

Song et al. [18] are the first using symmetric encryption to facilitate keyword
search over the encrypted data. Later, Curtmola et al. [11] gave a formal defini-
tion for SSE and the corresponding security model in the static setting. To make
SSE more scalable and expressive, Cash et al. [9] proposed a new scalable SSE

3

Table 1: Comparison with existing DSSE schemes

Scheme
Client Computation Client Range Forward Backward Document
Search Update Storage Queries Security Security number

[13] wR - O(1) 3 7 7 large

[5] - O(1) O(W) 7 3 7 large

Ours A wR dlog(W)e+ 1 O(2W) 3 3 7 large

Ours B wR dlog(W)e+ 1 O(1) 3 3 3 small

W is the number of keywords in a database, wR is the number of keywords for
a range query(we map a range query to a few different keywords).

supporting Boolean queries. Following this construction, many extensions have
been proposed. Faber et al. [13] extended it to process a much richer collection
of queries. For instance, they used a binary tree with keywords labelled accord-
ing to the tree levels to support range queries. Zuo et al. [23] made another
extension to support general Boolean queries. Cash et al.’s construction has also
been extended into multi-user setting [20, 15, 21]. However, the above schemes
cannot support data update. To solve this problem, some DSSE schemes have
been proposed [14, 8].

However, designing a secure DSSE scheme is not an easy job. Cash et al.
[7] pointed out that only a small leakage leveraged by the adversary would be
enough to compromise the privacy of clients’ queries. A concrete attack named
file-injection attack is proposed by Zhang et al. [22].In this attack, the adver-
sary can infer the concept of client’s queries by injecting a small portion of new
documents into encrypted database. This attack also highlights the need for for-
ward security which protects security of new added parts. Accordingly, we have
backward security that protects security of new added parts and later deleted.
These two security notions are first introduced by Stefanov et al.[19]. The formal
definitions of forward/backward security for DSSE are given Bost [5] and Bost
et al. [6], respectively. In [5], Bost also proposed a concrete forward-secure DSSE
scheme, it does not support physical deletion. Later on, Kim et al. [16] proposed
a forward-secure DSSE scheme supporting physical deletion. Meanwhile, Bost
et al. [6] proposed a forward/backward-secure DSSE to reduce leakage during
deletion. Unfortunately, all the existing forward/backward-secure DSSE schemes
only support single keyword queries. Hence, forward/backward-secure DSSE sup-
porting more expressive queries, such as range queries, are quietly desired.

Apart from the binary tree technique, order preserving encryption (OPE)
can also be used to support range queries. The concept of OPE is proposed by
Agrawal et al. [1], and it allows the order of the plaintexts to be preserved in
the ciphertexts. It is easy to see that this kind of encryption would lead to the
leakage in [2, 3]. To reduce this leakage, Boneh et al. [4] proposed another concept
named order revealing encryption (ORE), where the order of the ciphertexts are
revealed by using an algorithm rather than comparing the ciphertexts (in OPE)
directly. More efficient ORE schemes were proposed later [10]. However, ORE-
based SSE still leaks much information about the underlying plaintexts. To avoid

4

this, in this paper, we focus on how to use the binary tree structure to achieve
range queries.

1.2 Organization

The remaining sections of this paper are organized as follows. In Section 2, we
give the background information and building blocks that are used in this paper.
In Section 3, we give the definition of DSSE and its security definition. After
that in Section 4, we present a new binary tree and our DSSE schemes. Their
security analysis is given in Section 5. Finally, Section 6 concludes this work.

2 Preliminaries

In this section, we describe cryptographic primitives (building blocks) that are
used in this work.

2.1 Trapdoor Permutations

A trapdoor permutation (TDP) Π is a one-way permutation over a domain D
such that (1) it is “easy” to compute Π for any value of the domain with the
public key, and (2) it is “easy” to calculate the inverse Π−1 for any value of a
co-domainM only if a matching secret key is known. More formally, Π consists
of the following algorithms:

– TKeyGen(1λ) → (TPK,TSK): For a security parameter 1λ, the algorithm re-
turns a pair of cryptographic keys: a public key TPK and a secret key TSK.

– Π(TPK, x)→ y: For a pair: public key TPK and x ∈ D, the algorithm outputs
y ∈M.

– Π−1(TSK, y) → x: For a pair: a secret key TSK and y ∈ M, the algorithm
returns x ∈ D.

One-wayness. We say Π is one-way if for any probabilistic polynomial time
(PPT) adversary A, an advantage

AdvOWΠ,A(1λ) = Pr[x← A(TPK, y)]

is negligible, where (TSK, TPK)← TKeyGen(1λ), y ← Π(TPK, x), x ∈ D.

2.2 Paillier Cryptosystem

A Paillier cryptosystem Σ = (KeyGen, Enc, Dec) is defined by following three
algorithms:

– KeyGen(1λ)→ (PK,SK): It chooses at random two primes p and q of similar
lengths and computes n = pq and φ(n) = (p−1)(q−1). Next it sets g = n+1,
β = φ(n) and µ = φ(n)−1 mod n. It returns PK = (n, g) and SK = (β, µ).

5

– Enc(PK,m) → c: Let m be the message, where 0 ≤ m < n, the algorithm
selects an integer r at random from Zn and computes a ciphertext c = gm ·rn
mod n2.

– Dec(SK, c) → m: The algorithm calculates m = L(cβ mod n2) · µ mod n,
where L(x) = x−1

n .

Semantically Security. We say Σ is semantically secure if for any probabilistic
polynomial time (PPT) adversary A, an advantage

AdvIND-CPAΣ,A (1λ) = |Pr[A(Enc(PK,m0)) = 1]− Pr[A(Enc(PK,m1)) = 1]|

is negligible, where (SK, PK)← KeyGen(1λ), A chooses m0, m1 and |m0| = |m1|.
Homomorphic Addition. Paillier cryptosystem is homomorphic, i.e.

Dec(Enc(m1) · Enc(m2)) mod n2 = m1 +m2 mod n.

We need this property to achieve forward security of our DSSE.

2.3 Notations

The list of notations used is given in Table 2.

3 Dynamic Searchable Symmetric Encryption (DSSE)

We follow the database model given in the paper [5]. A database is a collection
of (index, keyword set) pairs denoted as DB= (indi,Wi)

d
i=1, where indi ∈ {0, 1}`

and Wi ⊆ {0, 1}∗. The set of all keywords of the database DB is W = ∪di=1Wi,
where d is the number of documents in DB. We identify W = |W| as the total
number of keywords and N = Σd

i=1|Wi| as the number of document/keyword
pairs. We denote DB(w) as the set of documents that contain a keyword w. To
achieve a sublinear search time, we encrypt the file indices of DB(w) correspond-
ing to the same keyword w (a.k.a. inverted index4).

A DSSE scheme Γ consists of an algorithm Setup and two protocols Search
and Update as described below.

– (EDB, σ) ← Setup(DB, 1λ): For a security parameter 1λ and a database DB.
The algorithm outputs an encrypted database EDB for the server and a secret
state σ for the client.

– (I, ⊥) ← Search(q, σ, EDB): The protocol is executed between a client
(with their query q and state σ) and a server (with its EDB). At the end of
the protocol, the client outputs a set of file indices I and the server outputs
nothing.

4 It is an index data structure where a word is mapped to a set of documents which
contain this word.

6

Table 2: Notations (used in our constructions)
W The number of keywords in a database DB.

BDB The binary database which is constructed from a database DB by using our
binary tree BT.

m The number of values in the range [0,m− 1] for our range queries.

v A value in the range [0,m− 1] where 0 ≤ v < m.

ni The i-th node in our binary tree which is considered as the keyword.

rooto The root node of the binary tree before update.

rootn The root node of the binary tree after update.

STc The current search token for a node n.

M A random value for ST0 which is the first search token for a node n.

UTc The current update token for a node n.

T A map which is used to store the encrypted database EDB

N A map which is used to store the current search token for ni.

NSet The node set which contains the nodes.

TPK The public key of trapdoor permutation.

TSK The secret key of trapdoor permutation.

PK The public key of Paillier cryptosystem.

SK The secret key of Paillier cryptosystem.

fi The ith file.

PBT Perfect binary tree

CBT Complete binary tree

VBT Virtual perfect binary tree

ABT Assigned complete binary tree

– (σ′, EDB′)←Update(σ, op, in, EDB): The protocol runs between a client and
a server. The client input is a state σ, an operation op = (add, del) she wants
to perform and collection of in = (ind,w) pairs that are going to be modified,
where add, del mean the addition and deletion of a document/keyword pair,
respectively and ind is the file index and w is a set of keywords. The server
input is EDB. Update returns an updated state σ′ to the client and an
updated encrypted database EDB′ to the server.

3.1 Security Definition

The security definition of DSSE is formulated using the following two games:
DSSEREALΓA(1λ) and DSSEIDEALΓA,S(1λ). The DSSEREALΓA(1λ) is executed using

DSSE. The DSSEIDEALΓA,S(1λ) is simulated using the leakage of DSSE. The leak-

age is parameterized by a function L = (LStp,LSrch,LUpdt), which describes
what information is leaked to the adversary A. If the adversary A cannot dis-
tinguish these two games, then we can say there is no other information leaked
except the information that can be inferred from the leakage function L. More
formally,

– DSSEREALΓA(1λ): On input a database DB, which is chosen by the adversary
A, it outputs EDB by using Setup(1λ, DB) to the adversary A. A can re-

7

peatedly perform a search query q (or an update query (op, in)). The game
outputs the results generated by running Search(q) (or Update(op, in)) to
the adversary A. Eventually, A outputs a bit.

– DSSEIDEALΓA,S(1λ): On input a database DB which is chosen by the adversary

A, it outputs EDB to the adversary A by using a simulator S(LStp(1λ, DB)).
Then, it simulates the results for the search query q by using the leakage
function S(LSrch(q)) and uses S(LUpdt(op, in)) to simulate the results for
update query (op, in). Eventually, A outputs a bit.

Definition 1. A DSSE scheme Γ is L-adaptively-secure if for every PPT ad-
versary A, there exists an efficient simulator S such that

|Pr[DSSEREALΓA(1λ) = 1]− Pr[DSSEIDEALΓA,S(1λ) = 1]| ≤ negl(1λ).

4 Constructions

In this section, we give two DSSE constructions. In order to process range queries,
we deploy a new binary tree which is modified from the binary tree in [13]. Now,
we first give our binary tree used in our constructions.

4.1 Binary Tree for Range Queries

In a binary tree BT, every node has at most two children named left and right.
If a node has a child, then there is an edge that connects these two nodes. The
node is the parent parent of its child. The root root of a binary tree does not
have parent and the leaf of a binary tree does not have any child. In this paper,
the binary tree is stored in thew form of linked structures. The first node of BT is
the root of a binary tree. For example, the root node of the binary tree BT is BT,
the left child of BT is BT.left, and the parent of BT’s left child is BT.left.parent,
where BT = BT.left.parent.

In a complete binary tree CBT, every level, except possibly the last, is com-
pletely filled, and all nodes in the last level are as far left as possible (the leaf
level may not full). A perfect binary tree PBT is a binary tree in which all internal
nodes (not the leaves) have two children and all leaves have the same depth or
same level. Note that, PBT is a special CBT.

4.2 Binary Database

In this paper, we use binary database BDB which is generated from DB. In DB,
keywords (the first row in 1.(c)) are used to retrieve the file indices (every column
in 1.(c)). For simplicity, we map keywords in DB to the values in the range [0,m−1]
for range queries5, where m is the maximum number of values. If we want to

5 In different applications, we can choose different kinds of values. For instance, audit
documents of websites with particular IP addresses. we can search the whole network
domain, particular host or application range.

8

search the range [0,3], a näıve solution is to send every value in the range (0, 1,
2 and 3) to the server, which is not efficient. To reduce the number of keywords
sent to the server, we use the binary tree as shown in Fig. 1.(a). For the range
query [0,3], we simply send the keyword n3 (the minimum nodes to cover value
0, 1, 2 and 3) to the server. In BDB, every node in the binary tree is the keyword
of the binary database, and every node has all the file indices for its decedents,
as illustrated in Figure 1.(d).

As shown in Fig. 1.(a), keyword in BDB corresponding to node i (the black
integer) is ni (e.g. the keyword for node 0 is n0.). The blue integers are the
keywords in DB and are mapped to the values in the range [0,3]. These values are
associated with the leaves of our binary tree. The words in red are the file indices
in DB. For every node (keyword), it contains all the file indices in its descendant
leaves. Node n1 contains f0, f1, f2, f3 and there is no file in node n4 (See Fig.
1.(d)). For a range query [0, 2], we need to send the keywords n1, n4 (n1 and n4
are the minimum number of keywords to cover the range [0, 2].) to the server,
and the result file indices are f0, f1, f2 and f3.

Bit String Representation We parse the file indices for every keyword in
BDB (e.g. every column in Figure 1.(d)) into a bit string, which we will use later.
Suppose there are y− 1 documents in our BDB, then we need y bits to represent
the existence of these documents. The highest bit is the sign bit (0 means positive
and 1 means negative). If fi contains keyword nj , then the i-th bit of the bit
string for nj (every keyword has a bit string) is set to 1. Otherwise, it is set to 0.
For update, if we want to add a new file index fi (which also contains keyword
nj) to keyword nj , we need a positive bit string, where the i-th bit is set to 1 and
all other bits are set to 0. Next, we add this bit string to the existing bit string
associated with nj

6. Then, fi is added to the bit string for nj . If we want to
delete file index fi from the bit string for nj , we need a negative bit string (the
most significant bit is set to 1), the i-th bit is set to 1 and the remaining bits
are set to 0. Then, we need to get the complement of the bit string 7. Next, we
add the complement bit string as in the add operation. Finally, the fi is deleted
from the bit string for nj .

For example, in Fig. 1.(b), the bit string for n0 is 000001, and the bit string
for n4 is 000000. Assume that we want to delete file index f0 from n0 and
add it to n4. First we need to generate bit string 000001 and add it to the bit
string (000000) for n4. Next we generate the complement bit string 111111 (the
complement of 100001) and add it to 000001 for n0. Then, the result bit strings
for n0 and n4 are 000000 and 000001, respectively. As a result, the file index f0
has been moved from n0 to n4.

6 Note that, in the range queries, the bit strings are bit exclusive since a file is corre-
sponded to one value only.

7 In a computer, the subtraction is achieved by adding the complement of the negative
bit string.

9

n0 n2

n1

n4 n6

n5

n3

0 1 2 3

(a)
(b)

f0 f1

f2

f3

f4

n0 n2

n1

n4 n6

n5

n3

0 1 2 3

1
0
0
0
0
0

0
1
1
1
0
0

0
0
0
0
0
0

0
0
0
0
1
0

(c)

values (keywords in DB)

nodes (keywords in BDB)

file indexes

values (keywords in DB)

nodes (keywords in BDB)

file indexes

(d)

n0 n1 n2 n3 n4 n5 n6

0 0 1 1 0 1 2 3 2 2 3 3

f0 f0 f0

f1 f1 f1

f2 f2 f2

f3 f3 f3

f4 f4 f4

0 1 2 3

f0

f1

f2

f3

f4

Fig. 1: Architecture of Our Binary Tree for Range Query

Binary Tree Assignment and Update As we use the binary tree to support
data structure needed in our DSSE, we define the following operations that are
necessary to manipulate the DSSE data structure.

TCon(m): For an integer m, the operation builds a complete binary tree CBT.
CBT has dlog(m)e+ 1 levels, where the root is on the level 0, and the leaves are
on the level dlog(m)e. All leaves are associated with the m consecutive integers
from left to right.

TAssign(CBT): The operation takes a CBT as an input and outputs an assigned
binary tree ABT, where nodes are labelled by appropriate integers. The opera-
tion applies TAssignSub recursively. Keywords then are assigned to the node
integers.

TAssignSub(c, CBT): For an input pair: a counter c and CBT, the operation
outputs an assigned binary tree. It is implemented as a recursive function. It
starts from 0 and assigns to nodes incrementally. See Fig. 2 for an example.

TGetNodes(n, ABT): For an input pair: a node n and a tree ABT, the operation
generates a collection of nodes in a path from the node n to the root node. This
operation is needed for our update algorithm if a client wants to add a file to a
leaf (a value in the range). The file is added to the leaf and its parent nodes.

TUpdate(add, v, CBT): The operation takes a value v and a complete binary
tree CBT and updates CBT so the tree contains the value v. For simplicity, we
consider the current complete binary tree contains values in the range [0, v−1]8.

8 Note that, we can use TUpdate many times if we need to update more values.

10

Algorithm 1 Our Binary Tree

TCon(m)
Input integer m
Output complete binary tree CBT

1: Construct a CBT with dlog(m)e+1 lev-
els.

2: Set the number of leaves to m.
3: Associate the leaves with m consecu-

tive integers [0,m-1] from left to right.
4: return CBT

TAssign(CBT)
Input complete binary tree CBT

Output assigned binary tree ABT

1: Counter c = 0
2: TAssignSub(c, CBT)
3: return ABT

TAssignSub(c, CBT)
Input CBT, counter c
Output Assigned binary tree ABT

1: if CBT.left 6= ⊥ then
2: TAssignSub(c, CBT.left)
3: end if
4: Assign CBT with counter c.
5: c = c+ 1
6: if CBT.right 6= ⊥ then
7: TAssignSub(c, CBT.right)
8: end if
9: Assign CBT with counter c.

10: c = c+ 1

11: return ABT

TGetNodes(n, ABT)
Input node n, ABT
Output NSet

1: NSet ← Empty Set
2: while n 6=⊥ do
3: NSet ← NSet ∪ n
4: n = n.parent
5: end while
6: return NSet

TUpdate(add, v, CBT)
Input op= add, value v, CBT
Output updated CBT

1: if CBT = ⊥ then
2: Create a node.
3: Associate value v = 0 to this node.
4: Set CBT to this node.
5: else if CBT is PBT or CBT has one node

then
6: Create a new root node rootn.
7: Create a VBT = CBT

8: CBT.parent=VBT.parent=rootn
9: CBT = rootn

10: Associate v to the least virtual leaf
and set this leaf and its parents as real.

11: else
12: Execute line 10.
13: end if
14: return CBT

Depending on the value of v, the operation is executed according to the following
cases:

– v = 0: it means that the current complete binary tree is null, we simply create
a node and associate value v = 0 with the node. The operation returns the
node as CBT.

– v > 0: If the current complete binary tree is a perfect binary tree PBT or it
consists of a single node only, we need to create a virtual binary tree VBT,
which is a copy of the current binary tree. Next, we merge the virtual perfect
binary tree with the original one getting a large perfect binary tree. Finally,
we need to associate the value v with the least virtual leaf (the leftmost
virtual leaf without a value) of the virtual binary tree and set this leaf and
its parents as real. For example, in Fig. 2.(a), v = 4, the nodes with solid line
are real and the nodes with dot line are virtual which can be added later.

11

Otherwise, we directly associate the value v to the least virtual leaf and set
this leaf and its parents as real 9. In Fig. 2.(b), v = 5.

n0 n2

n1

n4 n6

n5

n3

n8 n10

n9

n12 n14

n13

n11

n7

0 1 2 3 4 5 6 7

(a)

n0 n2

n1

n4 n6

n5

n3

n8 n10

n9

n12 n14

n13

n11

n7

0 1 2 3 4 5 6 7

(b)

Fig. 2: Example of Update Operation

Note that, in our range queries, we need to parse a normal database DB to its
binary form BDB. First, we need to map keywords of DB to integers in the range
[0, |W |−1], where |W | is the total number of keywords in DB. Next, we construct
a binary tree as described above. The keywords are assigned to the nodes of the
binary tree and are associated with the documents of their descendants. For
example, In Fig. 1.a, the keywords are {n0, n1, · · · , n6} and BDB(n0) = {f0},
BDB(n1) = {f0, f1, f2, f3}.

4.3 DSSE Range Queries - Construction A

In this section, we apply our new binary tree to the Bost [5] scheme to support
range queries. For performing a ranger query, the client in our scheme first deter-
mine a collection of keywords to cover the requested range. Then, she generates
the search token corresponding to each node (in the cover) and sends them to
the sever, which can be done in a similar way as [5]. Now we are ready to present
the first DSSE scheme that supports range queries and is forward-secure. The
scheme is described in Algorithm 2, where F is a cryptographically strong pseu-
dorandom function (PRF), H1 and H2 are keyed hash functions and Π is a
trapdoor permutation.
Setup(1λ): For a security parameter 1λ , the algorithm outputs (TPK, TSK,
K,T,N,m), where TPK and TSK are the public key and secret keys of the trap-
door permutation, respectively, K is the secret key of function F , T, N are maps
and m is the maximum number of the values in our range queries. The map N
is used to store the pair keyword/(STc, c) (current search token and the counter
c, please see Algorithm 2 for more details.) and is kept by the client. The map

9 Only if its parents were virtual, then we need to convert them to real.

12

T is the encrypted database EDB that used to store the encrypted indices which
is kept by the server.
Search([a, b], σ, m, EDB): The protocol is executed between a client and a server.
The client asks for documents, whose keywords are in the range [a, b], where
0 ≤ a ≤ b < m. The current state of EDB is σ and the integer m describes
the maximum number of values. Note that knowing m, the client can easily
construct the complete binary tree. The server returns a collection of file indices
of requested documents.
Update(add, v, ind, σ, m, EDB): The protocol is performed jointly by a client
and server. The client wishes to add an integer v together with a file index ind
to EDB. The state of EDB is σ, the number of values m. There are following three
cases:

– v < m: the client simply adds ind to the leaf, which contains value v and
its parents (See line 9-24 in Algorithm 2). This is a basic update, which is
similar to the one from [5].

– v = m: the client first updates the complete binary tree to which she adds
the value v. If a new root is added to the new complete binary tree, then the
server needs to add all file indices of the old complete binary tree to the new
one. Finally, the server needs to add ind to the leaf, which contains value v
and its parents.

– v > m: the client uses Update as many times as needed. For simplicity, we
only present the simple case v = m, i.e., the newly added value v equals the
maximum number of values of the current range [0,m−1], in the description
of Algorithm 2.

The DSSE supports range queries at the cost of large client storage, since the
number of search tokens is liner in the number of all nodes of the current tree
instead of only leaves. In [5], the number of entries at the client is |W |, while it
would be roughly 2|W | in this construction. Moreover, the communication cost
is heavy since the server needs to return all file indices to the client when the
binary tree is updated with a new root. To overcome the weakness, we give a new
construction with lower client storage and communication costs in the following
section.

4.4 DSSE Range Queries - Construction B

In this section, we give the second construction by leveraging the Paillier cryp-
tosystem [17], which significantly reduce the client storage and communication
costs compared with the first one. With the the homomorphic addition property
of the Paillier cryptosystem, we can add and delete the file indices by parsing
them into binary strings, as illustrated in Section 4.2. Next we briefly describe
our second DSSE, which can not only support range queries but also achieve
both forward and backward security. The scheme is described in Algorithm 3.
Setup(1λ): For a security parameter 1λ , the algorithm returns (PK, SK,K,T,m),
where PK and SK are the public and secret keys of the Paillier cryptosystem,

13

Algorithm 2 Construction A

Setup(1λ)

Input security parameter 1λ

Output (TPK, TSK,K,T,N,m)

1: K ← {0, 1}λ
2: (TSK, TPK)← TKeyGen(1λ)
3: T, N ← empty map
4: m = 0
5: return (TPK, TSK,K,T,N,m)

Search([a, b], σ, m, EDB)
Client:
Input [a, b], σ, m
Output (Kn, STc, c)

1: CBT ← TCon(m)
2: ABT ← TAssign(CBT)
3: RSet ← Find the minimum nodes to

cover [a, b] in ABT

4: for n ∈ RSet do
5: Kn ← FK(n)
6: (STc, c)← N[n]
7: if (STc, c) 6=⊥ then
8: Send (Kn, STc, c) to the server.
9: end if

10: end for

Server:
Input (Kn, STc, c), EDB
Output (ind)

11: Upon receiving (Kn, STc, c)
12: for i = c to 0 do
13: UTi ← H1(Kn, STi)
14: e← T[UTi]
15: ind← e⊕H2(Kn, STi)
16: Output the ind
17: STi−1 ← Π(TPK, STi)
18: end for

Update(add, v, ind, σ, m, EDB)
Client:
Input add, v, ind, σ, m
Output (UTc+1, e)

1: CBT ← TCon(m)
2: if v = m then
3: CBT←TUpdate(add, v, CBT)
4: m← m+ 1
5: if CBT added a new root then
6: (STc, c)← N[rooto]
7: N[rootn]← (STc, c)
8: end if
9: Get the leaf nv of value v.

10: ABT ← TAssign(CBT)
11: NSet← TGetNodes(nv, ABT)
12: for every node n ∈ NSet do
13: Kn ← FK(n)
14: (STc, c)← N[n]
15: if (STc, c) =⊥ then
16: ST0 ←M, c← −1
17: else
18: STc+1 ← Π−1(TSK, STc)
19: end if
20: N[n]← (STc+1, c+ 1)
21: UTc+1 ← H1(Kn, STc+1)
22: e← ind⊕H2(Kn, STc+1)
23: Send (UTc+1, e) to the Server.
24: end for
25: else if v < m then
26: Execute line 9-24.
27: end if

Server:
Input (UTc+1, e), EDB
Output EDB

28: Upon receiving (UTc+1, e)
29: Set T[UTc+1]← e

respectively, K is the secret key of a PRF F , m is the maximum number of values
which can be used to reconstruct the binary tree and the encrypted database
EDB is stored in a map T which is kept by the server.
Search([a, b], σ, m, EDB): The protocol is executed between a client and a server.
The client queries for documents, whose keywords are in the range [a, b], where
0 ≤ a ≤ b < m. σ is the state of EDB, and integer m specifies the maximum
values for our range queries. The server returns encrypted file indices e to the

14

client, who can decrypt e by using the secret key SK of Pailler Cryptosystem and
obtain the file indices of requested documents.

Update(op, v, ind, σ, m, EDB): The protocol runs between a client and a server.
A requested update is named by the parameter op. The integer v and the file
index ind specifies the tree nodes that need to updated. The current state σ, the
integer m and the server with input EDB. If op = add, the client generates a bit
string as prescribed in Section 4.2. In case when op = delete, the client creates
the complement bit string as given in Section 4.2. The bit string bs is encrypted
using the Paillier cryptosystem. The encrypted string is denoted by e. There are
following three cases:

– v < m: The client sends the encrypted bit string e with the leaf nv containing
value v and its parents to server. Next the server adds e with the existing
encrypted bit strings corresponding to the nodes specified by the client. See
line 11-23 in Algorithm 3 which is similar to the update in Algorithm 2.

– v = m: The client first updates the complete binary tree to which she adds
the value v. If a new root is added to the new complete binary tree, then the
client retrieves the encrypted bit string of the root (before update). Next the
client adds it to the new root by sending it with the new root to the server.
Finally, the client adds e to the leaf that contains value v and its parents as
in v < m case.

– v > m: The client uses Update as many times as needed. For simplicity,
we only consider v = m, where m is the number of values in the maximum
range.

In this construction, it achieves both forward and backward security. Moreover,
the communication overhead between the client and the server is significantly
reduced due to the fact that for each query, the server returns a single ciphertext
to the client at the cost of supporting small number of documents. Since, in
Paillier cryptosystem, the length of the message is usually small and fixed (e.g.
1024 bits).

This construction can be applied to applications, where the number of doc-
uments is small and simultaneously the number of keywords can be large. The
reason for this is the fact that for a given keyword, the number of documents
which contain it is small. Consider a temperature forecast system that uses a
database, which stores records from different sensors (IoT) located in different
cities across Australia. In the application, the cities (sensors) can be considered
as documents and temperature measurements can be considered as the keywords.
For example, Sydney and Melbourne have the temperature of 18◦C. Adelaide
and Wollongong have got 17◦C and 15◦C, respectively. If we query for cities,
whose temperature measurements are in the range from 17 to 18◦C, then the
outcome includes Adelaide, Sydney and Melbourne. Here, the number of cities
(documents) is not large. The number of different temperature measurements
(keywords) can be large depending on requested precision.

15

Algorithm 3 Construction B

Setup(1λ)

Input security parameter 1λ

Output (PK, SK,K,T,m)

1: K ← {0, 1}λ
2: (SK, PK)← KeyGen(1λ)
3: T ← empty map
4: m = 0
5: return (PK, SK,K,T,m)

Search([a, b], σ, m, EDB)
Client:
Input [a, b], σ,m
Output (UTn)

1: CBT ← TCon(m)
2: ABT ← TAssign(CBT)
3: RSet ← Find the minimum nodes to

cover [a, b] in ABT

4: for n ∈ RSet do
5: UTn ← FK(n)
6: Send UTn to the server.
7: end for

Server:
Input (UTn), EDB
Output (e)

8: Upon receiving UTn
9: e← T[UTn]

10: Send e to the Client.

Update(op, v, ind, σ, m, EDB)
Client:
Input op, v, ind, σ,m
Output (UTn, e)

1: CBT ← TCon(m)
2: if v = m then
3: CBT ← TUpdate(add, v, CBT)
4: m← m+ 1

5: if CBT added a new root then
6: UTrooto

← FK(rooto)
7: UTrootn

← FK(rootn)
8: e← T[UTrooto

]
9: T[UTrootn

]← e
10: end if
11: Get the leaf nv of value v.
12: ABT ← TAssign(CBT)
13: NSet← TGetNodes(nv, ABT)
14: if op = add then
15: Generate the bit string bs as

state in Bit String Representation of
Section 4.2.

16: else if op = del then
17: Generate the complement bit

string bs as state in Bit String Rep-
resentation of Section 4.2.

18: end if
19: for every node n ∈ NSet do
20: UTn ← FK(n)
21: e← Enc(PK, bs)
22: Send (UTn, e) to the server.
23: end for
24: else if v < m then
25: Execute line 11-23.
26: end if

Server:
Input (UTn, e), EDB
Output EDB

1: Upon receiving (UTn, e)
2: e′ ← T[UTn]
3: if e′ 6=⊥ then
4: e← e · e′
5: end if
6: T[UTn]← e

5 Security Analysis

In our constructions, we parse a range query into several keywords. Then, fol-
lowing [5], the leakage to the server is summarized as follows:

– search pattern sp(w), the repetition of the query w.
– history Hist(w), the history of keyword w. It includes all the updates made

to DB(w).

16

– contain pattern cp(w), the inclusion relation between the keyword w with
previous queried keywords.

– time Time(w), the number of updates made to DB(w) and when the update
happened.

Note that, contain pattern cp(w) is an inherited leakage for range queries when
the file indices are revealed to the server. If a query w′ is a subrange of query w,
then the file index set for w′ will also be a subset of the file index set for w.

5.1 Forward Security and Backward Security

Forward security means that an update does not leak any information about
keywords of updated documents matching a query we previously issued. A formal
definition is given below:

Definition 2. ([5]) A L-adaptively-secure DSSE scheme Γ is forward-secure if
the update leakage function LUpdt can be written as

LUpdt(op, in) = L′(op, (indi, µi))

where (indi, µi) is the set of modified documents paired with number µi of mod-
ified keywords for the updated document indi.

Backward security means that a search query on w does not leak the file in-
dices that previously added and later deleted. More formally, we use the level
I definition of [6] with modifications which leaks less information. It leaks the
encrypted documents currently matching w, when they were updated, and the
total number of updates on w.

Definition 3. A L-adaptively-secure DSSE scheme Γ is insertion pattern re-
vealing backward-secure if the the update leakage function LSrch, LUpdt can be
written as LUpdt(op, w, ind) = L′(op), LSrch(w) = L′′(Time(w)).

5.2 Construction A

Since the first DSSE construction is based on [5], it inherits security of the
original design. Adaptive security of the construction A can be proven in the
Random Oracle Model and is a modification of the security proof of [5]. We give
a sketch proof here, and refer the reader to the Appendix for the full proof.

Theorem 1. (Adaptive forward security of A). Let LΓA
= (LSrchΓA

, LUpdtΓA
),

where LSrchΓA
(n) = (sp(n), Hist(n), cp(n)), LUpdtΓA

(add, n, ind) =⊥. The construc-
tion A is LΓA

-adaptively forward-secure.

Proof. (Sketch) Compared with [5], this construction additionally leaks the con-
tain pattern cp as described in Section 3.1. Other leakages are exactly the same
as [5]. Since the server executes one keyword search and update one keyword/file-
index pair at a time. Note that the server does not know the secret key of the
trapdoor permutation, so it cannot learn anything about the pair even if the
keyword has been searched by the client previously.

17

5.3 Construction B

The adaptive security of second DSSE construction relies on the semantic secu-
rity of Paillier cryptosystem. All file indices are encrypted using the public key of
Paillier cryptosystem. Without the secret key, the server cannot learn anything
from the ciphertext. We give a sketch proof here and refer the reader to the
Appendix for the full proof.

Theorem 2. (Adaptive forward security of B). Let LΓB
= (LSrchΓB

, LUpdtΓB
),

where LSrchΓB
(n) = (sp(n)), LUpdtΓB

(op, n, ind) = (Time(n)). Construction B is
LΓB

-adaptively forward-secure.

Proof. (Sketch) In construction B, for the update, we only leak the number of
updates corresponding to the queried keywords n. Since all cryptographic oper-
ations are performed at the client side where no keys are revealed to the server,
the server can learn nothing from the update, given that the Paillier cryptosys-
tem scheme is IND-CPA secure. We can simulate the DSSEREAL as in Algorithm
3 and simulate the DSSEIDEAL by encrypting all 0’s strings for the EDB. The
adversary A can not distinguish the real ciphertext from the ciphertext of 0’s.
Then, A cannot distinguish DSSEREAL from DSSEIDEAL. Hence, our Construction
B achieves forward security. �

Theorem 3. (Adaptive backward security of B). Let LΓB
= (LSrchΓB

, LUpdtΓB
),

where LSrchΓB
(n) = (sp(n), Hist(n)), LUpdtΓB

(op, n, ind) = (Time(n)). Construction
B is LΓB

-adaptively backward-secure.

Proof. (Sketch) The construction B does not leak the type of update (either add
or del) on encrypted file indices since it has been encrypted. Moreover, it does not
leak the file indices that previously added and later deleted. The construction B
is backward-secure. Since the leakage is same as Theorem 2, then the simulation
is same as Theorem 2. �

6 Conclusion

In this paper, we give two secure DSSE that support range queries. The first
DSSE construction applies our binary tree to the scheme from [5] and is forward-
secure. However, it incurs a large storage overhead in the client and a large com-
munication cost between the client and the server. To address these problems,
we propose the second DSSE construction with range queries that uses Paillier
cryptosystem. It achieves both the forward and backward security. Although the
second DSSE construction cannot support large number of documents, it can
still be very useful in certain applications. In the future, we would like construct
more scalable DSSE schemes with more expressive queries.

18

Acknowledgment

The authors thank the anonymous reviewers for the valuable comments. This
work was supported by the Natural Science Foundation of Zhejiang Province
[grant number LZ18F020003], the National Natural Science Foundation of China
[grant number 61472364] and the Australian Research Council (ARC) Grant
DP180102199.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD international conference
on Management of data. pp. 563–574. ACM (2004)

2. Boldyreva, A., Chenette, N., Lee, Y., Oneill, A.: Order-preserving symmetric en-
cryption. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 224–241. Springer (2009)

3. Boldyreva, A., Chenette, N., ONeill, A.: Order-preserving encryption revisited:
Improved security analysis and alternative solutions. In: Annual Cryptology Con-
ference. pp. 578–595. Springer (2011)

4. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Se-
mantically secure order-revealing encryption: Multi-input functional encryption
without obfuscation. In: Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques. pp. 563–594. Springer (2015)

5. Bost, R.: oϕoς: Forward secure searchable encryption. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. pp. 1143–
1154. ACM (2016)

6. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. pp. 1465–
1482. ACM (2017)

7. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. pp. 668–679. ACM (2015)

8. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., Steiner,
M.: Dynamic searchable encryption in very-large databases: Data structures and
implementation. In: NDSS. vol. 14, pp. 23–26. Citeseer (2014)

9. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Advances in Cryptology–CRYPTO 2013, pp. 353–373. Springer (2013)

10. Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption
with limited leakage. In: International Conference on Fast Software Encryption.
pp. 474–493. Springer (2016)

11. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: improved definitions and efficient constructions. In: Proceedings of the
13th ACM conference on Computer and communications security. pp. 79–88. ACM
(2006)

12. Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., Garofalakis,
M.: Practical private range search revisited. In: Proceedings of the 2016 Interna-
tional Conference on Management of Data. pp. 185–198. ACM (2016)

19

13. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich
queries on encrypted data: Beyond exact matches. In: European Symposium on
Research in Computer Security. pp. 123–145. Springer (2015)

14. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceedings of the 2012 ACM conference on Computer and communica-
tions security. pp. 965–976. ACM (2012)

15. Kermanshahi, S.K., Liu, J.K., Steinfeld, R.: Multi-user cloud-based secure keyword
search. In: Australasian Conference on Information Security and Privacy. pp. 227–
247. Springer (2017)

16. Kim, K.S., Kim, M., Lee, D., Park, J.H., Kim, W.H.: Forward secure dynamic
searchable symmetric encryption with efficient updates. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. pp.
1449–1463. ACM (2017)

17. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: International Conference on the Theory and Applications of Cryp-
tographic Techniques. pp. 223–238. Springer (1999)

18. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Security and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Sympo-
sium on. pp. 44–55. IEEE (2000)

19. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: NDSS. vol. 71, pp. 72–75 (2014)

20. Sun, S.F., Liu, J.K., Sakzad, A., Steinfeld, R., Yuen, T.H.: An efficient non-
interactive multi-client searchable encryption with support for boolean queries. In:
European Symposium on Research in Computer Security. pp. 154–172. Springer
(2016)

21. Wang, Y., Wang, J., Sun, S., Liu, J.K., Susilo, W., Chen, X.: Towards multi-user
searchable encryption supporting boolean query and fast decryption. In: ProvSec
2017. Lecture Notes in Computer Science, vol. 10592, pp. 24–38. Springer (2017)

22. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: The power
of file-injection attacks on searchable encryption. In: USENIX Security Symposium.
pp. 707–720 (2016)

23. Zuo, C., Macindoe, J., Yang, S., Steinfeld, R., Liu, J.K.: Trusted boolean search
on cloud using searchable symmetric encryption. In: Trustcom/BigDataSE/I SPA,
2016 IEEE. pp. 113–120. IEEE (2016)

Appendix

Theorem 1 Let Π be the one-way trapdoor permutation, F be a PRF, and H1,
H2 be the hash functions and manipulated as random oracles with x, y bits ,re-
spectively. Define LΓA

= (LSrchΓA
, LUpdtΓA

), where LSrchΓA
(n) = (sp(n), Hist(n), cp(n)),

LUpdtΓA
(add, n, ind) =⊥. n is a set of queried keywords and n ∈ n. Construction

A is LΓA
-adaptively forward-private.

Proof. Following [5], we will set a serial of games from DSSEREALΓA

A (1λ) to

DSSEIDEALΓA

A,S1(1λ).

Game G1,0: G1,0 is exactly same as the real world game DSSEREALΓA

A (1λ).

Pr[DSSEREALΓA

A (1λ) = 1] = Pr[G1,0 = 1]

20

Game G1,1: Instead of calling F when generating kn, G1,1 picks a new ran-
dom key when it inputs a new keyword n, and stores it in a table Key so it can
be reused next time. If an adversary A is able to distinguish between G1,0 and
G1,1, we can then build a reduction able to distinguish between F and a truly
random function. More formally, there exists an efficient adversary B1 such that

Pr[G1,0 = 1]− Pr[G1,1 = 1] ≤ AdvprfF,B1
(λ).

Algorithm 4 Game G1,1, Single box for G1,2 and double box for G1,3

Setup(1λ)

1: (TSK, TPK)← TKeyGen(1λ)
2: T, N ← empty map
3: m = 0
4: return (TPK, TSK,K,T,N,m)

Search([a, b], σ; m, EDB)
Client:

1: CBT ← TCon(m)
2: ABT ← TAssign(CBT)
3: RSet ← TGetCover([a, b], ABT)
4: for n ∈ RSet do
5: Kn ← Key(n)
6: (STc, c)← N[n]
7: if (STc, c) 6=⊥ then
8: Send (Kn, STc, c) to the server.
9: end if

10: end for

Server:

11: Upon receiving (Kn, STc, c)
12: for i = c to 0 do
13: UTi ← H1(Kn, STi)

14: e← T[UTi]

15: ind← e⊕H2(Kn, STi)

16: Output the ind
17: STi−1 ← Π(TPK, STi)
18: end for

Update(add, v, ind, σ; m, EDB)
Client:

1: CBT ← TCon(m)
2: if v = m then

3: CBT←TUpdate(add, v, CBT)
4: m← m+ 1
5: if CBT added a new root then
6: (STc, c)← N[rootold]
7: N[rootnew]← (STc, c)
8: end if
9: Get the leaf nv of value v.

10: ABT ← TAssign(CBT)
11: NSet← TGetNodes(nv, ABT)
12: for every node n ∈ NSet do
13: Kn ← Key(n)
14: (STc, c)← N[n]
15: if (STc, c) =⊥ then
16: ST0 ←M, c← −1
17: else
18: STc+1 ← Π−1(TSK,STc)
19: end if
20: N[n]← (STc+1, c+ 1)

21: UTc+1 ← H1(Kn, STc+1)

22: e← ind⊕H2(Kn, STc+1)

23: Send (UTc+1, e) to the Server.
24: end for
25: else if v < m then
26: Execute line 9-24.
27: else
28: We can use Update many times.
29: end if

Server:

30: Upon receiving (UTc+1, e)
31: Set T[UTc+1]← e

Game G1,2, G1,3: In G1,2 and G1,3, we replace the hash function H1 in G1,2

and H2 in G1,3 with random strings respectively. These games will change the

21

boxed code in Algorithm 4 similar to [5], please refer to [5] for more details.
It is hard to distinguish these games due to the one-wayness of the trapdoor
permutation. Then, we can conclude that there exists an efficiently B2 such that

Pr[G1,1 = 1]− Pr[G1,3 = 1] ≤ 2N ·AdvOWΠ,B2
(1λ)

where N is the number of times that queried H1 and H2.
Game G1,4: In G1,4, we keep the records of the random generated encrypted

strings of the H1 and H2. Then, we return the same values for the query to H1

and H2 in the search protocol. Then, G1,4 is exactly same as the G1,3. More
formally,

Pr[G1,4 = 1] = Pr[G1,3 = 1]

Algorithm 5 Simulator S1

S.Setup(1λ)

1: (TSK, TPK)← TKeyGen(1λ)
2: N, T ← empty map
3: u = 0
4: return (TPK, TSK,T,N)

S.Update()
Client:

1: UT [u]← {0, 1}x
2: e[u]← {0, 1}y
3: Send (UT [u], e[u]) to the server.
4: u← u+ 1

S.Search(sp(n), Hist(n), cp(n))
Client:

1: n← sp(n)
2: Kn ← Key[n]
3: Parse Hist(n) as ((u0, add, ind0),
· · · , (uc, add, indc))

4: Parse cp(n) as (c′, n′)
5: if c′ < c then . keyword n contains

previous queried keyword n′.

6: if c′ = −1 then . n does not
contain previously queried keywords.

7: c′ = 0
8: ST0 ← N[n]
9: else

10: STc′ ← N[n′]
11: end if
12: for i = c′ to c do
13: Set H1(Kn, STi)← UT [ui]
14: Set H2(Kn, STi)← e[ui]⊕ indi
15: STi+1 ← Π−1

TSK(STi)
16: end for
17: Send (Kn, STc) to the server.
18: else if c′ ≥ c then . keyword n′

contains previous queried keyword n.
19: Get the c-th search token STc of

previously queried keyword n′.
20: Send (Kn, STc) to the server.
21: end if

Simulator S1 With the contain pattern cp, the simulator can reuse the
certain update token UT to simulate the inclusion relationship between the
keywords. We can use the search pattern sp and history Hist to simulate the
Search and Update. In Algorithm 5, we map the range queries to certain
keywords n. Hence,

Pr[G1,4 = 1] = Pr[DSSEIDEALΓA

A,S1(1λ) = 1]

22

Finally,
Pr[DSSEREALΓA

A (1λ) = 1]− Pr[DSSEIDEALΓA

A,S1(1λ) = 1]

≤ AdvprfF,B1
(1λ) + 2N ·AdvOWΠ,B2

(1λ)

which completes the proof. �

Theorem 2 Let F be a PRF, and Σ be a IND-CPA secure Paillier cryptosystem.
Define LΓB

= (LSrchΓB
, LUpdtΓB

), where LSrchΓB
(n) = (sp(n)), LUpdtΓB

(op, n, ind) =
(Time(n)). n is a set of queried keywords and n ∈ n. Construction B is LΓB

-
adaptively forward-private.

Proof. For Theorem 2, we also set a serial of games from DSSEREALΓB

A (1λ) to

DSSEIDEALΓB

A,S2(1λ).

Game G2,0: G2,0 is exactly same as the real world game DSSEREALΓB

A (1λ).

Pr[DSSEREALΓB

A (1λ) = 1] = Pr[G2,0 = 1]

Game G2,1: Instead of calling F when generating UTn, G2,1 picks a new
random key when it inputs a new keyword n, and stores it in a table Key so it
can be reused next time. If an adversary A is able to distinguish between G2,0

and G2,1, we can then build a reduction able to distinguish between F and a
truly random function. More formally, there exists an efficient adversary B1 such
that

Pr[G2,0 = 1]− Pr[G2,1 = 1] ≤ AdvprfF,B1
(1λ).

Algorithm 6 Simulator S2

S.Setup(1λ)

1: K ← {0, 1}λ
2: (SK,PK)← KeyGen(1λ)
3: T ← empty map
4: m = 0
5: return (PK,SK,K,T,m)

S.Update(T ime(n))
Client:

1: Parse T ime(n) as (n, c)
2: UTn ← Key(n)
3: for i = 0 to c do
4: en,i ← Enc(0′s)

5: Send (UTn, en,i) to the server.
6: end for

S.Search(sp(n))
Client:

1: n← sp(n)
2: UTn ← Key(n)
3: Send UTn to the server.

Server:

4: Upon receiving UTn
5: en ← T[UTn]
6: Send en to the Client.

Simulator We replace the bit string bs with an all 0’s string, we removed
the useless part which will not influence the client’s transcript. See Algorithm
6 for more details. If an adversary A is able to distinguish between G2,1 and

23

DSSEIDEALΓB

A,S2(1λ), then we can build an adversary B2 to break the IND-
CPA secure of Paillier cryptosystem. More formally, there exists an efficiently
adversary B2 such that

Pr[G2,1 = 1]− Pr[DSSEIDEALΓB

A,S2(1λ) = 1] ≤ AdvIND−CPAΣ,B2
(1λ).

Finally,

Pr[DSSEREALΓB

A (1λ) = 1]− Pr[DSSEIDEALΓB

A,S2(1λ) = 1]

≤ AdvprfF,B1
(1λ) +AdvIND−CPAΣ,B2

(1λ)

which completes the proof. �

