
NOCUST – A Non-Custodial 2nd-Layer Financial Intermediary
Rami Khalil

Liquidity.Network
rami@liquidity.network

Arthur Gervais
Liquidity.Network

arthur@liquidity.network

ABSTRACT
Bitcoin is meant to offer a payment system where the users are
custodians of their funds instead of entrusting a trusted financial in-
stitution. The limited transaction throughput of such permissionless
blockchains, however, results for example in volatile transaction
prices that hardly fit into traditional service level agreements re-
quired by professional institutions and cannot accommodate micro-
transactions.

We present a novel non-custodial 2nd-layer financial intermedi-
ary solution secure against double-spending that guarantees users
control of funds through leveraging a smart contract enabled decen-
tralized blockchain ledger as a means of dispute resolution. Two-
party payment channels networks have been proposed as building
blocks for trust-free payments that do not exhaust the resources
of the blockchain; however, they bear multiple fundamental limita-
tions. NOCUST is a specification for secure N-party payment hubs
with improved transaction utility, cheaper operational costs and
leaner user enrollment.

1 INTRODUCTION
Since the beginning of centralized banking in Mesopotamia [1],
finance intermediaries evolved as middlemen between, e.g. parties
that have surplus capital and others that desire access to liquid
funds. Such finance intermediaries traditionally act as custodians,
i.e., they (temporarily) own the transmitted funds, and therefore
are entrusted with correct monetary policy.

While the emergence of decentralized ledgers such as Bitcoin
has portrayed a mechanism of performing financial transactions
without a centralized intermediary, low-throughput and privacy
constraints are fundamentally hindering the practical use of such
ledgers. In particular the volatility of transaction fees do not align
with the business needs for Service Level Agreements (SLA), such
as a guaranteed transaction throughput and high availability of the
financial intermediary, while small value transfers (microtransac-
tions) are impractically expensive.

To improve transaction utility, different classes of blockchain
scaling solutions are being pursued. Alternative consensus mecha-
nisms [2–5] typically introduce different trust assumptions, shard-
ing [6; 7] attempts to partition the network into smaller shards
that reach faster consensus, while second layer payment channel
scaling solutions [8–11] reduce the load on the blockchain ledger
by performing operations off-chain securely.

Two-party payment channels establish a direct peer-to-peer pay-
ment medium between two parties, where individual transactions
on their privately maintained two-party ledger are not written to
the blockchain, while, at any given time, both parties are guaranteed
to be able to claim their legitimate funds in the global blockchain.
Linked payments across a chain of payment channels are trans-
mitted across two-party payment channel networks [8; 10] and

allow performing payments between parties that are not directly
connected by a payment channel. Numerous contributions address
the performance characteristics of payment networks [9; 11–13].

However, two-party payment channel networks face multiple
fundamental flaws: (i) two-party payment channel based hubs
would require insurmountable amounts of frozen collateral, (ii)
channel establishment requires an expensive on-chain transaction,
(iii) two-party payment channels rely on complex routing topolo-
gies which need to be setup and maintained, (iv) funds allocated
to a payment channel are typically bound between two parties
and can only be transferred further over fee-contingent routes, (v)
current payment channels require always-online observers to deter
potential misbehaviour of the involved parties.

This work. In this work, we propose a novel off-chain payment
hub construction named NOCUST, which allows the operation of a
non-custodial finance intermediary, that by design can achieve the
same transaction throughput as traditional custodians. A user can
open a payment channel directly with a NOCUST hub off-chain,
foregoing the need for a costly on-chain channel initialization trans-
action. NOCUST allows a set of participants to securely transact
over a single payment hub — their allocated funds can therefore be
used freely among the members of the hub. NOCUST’s structure
alleviates the burden on the off-chain network to route payments,
while multiple NOCUST hubs can be interconnected e.g. over tradi-
tional two-party payment channels with fairly static and long-lived
peering agreements.

Defining transaction finality as the point at which a transfer
is irreversible on-chain, we demonstrate how NOCUST achieves
delayed finality after a disputable time window, and show how the
hub operator can choose to stake an amount of collateral anywhere
between zero and the transaction volume during the disputable
time window as a trust model parameter that completely eliminates
ephemeral counter-party risk if desired. We argue that for many
real-world applications, a certain degree of reliability on the system
of the hub operator is sensible, because the hub’s smart contract
would seize to function if its integrity is not provable, effectively
ruining the hub operator’s business.

Contrary to traditional payment channel networks, we show
how a NOCUST payment hub can easily manage its collateral in
bulk, significantly reducing the operating costs of hub payment
channels. The main contributions of our work are as follows:

• We provide a novel payment hub construction NOCUST for
off blockchain payments that provides N-party off-chain
payment channels where we introduce a novel commit-
ment scheme to account for user’s balances.

• Depending on how trustworthy the payment hub is, the
hub either requires no additional locked up funds per addi-
tional user or a progressive amount of collateral, capped
at the respective transaction volume of a disputable time

1

window. We show how this collateral can be managed effi-
ciently in bulk, as opposed to traditional payment channels.

• Allocated funds of a user within a payment hub can be
used to pay any other member of the payment hub. This
significantly reduces the routing and network complexity
of existing payment channel designs.

• We show how users of a payment hub can securely main-
tain custody of their funds, even in the absence of the hub’s
availability or under its adversarial behavior.

The remainder of the paper is organized as follows. In Section 2,
we provide the necessary background and related work overview
on permissionless blockchains and payment channel networks. In
Section 3 we present the NOCUST architecture, while we analyze
its security and privacy in Section 4. We evaluate NOCUST in
terms of its usability and practicality in Section 5. In Section 6 we
outline possible avenues for future work on NOCUST, and lastly,
we conclude the paper in Section 7.

2 BACKGROUND AND RELATEDWORK
In this section, we provide the necessary background on permis-
sionless blockchains such as Bitcoin and Ethereum, and discuss
existing payment channel networks.

2.1 Decentralized Ledgers
Bitcoin [14] allows mutually mistrusting peers to trade, without
relying on a centralized trusted third party. Inspired by Bitcoin,
other blockchains surfaced, e.g., Ethereum [15] which extends Bit-
coin’s transaction language to a Turing complete programming
language to ease the development of so-called smart contracts. We
refer the reader to related work [16] for more in-depth background
on decentralized ledgers.

The blockchain’s primary intention is to provide a time stamp-
ing service that can act as an electronic payment solution which
solves the double-spending problem. That is the problem of spend-
ing an electronic coin multiple times. The majority of the existing
blockchains rely on a so-called Proof of Work (PoW) [17; 18], which
is a computationally expensive puzzle and allows for a permission-
less blockchain operation - i.e. any peer can join and leave the
network at any time.

The central costs associated to permissionless blockchains stems
from the requirement that all peers are required to be made aware
of all transactions in the network to not be vulnerable to double-
spending. Bitcoin currently only supports up to about 10 trans-
actions per second [19]. This throughput is unlikely to grow for
a single consolidated network beyond 100 transactions per sec-
ond (assuming the same underlying Internet topology) with simple
re-parametrization [20].

2.2 Two-party Payment Channels
Two-party payment channels establish direct peer-to-peer payment
channels between two parties. A payment channel can be seen as
a private two-party ledger, which is instantiated and closed with
a respective on-chain transaction. During the channel’s lifetime,
the channel is privately maintained and does not require ongoing
communication with the underlying blockchain. The security of

payment channel payments is guaranteed by the amount of es-
crow that the channel holds on-chain and it’s ability to recourse to
the blockchain in case of disputes. This on-chain escrow which is
gradually used off-chain makes sure that the participants are only
allowed to spend their rightful amounts.

Because a payment channel transaction avoids costly on-chain
transactions (besides channel establishment and closure), the direct
service of miners is not required and the transaction costs are sig-
nificantly reduced. As such payment channels (re)enable the use of
micro transactions on the blockchain. The transaction rate is pri-
marily limited by the network bandwidth between the participating
peers and the respective channel collateral.

For a pair of individuals that are not directly connected via a
payment channel, a payment can be routed along a set of payment
channels, i.e. over a payment channel network. This avoids to open
individual payment channels with each counter-party that one
might interact with. Such payment networks are envisioned to
enhance the usability and practicality of payment channels.

Routing payments over a payment network has certain analogies
to Internet packet routing, with additional routing restrictions.
Intermediate hops on a routing path are required to offer sufficient
collateral along the payment path, and if one intermediate payment
were to fail, the other intermediate payments are also invalidated.
Linked payments are therefore atomically executed or invalidated.
Intermediate hops are eligible to collect payment forwarding fees.

Several off-chain payment solutions have been proposed and
can be divided into two categories. The first category relies on
blockchain based time locks (e.g. by Decker et al. [21]). The channel
starts with a commitment transaction which for example lasts for
10 days. The subsequent commitment transaction will then last 9
days, and can thus be spent before the first transaction. The second
category of payment channels relies on punishment, i.e. if one party
misbehaves, the other party can claim all funds of the channel. One
instance of this payment channel is the Lightning Network [8]. The
Lightning Network relies on Bitcoin, while the Raiden Network [10]
is currently in development for the Ethereum blockchain. Exist-
ing payment channels are still in early development and therefore
allow for several improvement proposals. Sprites [9], inspired by
Lightning and Raiden aims to minimize the worst-case collateral
costs of indirect off-chain payments. Flare [11] is another proposal
to optimize the search process of finding a payment route. Bolt [22]
provides different constructions that allow for privacy preserving
off-chain payment channels. BitcoinJ, a lightweight Bitcoin client
implementation, also supports micropayment channels [23]. The
Orchid Network proposes probabilistic micropayments, where the
recipient does not necessarily need to have deposited funds in es-
crow [24]. Probabilistic payments, however are only more efficient
than payment channels whenever the service provided is continu-
ous and granular enough for the probabilistic variance to become
negligible.

2.3 Alternatives
TumbleBit [25] is an anonymous payment protocol, fully compat-
ible with nowadays Bitcoin protocol and allows parties to make
payments through an untrusted Tumbler (which can operate as
hub as well). TumbleBit claims to provide privacy properties such

2

that no-one, not even the Tumbler, can tell which payer paid which
payee during a TumbleBit epoch. Nothing apparently, however, pre-
vents the hub to deny payments to individual users, finally enabling
the hub to reject all but the victims and hub controlled payments.
The TumbleBit hub would, therefore, be able to infer who got paid
through the hub. TumbleBit requires that the hub operator opens a
directed channel with each recipient, where the full collateral of
the allowed payments is to be deposited. This significantly com-
plicates the operations of the payment hub because collateral for
each channel needs to be managed independently. Our proposed
payment hub allows collateral to be managed in bulk in a centrally
managed smart contract, facilitating the operations of the hub and
allowing a gradual collateral attribution.

Perun [26] is an off-chain protocol to establish "virtual" two-
party channels on top of two-party channels established on-chain,
referred to as "ledger" channels in the work. The motivation is to
enable two parties which are unconnected by an on-chain payment
channel to establish an off-chain connection through leveraging a
pre-existing channel. The work describes how an intermediary with
multiple on-chain connections may facilitate these virtual channel
establishments to enable payments between two of its unconnected
peers. The security guarantees provided by Perun do not prevent
a client and an intermediary from successfully double spending
the balance of a ledger channel in a set of virtual channels off-
chain, and finalizing the expenditure on-chain. Instead, the security
guarantees provide provable misbehavior in the worst case through
non-repudiable signed messages. Moreover, the collateral of the
intermediary is fragmented across its channels. In contrast, our
hub construct leverages provable integrity to prevent a malicious
intermediary from double-spending its balance and being able to
finalize the double spent transactions on-chain.

Plasma [27] is a specification for connecting a UTXO ledger with
a parent account-based ledger, where minting and reclaiming un-
spent transaction may only take place on the parent ledger. Parties
transact through authorizing spends of their UTXOs towards the
intended recipients, as in Bitcoin, and sending their authorizations
to the UTXO ledger network, which then aggregates the transaction
set into blocks and commits to them on the parent network. With
the incorporation of a UTXO model comes all of the inefficiencies
of transaction history validation and the inflexibility of transaction
output expenditure, and in the absence of a consensus mechanism
full block validation is required by clients. As a participant holds
more transaction outputs within the child ledger, their costs for
securely using their accounts increase over time in terms of val-
idation effort and dispute resolution. Moreover, plasma does not
specify a mechanism for mitigating risk of reversal on yet to be
finalized transactions, parting its guarantees from those of payment
channel networks. In our work, we design a more efficient bi-modal
ledger structure that mitigates these issues, permitting clients to
more efficiently verify the integrity of their accounts and requiring
less on-chain data for dispute.

2.4 Fundamental drawbacks of existing designs
In the following we elaborate on the fundamental drawbacks of
existing payment channel designs.

2.4.1 Fragmented collateral. Traditional payment channels re-
quire collateral to be locked up for every channel. If one were to
construct a payment hub with 2-party payment channels, the hub
operator would be required to lock up a substantial amount of col-
lateral. Given for example a hub with 1 Million users, and each
user receiving on average 10’000 USD of transaction volume over a
period of 1 month, this would require the hub operator to lock up
a total of 10 Billion USD. This amount could be reduced by dynami-
cally adjusting the respective channels of the users, which however
would require costly on-chain transactions. It’s therefore likely that
most of the locked up collateral would not be used frequently.

2.4.2 Expensive Channel Setup. Continuing on the example
given in the previous paragraph, a hub operator with 1 Million
users would be required to setup 1 Million on-chain transactions
for each channel setup. This in itself represents a substantial invest-
ment (beyond 1’000’000 USD on Ethereum given the current gas
prices).

2.4.3 Costly routing. Locked up funds in traditional payment
channels cannot be used directly with other nodes in the network.
Routing payments certainly alleviates this issue, but still limits the
available funds to a particular set of routes.

Route finding itself, has shown to be a significant difficulty in the
realization of two-party payment channel networks. Peers might
become unresponsive, which requires payments to be diverted over
newer, possibly more costly routes.

2.4.4 Online Watchdog requirements. The two parties of a tra-
ditional payment channel should remain online to observe their
channel state continuously. That is, because if one party were to
transition offline, the other party could attempt to close the channel
with an outdated state and effectively double-spend a disputable
amount. To alleviate this online presence requirement, users could
outsource the so called watchdog duty to a third party, which how-
ever introduces new trust assumptions along with additional costs.

2.4.5 Reduced Privacy. Because off-chain transactions are no
longer recorded in the readable blockchain, one would argue that
payment channel networks offer better privacy guarantees than
on-chain transactions. Related work however has argued otherwise
and proposed privacy enhanced payment channel designs [28–31].

2.4.6 Double-Spending Attacks on Blockchain Congestion. Un-
der a congested blockchain, channel termination could result in a
bidding war between a set of participants in a payment channel.
Incorrect channel termination can in particular be aggravated in the
event of a mass-exit, where many participants wish to close their
payment channels, and therefore trigger an aggravated blockchain
congestion. Note that the respective dispute resolution mechanism
might in some cases not be worth considering if the disputed value
is insignificant.

3 NOCUST ARCHITECTURE
In the this section, we present the non-custodial intermediary con-
struction NOCUST, denoted as 1 for brevity.

3

3.1 Prerequisite System Model
In the following we outline the considered system model. A 1
instance is designed to operate atop a blockchain layer supporting
smart contracts while its clients communicate directly off-chain.

In our scheme, the blockchain BC is considered as an integrity
protected and immutable root of trust that comprises a decentral-
ized database containing a global view of accounts, their balances
and transactions, and extra associated data. Each account in the
ledger is controlled by its own private key, that only the owner of
the account should know. A transaction from any account cannot
be authorized without possession of its respective private key. Au-
thorized modifications to the ledger are considered to be globally
available after a block is generated, on average every predetermined
block timeT . Due to the characteristic of providing an average block
time T , a blockchain can also be viewed as a timestamping service.
In the following sections we refer to the average time for block
generation as an era.

In addition to primitive ledger transactions that transfer balance
from one account to another, our scheme also requires a smart con-
tract execution environment, such that provided by Ethereum [15].
It’s important to note that Ethereum’s smart contracts are allowed
to hold a balance in the ledger, and control it according to their
programming. We assume that once a smart contract is published,
it cannot be modified, nor can a result outside the bounds of its
correct execution be accepted on the decentralized ledger BC.

We also assume an underlying communication network, where
all the participants can communicate directly off-chain (e.g. via
TCP connections).

3.2 Overview
The intermediary 1 is composed of two fundamental building
blocks: (i) an honest verifier smart contract (denoted asV1) and (ii)
an operator server (denoted as O1).V1 can operate on any Turing-
complete enabled blockchain BC, while O1 can be embodied as an
internet-reachable interactive server.

Clients hold their private keys that control their identities and
use them to sign off-chain messages while communicating with
O1. They also use the private keys to control their on-chain wallets
and interact withV1.

O1 posses its own private key for its identity, which can perform
some privileged operations in V1. O1 periodically commits to the
off-chain ledger state withV1 as described in Section 3.4.1.

3.2.1 Example Payment Scenario. Bob, a user of a payment hub,
would carry out the following steps to transfer an off-chain payment
to another user, Alice. We assume that both Bob and Alice own at
least 1 unit of cryptocurrency (e.g. ether) on the blockchain BC.

(1) Bob and Alice choose to transact through 1.
(2) Alice deposits 1 Ether in the smart contract V1. Note that

for reception only, Alice is not required to deposit funds
into V1.

(3) Bob deposits 1 Ether in the smart contractV1.
(4) Bob signs an IOU designated to Alice for 0.1 Ether and sends

the IOU to O1.
(5) O1 then notifies Alice of the IOU and awaits a signed receipt

from Alice.

(6) Alice signs a receipt of the IOU and sends it to O1.
(7) O1 confirms the validity of the IOU execution, ratifies it,

then sends its signatures on the IOU to Alice and Bob.
(8) O1 synchronizes withV1.
(9) Alice may withdraw up to 1.1 Ether fromV1.
(10) Bob may withdraw up to 0.9 Ether fromV1.

Pi 1 Pj

Registration Registration

Admission Admission

EntryEntry Participants join through O1

Deposit Deposit

DepositsDeposits P deposit to V1 on BC

Transfer

Receipt

Confirmation Confirmation

TransfersTransfers Transfers are ratified by O1

Commitment

Enforcement
Proof Proof

Dispute Dispute

SynchronizationSynchronization O1 commits T1 to V1

Withdrawal Withdrawal

WithdrawalWithdrawal P withdraw from V1

Figure 1: A sequential view of a NOCUST instance life-cycle.
In practicality, transfers, deposits, and withdrawals may in-
terleave post entry. Receipt of an off-chain transfer is possi-
ble after admission and does not require a prior deposit.

3.2.2 Operational Requirements. To disqualify 1 from being a
trusted custodian of its user’s funds and the payments it facilitates,
it would have to provide the following guarantees:

• Funds may not be transacted without user authorization.
• Users must always be able to withdraw their off-chain

balance to their on-chain accounts.
These guarantees need to be provided by the system to an hon-

est participant Pi regardless of the behavior of 1 or of any other
participant Pj (i , j). We prove these guarantees in Section 4.

Moreover, to qualify as an off-chain solution, rather than a side-
chain, there needs to be no reliance on a full consensus mechanism
in the second layer that demands mining or full inspection of the
contents of the entire off-chain ledger by all participants.

In NOCUST we define how a participant Pi could interact with
an intermediary 1 to enact off-chain transactions while satisfying

4

the above requirements through utilizing the following compo-
nents:

• A bimodal specialized balance ledger B.
• A specification for V1 to manage BG .
• A specification for O1 to manage BL .
• A specification for interactions between P, O1, and V1.

3.3 B Bimodal Ledger
In this section we present a simple scheme for managing local and
global balance and transaction information in B such that it can be
efficiently utilized to provide the secure operation of a 1 instance.

3.3.1 Separation. The bimodal B is separated into the locally
stored "off-chain" BL , which contains information related to bal-
ances and transfers performed through O1, and the globally stored
"on-chain" BG , which comprises information on balances and oper-
ations performed through V1. It is important to note that different
parties may have different views of the contents ofBL , but contents
of BG are assumed to be globally consistent.

3.3.2 Time Progression. The information in BL is committed to
on BG to make the transfers carried out through O1 enforceable by
V1 (ie. allow a Pi to withdraw funds received through O1 from a
Pj via V1). This synchronization commitment is sent periodically
from O1 to V1, and the duration of this period is referred to as an
eon, where the synchronization occurs at most once per eon. An
eon, within the context of our scheme, is further divided into a fixed
number of eras. Within the context of a blockchain ecosystem, an
era represents the amount of time taken to generate one block BC,
and thus commit a set of modifications to BG . Consequently, an
eon represents the amount of time for a fixed number of blocks to
be generated. We also use the term epoch to denote a quarter of an
eon. We use B(e) to refer to the state of the balance ledger at eon
number e as of all eras passed, and similarly for BL(e) and BG (e).

3.3.3 Locally Stored Information. For every eon e , for every Pi ,
BL(e) can store the following entries:

• Ai (e): Initially allotted balance of Pi for e .
• Ri (e): Total amount received off-chain by Pi during e .
• Si (e): Total amount sent off-chain by Pi during e .
• Ti (e): The set of off-chain transactions sent or received by

Pi during e .

3.3.4 Globally Stored Information. For every eon e , for every
Pi , BG (e) can store the following entries:

• Di (e): Total amount deposited by Pi during e .
• Wi (e): Total amount requested for withdrawal by Pi dur-

ing e .
• Xb

i (e): A challenge byPi against the integrity of its balance
in 1.

• Xd
i (e): A challenge by Pi against the integrity of an off-

chain transfer delivery in 1.
Consequently, Ai (e) is calculated as follows in B:

Ai (e) = Ai (e −1)+Di (e −1)+Ri (e −1)−Wi (e −1)−Si (e −1) (1)

Additionally, For every eon e , BG (e) can store a commitment by
O1 to the contents of BL(e − 1). The underlying data-structure of
this commitment is explained in Section 3.4.1.

3.4 T1 Periodic Commitments
In this section we describe the data-structures and message formats
that enable the efficient provable integrity of a NOCUST eon.

3.4.1 Synchronization Tree-structure. To provably account for
the allotted balances Ai (e) of each Pi at the beginning of an eon e ,
we design a novel Merklelized interval tree T1(e). The Merkleized
interval tree is similar to the augmented merkle tree proposed by
Luu et al. [32], yet built and utilized in completely different means.
The nodes in this Merkle tree [33] are augmented to store the user
balances in an efficient manner that allowsV1 to securely verify the
correct allotment of funds by O1. A node tn (e) of T1 is structured
as defined in Equation 2.

tn (e) =< offsetn (e), informationn (e), allotmentn (e) > (2)

offset and allotment are both numeric values, while information

is a cryptographic commitment to the information contained within
this node. The values for these fields are defined differently for
leaves and internal nodes as follows.

A leaf ti (e) is used to represent the off-chain account of a Pi
at eon e , whereby allotmenti (e) is equal to Ai (e) (cf. Section 3.3.3),
and offseti (e) corresponds to the sum of the allotted balances of
all participants ordered before Pi (cf. Equation 4).

allotmenti (e) = Ai (e) (3)

offseti (e) =
∑
j<i

allotmentj (e) (4)

informationi (e) is composed of the cryptographic hash of the
blockchain address of Pi and the commitment of the last balance
update agreed to by Pi in the previous eon. More precisely,

informationi (e) = {addressi , updatei (e − 1)} (5)

where updatei (e) represents the last state update of the off-chain
account of Pi at eon e as described in Section 3.4.3.

An internal node tu (e), with a left child tp (e) and a right child
tq (e), is constructed per (cf. Equation 6) and (cf. Equation 7) :

allotmentu (e) = allotmentp (e) + allotmentq (e) (6)

offsetu (e) = offsetp (e) (7)

informationu (e) is a cryptographic commitment similar to that of
an internal node of aMerkle Tree but with the addition of offsetq (e)
as a third middle value.

informationu (e) = {tp (e), offsetq (e), tq (e)} (8)

It’s important to note that the middle value of offsetq (e) is inter-
changeable with that of offsetp (e) + allotmentp (e) as they should
be equal in correct instances of this structure.

3.4.2 Proof of exclusive allotment. For each Pi included in T1(e),
a proof of exclusive allotment τi (e) can be constructed. The main
goal of this construct is to prove that Pi exclusively owns an allot-
ment of size Ai (e) within the allotment covered by T1(e).

τi (e) is constructed similar to a regular merkle tree membership
proof, whereby the nodes adjacent to the path from the root to
the leaf constitute the membership proof hash chain. However, in

5

addition to the hashes of the nodes in the membership proof, a
boundary value Ω is required for each node:

Ω(ti (e), tn (e)) =

{
offsetn (e) tn (e) is a left child
offsetn (e) + allotmentn (e) tn (e) is a right child

(9)
The procedure of verifying τi (e) is similar to that of verifying set

membership in a merkle tree but the node reconstruction is done
so according to the definitions the T1 structure in Section 3.4.1 in
conjunction with the Ω values. This bounds the size of a τi (e) to
O(log |P |).

3.4.3 MonotonicP-State Structure. The information in updatei (e)
contained in T1(e) is structured as follows:

updatei (e) = {Ti (e), Si (e),Ri (e)} (10)

Ti (e) is committed to using a merkle tree where the leaves are
the individual transfers through O1 authorized by Pi during eon e .
A O1 transfer T is a tuple of the following information:

< eon, sender , recipient ,amount > (11)

The merkle tree used to create the commitment for Ti (e) need
not be augmented. We refer to the standard merkle tree proof of
membership that T ∈ Ti (e) as λ(T ∈ Ti (e)).

3.5 V1 On-chain Verifier
The on-chain component V1 acts as the bridge between the O1

ledger BL and the BC ledger BG . Its procedures are assumed to be
executed honestly by BC, and it supports the following operations:

3.5.1 Commit T1(e). Committing to a T1(e)may only be done
once per eon e during its first epoch by O1. The commitment re-
quires only submission of the root node of T1(e).

The commitment procedure involves no validation on information,
but the following requirements exist on the offset and allotment

of the root node:
offsetroot (e) = 0 (12)

allotmentroot (e) = allotmentroot (e − 1)+D(e − 1)−W(e − 1) (13)

After validation, V1 stores the node information, making it
available to any P or any otherV1 procedure.

Preconditions:

• O1 must not have committed to T1(e)
• 1 must not have entered recovery

Input: troot (e)

(1) Verify conditions of Equation 12 and 13 on troot (e)
(2) Store troot (e) as the commitment to T1(e)

3.5.2 Verify τi (e). This verification procedure enables V1 to
verify a τi (e) for any e in which O1 had committed to a T1(e). This
validation acts as a foundation for the security of NOCUST.

Preconditions:

• O1 must have committed to T1(e)

Input: τi (e)

(1) Reconstruct t
′

root (e) from τi (e)

(2) output true iff t
′

root (e) = troot (e)

3.5.3 Receive Deposit Di (e). For a Pi to make a deposit into
1, it would simply send a transfer in the BC ledger with V1 as
the recipient. The only requirement onV1 is then that it adds the
value of the transfer to Di (e), where e is the current eon.

Preconditions:

• 1 must not have entered recovery
Input: BC transfer T from Pi toV1

(1) Set Di (e) to Di (e) + T.amount

3.5.4 Initiate Withdrawal Wi (e). A Pi can initiate a with-
drawal from 1 by submitting a request toV1. This request consists
of the amount, to be withdrawn once the request is confirmed, and
of τi (e − 1), where e is the current eon. If any previous withdrawal
had been successfully issued but not yet confirmed,V1 must reject
this request.

After calling its own validation procedure, with the stored troot (e − 1)
as reference and τi (e − 1) as input, upon a successful resultV1 is
required to set Wi (e) to the requested amount, while upon valida-
tion failure, or if Ai (e − 1) is less than the requested amount, V1
should reject the request.

Preconditions:

• 1 must not have entered recovery
• Pi may not have any other pending withdrawals

Input: τi (e − 1), amount to be withdrawn w

(1) Validate τi (e − 1)
(2) Validate w ≤ Ai (e − 1)
(3) SetWi (e) to w

3.5.5 CancelWithdrawalWi (e). AmaliciousPi may request
to withdraw funds fromV1 after having spent them through O1

during e . The O1 can provide τi (e − 1) and an updatei signed by Pi
to V1 to prove that Pi ’s balance had fallen below the requested
amount and cancelWi (e). This procedure can be augmented with
a punishment against Pi as a disincentive for misbehavior.

Preconditions:

• 1 must not have entered recovery
Input: Pi , signed updatei (e) or updatei (e − 1), τi (e − 1)
(1) Verify Sigi (updatei)
(2) Validate τi (e − 1)
(3) ConfirmWi (e) > Ai (e − 1) + updatei .R- updatei .S
(4) SetWi (e) to 0

3.5.6 Confirm Withdrawal Wi (e). In eon e , a withdrawal
request can be confirmed if it had not been provably cancelled by
O1 and if it was scheduled in eon e−2 and the first epoch has passed,
or if it had been scheduled in an eon ≤ e − 3.

Upon confirmation of a withdrawal,V1 issues a transfer from the
balance pool it manages in favor of Pi with the requested amount.

Preconditions:

• Wi (s) > 0 for some s ≤ e − 2
Input: none
(1) Reject if s = e − 2 and the first epoch of e has not passed
(2) TransferWi (s) to Pi on BC

(3) SetWi (s) to 0
6

3.5.7 OpenBalanceUpdateChallengeXb
i (e). Given aτi (e−

1) and an updatei (e − 1) signed by O1 as inputs from a Pi , theV1
challenge procedure requires that the hub provides a satisfying
τi (e) V1 before an epoch passes. Otherwise, 1 is shut down, and all
transactions since the beginning of e − 1 are reverted.

Preconditions:

• 1 must not have entered recovery

Input: At least one of τi (e − 1) and updatei (e − 1)

• Verify τi (e − 1), or Ai (e − 1) = 0
• Verify SigO (updatei (e − 1)), or Ri (e − 1) =Si (e − 1) =0
• Store expected Ai (e) in Xb

i (e)

3.5.8 Close Balance Update ChallengeXb
i (e). Given a valid

τi (e) as input from O1,V1 marks Xb
i (e) as closed if it were open

within the last epoch.
Preconditions:

• 1 must not have entered recovery
• ∃ Xb

i (e) not older than an epoch

Input: τi (e), updatei (e − 1)

(1) Verify τi (e)
(2) Verify Sigi (updatei (e − 1))
(3) Verify SigO (updatei (e − 1))
(4) Verify updatei (e − 1) is at least as recent as in Xb

i (e)
(5) Validate that τi (e) ratifies updatei (e − 1)
(6) Mark Xb

i (e) closed

3.5.9 Open Transfer Delivery Challenge Xd
i (e). Given an

updatej (e − 1) signed by O1, and a transfer T ji (e − 1) ∈ Tj (e − 1) as
inputs from Pi or Pj , theV1 delivery challenge procedure requires
that the hub provide a satisfying τi (e) and λ(T

j
i (e − 1) ∈ Ti (e − 1))

toV1 before an epoch passes. Otherwise, 1 is shut down, and all
transactions since the beginning of e − 1 are reverted.

Preconditions:

• 1 must not have entered recovery

Input: updatej (e − 1), Tij (e − 1), λ(T ji (e − 1) ∈ Tj (e − 1))

• Verify SigO (updatej (e − 1))
• Verify λ(T

j
i (e − 1) ∈ Tj (e − 1))

• Store T ji (e − 1) in Xd
i (e)

3.5.10 Close Transfer Delivery Challenge Xd
i (e). Given a

valid τi (e), updatei (e − 1) and λ(T ji (e − 1) ∈ Ti (e − 1)) as input from
O1,V1 marks Xd

i (e) as closed if it were open within the last epoch.
Preconditions:

• 1 must not have entered recovery
• ∃ Xd

i (e) not older than an epoch

Input: τi (e), updatei (e − 1), λ(T ji (e − 1) ∈ Ti (e − 1))

(1) Verify τi (e)
(2) Validate Sigi (updatei (e − 1))
(3) Validate that τi (e) ratifies updatei (e − 1)
(4) Validate λ(T ji (e − 1) ∈ Ti (e − 1))
(5) Mark Xd

i (e) closed

3.5.11 Recover Funds. Had any Xb
i (e − 1) or Xd

i (e − 1) not
been closed for any i within one epoch, or if O1 fails to commit to
T1(e) within the first epoch of e , 1 is considered to have shut down
and gone into recovery mode, whereby any Pi may withdraw all
their off-chain funds as of the end of e − 2, and all their on-chain
deposits starting from e − 1 by providing τi (e − 2) toV1.

Preconditions:
• 1 must have entered recovery
• Pi may not have previously recovered its funds

Input: τi (e − 2)
(1) Validate τi (e − 2)
(2) Transfer Ai (e − 2) + Di (e − 2) + Di (e − 1) to Pi
(3) Mark Pi as recovered

3.6 O1 Off-chain Operator
The off-chain component O1 acts as the facilitator of transfers
between members of P, and is designed to behave as follows:

3.6.1 Admit Pi . On request to enter the managed 1 instance
from a participant, O1 need only append the participant to P and
acknowledgement its updatei (e) reflecting an empty balance by
providing a countersignature on it.

3.6.2 Create T1(e). After an eon e − 1 is over, O1 creates T1(e)
by using all confirmed transfer information in e − 1. This means
that for each Pi , the last updatei (e − 1) ratified by O1 would be
used to construct T1(e) as described in Section 3.4.1.

3.6.3 Commit T1(e). After the creation of T1(e), O1 needs to
commit troot (e) toV1 within the first epoch of e , or be halted inV1.

3.6.4 Provide τi (e). After constructing T1(e), O1 communi-
cates each τi (e) to its respective Pi such that Pi can verify the
integrity of its off-chain balance or issue a challenge if need be.

3.6.5 Deliver Transfers. O1 requires a transfer Tij (e) from a
Pi to a Pj to proceed as follows:

(1) Pi sends a new signed updatei (e) to O1 withTi (e) ∪ Tij (e).
(2) Pj sends a new signed updatej (e) to O1 withTj (e) ∪ Tij (e).
(3) O1 ratifies both updatei (e) and updatej (e) and sends its

signatures to Pi and Pj respectively.
O1 must enforce that a Pi may only have one transfer ongoing

at a time. Abortion prior to the last confirmation by O1 may be
signaled via peripheral messages.

3.6.6 Credit Deposits Di (e). O1 is required to monitor V1
and properly credit all deposits Di (e) made by every Pi or face
balance update challenges in the next eon. This is done by simply
increasing the allotment Ai (e + 1) for a deposit made in e such that
Equation 13 holds for e + 1.

3.6.7 Moderate Withdrawals Wi (e). A malicious Pi may
interact directly with V1 to initiate a withdrawal of funds that
were confirmed in e − 1 but were spent in e off-chain. In such
cases, O1 must use the withdrawal cancellation procedure inV1

before the end of e , or risk the inability to construct an acceptable
commitment in e + 1. When the withdrawal is correct, however, O1
must debit the allotment Ai (e + 1) such that Equation 13 holds for
e + 1.

7

3.6.8 Close challenges Xb
i (e), X

d
i (e). A Pi may issue a chal-

lenge via V1 at any moment. O1 needs to monitor V1 for these
challenges and issue appropriate responses to close them, or risk
being halted. It is guaranteed that an honest O1 will always have
the information required to construct a valid call to V1 to close
invalid challenges.

3.7 P Clients
Members of P are the main parties interested in transferring funds
to each other in 1, and are designed to behave as follows:

3.7.1 Join 1. A Pi wishing to join a 1 instance during eon e
need only do so through O1 by providing a signed updatei (e) and
waiting for acknowledgement in the form of a countersignature.
The update should reflect an empty account within the 1 instance.

3.7.2 Audit τi (e). Pi must ensure that it always receives a valid
τi (e) (acceptable by V1) every eon e from O1 to maintain custody
of its funds throughout the time progression and enforce correct
transfer delivery by O1.

3.7.3 Send Transfer. A Pi wishing to enact a Tij (e) to a Pj
during eon e sends a signed updatei (e) to O1 and notifies Pj that
they send a signed updatej (e) to O1 that reflects receipt. Pi should
expect O1 to return its own signature on updatei (e), after Pj sub-
mits its receipt to O1, before proceeding with sending or receiving
further transfers. Moreover, Pi may not attempt to initiate any
other transfers until O1 countersigns updatei (e).

3.7.4 Receive Transfer. A Pi notified of a transfer T ji (e) by
a Pj should hand over a signed updatei (e) to O1 reflecting receipt
and wait for a countersignature on updatei (e) by O1 to confirm
delivery commitment before proceeding with further transfers.
Again,Pi may not initiate any other transfers untilO1 countersigns
updatei (e).

3.7.5 Deposit Di (e). Clients that wish to deposit into 1 must
do so only while in possession of a τi (e), or a ratified updatei (e) if
this is the first eon for Pi in 1, and only if 1 is not in recovery. The
deposit is done through sending a BC transaction toV1.

3.7.6 Withdrawal Wi (e). To withdraw funds during eon e ,
clients utilize their τi (e − 1) and not attempt to overdraw beyond
their minimum within the current and past eon, or face their with-
drawals being cancelled by an honest O1, or cancelled by the halt
of 1. After the first epoch of e + 2 passes successfully, clients may
claimWi (e) on BC usingV1.

3.7.7 Issue Xb
i (e). If O1 does not provide a valid τi (e) after

commitment to T1(e), a Pi should issue a Xb
i (e) using V1.

3.7.8 IssueXd
i (e). When shown proof of debit (signed updatej (e)

by O1) not reflected by an authorized credit in τi (e), a Pi should
issue a Xd

i (e) toV1.
Unless Pj is malicious, O1 will not be able to close Xd

i (e). Pj
should also issue the challenge in case of Pi ’s noncooperation or if
a receipt confirmation is not provided.

3.7.9 Recover Funds. Upon O1’s failure to close any chal-
lenge within one epoch and before e ends, 1’s time progression

stops at e and it enters into recovery. Every Pi will need to recover
its confirmed off-chain funds throughV1.

4 SECURITY ANALYSIS
In this section we will analyze the security guarantees of NOCUST,
assuming that the underlying layer BC may serve as a recourse for
settling disputes on the integrity of 1. In this model we also assume
that there are costs associated with BC settlement, such as a gas
fee paid to perform smart contract operations or transactions in
the Ethereum network. We consider these settlement expenses as
external to the balance of a Pi in the system, but have also designed
NOCUST to minimize these expenses such that the amount of
information required for dispute settlement is feasibly transmittable,
as bounded in Section 3.4. The NOCUST protocol is designed to
prevent any honest member of P from losing any funds despite a
strong set of adversarial capabilities.

4.1 Threat Model
We assume that there are two classes of users in NOCUST: (i) O1
operators and (ii) P participants which can both receive incoming
and send outgoing transactions. We will assume the existence of
an irrational adversary willing to sustain financial losses in order
to cause honest parties to lose some or all of their funds in 1. This
irrational adversary may seize control of O1, some or all but one
of P, or a combination thereof, in order to attack an honest Pi not
under its control. The adversary has full control of the identities
associated with the compromised parties and may authorize any
messages on their behalf or front-run any user input, but cannot
violate the integrity of the honest users’ identities. Moreover, an
adversary may launch denial of service attacks that degrade the off-
chain communication between O1 and members of P, but may not
compromise an honest Pi ’s communication with BC, respectively
V1. In the following discussion, we define malicious behavior as
that which aims to cause an honest Pi to lose control of some or
all of its funds in 1 or cause an honest O1 to be forcibly shut down
by V1.

4.2 Guarantees
In this section we explain how under the stated threat model, an
honest Pi can securely maintain custody of its funds and ensure
that its enacted transfers are correctly delivered within 1, but will
not be able to forcibly enact any new transfer Tij (e) in the system
without facilitation by O1. We also demonstrate how an honest O1
can sustain service under the malice of a subset of P. We prove the
security guarantees of NOCUST through proving that an honest Pi
or honest O1 following the prescribed protocol may not end in a
state where they cannot utilizeV1 to enforce the integrity of 1. We
refrain from building a single comprehensive model of the system
due to the many interactions present, and instead break down the
system into different components and prove their security proper-
ties. We argue that under the stated system model in Section 3.1 it
suffices to prove the sanity of agent behavior in NOCUST due to
the presence ofV1 and the feasibility of deploying its functionality
to operate honestly on BC.

8

4.2.1 Exclusive Allotment. An important element in NOCUST
is the dependence on a valid τi to guarantee to a Pi the exclusive
allotment of a portion of size Ai in the funds managed by V1 to
Pi alone, therefore, we proceed to prove that no valid instance of
T1 may contain two overlapping allotments, and therefore thatV1
cannot accept an invalid τi .

Proof. We proceed to prove that no valid instance of T1 may be
used to construct a τi that permits a non-exclusive allotment by
contradiction. Assume a valid instance of T1, and without loss of
generality let tx and ty be two successive nodes (y > x) within
T1 that have overlapping allotments, where offsety < offsetx +

allotmentx .
Let tu be their least common ancestor with tp and tq as its direct

children such that tp is an ancestor of tx , and tq of ty . Without loss
of generality, assume tp and tq are correctly reconstructible from
τx and τy respectively.

Given τx , constructing tu on the path up to troot will be per-
formed with knowledge of offsetp and allotmentp (from recon-
structing tp) and the boundary value and commitment of tq sup-
plied in τx .

Ω(tu , tq) = offsetq + allotmentq (14)

Recall the definition in Section 3.4.1. As offsetq is interchangeable
with offsetp + allotmentp , reconstructing tu will need to be per-
formed as follows due to the lack of presence of offsetq in τx by
substitution in equation 8 as follows:

informationu = {tp , offsetp + allotmentp , tq } (15)

Given the correctness of the sub-tree of tp in isolation, it follows
that offsetp + allotmentp = offsetx + allotmentx , and therefore,
assuming offsetq was used in the original commitment to the
considered instance of T1, the reconstructed tu will not match,
and the remaining trail of reconstructed nodes in τx

1 will lead to
a t

′

root , troot , violating the assumption that the instance under
consideration is a valid T1 and that τx is acceptable □

4.2.2 Balance Custody. An honest participant Pi of 1maintains
custody of its balance in the system because it may always resort
toV1 in case O1 does not provide a valid τi (e) for any eon e .

A participant must maintain knowledge about its state to pre-
serve its ability to utilizeV1 for dispute regardless of how the other
participants and O1 behave. By keeping track of every authorized
updatei (e) and every τi (e) from O1 for each eon e that passes after
Pi entered 1, Pi may always openXb

i (e) in case O1 fails to provide
a τi (e) with a correct exclusive Ai (e). This guarantees that Pi is
always able to enforce a provably correct update by O1 to its state
in T1(e), or halt 1.

As a withdrawalWi (e)may only be initiated throughV1, which
requires a verifiable τi (e−1) to be submitted by Pi , no other Pj may
attempt to initiate a claim for any portion of Ai (e − 1). Moreover, a
τi (e) may not be utilized to initiate any withdrawals until eon e + 1
commences with no open challenges against the integrity of T1(e).
This guarantees that only uncontested exclusive balance allotments
in a correct T1 instance may be used to enact withdrawals that may
not be interrupted by O1 unless they attempt a double spend.

1A symmetric argument can be made for τy

Proof. We proceed to prove how an honest Pi in NOCUST can
protect its funds through modelling the state of a Pi ’s custody as
a finite state machine whereby Pi may always reach a custodian
state. A Pi is considered a non-custodian in eon e if e − 1 had
passed successfully (1 did not enter recovery) without Pi learning
a valid τi (e − 1) that exclusively accounts for its confirmed balance,
assuming Pi joined 1 prior to e − 1.

s0start

e − 1

s1

s2 e

O1 ̸→ V1: T1(e)

O1→V1: T1(e)

O
1
→
P
i : τi (e)

Pi →V1: Xb
i (e)

O1→V1→ Pi : τi (e)O1 ̸→ V1: τi (e)

Figure 2: A finite state automaton capturing the custodian
state of an honest Pi during an eon e. Given a O1’s commit-
ment to T1, an honest Pi may always guarantee its knowl-
edge of a valid τi (e) either cooperatively with O1 or through
V1. Terminal states denote which eon’s balance Pi is given
custody of.

It’s straightforward to infer from the automaton in Figure 2 that
a Pi may always reach a state of custody from s1 given that O1
commits to T1(e) within the first epoch. Recall that if O1 does not
commit to a T1(e) within the first epoch, the 1 instance is halted,
and therefore Pi retains custody of the previous allotmentAi (e −1)
which it may claim through V1’s recovery. This may also happen
if O1 ignores Pi ’s challenge. □

For simplicity we omit states and transitions whereby Pi does
not receive a valid τi (e) from O1 and chooses to not resort toV1 to
demand its broadcast within the next epoch, as this behavior does
not describe an honest Pi .

It is important to recall whatV1 accepts as a valid response from
O1 to a Xb

i (e) as stated in Section 3.5. The updatei (e − 1) in the
commitment must be as recent as that submitted in Xb

i (e) by Pi ,
and must bear Pi ’s signature. This prevents O1 from attempting
to commit an outdated state, and provides Pi sufficient knowledge
to enact any future delivery challenges.

4.2.3 Double-spend Futility. In the following discussion we refer
to a double spend as any endeavor by the adversary controlling a
Pi , with or without control of O1, to attempt any of the following:

(1) Double spend Pi ’s balance in BL

(2) Spend Pi ’s balance in BL and withdraw it from BG

In case the adversary lacks control of O1, attempting to double
spend only in BL will be trivially prevented by an honest O1, and
attempted withdrawals in eon e from BG of funds spent in e − 1
will also be cancelled by an honest O1 throughV1.

Moreover, even with control of O1, an adversary may not double
spend in the current eon e and be able to construct a valid T1 in
the next eon e + 1 correctly satisfying every member of P, as a
valid instance of T1 guarantees exclusive allotments, the sizes of

9

which must correspond to the confirmed balances expected by each
honest member of P.

Proof. Let Pi and O1 be under the control of the adversary A

such that the running balance of Pi during eon e is double spent
towards a subset of P whereby Equation 16 holds by the end of e .
A must construct a valid T1 for e + 1 to commit the transfers in e
and successfully double spend, while avoiding the halt of 1 by an
honest Pj .

Ai (e + 1) = Ai (e) + Ri (e) − Si (e) +Di (e) −Wi (e) < 0 (16)

However, using Equation 13, validated byV1:∑
j
Aj (e + 1) =

∑
j
Aj (e) + Rj (e) +Dj (e) −Wj (e) − Sj (e)

=
∑
j
Aj (e) +

∑
j
Dj (e) −Wj (e) +

∑
j
Rj (e) − Sj (e)

= allotmentroot (e + 1) +
∑
j
Rj (e) − Sj (e)

(17)

With Equation 17 in mind, if A were double spending in BL

by not updating Si (e), then
∑
j Rj (e) − Sj (e) > 0 would follow, and

allotmentroot (e + 1) <
∑
j Aj (e + 1) would lead to a challenge in

e + 1 by the affected honest Pj whose allotment is incorrect, foiling
as well any concurrent double spend in BG .

Moreover, if A were double spending in BL and updating Si (e)
such that

∑
j Rj (e) − Sj (e) = 0, and/or double spending through

Wi (e) in BG , then an allotmentroot (e + 1) would be rejected by
V1 in violation of Equation 13. □

4.2.4 Operational Integrity. An adversary in control of some par-
ticipants in P may maliciously open a set of challenges against O1
using V1. In NOCUST, there is no way for V1 to verify whether a
participant is opening a challenge maliciously or not, and therefore
O1 must answer every challenge opened. However, it is guaranteed
that an honest O1 is able to close any challenge opened inV1, and
a dishonest O1 that misconstructs a T1(e)will not be able to answer
correct challenges in e .

The information required by an honest O1 to close a Xb
i (e) is

τi (e), which is constructed by O1, and the updatei (e −1) used in the
construction. The additional piece of information required to close
a Xd

i (e) is λ(T
j
i (e − 1) ∈ Ti (e − 1)), which also has to be known by

O1 to construct T1(e). Therefore, O1 will always possess sufficient
knowledge to close any open challenges, and will successfully do so
if the committed T1(e) corresponds to the latest ratified contents of
BL(e − 1), given the honesty of V1 in managing the pool of funds
in the 1 instance on BC.

Proof. We proceed to prove how honest O1 in NOCUST can
maintain functionality under a subset of malicious users in P, and
how a dishonest O1 that attempts to compromise transfers will lead
to the 1 instance being stopped through a proof by case analysis,
where we model the provability of a O1’s integrity as a finite state
machine whereby transfers are facilitated by O1 in e and committed
during e+1 in T1(e + 1). A server is defined as maintaining provable
integrity during eon e so long as it is able to close any challenge
Xi (e) using V1.

estart e + 1

s1

s2*

s3Xi (e + 1)

P
i →

O
1 : T i

j

Pi →V1: Wi

P j
→
O1
: T
i
j

O1→ V1: T1 ∋ Ti

Pi ̸→ O1

O
1
→

V 1
:T
1
=
T
i j

O1→V1: T1 = Tij

O1→V1: T1 ∋ Tij

O
1
→

P
i /P

j :
T
ij
∈
T
1

O
1
→
V
1 : T
1
∋
T i
j

O1→V1: T1 = Tij

O
1
→

V
1 :

T
1
∋
T
ij

Figure 3: A finite state automaton capturing the provable in-
tegrity of O1. An honest O1 may not find itself in a state
whereby it cannot prove its integrity in eon e+1 after commit-
ting to its e operations, while a dishonestO1 that attempts to
reverse transfers or incorrectly enforce them will find itself
unable to do so. *There exists a transition from s2 toXi (e +1)
on (O1→V1: T1 ∋ Ti) omitted for clarity.

The automaton presented in Figure 3 specifies how an honest O1
may always behave in such a way that allows it to retain provable
integrity in e + 1 regardless of the behavior of members of P.

• Given no interactions between O1 and Pi during e , or
given only an updatei (e) signed by Pi , but no updatej (e)
signed by Pj , an honest O1 may wait for Pj or discard
Tij . No Xd

i (e + 1) may be opened as Pi and Pj would not
possess an updatei (e) signed by O1 containing Tij (e). A
Xb
i (e + 1) may be closed with the submission of a τi (e)

reflecting the correct Ai (e + 1).
• Given an updatei (e) signed by Pi and an updatej (e) signed

by Pj , an honest O1 may discard or synchronize Tij (e), or
commit to its delivery by sending a countersigned update

to Pi and/or Pj and then must synchronize its delivery in
T1(e + 1). The hub retains sufficient information to close
any Xb

i (e + 1) or X
d
i (e + 1) in V1.

• While in a state of provable integrity, O1 can justifiably
cancel any malicious withdrawal by a Pi usingV1 in order
to guarantee being able to satisfy the allotment constraint
defined in Equation 13 in e + 1.

Moreover, a dishonest server which tries to debit a Pi without
authorization, or without crediting the corresponding Pj in case of
a Tij , may not find itself in a state of provable integrity in e + 1.

• Given no interactions between O1 andPi during e , the hub
cannot construct a valid T1(e + 1) containing an updatei (e)
signed by Pi . As O1 cannot forge Pi ’s signature, it cannot
close a Xb

i (e + 1).
• Given only an updatei (e) signed by Pi , the hub cannot

construct a valid T1(e + 1) containing an updatej (e) signed
by Pj . A Xd

i (e + 1) on T
i
j (e) by a custodian Pi will not be

closeable by O1.
10

• Once the hub delivers a countersigned updatei (e) and/or
updatej (e) (s2 → s3) to either Pi or Pj respectively, it may
not back out of enforcing Tij (e), as O1 will not be able
to close a Xb

i (e + 1), and/or Xb
j (e + 1), if it commits an

outdated state in T1(e + 1). □

4.3 Privacy
In this section, we discuss the privacy provisions of NOCUST. In
the course of running the protocol, participants acquire proofs
of correct operation from and concede state updates to O1, while
broadcasting some of that information toV1 onBC. As the security
of the protocol depends on non-repudiation and the forced reve-
lation of information, we explore what each party in the protocol
maintains knowledge of and can learn throughout NOCUST.

4.3.1 O1 Knowledge. The operator O1 maintains knowledge of
all transfers and balances in 1. This is a requirement in NOCUST
to enable O1 to facilitate transfers and synchronize between BG

and BL every eon, while retaining provable integrity. As such, an
adversary in control of O1 has complete knowledge of all off-chain
information. Interestingly, at eon e , O1 need only maintain knowl-
edge of e and e − 1 to be able to construct T1(e), void any malicious
withdrawal Wi (e) and close any challenge Xb

i (e), X
d
i (e) by a Pi .

A O1 can erase e − 2 at the end of eon e − 1 to maintain a form
of forward secrecy on the contents of BL in e − 2 without losing
operational efficacy, which would retain privacy on all transfers
enacted off-chain prior to e − 1 if O1 were compromised in e .

4.3.2 P Knowledge. Throughout its participation in a 1, a Pi
obtains a τi (e) for every eon e , and constructs various Tij (e) mes-
sages for different Pj . A τi (e) reveals the allotment intervals at each
height of T1(e), but does not reveal individual account addresses
or any transfer details. Therefore a Pi can learn that it has some
neighbor account with a certain balance, and learn how the allotted
intervals are designated at each level of T1(e), without learning the
identities of which members of P these allotments are made to. To
enact a transfer Tij (e), Pi needs to sign a new updatei (e) and send
it to O1, and Pj needs to sign a new updatej (e) and also send it to
O1. Pi and Pj need not learn any information about the balance or
transfer history of each other to construct these messages, but need
to know the full details of the transfer Tij (e) to ratify it in the state
update authorizations they concede. Moreover, to enact a delivery
challenge on a transfer Tij (e − 1), Pi and Pj need to share τi (e) and
τj (e) in order to validate that the transfer was misenforced by O1.

4.3.3 V1 Knowledge. The privacy of the deposits, challenges
and withdrawals conducted throughV1 is scoped by the underly-
ing BC layer. In NOCUST we do not rely on any privacy of BC

operations. Closing a balance update challenge Xb
i (e) requires that

a Pi learn the τi (e) used in the closure in order to maintain custody
of its account, which reveals Ai (e). Therefore deposits may be used
to guess a portion of a Pi ’s balance in BL without interaction with
O1, while closing a Xb

i (e) reveals Pi ’s balance in e , and initiating a
Wi (e) reveals Pi ’s balance in e − 1. It’s noteworthy that a Pi wish-
ing to mask its balance may assume multiple identities on BC (and
consequently in O1) and fragment its deposits and withdrawals
over them. However, we leave an extensive analysis for future work.

4.3.4 Comparison to the Privacy Provisions of Two-Party Pay-
ment Channels. The guarantees provided in NOCUST are not trivial
to compare with those of two-party channel networks. A party’s
maximum total balance may be inferred from the amount com-
mitted to a channel, as the commitment may only be in favor of
one party or the other, and the exact amount can be learned from
an on-chain withdrawal which necessitates the broadcast of the
latest off-chain state. The leakage of the off-chain balance during at-
tempted withdrawals is similar in NOCUST and two-party channels,
but inferring the maximum off-chain balance prior to broadcast
is not as simple in NOCUST due to the increased number of par-
ticipants without leakage from O1. As we have not described the
enactment of payments across multiple instances of 1, we may
only draw a rough comparison between linked payments involving
more than one intermediary in two-party channel networks and a
payment within one 1 instance. The added privacy cost of being
able to reach different recipients in a two-party channel network
is to involve more intermediaries in the payment, while the added
privacy cost in the current version of NOCUST is to have one party
join the other party’s 1 instance and still involve only one interme-
diary. The exact information leakage to be compared depends on
the implementation details of the two-party channel and its linked
payment mechanism. We leave an extensive comparison for future
work.

5 EVALUATION
In the following section, we evaluate the NOCUST model in terms
of practicality and usability in the real world and further compare
it to the previous state of the art. The basis for the comparison is
a payment channel network whereby an entity in place of 1 runs
and maintains a channel for each member of P.

5.1 Usability
In this section, we discuss the usability of NOCUST as an off-chain
payment solution. We explore the advantages in terms of the re-
quirements placed on the operator of a 1 instance, and those placed
on a Pi .

5.1.1 Collateral Lockup. In a payment channel based network,
the locked collateral in each channel is effectively isolated. There-
fore, a microtransaction service would have to pre-allocate collat-
eral to each recipient in anticipation of his or her expected transac-
tion volume to eliminate counter-party risk and avoid classification
as a credit network. When that collateral is exhausted, the hub
would have to retrieve its funds from other channels and consoli-
date it into recipient channels, either directly through withdrawal
or through a highly coordinated rebalancing operation. The first
procedure is relatively expensive and requires on-chain operations
proportional to the number of users, while the second procedure
depends on the channel clients, which are unreliable, and will not
guarantee significant consolidation of all funds. As more users join,
the network becomes prone to more fragmentation of collateral.
Given e.g. 1 Million users, and an average of 10’000 USD of trans-
action volume towards these users (over a given time span), a P

would be required to lock up 10 Billion USD worth of collateral.
However, in NOCUST, the intermediary does not need to lock up
such insurmountable collateral to provide finality within two eons.

11

5.1.2 Entry Barrier. One other valuable addition in terms of
usability is the ability by a Pi to enter into a 1 without the need
to broadcast any messages to BC and immediately start receiving
payments, unlike in payment channel networks. This possibility of
easy entry into a NOCUST system enables participants to join any
number of hubs that they want, without having to incur any costs.

5.1.3 Potential Throughput. The throughput in terms of off-
chain transactions per second achievable within a NOCUST system
is only limited by the implementations of the O1 and P specifica-
tions, which may take the form of a distributed system capable of
matching the performance of today’s commercial custodian pay-
ment solutions.

5.2 Risk
In this section we briefly present some of the important operational
risks that come with running, and using, an off-chain payment
solution that NOCUST mitigates.

5.2.1 Channel Monitoring. The main risk associated with the
participants of an off-chain solution is the requirement that users
must always stay online to monitor their payment channels, or
outsource this operation, to guarantee that the channel does not
successfully terminate with an outdated state. A Pi in NOCUST
need only come online once per eon at least to audit its account or
issue the appropriate challenges. This mitigates the associated cost
with maintaining watch of a Pi ’s balance.

5.2.2 Transfer Delivery. To guarantee, or emulate, faster trans-
action finality, the hub may put up collateral that can be claimed
by the recipients in case of failure within two eons. Through lever-
aging the same commitment scheme in Section 3.4.1 used to enable
the delayed delivery mechanism, the hub can allocate collateral in
bulk that can be claimed only by each recipient in case the delayed
delivery system fails. Recipients then know an upper-bound to
the money they are guaranteed to receive, even in case of failure,
and can then calculate the risk involved with accepting payments,
even when the total amount in the backlog of the delayed deliv-
ery system exceeds the collateral. This amount need only cover
operation within two eons. This takes the rigid requirements of
payment channels, and relaxes them such that liabilities can be
properly negotiated in a granular manner, such that even the de-
livery guarantees of payment channel networks can be reached,
while still eliminating the inconveniences of shuffling around and
consolidating locked collateral, and keeping control of funds within
the hands of the users.

5.2.3 Ledger Integrity. An intermediary managing a set of pay-
ment channels with collateral in them may suffer a devastating
attack, due to natural disaster, nuclear warfare or otherwise, that
would leave the operator paralyzed and/or suffering from data loss.
This leads to an interesting situation whereby the intermediary may
not be able to terminate its channels to recover funds properly due
to its data loss, or rightfully reclaim some of the collateral that it is
owed in a channel, as the counter-parties of P may possess more
up to date information. A malfunctioning NOCUST O1 need not
suffer these financial losses as theV1 guarantees a commitment to
the contents of BL in e − 2 regardless of the state of O1.

5.2.4 BC Congestion. Under a congested BC, a bidding war
for correct channel termination may occur between a set of partici-
pants in a payment channel based intermediary. This can be likened
to what is described as a mass-exit. During operation, a NOCUST
intermediary O1 may not be able to retain ledger integrity by uti-
lizingV1 while BC is congested. However, rather than a malicious
Pi being allowed to double spend their balance in 1, the failure
safety mechanism of V1 will be triggered, voiding the withdrawal
and rolling back to the last commitment.

6 FUTUREWORK
In this section we discuss future work we believe would contribute
to the efficacy of the proposed solution in different ways.

Cross-Instance Operations. An interesting venue to explore would
be a specification for NOCUST instances to communicate with each
other such that a Pi of one 1 instance could transfer funds to a
recipient Pj of another 1 instance securely. It would be interest-
ing to consider how NOCUST instances could employ Two-Party
channels to facilitate such operations, as such a hybridization of so-
lutions might lead to an elegant solution that delegates the routing
concerns from participants to O1 operators.

Privacy Enhancements. The operations performed in NOCUST
using the data structure presented in Section 3.3 employ only asym-
metric cryptography to provide authentication. It would be interest-
ing to see a similar mechanism that utilizes zero-knowledge proofs,
such as in the Zcash [34] protocol, to provide the same security
guarantees while improving privacy.

Exchange Operations. The specification in this work for NOCUST
allows the bi-directional transfer of balances in a 1 instance. The
augmentation of the protocol to allow securely exchanging, or
swapping, one form of balance for another would certainly be a
very interesting future contribution on top of NOCUST.

Trusted Execution Environments. The only checks thatV1 per-
forms on the T1 are simple constraint verification. It would be
interesting to explore augmenting V1 to accept only T1 commit-
ments generated within a trusted execution environment.

7 CONCLUSION
In this work we presented a basis for establishing a non-custodial
2nd-layer financial intermediary that can securely facilitate pay-
ments between participants in its off-chain network without re-
liance on a consensus mechanism as in side-chains, but rather on a
practical challenge-response protocol that leverages a simple and
reliable data-structure.

Our construction NOCUST features multiple novel properties
for off blockchain payments: (i) users can join the payment hub
without the need for a costly on-chain transaction, (ii) locked up
collateral in the hub can be zero up to the transaction volume of
a disputable time window (to achieve trustless operation), (iii) the
hub’s collateral can be effectively managed in bulk, significantly
reducing the management costs of the operator, compared to a two-
party payment channel hub. We’ve moreover shown how users of
a NOCUST construction can securely maintain custody of their
funds, even under the hub’s adversarial behavior or unavailability.

12

NOCUST empowers the individual to become it’s custodian. In
the future, we envision users to hold significant off-chain funds,
as these can be transferred faster and at a lower cost than regular
on-chain transactions. Even in the case of blockchain congestion or
excessive transaction fees, the users’ funds liquidity is guaranteed.

REFERENCES
[1] Jimuta Naik. Beginning of the early banking industry in mesopotamia civilization

from 8th century bce. 2014.
[2] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus

Gasser, and Bryan Ford. Enhancing bitcoin security and performance with strong
consistency via collective signing. In 25th USENIX Security Symposium (USENIX
Security 16), pages 279–296. USENIX Association, 2016.

[3] Ittay Eyal, Adem Efe Gencer, Emin Gun Sirer, and Robbert Van Renesse. Bitcoin-
ng: A scalable blockchain protocol. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages 45–59. USENIX Association,
2016.

[4] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permis-
sionless model, 2016.

[5] Loi Luu, Viswesh Narayanan, Kunal Baweja, Chaodong Zheng, Seth Gilbert, and
Prateek Saxena. Scp: A computationally-scalable byzantine consensus protocol
for blockchains. IACR Cryptology ePrint Archive, 2015:1168, 2015.

[6] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A secure sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 17–30. ACM, 2016.

[7] Adem Efe Gencer, Robbert van Renesse, and Emin Gün Sirer. Service-oriented
sharding with aspen. arXiv preprint arXiv:1611.06816, 2016.

[8] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable
off-chain instant payments, 2015.

[9] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. Sprites:
Payment channels that go faster than lightning. arXiv preprint arXiv:1702.05812,
2017.

[10] Raiden network. http://raiden.network/.
[11] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy, and Olaoluwa

Osuntokun. Flare: An approach to routing in lightning network. 2016.
[12] Rami Khalil and Arthur Gervais. Revive: Rebalancing off-blockchain payment

networks. Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017.

[13] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. 2017.

[14] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
[15] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper, 2014.
[16] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A

Kroll, and Edward W Felten. Sok: Research perspectives and challenges for
bitcoin and cryptocurrencies. In Security and Privacy (SP), 2015 IEEE Symposium
on, pages 104–121. IEEE, 2015.

[17] Cynthia Dwork and Moni Naor. Pricing via Processing or Combatting Junk Mail,
pages 139–147. Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.

[18] Adam Back. Hashcash - a denial of service counter-measure. Technical report,
2002.

[19] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. On
scaling decentralized blockchains. In International Conference on Financial Cryp-
tography and Data Security, pages 106–125. Springer, 2016.

[20] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert
Ritzdorf, and Srdjan Capkun. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 3–16. ACM, 2016.

[21] Christian Decker and Roger Wattenhofer. A fast and scalable payment network
with bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing
Systems, pages 3–18. Springer, 2015.

[22] Matthew Green and IanMiers. Bolt: Anonymous payment channels for decentral-
ized currencies. Technical report, Cryptology ePrint Archive, Report 2016/701,
2016.

[23] Bitcoinj. https://bitcoinj.github.io/working-with-micropayments.
[24] Jay Freeman Gustav Simonsson Stephen F. Bell Steven Waterhouse David Sala-

mon, Brian J. Fox. Orchid: A fully distributed, anonymous proxy network incen-
tivized through bandwidth mining. https://orchidprotocol.com/whitepaper.pdf.

[25] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and
Sharon Goldberg. Tumblebit: An untrusted bitcoin-compatible anonymous
payment hub. Proceedings of NDSS 2017, 2017.

[26] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun:
Virtual payment channels over cryptographic currencies. Technical report, IACR
Cryptology ePrint Archive, 2017: 635, 2017.

[27] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts.
White paper, 2017.

[28] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Sri-
vatsan Ravi. Concurrency and privacy with payment-channel networks. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 455–471. ACM, 2017.

[29] Matthew Green and Ian Miers. Bolt: Anonymous payment channels for de-
centralized currencies. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 473–489. ACM, 2017.

[30] The inevitability of privacy in lightning networks.
https://www.kristovatlas.com/the-inevitability-of-privacy-in-lightning-
networks/.

[31] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Set-
tling payments fast and private: Efficient decentralized routing for path-based
transactions. arXiv preprint arXiv:1709.05748, 2017.

[32] Loi Luu, Yaron Velner, Jason Teutsch, and Prateek Saxena. Smart pool: Practical
decentralized pooled mining. IACR Cryptology ePrint Archive, 2017:19, 2017.

[33] Ralph C. Merkle. A Digital Signature Based on a Conventional Encryption Function,
pages 369–378. Springer Berlin Heidelberg, Berlin, Heidelberg, 1988.

[34] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In Security and Privacy (SP), 2014 IEEE Symposium on, pages 459–474.
IEEE, 2014.

13

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Decentralized Ledgers
	2.2 Two-party Payment Channels
	2.3 Alternatives
	2.4 Fundamental drawbacks of existing designs

	3 NOCUST Architecture
	3.1 Prerequisite System Model
	3.2 Overview
	3.3 B Bimodal Ledger
	3.4 T Periodic Commitments
	3.5 V On-chain Verifier
	3.6 O Off-chain Operator
	3.7 P Clients

	4 Security Analysis
	4.1 Threat Model
	4.2 Guarantees
	4.3 Privacy

	5 Evaluation
	5.1 Usability
	5.2 Risk

	6 Future Work
	7 Conclusion
	References

