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Abstract

In this paper we provide a formal treatment of proof of replicated storage, a novel cryptographic
primitive recently proposed in the context of a novel cryptocurrency, namely Filecoin.

In a nutshell, proofs of replicated storage is a solution to the following problem: A user stores a file
m on n different servers to ensure that the file will be available even if some of the servers fail. Using
proof of retrievability, the user could check that every server is indeed storing the file. However, what if
the servers collude and, in order to save on resources, decide to only store one copy of the file? A proof
of replicated storage guarantees that, unless the server is indeed reserving the space necessary to store
the n copies of the file, the user will not accept the proof.

While some candidate proofs of replicated storage have already been proposed, their soundness relies
on timing assumptions i.e., the user must reject the proof if the prover does not reply within a certain
time-bound.

In this paper we provide the first construction of a proof of replication which does not rely on any
timing assumptions.

1 Introduction

Consider a scenario where a user A wants to store a file m in the cloud or on some other decentralized
network of servers. To make sure the file is accessible to both A and other users, A stores several replicas of
m in different locations. However, A suspects that the servers she is using are adversarial and may collude,
for instance to save on costs by using less space than they are supposed to. So she will be interested in
checking that indeed unique space has been dedicated to each replica, and it is natural to require that this
can be verified, even if all servers are controlled by an adversary. We will call this proof of replication.

A first issue to note is that the well-known notions of proof of retrievability or proof of space (which we
discuss in more detail below) do not solve the problem if each replica is simply a copy of m. Such proofs
allow a user to check that a given file is retrievable from a server, much more efficiently than by simply
retrieving the file. However, even if A asks for a proof of retrievability of m from each of the servers and
all these proofs are successful, this may simply be because the user is actually talking to the adversary who
stores only a single copy of m.

Another idea that comes to mind is that A could let each replica be an encryption of m under some key
K, but with fresh randomness for each replica. If the encryption is IND-CPA secure, the adversary cannot
distinguish this from encryptions of random independent messages, and hence it seems he is forced to store
all replicas in order for them to be retrievable later. While this intuition can in fact be proved, this would
not be a satisfactory solution: recall that we want that anyone, not just A, can retrieve the original file, so
A would have to share K with other users. However, if any of these users collude with the adversary, the
security breaks down. Besides, a solution that does not require A to store secret information for later is
clearly more practical.

The idea of proof of replication was introduced in Filecoin [Lab17a, Lab17b], a decentralized storage
network. They articulate a list of properties that they desired from such a notion. They define a Sybil attack
which is exactly what we discussed above: if an honest client wishes to store the same file m in n different
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servers, an adversary can store these using sybil identities (all servers are controlled by one adversary) and
successfully pass the storage audit, while essentially storing only one copy of the file.

A decentralized storage network defined in [Lab17a], as an abstraction is a network of independent storage
providers that offer verifiable file storage and retrieval services. In the Filecoin protocol, miners earn protocol
tokens by providing data storage services. In such a scenario, it is crucial that any security model allow the
adversary to choose the file m. This is because an adversary could request for m to be stored, and then
prove that m was stored to collect network rewards. This is what is referred to as the generation attack in
the Filecoin paper, where the adversary can simply determine m such that it can be efficiently regenerated
on demand. One may consider such an attack in a case where the client is honest and is fooled into storing
a particular file by the adversary, or one can consider a corrupt user working with a set of corrupted servers.

While the Filecoin paper does not give a formal treatment of proof of replication, they propose a con-
struction for what they call a time-bounded proof of replication. In such a notion, the file to be stored is
encoded so that the encoding process is slow: slow enough for a client to distinguish between honest proving
time, and potentially adversarial proving time which includes the time to re-encode. Thus, the encoding
process is, by design, distinguishably more expensive than honest proving time. This notion is realized by
using a block-cipher and slowing it down by block chaining. A time-bounded proof of replication is a proof
of storage of a replica that is encoded in this way. Even if the proof of storage scheme used offers public
verifiability, this time-bounded proof of replication is publicly verifiable only if the encoding key (or the
original file) is made publicly available by the client, or by computing the encodings within a scheme that
proves computational integrity and privacy, for instance, a SNARK (Succinct Non-interactive ARguments of
Knowledge). As discussed earlier, a solution that does not need to store any secret information is desirable,
and using generic SNARKs would be expensive.

In any case, the basic problem with all time-bounded schemes is that the encoding has to be made so
slow that even a powerful server cannot encode faster than the time a proof takes. However, this slow-down
also hurts the honest client every time he encodes.

We ask if we can do better in all the above aspects: can we have a proof of replication scheme that
provably resists sybil and generation attacks, offers public verifiability and is not time-bounded?

Our Results. We give a formal treatment of proofs of replication, by giving a definition that captures
the desired properties as well as a construction which we prove secure according to the definition. The
construction works in the random oracle model and requires a primitive we call a hard encoding which can
be instantiated from any one-way permutation. Each replica of the file m to be stored in our construction
has size O(|m|+ κ), where |m| is the length of m and κ is the security parameter. To verify replication, the
user conducts a proof of retrievability with each server. Any such proof can be used, so we inherit whatever
communication complexity that proof has.

We concentrate on the case where the client doing the encoding is honest, as this seems to be the most
important case in practice, and is in line with the definitions of proof of retrievability and storage. But we
also give at the end of the paper a solution that works for a corrupt client, at the expense of using more
communication.

Very roughly speaking, the idea is that the adversary first receives each of the replicas to store, where
each replica is a special encoding of m. He may now store a state for later use, which in the honest case
would contain all replicas. What we show is that, no matter how the adversary computes the state, if it is
significantly smaller than the combined size of all replicas, then some of the proofs of retrievability will fail,
unless the adversary breaks a computational assumption. Thus, while we do not prove that the adversary
must store the concatenation of all replicas, we do ensure that, in terms of storage cost, he has no incentive
to do anything else. Significantly, compared with previous proposed solutions to the problem, our solution
does not require the use of time: while the original, informal definition of proof of replication states that it
should be hard for the server to recompute the encodings of the file in the time it takes to verify the proof,
our definition is much stronger as it rules out that any polynomially bounded attacker who uses less storage
than claimed can pass the verification. This clearly makes implementing proof of replications much easier,
since one does not need to worry about finding an appropriate value for the verifier timeout.
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1.1 Related Work

Proofs of retrievability. A lot of user data today is outsourced for storage on the cloud both because of
large volumes of data, and for reliability in case of failure of local storage. The problem with cloud storage
is that of maintaining integrity of data and enforcing accountability of the storage provider. Proofs of
retrievability, first formalized by Juels and Kaliski in [JK07] address this problem by allowing for audits. In
a proof of retrievability, a client can store a file on the server, while storing (a short) verification string locally.
In an audit protocol, the client acts as the verifier and the server proves that it possesses the client’s file.
The property that the server “possesses” a file is formalized by the existence of an extractor that retrieves
the client’s file from a server that makes a client accept in the audit protocol. Since their introduction, there
have been several works [SW08, DVW09] constructing proof of retrievability schemes with a proof of security
and efficient audit procedures. One property we prioritize in this work is public verifiability where any party
can take the role of the verifier in the audit protocol, not just the client who originally stored the file. This
means the client’s state storing any verification information for the file should not contain any secrets. The
construction of [SW08] gives a proof of retrievability scheme secure in the random oracle model that allows
public verifiability.

Proofs of space. A proof of space is a protocol where a prover convinces a verifier that it has dedicated a
significant amount of disk-space. Proofs of space were introduced in [DFKP15] as an alternative to proof of
work (PoW), and further studied in [RD16, AAC+17]. There have been proposals based on proof of space
like chia network [chi17] and Spacemint [PPK+15]. Very roughly, a proof of space gives the guarantee that
it is more “expensive” for a malicious server that dedicates less space than an honest server to successfully
pass an audit.

Data replication. Curtmola et al. [CKBA08] and Armknecht et al. [ABBK16] propose protocols that
enable proofs of data replication in the private verifier model, where the client stores a secret key that is
used for verification. The latter protocol, in addition, uses RSA time-lock puzzles which results in a protocol
with a time-bounded property that we elaborate on below.

Time-bounded Proofs of Replication. In a recent work by Pietrzak [Pie18], a construction for proof of
replication based on proof of space is given. A proof of replication is not formally defined, and therefore it is
not clear what is the replication property that the construction satisfies. In addition, since a proof of space is
the starting point of the construction, it has the same “time-bounded” property as the Filecoin construction,
since a malicious server can pass the audit by recomputing data. More recently, [FBBG18, BBBF18]
construct proofs of replication based on slow encodings. They have the same time-bounded flavour of other
recent works and is thus significantly different from ours.

1.2 Technical Overview

The existing time-bounded proofs use a public deterministic encoding function. The problem is that this
always allow a malicious server to recompute encoded data and this may lead to a successful generation
attack if the server has sufficient computational resources. Our observation is that one can instead make
the encoding be probabilistic. Now the adversary will only see the encoded data but not the randomness
that the client used to encode. One may therefore hope that recomputing an encoding is not only slow, but
completely infeasible. On the other hand, decoding must still be easy for anyone.

To illustrate the idea of our solution, we start with a toy example: we assume that we are given oracle
access to a random permutation T , and its inverse, acting on strings {0, 1}n. As is well known (and discussed
in detail later) we can instantiate such an oracle in the standard random oracle model. In order to create
replicas of a file, A will generate an instance of a one-way trapdoor permutation f : {0, 1}n 7→ {0, 1}n, with
trapdoor tf . For simplicity, we assume that the file m to store is an (n − log n)-bit string. Then the i’th
replica is defined to be (f, f−1(T (m||i))), where || denotes concatenation and f is a specification of the 1-way
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permutation. Clearly, anyone can easily compute m from a replica by computing f in the forward direction
and calling T−1.

It turns out that this construction is secure if the adversary computes the state to store for later in a very
restricted way, namely he forgets completely at least one replica, say the i’th one. We can now argue that if
the adversary is nevertheless able to produce the i’th replica, he will have to invert the one-way permutation:
since the adversary now has no information on f−1(T (m||i)), he also has no information on what T outputs
on input m||i (except for a negligible amount following from the fact that it must be different from other
outputs). Hence he must call the oracle to get T (m||i). Therefore, in a security reduction, we can take
a challenge value y and reprogram T such that T (m||i) = y. Now, the i’th replica (that we assumed the
adversary could produce) is exactly the preimage of y under f .

Of course, we cannot reasonably assume that the adversary behaves in this simple-minded way. As
mentioned, we only want to assume that the state stored is smaller than the combined size of the replicas,
say by a constant factor. To overcome this problem, we iterate the above construction several times, so
that T is called several times while preparing a replica. Now there are many more outputs from T than the
adversary can remember, and we show that by the setting the parameters right, at least one of these is almost
uniform in the view of the adversary. Now we can place a challenge value for the one-way permutation in
this position by an argument similar to the above.

To highlight exactly which properties of the one-way permutation we use, we introduce a notion we call
a hard encoding. A hard encoding scheme hardEnc consists of algorithms (Gen,Enc,Dec), where (ek, dk) ←
Gen(1κ) outputs an encoding and a decoding key; Enc takes a message m ∈ {0, 1}∗ and the encoding key, and
outputs an encoding, c ← Enc(m, ek); Dec takes an encoding, the decoding key and returns a message. Of
course, encoding followed by decoding should return the correct message, but otherwise the main assumption
is that computing the encoding of a given message should be hard unless you are given the encoding key. On
the other hand, anyone can decode (in practice, the decoding key would be a part of the coded message).

This can trivially be instantiated from a trapdoor 1-way permutation by using the trapdoor as the
encoding key. Note, however, that we actually do not need the full power of trapdoor 1-way permutations:
in our application, we encode once and after this we only need decoding. So the encoding key can be deleted
after use. In fact, we can go a step further: if we only want to encode a single message, we can collapse the
Gen and Enc algorithms to a single one that takes the message m as input, and outputs a decoding key dk
and an encoding c such that Dec(c, dk) = m. To instantiate this we just need, very informally speaking, a
kind of “punctured” function f that is one-way, but can be generated based on a given value m, such that
one learns x with f(x) = m. This trivially generalizes to encoding of more than one message at once. We
do not formalize this line of reasoning in this paper, nor do we know any instantiations other than 1-way
permutation. We just mention this as a hint that our scheme might be instantiable from a weaker assumption
and leave this as an interesting open problem.

2 Preliminaries

Notation. We denote the concatenation of two bit strings x and y by x||y. Throughout, we use κ to
denote the security parameter. We denote a probabilistic polynomial time algorithm by PPT. A function
is negligible if for all large enough values of the input, it is smaller than the inverse of any polynomial. We
use negl to denote a negligible function. We use [1, n] to represent the set of numbers {1, 2, . . . , n}. For a

randomized algorithm Alg, we use y ← Alg(x) to denote that y is the output of Alg on x. We write y
R← Y

to mean sampling a value y uniformly from the set Y.

2.1 RSA trapdoor permutation

The RSA trapdoor permutation is given by:

• KeyGen(1κ): Choose κ-bit primes p, q, let N = pq. Choose e such that gcd(e, (p− 1)(q − 1)) = 1, let d
be such that ed = 1 mod (p− 1)(q − 1). Return (pk = (e,N), sk = d)
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• For x ∈ Z∗N , given pk = (e,N), compute fpk(x) = y = xe mod N .

• For y ∈ Z∗N , and sk = d, compute f−1sk (y) = yd mod N

Define the advantage of A as

AdvrsaA = Pr[fpk(z) = y : (pk, sk)← KeyGen(1κ), x
R← Z∗N , z ← A(pk, fpk(x))]

Definition 1. The RSA inversion problem is said to be hard if for any A running in time polynomial in κ,
the AdvrsaA is negligible; there exists a negligible function negl such that

AdvrsaA ≤ negl(κ)

2.2 Proof of retrievability

Proofs of retrievability, introduced by Juels and Kaliski [JK07] allow a client to store data on a server that
is untrusted, and admit an audit protocol in which the server proves to the client that it is still storing
all of the data. A scheme without random oracle was given in [DVW09], whereas [SW08] allows public
verifiability. A proof of retrievability (PoR) scheme consists of three algorithms, Gen,P,V. We recall the
definition from [SW08, DVW09] below.

• The generation algorithm takes as input a file F ∈ {0, 1}∗ and outputs a file to be stored on the server
and a tag (verification information) for the client.

(F ∗, τ)← Gen(F )

• The P,V algorithms define an audit protocol to prove retrievability of the file. The P algorithm takes
as input the processed file F ∗ and the V algorithm takes the tag τ . At the end of the audit protocol,
the verifier outputs a bit indicating whether the proof succeeds or not.

{0, 1} ← 〈P(F ∗),V(τ)〉

A PoR scheme needs to satisfy correctness and soundness. Correctness requires that for all file F ∈ {0, 1}∗,
and for all (F ∗, τ) output by Gen(F ), an honest prover will make the verifier accept in the audit protocol.

〈P(F ∗),V(τ)〉 = 1

Informally, a PoR scheme is sound if for any prover that convinces the verifier that it is storing the file,
there exists an algorithm called the extractor that interacts with the prover and extracts the file. We give
the formal definition below.

Definition 2 (Soundness for Proof of Retrievability). A proof of retrievability (PoR) Gen,P,V satisfies
soundness if for any PPT adversary A, there exists an extractor ext such that the advantage of A

AdvPoR-Sound
A (κ) = Pr[ExptPoR-Sound

A (κ) = 1]

in the experiment described in Figure 1 is negligible in κ.

The definition in [DVW09] discusses the notion of knowledge soundness versus information soundness.
If the definition holds for the class of efficient extractors, the scheme satisfies knowledge soundness. A
somewhat weaker notion is that of information soundness where the running time of the extractor is not
restricted.
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Experiment ExptPoR-sound
A (κ)

• The adversary A picks a file F ∈ {0, 1}n.

• The challenger creates (F ∗, τ)← Gen(F ) and returns F ∗ to A.

• A can interact with V(τ) by running many proofs and seeing whether V outputs 0 or 1.

• A outputs a prover algorithm (ITM) P∗ and returns this to the challenger.

• The challenger runs b← 〈P∗,V(τ)〉, and runs the extractor, F̃ = extP
∗
(τ, n, κ)

• Output 1 if b = 1 ∧ F̃ 6= F , or 0 otherwise.

Figure 1: Soundness for Proofs of Retrievability.

2.3 Min entropy

Recall that the predictability of a random variable X is maxx Pr[X = x] and its min-entropy H∞(X) is
− log (maxx Pr[X = x]). The average case min-entropy is defined as follows. Let X and Y be random
variables.

H̃∞(X|Y ) = − log
(
Ey←Y

(
2−H∞(X|Y=y)

))
We make use of the following lemma which states that the average min-entropy of a variable (from the

point of view of an adversary) does not go down by more than the number of bits (correlated with the
variable) observed by the adversary. We recall the entropy weak chain rule for average case min entropy
below in Lemma 1.

Lemma 1. ([DORS08]) Let X and Y be random variables. If Y has at most 2λ values, then

H̃∞(X|Y ) ≥ H∞(X)− H0(Y ) = H∞(X)− λ

where H0(Y ) = log |support(Y )|

3 Defining Proof of Replication

While several candidates of proof of replication have already been proposed, we are not aware of any formal
definition of the security properties that such a proof should satisfy. It is indeed non-trivial to come up with
the “right” definition, due to the fact that we ask the adversary to store many copies of the same file. Thus
simply requiring the existence of an extractor algorithm (as in proof of knowledge or proof of storage) is not
sufficient: it is not enough that the adversary knows the file, the adversary should know multiple replicas of
the same file. But what does it mean for an extractor to extract replicas of the same file? Before providing
our definition, we introduce some notions of encodings which will be used to build up our solution.

3.1 Hard Encoding

We introduce the notion of a hard encoding which is useful in the context of replicated storage. A hard
encoding encodes a message such that the decoding procedure is easy to compute for everyone, but the
encoding procedure is only easy if one has access to the encoding key. Hard encodings can be realized using
trapdoor permutations, where the secret key of the permutation is erased after computing the encoding.
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Experiment soundA1,A2

• The adversary A1 chooses a file m ∈ {0, 1}k

• The challenger outputs n encodings of m

y(i) ← rEnc(κ,m)

for i ∈ [1, n] and returns (y(1), · · · , y(n)) to A1.

• A1 outputs a state. state← A1(y(1), . . . , y(n))

• The challenger runs A2 on state.

(ỹ(1), . . . , ỹ(n))← A2(κ, state)

• Let vi = 1 if ỹ(i) = y(i), and 0 otherwise. Output v =
∑n
i=1 vi.

A hard encoding scheme hardEnc consists of algorithms (Enc,Dec), where (ek, dk) ← Gen(1κ) outputs an
encoding and a decoding key; Enc takes a message m ∈ {0, 1}∗ and the encoding key, and outputs an
encoding, c← Enc(m, ek); Dec takes an encoding, the decoding key and returns a message. For the sake of
concreteness, throughout the paper, we use the RSA trapdoor permutation to implement hard encodings.

• Gen: ((e,N), d)← KeyGen(1κ) Set ek = d, dk = (e,N)

• Enc: For a message m ∈ Z∗N , given ek, compute c = md mod N

• Dec: Given c ∈ Z∗N , and dk, output m = ce mod N

3.2 Replica Encodings

We now define ReplicaEncoding as a tuple of algorithms (rEnc, rDec) where rEnc takes a message m ∈ {0, 1}∗
and outputs a replica encoding of m ∈ {0, 1}∗,

y ← rEnc(κ,m)

The rDec algorithm takes a replica encoding and returns a message i.e., m← rDec(y).

Definition 3 (Replica encoding). A pair (rEnc, rDec) is a secure replica encoding if the following holds:

• Completeness: The probability of incorrect decoding is negligible i.e.,

Pr[rDec(rEnc(κ,m)) 6= m] < negl(κ)

• Soundness: Consider the game soundA1,A2
between an adversary and a challenger. A replica encoding

scheme is c-sound (for a constant c, 0 < c < 1) if for any (A1,A2), there exists a negligible function
negl such that the following holds.

Pr [|state| < cvk|v ← soundA1,A2 ] ≤ negl(κ)
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3.3 Proof of Replication

We now use the notion of encodings to meaningfully capture the replication property. A proof of replication
scheme consists of a tuple of algorithms create, retrieve and an audit protocol defined by two algorithms,
P,V for the prover and verifier respectively. create is a randomized algorithm that takes as input a file
m ∈ {0, 1}∗, that is to be replicated and stored, a replication factor n; and produces n replicas y(1), · · · , y(n)
together with verification information ver. The replicas y(i) are sent to the server(s) to be stored, and ver
with the client to be used for verification in the audit protocol. retrieve is a deterministic algorithm run by
the server that takes as input a replica y(i) and outputs a file m∗.

In the audit protocol, each server (prover) has a replica y(i), and the client (verifier) has ver. At the end
of the audit, the verifier outputs a bit b indicating whether the audit was successful or not. We denote the
protocol executing the prover and verifier algorithms by 〈Pi(ỹ(i)),V(ver, i)〉. Note that each server should
be able to prove to the verifier that they are storing the file independently and that, when considering
soundness, we assume all provers are under the control of a monolithic adversary. We require the scheme
to satisfy completeness and soundness properties. We give a formal definition below. All algorithms are
parametrized by a security parameter, which we omit in our description below.

Definition 4 (Proof of Replication). A scheme PoRep = (create, retrieve,P,V) where,

(y(1), · · · , y(n), ver)← create(m,n), for m ∈ {0, 1}∗, n ∈ Z

m∗i = retrieve(y(i)), i ∈ [1, n]

{0, 1} ← 〈Pi(ỹ(i)),V(ver, i)〉

is a proof of replication scheme if the following properties are satisfied.

• Completeness. For an honest client and honest server,

– for (y(1), · · · , y(n), ver)← create(m,n),m∗i = retrieve(y(i)),m∗i = m ∀i ∈ [1, n]

– The audit protocol interaction between honest client and honest server succeeds, that is, the client
accepts and outputs b = 1.

〈Pi(ỹ(i)),V(ver, i)〉 = 1

• Soundness. We define the soundness game soundEA1,A2
between an adversary and a challenger. The

scheme PoRep is c-sound (for a constant c, 0 < c < 1) if for any (A1,A2), there exists an extractor E
and a negligible function negl such that the following holds.

Pr
[
u < v ∨ |state| < cvk|(u, v)← soundEA1,A2

]
≤ negl(κ)

The definition above guarantees that the malicious servers, even colluding, cannot make the verifier
accept more proofs than the storage they have used.

4 Constructing Proof of Replication

We begin by giving a high-level overview of our construction. Following the idea behind our definition,
we create many independent encodings, and use a proof of retrievability on the encodings. Even though
each encoding can independently be decoded to the same file without any secret information, the proof of
retrievability on the encodings enforces that the server stores each encoding and therefore dedicates space
for each replica. But a malicious server could forget bits (a constant fraction) of each encoding, instead
of completely forgetting any one replica. Now, to pass the audit, the server has to compute a preimage of
the underlying trapdoor permutation, but given a constant fraction of bits of the preimage. We now apply
a random permutation on the message concatenated with a short seed per replica, prior to using the hard
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Experiment soundEA1,A2

– The adversary A1 chooses a file m ∈ {0, 1}k

– The challenger runs (y(1), · · · , y(n), ver)← create(m,n) and returns (y(1), · · · , y(n)) to A1.

– A1 outputs a state state← A1(y(1), · · · , y(n))

– The challenger runs 〈A2(state),V(ver, i)〉, let vi be the output of V for all i ∈ [1, n] and v =
∑n
i=1 vi.

– The challenger runs the extractor.

(ỹ(1), · · · , ỹ(n)) = EA2(κ, ver, k)

– For all i ∈ [1, n], define ui = 1 if ỹ(i) = y(i), and u =
∑n
i=1 ui

The output of the game soundEA1,A2
is (u, v).

encoding. Again, the server can simply store few bits of the encoding along with a short seed and pass
the audit. The final idea behind our construction is to iterate the permuation plus encoding as a round
function sufficiently many times. Intuitively, now preimage information is to be stored at each round, and
the total exceeds the bound necessary for replicated storage after a sufficient number of rounds. Note that
our combination of the RSA trapdoor permutation with a random oracle is reminiscent of full domain hash-
signatures and, to a greater extent, CCA secure encryption via RSA and OAEP. Note however that, for our
proof to go through, we need T to be indifferentiable from a random oracle, thus the two Feistel rounds of
OAEP are not enough. Moreover, in our construction, we apply the oracle and the trapdoor permutation
for multiple rounds, and the domain of the random oracle is a vector of blocks for the RSA permutation.
The idea of iterating a combination of RSA with a random oracle was used before in [VDJO+12], however
(apart from their work having a less in-depth treatment) there are two major differences, namely that they
did not consider replication as an application, and that they use a strictly weaker notion of security, namely
“near-incompressibility”.

4.1 Replica Encodings

We now proceed to describe our construction in detail, and first construct a replica encoding scheme
ReplicaEncoding = (rEnc, rDec) in Figures 2 and 3.

Theorem 1. Assuming T is an invertible random oracle, the construction ReplicaEncoding = (rEnc, rDec)
is a secure replica encoding scheme for message length k′, replication parameter n as per Definition 3. For
number of rounds r > cn, it is complete and c-sound with soundness error ε ≤ (ε′ + 2−nk(1−c))cn2 where
k = k′ + κ, the advantage of any adversary in inverting the RSA permutation as per Definition 1 is at most
ε′.

Proof. Completeness. For n encodings that are created honestly, R(i) ← rEnc(m,κ), m∗ = rDec(R(i)). Since
T is a permutation and the hard encoding is the RSA permutation, m∗ = m, ∀i.

Soundness. Assume there exists an adversary (A1, A2) such that Pr [|state| < cvk|v ← soundA1,A2
] > ε.

Therefore, the adversary AT2 outputs R(i1), · · · , R(iv), where each ij ∈ [1, n]. Let I ⊂ [1, n], |I| = v be the
set of indices indicating the replicas that A2 outputs correctly. We argue that if the state is too small, it
does not have enough entropy to store information about R(i), ∀i ∈ I and therefore one of the R(i) must
have been recomputed, (and queried to T ), which we use to invert the trapdoor permutation of the hard
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Let m ∈ {0, 1}k′ be a message to be encoded.

• Choose a string ri uniformly at random from {0, 1}κ, and let y
(i)
0 = m||ri. Let k = k′ + κ.

• Let hardEnc = (Gen,Enc,Dec) be a hard encoding scheme. (ek(i), dk(i)) = hardEnc.Gen(κ). Divide

y
(i)
0 into s blocks such that each block is in ZN , where dk(i) = (e,N). Let TN : D → D be viewed

as an invertible RO, where the domain and range D is (ZN )s. Iterate the following round function:
For each round j from 1 to r, define

– Apply the RO TN ,

zj = TN (y
(i)
j−1)

– Parse zj as Z1j || · · · ||Zsj where each Ztj ∈ ZN . Apply the hard encoding block-wise. For
each t ∈ [1, s]

Y
(i)
tj = hardEnc.Enc(Ztj , ek

(i))

– Let y
(i)
j = Y

(i)
1j || · · · ||Y

(i)
sj

• Let R(i) = (y(i), dk(i)), where y(i) = y
(i)
r

• Return R(i)

Figure 2: The Replica Encoding Algorithm rEnc(κ,m)

For a replica R(i) = (y(i), dk(i)), let yr = y(i), (e,N) = dk = dk(i). For each round j from r down to 1,
compute

• Round j:

– Parse y
(i)
j as Y

(i)
1j || · · · ||Y

(i)
sj . Decode the hard encoding block-wise, for each t ∈ [1, s]

Ztj = hardEnc.Dec(Y
(i)
tj , dk)

– Let zj = Z1j || · · · ||Zsj
y
(i)
j−1 = T−1N (zj)

• Parse y0 = m||r where m is the first k′ bits of y0. Return m.

Figure 3: The replica decoding algorithm rDec(R(i))

10



encoding. The high level idea is that since the state is small, in round r, A2 must have learned some of the z
values of round r from responses of T . Therefore, A2 must make the correct queries, which are the y values
of round r − 1. From these queries, we can extract the z values of round r − 1 by simply decoding, and we
make a similar argument on these z values. We continue this argument for every round going backwards
from the last round, by reasoning about the set of relevant queries made in each round, until we hit a round
where the response of T for one of A2’s queries must have full entropy from A2’s point of view. We use this
response to embed a challenge and invert the trapdoor permutation. We now proceed to give the reduction.

Let B be an adversary whose task is to invert the trapdoor permutation of the underlying hardEnc scheme.
B receives (ê, N̂), a challenge x̂, and wins if it outputs ŷ such that ŷê = x̂ mod N̂ . B interacts with (A1, A2)
in the soundness game. B receives a file m ∈ {0, 1}k′ from A1. B creates encoded replicas honestly, except
for the following. It chooses a random i∗ ∈ [1, n], and creates replica i∗ in the following way. It chooses
a random value y and computes the trapdoor permutation in the forward direction with the challenge key
(ê, N̂) for each block in y to obtain z. It then programs the oracle T such that T (m) = z. This is repeated
for each round j ∈ [1, r]. That is, B defines the i∗th replica in rEnc as follows.

• For i = i∗, let y
(i)
0 be a uniformly random string of length k = k′ + κ. Let ri be a uniformly random

string of length κ. Parse y
(i)
0 as Y

(i)
10 || · · · ||Y

(i)
s0 , Y

(i)
t0 ∈ ZN̂ . For each t ∈ [1, s]

Zt0 = (Y
(i)
t0 )ê mod N̂

• Let z0 = Z10|| · · · ||Zs0

• Define
TN̂ (m||r(i)) = z0

In each round j from 1 to r, define

– Choose random y
(i)
j ∈ {0, 1}k. Parse y

(i)
j as Y

(i)
1j || · · · ||Y

(i)
sj . For each t ∈ [1, s]

Ztj = (Y
(i)
tj )ê mod N̂

– Let zj = Z1j || · · · ||Zsj
– Define

y
(i)
j−1 = T−1

N̂
(zj)

• Let y(i
∗) = y

(i)
r and dk(i

∗) = (ê, N̂)

• Return R(i∗) = (y(i
∗), dk(i

∗))

B responds to any other oracle queries of A1 honestly, and finally gives (R(1), · · · , R(n)) to A1, where
R(i) for i 6= i∗ is created honestly. A1 outputs a state state. Now, B interacts with A2. It runs A2 on state,
and receives and responds to A2’s oracle queries in the following way. B randomly chooses j∗ ∈ [1, r]. If A2

queries T on y
(i∗)
j∗−1, B chooses a random block t∗ ∈ [1, s], sets the response to embed its challenge x̂ in the

following way. Set Zt∗j∗ = x̂, and choose Ztj∗ for all t 6= t∗ uniformly, and for z∗j = Z1j∗ || · · · ||Zsj∗ ,

TN̂ (y
(i∗)
j∗−1) = z∗j

The rest of the queries are answered honestly. If A2 makes a query y
(i∗)
j∗ = Y

(i∗)
1j∗ || · · · ||Y

(i∗)
sj∗ with Y

(i∗)
tj∗ = ŷ

such that, ŷê = x̂ mod N̂ , B outputs ŷ. If there is no such query, B outputs ⊥. We now argue that B wins
with probability at least ε

cn2 − 2−nk(1−c). We have |state| < cvk, c < 1. Consider the min-entropy of the
random variable state, which is at most the bit length, H∞(state) ≤ cvk. A2 on state returns, for some
I ⊂ [1, n], |I| = v,

{R(i)}i∈I = A2(κ, state)
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for R(i) = (y
(i)
r , dki). Let dki = (ei, Ni). Each y

(i)
r is parsed as Y1r|| · · · ||Ysr, for Ytr ∈ ZNi

and can be

decoded block-wise to obtain z
(i)
r = Z1r|| · · · ||Zsr such that, Ztr = hardEnc.Dec(Ytr, dk

i) for each t ∈ [1, s].

Let Yr = y
(i1)
r || · · · ||y(iv)r and Zr = z

(i1)
r || · · · ||z(iv)r , ij ∈ I. Each z

(i)
r is the output of RO, and is therefore

unpredictable. We have, H∞(z
(i)
r |z(1)r , · · · , z(i−1)r , z

(i+1)
r , · · · , z(n)r ) = k, and therefore, H∞(Zr) = nk. Since

Zr can be extracted from AT2 (state), either the state contains information about each z(i) in z(1)|| · · · ||z(n),
or A2 must make relevant RO queries, that is, query the RO on the inputs corresponding to z(i). By the
conditional rule for average case min-entropy (Lemma 1),

H̃∞(Zr|state) ≥ H∞(Zr)− H0(state)

H̃∞(Zr|state) ≥ H∞(Zr)− cnk = nk − cnk

Zr is extracted by making no RO queries only with probability < 2−nk(1−c). Therefore, there is at least
one RO query. Let Qr be the indices in I that indicates the queries which are y-values of round r. That is,

∀u ∈ Qr, A2 queried T on y
(u)
r−1, and T (y

(u)
r−1) = z

(u)
r . Let qr = |Q| denote the number of “relevant” r-round

queries.

Let S = {1, · · · , n}\Qr, |S| = tr = n−qr. Since tr blocks of z
(i)
r , i ∈ [1, n] were extracted from A2 without

making a corresponding query, that is, A2 did not query T on y
(u)
r−1, for u ∈ S such that T (y

(u)
r−1) = z

(u)
r .

Therefore,
H∞(state) ≥ ktr

Now, let us consider the set of queries made with indices in Qr. For each y
(u)
r−1, u ∈ Qr, we can extract

z
(u)
r−1 by computing the decoding block-wise. That is, z

(u)
r−1 = Z1(r−1)|| · · · ||Zs(r−1) such that, Zt(r−1) =

hardEnc.Dec(Yt(r−1), dk
u) for each t ∈ [1, s], where y

(u)
r−1 = Y1(r−1)|| · · · ||Ys(r−1), Ytr ∈ ZNu

.

These qr elements are outputs of RO, and therefore have full entropy. Let Zr−1 = z
(u1)
r−1 || · · · ||z

(uqr )
r−1 where

each ui ∈ Qr. We have H∞(Zr−1) = qrk. If Zr−1 can be extracted from AT2 (state), either the state contains

information about z
(i)
r−1,∀i ∈ Qr, or A2 must make more RO queries. We have,

H̃∞(Zr−1|state) ≥ qrk − cnk

If there are no more queries,

H∞(state) ≥ ktr + kqr

Since tr + qr = n and H∞(state) ≤ cnk, there must be more queries. Therefore, there must be more
queries on inputs corresponding to the indices in Qr. Let qr−1 be the number of relevant (r − 1)-round

queries. Define a set of query indices Qr−1, from which we can extract Zr−2 = z
(u1)
r−2 || · · · ||z

(uqr−1
)

r−2 , for
ui ∈ Qr−1. We know H∞(Zr−2) = qr−1k. Let Zj = Zj ||Zj+1|| · · · ||Zr−1

H̃∞(Zr−2|state) ≥ qr−1k + qrk − cnk

H∞(state) ≥ ktr + ktr−1 + kqr−1

If there are no more queries, qr−1+tr−1 = qr; Therefore, again, there must more RO queries corresponding
to the indices in set Qr−1. Thus, we have, after r rounds, Zr, · · · ,Z1 are extracted from A2(state), and we
have

H∞(state) ≥
r∑
i=1

tik

A2 makes RO queries in each round j for the replicas given by the indices in Qj . After r rounds, for
Z1 = Z1||Z2|| · · · ||Zr−1,
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H̃∞(Z1|state) ≥
r∑
i=1

qik − cnk

Setting,
r∑
i=1

qik − cnk = k

Since there is at least one query in each round, we get H̃∞(Z1|state) ≥ k, when r > cn. Therefore,
at some round ` ≤ r, the entropy of the response is full when making an RO query at round `. That is,
∃` ∈ [1, r], w ∈ [1, n] such that,

H̃∞(z
(w)
` |state) = k

Thus z
(w)
` = T (y

(w)
`−1) with Zt∗j∗−1 = x̂ is the programmed RO response, is the probability that i∗ =

w, j∗ = ` which is 1/nr. Thus the probability that B wins is at least ε
cn2 − 2−nk(1−c).

On instantiating the oracle T . As stated, each encoding key (e,N) defines a different random oracle
T . We require that T be indifferentiable from a random permutation. The indifferentiablity framework, first
proposed by Maurer et al [MRH04], informally says that given ideal primitives G and H, a construction
CG is indifferentiable from H, if there exists a simulator S with oracle access to H such that (CG, G) is
indistinguishable from (H,SH). Coron et al [CHK+16] showed that a 14-round Fiestel network where the
round functions are independent random oracles is indifferentiable from a random permutation. A series of
subsequent works [DKT16, DS16] show that 8 rounds is sufficient.

Note that the input and output of our random oracles T are vectors of elements in ZN , where N is part
of the public decoding key. We note that we can instantiate the Feistel construction in this domain as well
by replacing XOR with multiplication modulo N i.e., given a random oracle H : (ZN )`/2 → (ZN )`/2 we can
define F : (ZN )` → (ZN )` as follows:

FH(~x) = ~s||~t, where ~s = ~x ◦H(~r) mod N,~t = ~r ◦H(~s) mod N

where ◦ is the Hadamard product. Note that F is invertible except with negligible probability i.e., if F is
not invertible then a non-trivial factor of N is found.

4.2 From Replica Encodings to Proofs of Replication

We now construct a proof of replication scheme create, retrieve,P,V. The idea is very simple: to construct a
proof of replication we use the replica encoding scheme from the previous section to create replicas, and then
apply a proof of retrievability on the encoded replicas. The proof of security is also simple, as an adversary
that breaks soundness for the proof of replication can be used to break the soundness property of the proof
of retrievability scheme or the soundness of the replica encoding scheme.

The create procedure is formally described in Figure 4. The prover, and verifier algorithms P,V are the
same as the prover and verifier in the proof of retrievability. Finally, the retrieve algorithm simply runs the
replica decoding algorithm rDec if the proof of retrievability accepts.

Theorem 2. PoRep = (create, retrieve,P,V) is a proof of replication scheme for message length k′ and
replication parameter n secure as per Definition 4. It is complete and c-sound with soundness error γ ≤ δ+ ε
where the underlying PoR scheme has soundness error δ, and the replica encoding scheme has soundness
error ε for message length k′.

Proof. We first argue completeness: Given R(i) and dk, for encodings that are created honestly, an honest
server can recover m∗ = retrieve(R(i)). By completeness of the replica encoding scheme rEnc, we have

rDec(R(i)) = rDec(y(i), dk(i)) = m, ∀i.

13



Let PoR = (Gen,P,V) be a proof of retrievability scheme. Given a file m ∈ {0, 1}k′ , and a replication
factor n:

• For each i ∈ [1, n]
R(i) ← rEnc(m,κ)

• ({R̃(i)}i, τ) = PoR.Gen({R(i)}i)

• Set ver = τ

• R̃(i) is sent to the server i for storage and ver is returned to the client.

Figure 4: create(m,n): Create replicated storage

We now argue the soundness of the construction. Let (A1, A2) be an adversary, that wins the soundness
game soundEA1,A2

with advantage γ. Let (u, v)← soundEA1,A2
.We consider the two cases:

Case 1. u < v. Let ext be the extractor of the PoR scheme, and let the file output by ext be {R̃(i)}ni=1.
By assumption that u < v there must be an index i ∈ [1, n] such that the adversary A2 succeeds in
the audit protocol (i.e., vi = 1), but R̃(i) 6= R(i) (i.e., ui = 0). By the soundness of the proof of
retrievability scheme PoR, this happens only with probability δ.

Case 2. |state| ≤ cvk. In this case the adversary AT2 succeeds in v audit protocols, and since u ≥ v,
the extractor E outputs R̃(i) = R(i) for i ∈ I ⊂ [1, n], |I| = v. Let (B1,B2) be an adversary whose
task is to break the soundness of the replica encoding scheme rEnc. B1 interacts with (A1, A2) in
the soundness game. B1 receives a file m ∈ {0, 1}k from A1, and outputs m to its challenger. B1
receives n replica encodings (R(1), · · · , R(n)) from the challenger B1 runs the PoR on the replicas.
({R̃(i)}i, ver) ← PoR.Gen{R(i)}i and returns {R̃(i)}i to A1. B1 outputs as state whatever A1 outputs
with |state| ≤ cvk. For every successful audit proof given by A2, B2 runs the extractor E(ver, n, κ) of
the scheme. Thus B2 outputs R̃(i) = R(i) for each i ∈ I with probability at least γ.

5 Removing Trust in the Client

We discuss here some limitations and possible extensions of our approach.
Our definition and construction so far has concentrated on the case where the client is honest. This is

not a problem for our base use-case where a user wants to make sure they will be able to retrieve their files
in the future, but it is a problem in the Filecoin use case where servers are rewarded for the files they store.
In this case, we need to prevent against the so called generation attack and it is therefore important to have
some security guarantees when the client is corrupt and might work with a set of corrupt servers to convince
honest users that they store many replicas whereas in fact the replicas are generated “on-the-fly” for each
proof.

Our solution from the previous section does not work in this case, as a corrupt user could share the RSA
secret key with the servers and now they can indeed encode a replica on the fly. If the client who owns the
file is corrupt and is the only user involved in the encoding process, then the adversary knows everything
about the encoding process, and a different solution is needed.

We identify two approaches for dealing with this problem which we sketch here:
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1. The first is to re-introduce timing assumptions (as in previous constructions) and instantiate the
trapdoor in our construction using RSA with small exponent (i.e., e = 3). Now decoding would be
much faster then encoding, even if the adversary knew the secret key (in this case the adversary can
optimize the encoding procedure using the Chinese-Remainder Theorem).

2. The second approach is to have multiple users encode the files in a sequential way. Note that, since the
files are publicly retrievable, any user can add a layer of encoding. In the end, we have an encoding
that is essentially done just like our original construction, only with more rounds. Note that it is still
possible to decode and check the result is correct and that this does not significantly increase the size
of the encodings (the complexity would grow from O(|m|+ κ) to O(|m|+ n · κ) with n users). As an
implementation detail, we note that one needs to deal with the fact that different users have different
public keys and therefore RSA moduli. This can be done by maintaining the same number of blocks
between the different encodings (and ensuring that the moduli of the users are increasing, so that the
block-size of user i fits into a block of user i+ 1), or by parsing the encoding of user i, which is a word
of elements between 1 and Ni, into a word of elements between 1 and Ni+1 (at the price of adding few
extra blocks if necessary).

By a straightforward extension of the proof from the previous section, we can show that under the
assumption that at least one user is honest, we have the same security as in the original construction.
This is simply because the adversary does not know the secret RSA key for the honest member, and
his encoding process involves the same number of random oracle responses that we considered in the
original proof.
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