
Platform-independent Secure Blockchain-Based

Voting System

Bin Yu1, Joseph Liu1, Amin Sakzad1, Surya Nepal2, Ron Steinfeld1, Paul Rimba2, and
Man Ho Au3

1 Monash University Australia
2 CSIRO Australia

3 The Hong Kong Polytechnic University

Abstract. Cryptographic techniques are employed to ensure the security of voting
systems in order to increase its wide adoption. However, in such electronic voting
systems, the public bulletin board that is hosted by the third party for publishing
and auditing the voting results should be trusted by all participants. Recently a
number of blockchain-based solutions have been proposed to address this issue.
However, these systems are impractical to use due to the limitations on the
voter and candidate numbers supported, and their security framework, which
highly depends on the underlying blockchain protocol and suffers from potential
attacks (e.g., force-abstention attacks). To deal with two aforementioned issues,
we propose a practical platform-independent secure and verifiable voting system
that can be deployed on any blockchain that supports an execution of a smart
contract. Verifiability is inherently provided by the underlying blockchain platform,
whereas cryptographic techniques like Paillier encryption, proof-of-knowledge, and
linkable ring signature are employed to provide a framework for system security
and user-privacy that are independent from the security and privacy features of
the blockchain platform. We analyse the correctness and coercion-resistance of
our proposed voting system. We employ Hyperledger Fabric to deploy our voting
system and analyse the performance of our deployed scheme numerically.

Keywords: evoting, blockchain, ring signature, homomorphic encryption

1 Introduction

Voting plays a significant role in a democratic society. Almost every local authority
allots a significant amount of budget on providing a more robust and trustworthy voting
system. Cryptographic techniques like homomorphic encryption and Mix-net [6] are
usually applied in contemporary electronic voting systems to achieve the voting result
verifiability while preserving voters’ secrecy. However, incidents like a security flaw that
has erased 197 votes from the computer database in the 2008 United States elections [32]
and the compromise of 66,000 electronic votes in the 2015 New South Wales (NSW) state
election in Australia [27] raise the public concerns on the security of electronic voting
systems. For voting systems based on bulletin (e.g., [1,7]), one of the major concerns is
whether the voting result that is published on the bulletin can be trusted. Blockchain
with the growing popularity and remarkable success in cryptocurrency provides a new
paradigm to achieve the public verifiability in such electronic voting systems.

In a blockchain-based system, there is no trusted centralised coordinator; instead,
each node that is involved in the blockchain system holds the data block locally. Based
on the assumption that the decentralised consensus protocol is secure and a sufficiently

2 Bin Yu et al.

large proportion of blockchain network nodes are honest, the blockchain can be thought
of as a conceptual third party that can be trusted for correctness and availability [18].
The data on the blockchain is append-only and any operation that alters the data in any
block violates the blockchain consensus rule and are rejected by the blockchain network.

Recently a number of blockchain-based electronic voting systems have been developed
by exploiting its inherent features. These systems can be classified into three broad
categories. (1) Cryptocurrency based voting systems (e.g., [20,31,38]). The ballots to a
candidate are based on the payment he/she receives from the voters; the problem with
such systems are malicious voters may refuse to “pay” the candidates to retain the money.
Furthermore, a centralised trusted party, who coordinates the payment between the
candidates and voters must exist. (2) Smart contract based voting system [23], which only
supports two candidates and the voting is restricted to limited number of participants.
Furthermore, it requires all voters to cast their ballots before reaching an agreement on
the voting result. (3) Using blockchain as a ballot box to maintain the integrity of the
ballots [9,33].

In summary, the security of these blockchain-based systems highly depends on the
specific cryptocurrency protocol they employed. Additionally, these voting systems can
only work with a specific blockchain platform, and support a limited number of candidates
and voters. Based on our observations and studies, we believe that any blockchain-based
voting systems should have the following three features: (1) Platform-independence —
this means the changes in the underlying blockchain protocols should not affect the
voting schemes. (2) Security framework — the voting system should be implemented with
comprehensive security features (the detail of security features are discussed in Section
5). The nature of the blockchain allows everyone to obtain the data on it; thus, the
comprehensive security features have critical importance to ensure that the ballots are
fully secured on the blockchain. (3) Practical — it should be scalable, which means the
large amount of ballots casting and tallying can be finished in a reasonable time.

Our Contributions: In this paper, we propose an electronic voting (evoting) system
that supports the above identified three features as follows.

1. Our voting system does not depend on a centralised trusted party for ballots tallying

and result publishing. Compared with traditional voting systems, which highly depend
on a centralised trusted party to tally the ballots and publish the result, our voting
system takes the advantage of a blockchain protocol to eliminate the need for a
centralised trusted party. The details of the blockchain trustworthiness and voting
system trust assumptions are discussed in Section 4 and 5, respectively.

2. Our voting system is platform-independent and provides comprehensive security as-

surances. Existing blockchain-based voting systems highly depend on the underlying
cryptocurrency protocols. Receipt-freeness [28] and correctness of the voting result are
hard to achieve (we analyse the blockchain-based voting system explicitly in Section 2).
The security of our voting system is achieved by cryptographic techniques provided by
our voting protocol itself, thus, our voting system can be deployed on any blockchain
that supports smart contract. To achieve the goal of providing a comprehensive
security, we employ Paillier system to enable ballots to be counted without leaking
candidature information in the ballots. Proof-of-knowledge is employed to convince
the voting system that the ballot casted by a voter is valid without revealing the
content of the ballot. Linkable ring signature is employed to ensure that the ballot
is from one of the valid voters, while no one can trace the owner of the ballot. The
detail of security features that we achieved are discussed in Section 5.

Platform-independent Secure Blockchain-Based Voting System 3

3. Our voting system is scalable and applicable. In order to support voting scalability, we
propose two optimised short linkable ring signature key accumulation algorithms given
in algorithm 1 and algorithm 2 to achieve a reasonable latency in large scale voting.
We evaluate our system performance with 1 million voters to show the feasibility of
running a large scale voting with the comprehensive security requirements.

The rest of the paper is organised as follows: we discuss the cryptographic techniques
applied in voting systems and analyse some typical voting systems in Section 2. Crypto-
graphic primitives and our voting protocol are presented in Section 3 and 4, respectively.
We analyse the correctness and security of our voting system in Section 5. In Section 6,
we deploy our voting system and analyse its performance.

2 Related work

Secure evoting is considered as one of the most difficult problems in security literature as it
involves many security requirements. To satisfy these security requirements, cryptographic
techniques are mostly applied in constructing a secure evoting system. In this section, we
discuss the existing voting systems based on traditional public bulletin and blockchain
technology.

2.1 Public bulletin based voting systems:

In the following, we outline the key cryptographic techniques used in public bulletin based
voting systems and how such techniques address the corresponding security requirements.

– Homomorphic encryption: Homomorphism feature allows one to operate on ci-
phertexts without decrypting them [11]. For a voting system, this property allows the
encrypted ballots to be counted by any third party without leaking any information
in the ballot [8, 12, 16]. Typical cryptosystems applied in a voting system are Paillier
encryption [30,37] and ElGamal encryption [17,20].

– Mix-net: Mix-net was proposed in 1981 by Chaum [6]. The main idea of mix-net
is to perform a re-encryption over a set of ciphertexts and shuffle the order of those
ciphertexts. Mix node only knows the node that it immediately received the message
from and the immediate destination to send the shuffled messages to. The voting
systems proposed in [1,15,19] apply mix-net to shuffle the ballots from different voters,
thus the authority cannot relate a ballot to a voter. For the mix-net based voting
systems, they need enough amount of mix nodes and ballots to be mixed.

– Zero-knowledge proof: Zero-knowledge proof is often employed in a voting sys-
tem [7,26,36] to let the prover to prove that the statement is indeed what it claimed
without revealing any additional knowledge of the statement itself. In a voting sys-
tem, the voter should convince the authority that his ballot is valid by proving that
the ballot includes only one legitimate candidate without revealing the candidate
information.

– Blind signature and linkable ring signature: Voting systems like [10, 14, 21]
employ blind signature [10] to convince the tallying centre that the ballot is from a
valid voter while not revealing the owner of the ballot. Simultaneously, the authority
who signs the ballot learns nothing about the voter’s selections. In blind signature,
both voters and tallying centre must trust the signer. If the signer is compromised, the
signature scheme may stop working. Unlike blind signature, linkable ring signature [22]
is proposed to avoid the untrusted signer. Instead, it needs a certain number of voters

4 Bin Yu et al.

to participate in the signing process. By comparing the linkability tag, the authority
can easily tell whether this voter has already voted. When the voter signs on the
ballot, he/she needs to include other voters’ public keys to make his/her signature
indistinguishable from other voters’ signatures.

2.2 Blockchain-based voting systems

The blockchain-based voting systems can be discussed under three broad categories as
follows.

– Voting systems using cryptocurrency: In [38], authors propose a voting system
based on Bitcoin. In their voting system, the ballot does not need to be encrypted/de-
crypted as they employ the protocol for lottery. Random numbers are used to hide
the ballot that are distributed via zero-knowledge proof. Making deposit before voting
may keep the voters to comply with the voting protocol while the malicious voters can
still forfeit the voting by refusing to vote. However, only supporting “yes/no” voting
may restrict the adoption of this voting system.
In [31], authors proposed a voting system on the Zcash payment protocol [13] without
altering the inner working of Zcash protocol. The voter’s anonymity is ensured by the
Zcash address schemes. The correctness of the voting is guaranteed by the trusted
third-party and the candidates. In this system, the authority, who manages the
Zcash and voter status database should be trusted. If the authority is compromised,
double-voting or tracing the source of the ballot is possible.

– Voting systems using smart contract: In [23], the authors claim that their open
voting network is the first implementation of a decentralised and self-tallying Internet
voting protocol with maximum voter privacy using Blockchain. They employ smart
contract as a public bulletin to achieve self-tallying.4 However, their voting system
can only work with two candidates voting (yes/no voting) and the limitation of 50
voters makes it impractical for a real large scale voting system.

– Voting systems using blockchain as a ballot box: Tivi and Followmyvote [9,33]
are commercial voting systems which employ the blockchain as a ballot box 5. They
claim to achieve verifiability and accessibility anytime anywhere, while the voters’
privacy protection in these systems is hard to evaluate.

To summarize, most traditional voting systems need a centralised trusted party to
coordinate the whole voting process. In these systems, the centralised trusted party plays
a critical role in storing the ballots, counting the ballots, and publishing the voting result.
If it is compromised, the adversary can control the ballot counting and the whole voting
result, and there is no efficient approach for participants to detect any compromises.
Hence, there is a need of an independent public verifiability feature in such systems.
Although the existing blockchain-based voting systems take advantage of blockchain
public verifibility, the system security and user privacy of these systems depend on the
features provided by the underlying blockchain platform, which are limited and thus make
such systems vulnerable to a number of known attacks. Our proposed approach not only
takes the benefits of a decentralised trust offered by the blockchain technology to remove
the need of a centralised trusted party to do the ballots tallying, voting result decoding
and publishing, but also considers key security primitives proposed in the literature
including traditional evoting systems to build a practical platform independent secure
4 Self-tallying means that after the casting phase, voters can count the ballots themselves.
5 The authors call the storage of the ballot as the ballot box.

Platform-independent Secure Blockchain-Based Voting System 5

evoting protocol that can be deployed to any blockchain platforms that support smart
contract.

3 Cryptographic Primitives

In this section, we describe the cryptography primitives borrowed from traditional voting
systems and apply in our evoting system. Note that the syntaxes, correctness conditions,
and security models of a linkable ring signature and a public key encryption are given in
Appendix A and Appendix B, respectively.

3.1 Message encode and decode
Before the voting starts, we must encode the candidate ID to make it suitable for vote
tallying. The encode/decode functions are defined as follows:
– Candidate encoding: We define 𝜁 := Encode(𝑚) ∈ Z as the candidate encoding

function. For 𝜌 candidates, each labeled with an ID from 𝒫 = {1, 2, . . . , 𝜌}, 𝛽 = 2𝜌+1

be the basis of encoding operation. We encode the 𝑚th candidate as 𝜁 = 𝛽𝑚 where
𝑚 ∈ 𝒫. We choose 2 as the basis of 𝛽 as the division operation can be replaced by
the CPU register right shift instruction to achieve a better performance.

– Candidate decoding: Let 𝑘 = 𝑘𝑡𝛽
𝑡 + · · · + 𝑘𝑛𝛽

𝑛 + 𝑘𝑛−1𝛽
𝑛−1 + · · · + 𝑘1𝛽 + 𝑘0

be the representation of 𝑘 base 𝛽, 𝑘 ∈ Z, then we define the right shift 𝑘 with
𝑛 positions as rsh(𝑘, 𝑛) = 𝑘𝑡𝛽

𝑡−𝑛 + 𝑘𝑡−1𝛽
𝑡−𝑛−1 + · · · + 𝑘𝑛+1𝛽 + 𝑘𝑛. Let sum =

𝑠𝜌𝛽
𝜌−1 + 𝑠𝜌−1𝛽

𝜌−2 + · · ·+ 𝑠2𝛽 + 𝑠1 be the addition of all the ballots where 𝑠𝑗 is the
total number of ballots that the candidate 𝑗th acquires. We define 𝑠𝑗 := Decode(sum, 𝑗)
for 1 ≤ 𝑗 ≤ 𝜌 and is computed as 𝑠𝑗 = rsh(sum, 𝛽𝑗−1) mod 𝛽.

3.2 Paillier Encryption System [34]
Paillier Encryption system is employed to enable our voting system to tally the encrypted
ballots. In our voting system, we implement the following functions in Paillier system and
the detail of these functions are described in Appendix B.1.

– Key Generation: (skPaillier, pkPaillier) := GenPaillier(𝐾len) is the function to generate
the secret key skPaillier and the corresponding public key pkPaillier with the given key
length 𝐾len.The voting administrator invokes this function to generate the key pair
and uploads the public key pkPaillier to the blockchain.

– Encryption: 𝐶Ballot ← EncPaillier(𝜁Ballot, pkPaillier) where 𝜁Ballot ∈ Z𝑛 is the plaintext
ballot to be encrypted. Voters download the pkPaillier from the blockchain and call this
function to encrypt their ballots. This function generates the encrypted ballot 𝐶Ballot.

– Decryption: 𝜁Res := DecPaillier(𝐶Res, skPaillier) where 𝐶Res ∈ Z*
𝑛 is the encrypted voting

result; the voting administrator invokes this function to decrypt the voting result.
– Message Membership Proof of Knowledge [3]: {𝑣𝑗 , 𝑒𝑗 , 𝑢𝑗}𝑗∈𝒫 :=

PoKmem(𝐶Ballot, 𝛶) where 𝐶Ballot is the encrypted ballot, 𝛶 is the set of the encoded
candidates. When a voter publishes his/her ballot, he/she invokes this function to
generate the proof {𝑣𝑗 , 𝑒𝑗 , 𝑢𝑗}𝑗∈𝒫 that demonstrates his/her ballot encrypts only one
of the encoded candidates in 𝛶 .

– Decryption Correctness Proof of Knowledge: (𝜁Res, 𝑟) := PoK(𝐶Res, skPaillier),
where 𝜁𝑅𝑒𝑠 is the plaintext and 𝑟 is the random factor that generate the encrypted
voting result 𝐶Res. After publishing the voting result, the voting administrator invokes
this function to generate a unique value pair (𝜁Res, 𝑟) that constructs the 𝐶Res to prove
that he/she decrypts the voting result 𝐶Res correctly.

6 Bin Yu et al.

3.3 Linkable Ring Signatures

Linkable ring signature (LRS) can be applied in our system to protect the privacy of the
voters. In practice, we apply the short linkable ring signature (SLRS) [2] which extends all
the SLRS features to make the signature size constant with the growth of voter numbers, it
has the following features: (1) every ballot that is accepted by the system is from one of the
valid users, (2) the voter can check whether his ballot is counted by the blockchain, (3) the
size of the signature is constant to support scalability and (4) double-voting is prevented.
In our voting system, we implement the function tuple (Setup,KeyGen,Sign,Verify, Link).
The details of these functions are explained in Appendix A.2.

– Setup: param← Setup(𝜆) is a function that takes 𝜆 as the security parameter and
generates system-wide public parameters param such as the group of quadratic residues
modulo a safe prime product 𝑁 (explained in Appendix A.2) denoted as QR(𝑁), the
length of the key, and a random generator 𝑔 ∈ QR(𝑁).

– Key Generation: (sk𝑖, pk𝑖) ← KeyGen(param) is a function to generate a key pair
for each voter 𝑖.

– Signature: 𝜎 ← Sign(𝒴, sk,msg) is a function to generate the signature 𝜎 using all
voters’ public keys 𝒴 = {𝑦1, 𝑦2, . . . , 𝑦𝑏}, the message msg to be signed, and the voter’s
secret key sk. Voters should invoke this function to sign on his/her encrypted ballot.

– Verification: accept/reject← Verify(𝜎,𝒴,msg); our voting system invokes this func-
tion to test the validity of every ballot. Based on the input of the encrypted ballot
itself, the voter’s signature and all the voters’ public keys, the blockchain accepts or
rejects this ballot to be put on the chain.

– Linkability: Link(𝜎1, 𝜎2) → linked/unlinked. When a voter casts his/her vote, our
voting system invokes this function to check whether this voter has already casted his
vote. If this function returns linked, our voting system rejects this ballot; otherwise,
the ballot is recorded on the chain.

3.4 Blockchain

Blockchain as a new scheme targets at removing the centralised trusted party or regulatory
actors to achieve public verifiability. We employ these time-based blocks to store both
ballots and the voting results.
There are two typical approaches to achieve consensus; one is based on proof-of-work
(PoW) [25] and the other is based on Byzantine Fault Tolerance (BFT) network. To
achieve better network scalability, we can deploy our voting system on the PoW based
blockchain; the BFT based blockchain can be deployed to achieve better transaction
processing performance. Because of the page limitation, we give a brief introduction of a
Practical BFT (PBFT) protocol which is applied in our voting system.

PBFT protocol: PBFT protocol can tolerate any number of faults over the lifetime
of the system provided fewer than 1/3 of the replicas become faulty [5]. Compared
with the PoW protocol, PBFT based blockchain can achieve better performance (less
network latency) while it has the restriction of node scalability [35]. There is a leader
node accompanied by some validation nodes in PBFT network, When a transaction is
submitted to the leader node, the PBFT protocol does the following:

– The leader orders the transaction candidates that should be included in a block and
broadcasts the list of ordered transactions to all the validation nodes.

– When each of the validation node receives the list of transactions, it executes the
transactions on that list one by one.

Platform-independent Secure Blockchain-Based Voting System 7

– The validation nodes calculate a hash value for this newly created block (hash value
includes hashes for executed transactions and final state of this distributed system).

– Validation node broadcasts its hash value to other nodes in the network and starts
listening to responses from them.

– If any node finds that 2/3 of all nodes broadcast the same hash value from the
execution of ordered transactions list, it regards this block as a valid block and
commits this new block to its local ledger.

3.5 Smart Contract

For the blockchain system, the “smart contract” is widely used as a general purpose
computation that takes place on a blockchain. Smart contract enables interactions between
end users and a blockchain by allowing end users to create/query data on the blockchain.
We adopt Hyperledger Fabric [24] as a smart contract running environment in our voting
system. To use the consistent terminologies, we call hyperledger chaincode as smart
contract hereafter. We discuss the smart contract roles and deployment scheme as follows.

Smart Contract Deployment Scheme: For a practical smart contract, at least
three interfaces should be implemented that are init(), invoke(), and query(). init() is
the interface that is invoked when the smart contract is loaded. init() initialises the smart
contract system parameters before end-user interacts with the smart contract. query()
is the interface handling the query request from the blockchain end users. invoke() is
the interface that is called when the end user wants to put the data on the blockchain.
Unlike query(), invoke() is executed on all validation nodes to ensure the consistency
of data on the blockchain.

A smart contract needs to be compiled before being deployed on the blockchain.
The Hyperledger administrator is responsible for running the smart contract on every
validation node and nominates one node as the front-end server to handle end users
requests. The detail of smart contract deployment is discussed in Section 4.

4 The Voting Protocol

In this section, we first provide an overview of the whole voting protocol and then discuss
each step in details. The whole voting process can be divided into 11 steps as shown in
Fig. 1(a). Except the smart contract administrator who setups the voting smart contract,
three entities are involved: voters, smart contract, and voting administrator. We take Bob
as a valid voter in this section to show how the voting protocol works. First, the smart
contract is initialised to prepare a voting. Then, the voting administrator uploads the
voting parameters. After all voters register themselves in this voting and upload their
SLRS public key to the blockchain (the SLRS secret keys are kept by voter themselves),
the administrator triggers the start of the voting. Bob as a voter casts his ballot before
the administrator triggers the tallying phase. It is optional for Bob to verify the tallying
result before the administrator acquires the encrypted tallying result. The administrator
needs to upload the voting result and the proof to the blockchain to show the correctness
of the result to the voters and all the stakeholders. The smart contract verifies whether
the result matches the proof uploaded by the administrator and finally publishes the
decrypted voting result on the blockchain.

The voting system consists of one front-end smart contract and several validation
nodes as shown in Fig. 1(b). The role of a validation node is to replicate the execution
of the smart contract codes to ensure its correct execution. The role of the front-end is

8 Bin Yu et al.

similar to the validation node except exporting RESTful API interfaces for communication
with voters and administrator. For a practical voting, the validation nodes could be held
by different entities/stakeholders, thus all ballots on the blockchain have been verified
by different entities/stakeholders. As all the entities/stakeholders have the agreement on
the data stored on the blockchain, the blockchain built on the servers owned by different
entities can be regarded as trustworthy. It is impractical for the attackers to compromise
most of the entities/stakeholders6.

11.accept and publish the
result if the result
matches the proof

3. voters
registration

Voting
administrator

Smart
contract

Voters

2. upload the parameters
such as Paillier system
public key, SLRS setup

parameters

5. voters cast the
ballots

10. upload the voting
result and proof of the
correctness of the result

7. counting the ballots

8. voters verify the
voting (optional) 9. administrator acquires

encrypted voting result

1. smart contract self
initiations

4. trigger the start of the
voting

6. trigger the tallying
phase

(a) The voting protocol diagram. (b) The blockchain evoting system.

Fig. 1: The general voting protocol and how entities are connected.

4.1 Entities in the voting process

Four entities should be involved in our voting system shown in Fig. 1(a), and details are
explained as follows:

– smart contract administrator: he/she has the ability to access the smart contract
platform to deploy/terminate smart contract. In Hyperledger fabric, this account is
authorised by the membership service and a permission is granted to deploy/terminate
the Smart contract. In our voting system, we need at least one smart contract
administrator to deploy the voting smart contract.

– voting administrator: The role of voting administrator is to organize the vote by
setting up the voting parameters and triggering the the tallying and result publishing
phase. Although there are underlying mechanisms in hyperledger to authenticate
users, we use SLRS to prevent administrator from linking the ballots with the users.

– smart contract: The role of smart contract include 1.) store the encrypted ballots.
2.) verify the validity of the ballots. 3.) count the encrypted ballot. 4.) verify the
correctness of the voting result. 5.) publish the voting result and provide the platform
for the voters to verify the voting process.

6 The number of entities to be compromised depends on the underlying consensus protocol.

Platform-independent Secure Blockchain-Based Voting System 9

– voters: Voters are the people who have the rights to cast their vote. They need to
register into the voting system before they cast their vote.

4.2 Smart contract initiation

The smart contract is initialised by generating an RSA keypair (pk𝑠, sk𝑠). This keypair is
employed to sign/verify every transaction between the smart contract and the end users
to avoid man-in-the-middle attacks. 7 Additionally, ensuring all the validation nodes run
the identical smart contract is of critical importance; otherwise, validation nodes may
tamper the smart contract with back doors and colludes with the adversary to get the
ballots’ information. We require the smart contract to be deployed as follows: Firstly,
the smart contact accompanied with a digital fingerprint is verified by all the voting
entities/stakeholders to ensure that there is no backdoor. This eliminates the possibility
that an entity/stakeholder colludes with a node to run tampered smart contract. Then, this
fingerprint is tagged as verified evoting smart contract fingerprint in blockchain platform.
MD5, SHA1, and/or SHA2 hashes are mostly employed to generate the fingerprint for
a given file [29]. Secondly, when a new node wants to join the evoting blockchain, the
fingerprint of this smart contract is checked, if it is identical to the verified fingerprint,
the smart contract is loaded, otherwise, is rejected by the blockchain platform.

4.3 Voting system set up

During the system set up, the voting administrator uploads the following three parameters
to the blockchain:

– The public key of the Paillier system pkPaillier.
– A set of encryptions of zero denoted as 𝑇 , generated by the administrator’s Paillier

public key pkPaillier. For voting with 1 million voters, we suggest the set should contain
enough elements to make the randomised pool large enough and the detail of 𝑇 is
discussed in receipt-freeness analysis 8.

– The SLRS scheme parameters, param.

4.4 Voter registration

Bob must register this voting system with his identity. The registration information could
be: (1) email address with a desired password, or (2) the identity number with a desired
password, or (3) an invitation URL sent by the administrator with a desired password.
After Bob passes the identity check conducted by the smart contract, he can login with
the desired password to download the SLRS param and the administrator’s Paillier public
key pkPaillier, then generates the SLRS key pair (sk𝑖, pk𝑖) by calling KeyGen(param); Bob
then uploads the public key 𝑝𝑘𝑖 to the smart contract (Bob’s secret key is kept off-chain
by himself). If the smart contract accepts his SLRS public key, the smart contract puts
his public key pk𝑖 on the blockchain to complete his registration phase.

7 As we will discuss later, we only accept verified smart contract to run on validation node,
thus, avoiding any malicious smart contract exporting the sk𝑠 to anyone.

8 To avoid requiring the administrator to upload the encryption of zero pool, coin flipping
protocol can be applied to generate the consistent encryption of zero on all the validation
nodes and this is our future work.

10 Bin Yu et al.

4.5 Vote casting phase

During this phase, Bob casts his vote as follows: (1) Bob chooses one of the candidates
𝑚 ∈ 𝒫 and encodes it as 𝜁 := Encode(𝑚). (2) Bob invokes the Paillier encryption function
𝐶 ← EncPaillier(𝜁, pkPaillier). (3) Bob needs to prove that 𝐶 is an encryption of an element
in {𝜁1, . . . , 𝜁𝜌} (set of all encoded candidates) by calling {𝑣𝑗 , 𝑒𝑗 , 𝑢𝑗}𝑗∈𝒫 := PoKmem(𝐶, 𝛶);
hence he sends 𝜋 = {𝐶, {𝑣𝑗 , 𝑒𝑗 , 𝑢𝑗}𝑗∈𝒫} to the smart contract.9 (4) Upon receiving
{𝑣𝑗 , 𝑒𝑗 , 𝑢𝑗}𝑗∈𝒫 , the smart contract verifies the validation of the encrypted ballot 𝐶. We
denote 𝜑 as a mapping of this transaction’s session id to 𝑇 domain. If 𝐶 is valid, the
smart contract takes an encryption of zero at 𝜑th position. Let 𝜖 be the addition of 𝑇 [𝜑]
and 𝐶. The smart contract signs on 𝜖 denoted as 𝑠 and sends (𝜖, 𝑠) back to Bob. (5) If
Bob accepts 𝑠, he invokes (𝑣, 𝑦, 𝜎′) := Sign(𝜖, (pk, sk),𝒴) to generate the Signbob on 𝜖 and
sends (𝜖,Signbob) to the smart contract. (6) If the smart contract detects that Signbob
has already been recorded on the blockchain or cached in the memory, it rejects Bob’s
vote; otherwise, (𝜖,Signbob) is put on the blockchain.

4.6 Ballots tallying and result publishing

Due to the Paillier system’s homomorphic feature, counting the vote is as simple as
fetching the encrypted ballots from the blockchain and adding them together. The result
publishing mechanism is described in the following steps: (1) Let 𝐸sum be the sum of all
the encrypted votes and Sign𝑠 be the signature signed by the smart contract on 𝐸sum. The
smart contract sends (𝐸sum,Sign𝑠) to the administrator. (2) The administrator invokes
sum := DecPaillier(𝐸sum, skPaillier) to compute plaintext sum, which encodes the ballots of
each candidate. The administrator also invokes (sum, 𝑟) := PoK(𝐸sum, skPaillier) to calculate
the random 𝑟 that constructs this 𝐸sum, and sends (sum, 𝑟) to the smart contract. (3)
The smart contract verifies the correctness of (sum, 𝑟) by checking if 𝐸sum

?= 𝑔sum𝑟𝑛 (𝑔 is
one of the elements of pkPaillier). (4) If the smart contract accepts the sum, it iteratively
invokes 𝑚 := Decode(sum, 𝑖) to compute the ballots for each candidate 𝑖. Let 𝛱 be the
dictionary holding the voting result of all candidates. The smart contract finally puts 𝛱
on the blockchain.

4.7 Ballot verifying

After tallying ballots and before the voting administrator decrypts the tallying result,
the public can verify ballots on the blockchain to make sure the validity of the voting
process. We define two roles for people who can verify the voting. The first one is those
who have the right to access the data on the blockchain while they do not have the right
to vote. The second one is those who have both rights to vote and access the data on the
blockchain. The public verifiability to those who have first role is as follows 1) Checking
the number of ballots that were counted and the number of people registered for this
voting. 2) Checking the correctness of the tallying result by downloading and adding
all the encrypted ballots to match with the tallying result published on the blockchain.
Compared to those who have the first role, people assigned to the second role can also
verify that his/her ballot is recorded on the blockchain by checking whether there exists
one ballot that is signed with his/her signature; This ensure his/her vote is recorded and
counted.
9 Bob can choose none of the actual candidates by casting his ballot to a dummy candidate.
When the smart contract publishes the voting result, it ignores all the ballots that the dummy
candidate gets.

Platform-independent Secure Blockchain-Based Voting System 11

4.8 Blockchain validation nodes and the trustworthiness of blockchain

Under the assumption that the voting administrator will not disclose the Paillier secret
key and the encryption of zero (this is discussed in Security and Coercion-Resistance
Analysis section later), we discuss the role of the blockchain validation nodes and how
they enhance the trustworthiness of the blockchain. The responsibilities of the validation
nodes include (1) verify the validity of the ballots (check whether the ballots are from
the same voters and/or check whether the given ballot encrypts only one candidate), (2)
check the validity of the signature on the given ballot, (3) ballots tallying, and (4) verify
the correctness of the voting result. If any interaction between the blockchain and the
voting participants does not pass the verification conducted by the validation nodes, this
interaction is rejected by the voting system.

In practice, we suggest enhancing the trustworthiness of the blockchain by allowing
different political parties/stakeholders host their own validation nodes. The data on
the blockchain is verified by different entities/stakeholders, and it is unlikely that these
entities/stakeholders collude with each other to publish a false voting result.

4.9 Comparison with other non-blockchain-based voting protocols

Compared with other non-blockchain-based evoting protocols, our voting system can be
differentiated using the following three security features. Firstly, there is no need for a
centralised trusted party to tally the ballots and publish the result. Our trustworthiness is
built on the assumption that it is impossible that most of the voting entities/stakeholders
who own the blockchain validation servers collude with each other. Smart contract
fingerprint guarantees that the smart contract which is deployed on the validation node
is verified by all the voting entities/stakeholders and no one can replace that with a
tampered one. Second, the correctness of the ballots processing (in vote casting phase)
and tallying is achieved by asking all the validation nodes to verify the validity of the
process; the blockchain network rejects the ballot if the validation nodes disagree on the
verification of the ballot process. Third, we allow the voters to verify that his/her ballot
is recorded and the correctness of the tallying. Additionally, voting entities/stakeholders
can also verify the validity of the vote tally and the voting result.

5 Correctness and Security Analysis

5.1 Correctness analysis

The correctness of our voting system is guaranteed by the public verifiability provided by
the smart contract and the proof of knowledge provided by the cryptographic schemes.
More than that, the smart contract ensures the consistency of a transaction execution.
Any inconsistencies generate an error which results in the rejection of the transaction. This
means the voting participants can be assured that every transaction on the blockchain
is verified and accepted by all participating nodes. This prevents compromised nodes
from putting an invalid data on the blockchain unless the adversary can take control of a
proportion of the nodes in the whole blockchain network 10.

10 The number of nodes to be compromised depends on the underlying consensus protocol.

12 Bin Yu et al.

5.2 Security features of our voting system
– Privacy: The ballots on the public ledger are encrypted and only the voting adminis-

trator who initiates the voting can decrypt the ballots. This ensures that the tallying
center can count the ballots without knowing the content of the ballots.

– Anonymity: The voters, candidates, or smart contract cannot tell the public key
of the signer with a probability larger than 1/𝑏, where 𝑏 is the number of the voters.
This can be guaranteed by the anonymity property of the linkable ring signature
(LRS) scheme. Details are explained in Appendix A.2.

– Double-voting-avoided: In our voting system, we take the advantage of linkability
provided by the short ring signature scheme. This means it is infeasible for a voter to
generate two signatures such that they are determined to be unlinked. Our system
can detect whether the signatures are from the same voter. Hence, a voter can only
sign on one ballot and cast his/her ballot only once. This can be guaranteed by the
linkable property of the LRS scheme. Details are explained in Appendix A.2.

– Slanderability-avoided: A voter cannot generate a signature which is determined
to be linked with another signature not generated by him/her. In other words, an
adversary cannot fake other voters’ signature. This can be guaranteed by the non-
slanderability property of the LRS scheme. Details are explained in Appendix A.2.

– Receipt-freeness: Even if an adversary obtains a voter’s secret key, the adversary
cannot prove that this voter voted for a specific candidate. This is guaranteed by the
addition of encryption of zero which provides additional randomness to the ciphertext
which is unknown to the voter. Thus, even if the voter’s secret key is disclosed, no
one can prove his casted ballot. For our voting system, the security level of the
receipt-freeness is affected by the size of the encryption of zero pool, as the voters
can collude with each other to reconstruct the encryption of zero pool. One solution
is increase the size of zero pool thus more voters is required to reconstruct the pool.
Another solution is applying coin flipping protocol on all validation node to work out
a consistent randomness encryption of zero for each valid ballot. We have taken the
first approach in this paper with 4096 encryptions of zeros.

– Public verifiability: Anyone who has the relevant rights to access the blockchain
can verify that all the ballots are counted correctly; moreover, voters can also verify
whether their ballots have been recorded.

– Correctness: Proof-of-knowledge ensures the correctness of the voting process. Voting
participants need to prove the correctness of the interactions with the blockchain.
Even if some blockchain nodes are compromised, others can still verify whether the
proof is correct.

– Vote-and-Go: Compared with the voting system proposed in [28], our voting system
does not need the voter to trigger the tallying phase. Moreover, in our system, voters
can also cast their vote and quit before the voting ends, unlike [23] which needs all
voters to finish voting before tallying the ballots.

5.3 Security and Coercion-Resistance Analysis

To address the security and coercion-resistance, we make the following assumptions:
– The trustworthiness of the blockchain platform is achieved by allowing different

stakeholders/entities to host the blockchain validation nodes (the details have already
been discussed in Section 4.7).

– Voters cast their ballots in a secure terminal, which means it is assumed that no one
stand behind a voter or uses digital devices to record the voting process. We do not
take the physical voting environment security into our consideration.

Platform-independent Secure Blockchain-Based Voting System 13

– The possibility of an attacker to create a blockchain and apply a social engineering
technique to launch a phishing attack is beyond our research scope.

– The administrator should not reveal the Paillier system sercret key and the encryption
of zeros to anyone.

– Voters should cast their ballots by themselves. No one else can cast the ballot with a
voter’s identification except the voter himself.

We demonstrate the robustness of our system under two typical attacks below.

Man-in-the-Middle Attacks: Our voting system has strong resistance to this attack. First,
as the voters and the smart contract both sign their messages and the voting data is
encrypted, it is impossible for an adversary to forge the signature or alter the data on any
parties involved in the transactions. Second, the public keys used for signature verification
are all published on the blockchain, preventing the adversary from cheating any parties
by replacing the original public key with the adversary’s public key. The encryption of
the ballot also eliminates the possibility of the ballot leakage.

Denial-of-Service (DoS) Attacks: DoS attack is feasible to launch since the network service
is provided in a relatively centralised way. In addition, the servers have relatively limited
processing ability for a large number of requests. Distributing the service on different
nodes is one of the solutions to DoS attack as it is almost impossible for the adversary to
compromise all the servers.

Coercion-Resistance Analysis: Coercion-Resistance means it is infeasible for the
adversary to determine whether a coerced voter complies with the demand. Our vot-
ing system security features discussed in Section 5.2 make it impossible to launch the
Ballots-buyer attack and Double voting attack. Additionally, our voting system is free
from randomization attack.
For the Ballots-buyer attack, an attacker coerces a voter by requiring that he submits a
randomly composed ballot. Under such circumstances, both the attacker and the voter
have no idea about which candidate this voter casts the ballot for. The purpose of this
attack is to nullify the ballots. For our system, it is impossible to launch this attack as
the voter should prove that the ciphertext is one out of 𝜌 encrypted candidates by calling
{𝑣𝑗 , 𝑒𝑗 , 𝑢𝑗}𝑗∈𝒫 := PoKmem(EncPaillier(𝜁, pk), 𝛶). Since 𝛶 is held by the smart contract, any
ballot that is not the encryption of any element in 𝛶 is rejected and the voter is notified
that this transaction is failed.

6 System deployment and Experiments

6.1 System deployment

Our voting system can be deployed in any blockchain platforms with smart contract
capability and achieve the same level of security. There might be some other reasons to
choose a particular platform such as voting latency and flexibility requirements. Different
consensus protocols have significant impact on the blockchain network latency and node
scalability [35]. If the ballots’ confirmation latency is not a major issue for the voting
system, the PoW-based blockchain system could be a good option to achieve maximum
node scalability. Otherwise, a BFT-based blockchain platform is a better solution. In our
scenario, we employ the BFT-based blockchain platform Hyperledger Fabric and deploy
our voting system in a practical scenario.

14 Bin Yu et al.

6.2 Experiments and performance evaluation

We deploy our system in docker containers running on a desktop with 4 cores i5-6500 CPU
and 8 GB DDR3 memory. We conduct 1 million voters voting process on the blockchain
that consists of 4 validation nodes and 1 PBFT leader node. Each of the validation nodes
runs in one dedicated container; thus, we run five docker containers to build our testing
blockchain system. We set a voter’s public key as 1024 and 2048 bits respectively and
the Paillier key pairs as 1024 bits. The deployment pattern is shown in Fig. 1(b). We
summarize the time spent on our employed cryptographic processes for 1 million voters’
voting in Table 1.

Step Time
generate 𝑇 13, 560ms

bottom half key accumulation < 34s
top half key accumulation < 23ms

download parameters 4ms
upload ballots ≈ 776ms

tally 3, 850ms
decode and publish < 2, 000ms

Table 1: Time consumed on each step. Fig. 2: The diagram of Algorithm 1.

Voting parameters setting up time (administrator side): To initialise the
voting, the administrator is responsible for uploading the voting parameters as discussed
in Section 3. Let 𝑡cal be the time taken to generate 𝑇 , and 𝑡upload be the time spent on
uploading 𝑇 to the blockchain. With 1024 bits key length, the pool size is 1MB. According
to our test, 𝑡upload is < 1 second and 𝑇cal is about 14s. In conclusion, under 100MB
bandwidth network, on the smart contract side, the majority of the time is spent on
bottom half key accumulation, and on the administrator side, the most time-consuming
phase is generating and uploading 𝑇 (the pool of encryption of zeros).
SLRS parameter setting up time: Compared with LRS, SLRS enables the size of the
signature constant no matter how many signers are involved in this signature. This feature
is critical important for a large scale voting (i.e. the number of voters > 100, 000 1024-bits
keys) as the signature should be constant to be suitable for storing on the blockchain.
Compared with LRS, SLRS needs an extra step that accumulates all the signers’ public
keys. Let 𝑦𝑖 be the public key of 𝑖th voter and 𝜓 be the SLRS public parameter for all
voters. We define the key accumulation operation for all the voters’ SLRS public keys
for the 𝑖th voter as 𝑤𝑖 = 𝜓𝑦1𝑦2...𝑦𝑖−1𝑦𝑖+1𝑦𝑖+2...𝑦𝑏 . In order to make the time spent on key
accumulation acceptable, we divide the key accumulation into two halves. The bottom
half is run on smart contract and the top half is run by each voter.

Bottom half time consumption (smart contract side): For the bottom half
(shown in Appendix Algorithm 1), on the smart contract, we divide the voter SLRS public
keys into 𝑚 groups and pre-calculate the accumulation of all the public keys except the
keys in the given group 𝑖 and denote this key accumulation as ws𝑖. A diagram that shows
how Algorithm 1 works is also given in Fig. 2. We only discuss a case in which the number
of the voters is larger than 500; otherwise, the voters can generate the key accumulation

Platform-independent Secure Blockchain-Based Voting System 15

themselves within a reasonable computation time. We denote 𝐺 as the group that contains
the voters’ SLRS public key pk and 𝑓 the public key accumulation function. We invoke
an array operation function 𝑎𝑝𝑝𝑒𝑛𝑑 to add an element into the array. We distribute the
voters’ SLRS public keys into 𝑢 groups and each group has Num of keys (except the last
group). We denote the array WS to store all ws, and gkeys to store the voters’ SLRS
public keys groups. The most time-consuming part is the multiplication of public keys for
each group. In our implementation, we calculate the WS using four threads to save time.
We evaluate the performance for 1 million voters’ voting and the result is shown in
Fig. 3(a). We find that the time spent on calculating WS decreases with the growth of
the voter numbers in one group. For example, for 1024 bits length and 2048 bit length
key accumulation, it decreases from 34s and 171s for the group that contains 3000 voters
to 13s and 35s for the group that contains 8, 000 voters, respectively. This is due to 1)
the time spent on running the exponential computation loop at line 7 in Algorithm 1 that
dominates the time spent for the whole algorithm2.) For the 1 million voters’ public key
accumulation, we decrease the number of groups by increasing the number of the voters
in a group to decrease the time spent on the loop at line 7 in Algorithm 1.

Top half time consumption (Voter side key accumulation): As shown in
Appendix Algorithm 2, the voter downloads the array WS and the key group that his key
belongs to in gkeys from the blockchain. The time spent on downloading these parameters
is acceptable because of two reasons 1) the key size and the element size in WS are
constant. 2) The number of groups is relatively small. For instance, if we have 1 million
voters and we group 5000 voters in one group, and set the public key size as 1024 bits
and 𝑁 as 1024 bits, then the size of all the public keys in this group, denoted as 𝒴 ′, is
approximately 624KB. The size of an element in WS is restricted by SLRS parameter
𝑁 ; thus with the parameters above, WS is 256KB. Therefore, the total size of 𝒴 ′ and
WS is about 880KB. The voter only needs to do one exponential operation, regardless
of the voting scale. From Fig. 3(b), it can be seen that with the key size of 1024 bits, it
increase from 8.48ms for the group that contains 3000 voters to 16.35ms for the group
that contains 8000 voters. The increase of time spent for the key accumulation on the
voter’s side can be explained as the increase of time spent at line 4 in Algorithm 2, as it
dominates the total time spent for the voter side key accumulation.
For 1 million voter’s voting, we could set the number of voters in one group smaller to
reduce the time spent on the voter side for key accumulation. For the key length of 1024
bits, we recommend to set each group contains about 7000 voters so that it takes 14s and
15.48ms on the smart contract side and the voter side key accumulation, respectively.

The time spent on casting votes can be divided into three parts. The first part is
the parameter preparation, that is, downloading the voting parameters from the server,
denoted as 𝑡1. The second part is the time spent for calculating the ring signature,
denoted as 𝑡2. The last part is the interactions between voters and the smart contract for
uploading the ballots and performing the proof of correctness, denoted as 𝑡3. 𝑡1 can be
evaluated roughly as the time spent on downloading WS and 𝒴 ′. For downloading the
parameters of 1 million voting, it takes about 4ms under 100MB network (see Table 1).
𝑡2 is approximately 15ms and the average value of 𝑡3 in our test system is 776.60ms. In
conclusion, it takes about 1s for a voter to cast his vote in a setting of 1 million voters’
voting.
Ballot tallying and result publishing time: As the Paillier system restricts the
length of each encrypted ballot within 2 times of the Paillier keypair size, the addition
of encrypted ballot can achieve constant and reasonable performance. We test the time
spent on an addition operation of encrypted ballots in a docker container. With 2048

16 Bin Yu et al.

34
23 18 15 14 13 13 12 12

171

104

74

55
47 43

35 31 30

y = 14300x‐0.774
R² = 0.9252

y = 7E+06x‐1.337
R² = 0.986

0

20

40

60

80

100

120

140

160

180

2000 4000 6000 8000 10000 12000

Ti
m
e
sp
en

t o
n
Al
go
rit
hm

 1
 (
s)

Number of ballots in one group

1024 bits key 2048 bits key

(a) Time spent in Algorithm 1.

8.48 9.18 11.17 13.02
15.48 16.35

18.45
21.02

23.41
20.43

25.67
29.43

34.02

40.33
43.15

47.45
50.02

53.41

y = 0.0019x + 1.9748
R² = 0.9892

y = 0.0042x + 9.0292
R² = 0.9905

0

10

20

30

40

50

60

2000 4000 6000 8000 10000 12000

Ti
m
e
sp
en

t o
n
Al
go
rit
hm

 2
 (
m
s)

Number of ballots in one groups

1024 bits key 2048 bits key

(b) Time spent in Algorithm 2.

17.62 18.7

24.64

30.02

34.4 35.8 36.8 37.4

11
13.46

17.54
14.5 15.08

17.44 18.48 18.84

7.06 6.4
8.58

6.96
9

7 8.46 8.28

y = 0.0318x ‐ 13.459
R² = 0.9192

y = 0.0096x + 2.8936
R² = 0.7253

y = 0.0019x + 5.1236
R² = 0.2381

0

5

10

15

20

25

30

35

40

45

800 1000 1200 1400 1600 1800

Ti
m
e
sp
en

t o
n
Se
ar
ch
in
g

O
ne

 B
lo
ck
 (
m
s)

Number of blocks
512 ballots in one block 256 ballots in one block 128 ballots in one block

(c) Time versus growth of ballots in a block.

8.64
14.04

29.2 31.04

47.68 46.8

14.02

32

62
67.9

89.56

100

y = 0.0655x + 0.2107
R² = 0.9424

y = 0.1358x + 0.0653
R² = 0.9735

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900
Ti
m
e
Sp
en

t o
n
Se
ar
ch
in
g

O
ne

 B
lo
ck
 (m

s)
Number of ballots in one block

1024 bits key 2048 bits key

(d) Time versus growth of voter numbers.

Fig.3: SLRS public key accumulation and searching a block on a given blockchain in 1
million voters’ voting

bits length cipher, it takes 3.85s to add 1 million encrypted ballots. The time spent on
publishing the result is < 2s as we optimise the decoding algorithm by using shifting
operation.
Ballot verification time: Our voting system provides the public verifiability. Compared
with the time spent on checking the signature and tallying the result, the most time-
consuming part is searching the block that contains a given ballot. The length of the
blockchain and the size of each block have great impact on the search performance. We
evaluate the time spent on these two factors as follows. For the first case, we set the
evoting SLRS key size to 1024 bits length, and let each block contains 128 ballots, 256
blocks, and 512 blocks, respectively. It is observed in Fig. 3(c) that the time spent on
these three blockchains increases linearly with the increase on the number of ballots in one
block. For the second case, we set the total number of ballots to 1 million and the SLRS
key size as 1024 bits long; it is observed in Fig. 3(d) that the time spent on searching one
block grows linearly from 8.64ms in the blockchain that each block contains 128 ballots
to 46.8ms in the blockchain that each block contains 768 ballots.

Based on the above experiments, it is clear that both the increases of the block size
and chain length increase the time spent on searching one given block in the blockchain.
For 1 million voters’ voting system, the blockchain that consists of smaller blocks has
better search performance. However, the drawback of the smaller block size is that it
increases the number of searching operations (e.g., if we put all ballots in one block, users
only searches once to get them; whereas if we allocate all of them in 10 blocks, users have
to search 10 times to get them). Based on the experiment results shown in Fig. 3(c) and

Platform-independent Secure Blockchain-Based Voting System 17

Fig. 3(d), in practice, we recommend to set each block contains 640 ballots to achieve
both a reasonable search time latency and the average number of search operations.

7 Conclusion

To solve the problems that the current blockchain voting system cannot provide the
comprehensive security features, and most of them are platform dependent, we have
proposed a blockchain-based voting system that the voters’ privacy and voting correctness
are guaranteed by homomorphic encryption, linkable ring signature, and PoKs between
the voter and blockchain. We analyse the correctness and the security of our voting system.
The experimental results show that our voting system achieves a reasonable performance
even in a large scale voting.

References

1. Adida, B.: Helios: Web-based open-audit voting. In: USENIX security symposium. vol. 17,
pp. 335–348 (2008)

2. Au, M.H., Chow, S.S., Susilo, W., Tsang, P.P.: Short linkable ring signatures revisited. In:
European Public Key Infrastructure Workshop. pp. 101–115. Springer (2006)

3. Baudron, O., Fouque, P.A., Pointcheval, D., Stern, J., Poupard, G.: Practical multi-candidate
election system. In: Proceedings of the twentieth annual ACM symposium on Principles of
distributed computing. pp. 274–283. ACM (2001)

4. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: International
Conference on Security in Communication Networks. pp. 268–289. Springer (2002)

5. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM
Transactions on Computer Systems (TOCS) 20(4), 398–461 (2002)

6. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
munications of the ACM 24(2), 84–90 (1981)

7. Chow, S.S., Liu, J.K., Wong, D.S.: Robust receipt-free election system with ballot secrecy
and verifiability. In: NDSS. vol. 8, pp. 81–94 (2008)

8. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority
election scheme. Transactions on Emerging Telecommunications Technologies 8(5), 481–490
(1997)

9. follow my vote. https://followmyvote.com/, accessed on June 24, 2017
10. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale elections.

In: International Workshop on the Theory and Application of Cryptographic Techniques. pp.
244–251. Springer (1992)

11. Gentry, C.: A fully homomorphic encryption scheme. Stanford University (2009)
12. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption. In:

Advances in CryptologyâĂŤEUROCRYPT 2000. pp. 539–556. Springer (2000)
13. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification. Tech. rep.,

Tech. rep. 2016-1.10. Zerocoin Electric Coin Company (2016)
14. Joaquim, R., Zúquete, A., Ferreira, P.: Revs–a robust electronic voting system. IADIS

International Journal of WWW/Internet 1(2), 47–63 (2003)
15. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Proceedings

of the 2005 ACM workshop on Privacy in the electronic society. pp. 61–70. ACM (2005)
16. Katz, J., Myers, S., Ostrovsky, R.: Cryptographic counters and applications to electronic

voting. Advances in Cryptology Eurocrypt 2001 pp. 78–92 (2001)
17. Kiayias, A., Yung, M.: Self-tallying elections and perfect ballot secrecy. In: Public Key

Cryptography. vol. 2274, pp. 141–158. Springer (2002)
18. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain model of

cryptography and privacy-preserving smart contracts. In: Security and Privacy (SP), 2016
IEEE Symposium on. pp. 839–858. IEEE (2016)

https://followmyvote.com/

18 Bin Yu et al.

19. Laskowski, S.J., Autry, M., Cugini, J., Killam, W., Yen, J.: Improving the usability and
accessibility of voting systems and products. NIST Special Publication pp. 256,500 (2004)

20. Lee, B., Kim, K.: Receipt-free electronic voting scheme with a tamper-resistant randomizer.
In: ICISC. vol. 2587, pp. 389–406. Springer (2002)

21. Li, C.T., Hwang, M.S., Lai, Y.C.: A verifiable electronic voting scheme over the internet. In:
Information Technology: New Generations, 2009. ITNG’09. Sixth International Conference
on. pp. 449–454. IEEE (2009)

22. Liu, J.K., Wong, D.S.: Linkable ring signatures: Security models and new schemes. In:
International Conference on Computational Science and Its Applications. pp. 614–623.
Springer (2005)

23. McCorry, P., Shahandashti, S.F., Hao, F.: A smart contract for boardroom voting with
maximum voter privacy. IACR Cryptology ePrint Archive 2017, 110 (2017)

24. Murphy, T.I.: hyperledger whitepaper, https://docs.google.com/document/

d/1Z4M_qwILLRehPbVRUsJ3OF8Iir-gqS-ZYe7W-LE9gnE/edit#heading=

h.m6iml6hqrnm2

25. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
26. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Proceedings of the

8th ACM conference on Computer and Communications Security. pp. 116–125. ACM (2001)
27. Nsw election result could be challenged over ivote security flaw (2015), https:

//www.theguardian.com/australia-news/2015/mar/23/nsw-election-result-could-be-

challenged-over-ivote-security-flaw

28. Okamoto, T.: Receipt-free electronic voting schemes for large scale elections. In: International
Workshop on Security Protocols. pp. 25–35. Springer (1997)

29. Perrin, C.: Use md5 hashes to verify software downloads (2007), https://

www.techrepublic.com/blog/it-security/use-md5-hashes-to-verify-software-downloads/

30. Ryan, P.Y.: Prêt à voter with paillier encryption. Mathematical and Computer Modelling
48(9), 1646–1662 (2008)

31. Tarasov, P., Tewari, H.: Internet voting using zcash. Cryptology ePrint Archive, Report
2017/585 (2017), http://eprint.iacr.org/2017/585

32. Theguardian: Why machines are bad at counting votes (2009), https://

www.theguardian.com/technology/2009/apr/30/e-voting-electronic-polling-systems

33. Tivi voting. https://tivi.io/, accessed on June 24, 2017
34. Volkhausen, T.: Paillier cryptosystem: A mathematical introduction. In: Seminar Public-Key

Kryptographie (WS 05/06) bei Prof. Dr. J. Blömer (2006)
35. Vukolić, M.: The quest for scalable blockchain fabric: Proof-of-work vs. bft replication. In:

International Workshop on Open Problems in Network Security. pp. 112–125. Springer (2015)
36. Weber, S.: A coercion-resistant cryptographic voting protocol-evaluation and prototype imple-

mentation. Darmstadt University of Technology, http://www. cdc. informatik. tudarmstadt.
de/reports/reports/StefanWeber. diplom. pdf (2006)

37. Xia, Z., Schneider, S.A., Heather, J., Traoré, J.: Analysis, improvement, and simplification of
prêt à voter with paillier encryption. In: EVT’08 Proceedings of the Conference on Electronic
Voting Technology (2008)

38. Zhao, Z., Chan, T.H.H.: How to vote privately using bitcoin. In: International Conference
on Information and Communications Security. pp. 82–96. Springer (2015)

https://docs.google.com/document/d/1Z4M_qwILLRehPbVRUsJ3OF8Iir-gqS-ZYe7W-LE9gnE/edit#heading=h.m6iml6hqrnm2
https://docs.google.com/document/d/1Z4M_qwILLRehPbVRUsJ3OF8Iir-gqS-ZYe7W-LE9gnE/edit#heading=h.m6iml6hqrnm2
https://docs.google.com/document/d/1Z4M_qwILLRehPbVRUsJ3OF8Iir-gqS-ZYe7W-LE9gnE/edit#heading=h.m6iml6hqrnm2
https://www.theguardian.com/australia-news/2015/mar/23/nsw-election-result-could-be-challenged-over-ivote-security-flaw
https://www.theguardian.com/australia-news/2015/mar/23/nsw-election-result-could-be-challenged-over-ivote-security-flaw
https://www.theguardian.com/australia-news/2015/mar/23/nsw-election-result-could-be-challenged-over-ivote-security-flaw
https://www.techrepublic.com/blog/it-security/use-md5-hashes-to-verify-software-downloads/
https://www.techrepublic.com/blog/it-security/use-md5-hashes-to-verify-software-downloads/
http://eprint.iacr.org/2017/585
https://www.theguardian.com/technology/2009/apr/30/e-voting-electronic-polling-systems
https://www.theguardian.com/technology/2009/apr/30/e-voting-electronic-polling-systems
https://tivi.io/

Platform-independent Secure Blockchain-Based Voting System 19

A Linkable Ring Signature

A.1 Syntax of Linkable Ring Signature

– param ← Setup(𝜆) is a probabilistic polynomial time (PPT) algorithm which, on
input a security parameter 𝜆, outputs the set of security parameters param which
includes 𝜆. We denote by ℰℐ𝒟, ℳ and 𝛴 the domains of event-id, messages and
signatures, respectively.

– (sk𝑖, pk𝑖)← KeyGen(param) is a PPT algorithm which, on input a security parameter
𝜆 ∈ N, outputs a private/public key pair (sk𝑖, pk𝑖). We denote by 𝒮𝒦 and 𝒫𝒦 the
domains of possible private keys and public keys, respectively.

– 𝜎 ← Sign(𝑒, 𝑛,𝒴, pk,𝑀) which, on input event-id 𝑒, group size 𝑛, a set 𝒴 of 𝑛 public
keys in 𝒫𝒦, a private key whose corresponding public key is contained in 𝒴, and a
message 𝑀 , produces a signature 𝜎.

– accept/reject← Verify(𝑒, 𝑛,𝒴,𝑀, 𝜎) which, on input event-id 𝑒, group size 𝑛, a set 𝒴
of 𝑛 public keys in 𝒫𝒦, a message-signature pair (𝑀 ,𝜎) returns accept or reject. If
accept, the message-signature pair is valid.

– linked/unlinked← Link (𝑒, 𝑛1, 𝑛2,𝒴1,𝒴2,𝑀1,𝑀2,, 𝜎1, 𝜎2) which, on input event-id 𝑒,
group size 𝑛1, 𝑛2, two sets 𝒴1,𝒴2 of 𝑛1, 𝑛2 public keys respectively, two valid signature
and message pairs (𝑀1, 𝜎1,𝑀2, 𝜎2), outputs linked or unlinked.

Correctness. LRS schemes must satisfy:

– (Verification Correctness.) Signatures signed according to specification are accepted
during verification.

– (Linking Correctness.) If two signatures are signed for the same event according to
specification, then they are linked if and only if the two signatures share a common
signer.

A.2 Notions of Security of Linkable Ring Signature

Security of LRS schemes has four aspects: unforgeability, anonymity, linkability and
non-slanderability. Before giving their definition, we consider the following oracles which
together model the ability of the adversaries in breaking the security of the schemes.

– 𝑝𝑘𝑖 ← 𝒥𝒪(⊥). The Joining Oracle, on request, adds a new user to the system. It
returns the public key pk ∈ 𝒫𝒦 of the new user.

– sk𝑖 ← 𝒞𝒪(pk𝑖). The Corruption Oracle, on input a public key pk𝑖 ∈ 𝒫𝒦 that is a
query output of 𝒥𝒪, returns the corresponding private key sk𝑖 ∈ 𝒮𝒦.

– 𝜎′ ← 𝒮𝒪(𝑒, 𝑛,𝒴, 𝑝𝑘𝜋,𝑀). The Signing Oracle, on input an event-id 𝑒, a group size
𝑛, a set 𝒴 of 𝑛 public keys, the public key of the signer pk𝜋 ∈ 𝒴, and a message 𝑀 ,
returns a valid signature 𝜎′.

If the scheme is proven in random oracle model, a random oracle is simulated.

1. Unforgeability. Unforgeability for LRS schemes is defined in the following game
between the Simulator 𝒮 and the Adversary 𝒜 in which 𝒜 is given access to oracles
𝒥𝒪, 𝒞𝒪, 𝒮𝒪 and the random oracle:
(a) 𝒮 generates and gives 𝒜 the system parameters param.
(b) 𝒜 may query the oracles according to any adaptive strategy.
(c) 𝒜 gives 𝒮 an event-id 𝑒 ∈ ℰℐ𝒟, a group size 𝑛 ∈ N, a set 𝒴 of 𝑛 public keys in
𝒫𝒦, a message 𝑀 ∈ℳ and a signature 𝜎 ∈ 𝛴.

20 Bin Yu et al.

𝒜 wins the game if:
(1) Verify(𝑒, 𝑛,𝒴,𝑀, 𝜎) = accept;
(2) All of the public keys in 𝒴 are query outputs of 𝒥𝒪;
(3) No public keys in 𝒴 have been input to 𝒞𝒪; and
(4) 𝜎 is not a query output of 𝒮𝒪.
We denote by

Adv𝑢𝑛𝑓
𝒜 (𝜆) = Pr[𝒜 wins the game]

Definition 1 (unforgeability). A LRS scheme is unforgeable if for all PPT adver-

sary 𝒜, Adv𝑢𝑛𝑓
𝒜 (𝜆) is negligible.

2. Anonymity. It should not be possible for an adversary 𝒜 to tell the public key of
the signer with a probability larger than 1/𝑛, where 𝑛 is the cardinality of the ring,
even assuming that the adversary has unlimited computing resources.
Specifically, anonymity for LRS schemes is defined in the following game between the
Simulator 𝒮 and the unbounded Adversary 𝒜 in which 𝒜 is given access to oracle
𝒥𝒪.
(a) 𝒮 generates and gives 𝒜 the system parameters param.
(b) 𝒜 may query 𝒥𝒪 according to any adaptive strategy.
(c) 𝒜 gives 𝒮 an event-id 𝑒 ∈ ℰℐ𝒟, a group size 𝑛 ∈ N, a set 𝒴 of 𝑛 public keys in
𝒫𝒦 such that all of the public keys in 𝒴 are query outputs of 𝒥𝒪, a message
𝑀 ∈ ℳ. Parse the set 𝒴 as {pk1, . . . , pk𝑛}. 𝒮 randomly picks 𝜋𝑅 ∈ {1, . . . , 𝑛}
and computes 𝜎𝜋 = Sign(𝑒, 𝑛,𝒴, 𝑠𝑘𝜋,𝑀), where sk𝜋 is a corresponding private
key of pk𝜋. 𝜎𝜋 is given to 𝒜.

(d) 𝒜 outputs a guess 𝜋′ ∈ {1, . . . , 𝑛}.
We denote by

AdvAnon
𝒜 (𝜆) =

⃒⃒⃒⃒
Pr[𝜋′ = 𝜋]− 1

𝑛

⃒⃒⃒⃒

Definition 2 (Anonymity). A LRS scheme is anonymous if for any adversary 𝒜,
AdvAnon

𝒜 (𝜆) is zero.

3. Linkability.
Linkability for LRS schemes is mandatory, that is, it should be infeasible for a signer to
generate two signatures such that they are determined to be unlinked using LRS.Link.
The following definition/game essentially captures a scenario that an adversary tries
to generate two LRS signatures, using strictly fewer than 2 user private keys, so that
these two signatures are determined to be unlinked using LRS.Link. If the LRS scheme
is unforgeable (as defined above), then these signatures can only be generated if at
least 2 user private keys are known. If less than 2 user private keys are known, then
there must be one common signer to both of the signatures. Therefore, this model
can effectively capture the definition of linkability.

Linkability for LRS scheme is defined in the following game between the Simulator
𝒮 and the Adversary 𝒜 in which 𝒜 is given access to oracles 𝒥𝒪, 𝒞𝒪, 𝒮𝒪 and the
random oracle:
(a) 𝒮 generates and gives 𝒜 the system parameters param.
(b) 𝒜 may query the oracles according to any adaptive strategy.

Platform-independent Secure Blockchain-Based Voting System 21

(c) 𝒜 gives 𝒮 an event-id 𝑒 ∈ ℰℐ𝒟, group sizes 𝑛1, 𝑛2 ∈ N (w.l.o.g. we assume
𝑛1 ≤ 𝑛2), sets 𝒴1 and 𝒴2 of public keys in pk of sizes 𝑛1 and 𝑛2 resp., messages
𝑀1,𝑀2 ∈ℳ and signatures 𝜎1, 𝜎2 ∈ 𝛴.

𝒜 wins the game if
(1) All public keys in 𝒴1 ∪ 𝒴2 are query outputs of 𝒥𝒪;
(2) Verify(𝑒, 𝑛𝑖,𝒴𝑖,𝑀𝑖, 𝜎𝑖) = accept for 𝑖 = 1, 2 such that 𝜎𝑖 are not outputs of 𝒮𝒪;
(3) 𝒞𝒪 has been queried less than 2 times (that is, 𝒜 can only have at most 1 user

private key); and
(4) Link(𝜎1, 𝜎2) = unlinked.

We denote by
AdvLink

𝒜 (𝜆) = Pr[𝒜 wins the game].

Definition 3 (Linkability). A LRS scheme is linkable if for all PPT adversary 𝒜,
AdvLink

𝒜 is negligible.

4. Non-Slanderability.
Non-slanderability ensures that no signer can generate a signature which is determined
to be linked by LRS.Link with another signature which is not generated by the signer.
In other words, it prevents adversaries from framing honest users.
Non-Slanderability for LRS schemes is defined in the following game between the
Simulator 𝒮 and the Adversary 𝒜 in which 𝒜 is given access to oracles 𝒥𝒪, 𝒞𝒪, 𝒮𝒪
and the random oracle:

(a) 𝒮 generates and gives 𝒜 the system parameters param.
(b) 𝒜 may query the oracles according to any adaptive strategy.
(c) 𝒜 gives 𝒮 an event 𝑒, group size 𝑛, a message 𝑀 , a set of 𝑛 public keys 𝒴, the

public key of an insider pk𝜋 ∈ 𝒴 such that pk𝜋 has not been queried to 𝒞𝒪 or
has not been included as the insider public key of any query to 𝒮𝒪. 𝒮 uses the
private key sk𝜋 corresponding to pk𝜋 to run Sign(𝑒, 𝑛,𝒴, 𝑠𝑘𝜋,𝑀) and to produce
a signatures 𝜎′ given to 𝒜.

(d) 𝒜 queries oracles with arbitrary interleaving. Except pk𝜋 cannot be queries to
𝒞𝒪, or included as the insider public key of any query to 𝒮𝒪. In particular, 𝒜 is
allowed to query any public key which is not pk𝜋 to 𝒞𝒪.

(e) 𝒜 delivers group size 𝑛*, a set of 𝑛* public keys 𝒴*, a message𝑀* and a signature
𝜎* ̸= 𝜎′.

𝒜 wins the game if
(1) Verify(𝑒, 𝑛*,𝒴*,𝑀*, 𝜎*) = accept;
(2) 𝜎* is not an output of 𝒮𝒪;
(3) All of the public keys in 𝒴*,𝒴 are query outputs of 𝒥𝒪;
(4) pk𝜋 has not been queried to 𝒞𝒪; and
(5) Link(𝜎*, 𝜎′) = linked.

We denote by
AdvNS

𝒜 (𝜆) = Pr[𝒜 wins the game].

Definition 4 (Non-Slanderability). A LRS scheme is non-slanderable if for all

PPT adversary 𝒜, AdvNS
𝒜 is negligible.

22 Bin Yu et al.

A.3 Short Linkable Ring Signatures [2]

SLRS schemes are described by the tuple (Setup,KeyGen,Sign,Verify, Link). For our SLRS,
we define 𝑁 as a safe prime product if 𝑁 = 𝑝𝑞 = (2𝑝′ + 1)(2𝑞′ + 1) for some primes 𝑝, 𝑞,
𝑝′, and 𝑞′ such that 𝑝′ and 𝑞′ are of the same length. We further denote by QR(𝑁) the
group of quadratic residues modulo a safe prime product 𝑁 .

– Setup: param← Setup(𝜆) is a function that takes 𝜆 as the security parameter and
generates system-wide public parameters param such as the group QR(𝑁), the length
of the key, and a random generator 𝑔 ∈ QR(𝑁).

– Key Generation: (sk𝑖, pk𝑖)← KeyGen(param) is a function to generate key pair for
each voter 𝑖. This function generates (sk𝑖, pk𝑖) = ((𝑝𝑖, 𝑞𝑖), 𝑦𝑖 ∈ 𝒴) for voter 𝑖 where
𝑦𝑖 = 2𝑝𝑖𝑞𝑖 + 1.

– Signature: 𝜎 ← Sign(𝒴, sk,msg) is a function to generate the signature 𝜎 using all
voters’ public keys 𝒴 = {𝑦1, 𝑦2, . . . , 𝑦𝑏}, the message to be signed, msg ∈ {0, 1}*, and
the voter’s secret key sk. The output of this function is the accumulation of public
keys 𝑣, the linkable tag 𝑦 and the signature 𝜎′. For a voter 𝑖, the generation of SLRS
is described below:
1. Let 𝜓 ∈ QR(𝑁) be the public SLRS parameter that is generated once for all voters.

We compute the witness 𝑤𝑖 for voter 𝑖 according to Algorithm 1 and Algorithm 2
in Section VI .

2. We select parameters ℓ and 𝑢 according to methods in [4]. Let 𝑦 ∈ 𝑆(2ℓ, 2𝑢)
denote |𝑦 − 2ℓ| < 2𝜇. We compute the signature of message msg ∈ {0, 1}* for

SPK

⎧⎨⎩
(︂
𝑤 𝑦
𝑝 𝑞

)︂
:

(𝑤𝑦 = 𝑣 mod 𝑁) ∧ (𝑦 = 2𝑝𝑞 + 1)∧
(𝑦 ∈ 𝑆(2ℓ, 2𝑢)) ∧ (𝑞 ∈ 𝑆(2ℓ/2, 2𝑢))∧
(𝑦 = 𝑔𝑝+𝑞 mod 𝑁)

⎫⎬⎭ (msg) (1)

3. Let 𝜎′ be the result of signatures based on proofs of knowledge (SPK). Note that
the voter’s linkability tag 𝑦 is uniquely determined by the voter’s secret key. The
result of the Sign function is 𝜎 = (𝑣, 𝑦, 𝜎′).

– Verification: accept/reject← Verify(𝜎,𝒴,msg) is a function to verify that the signa-
ture of msg ∈ {0, 1}* is from one of the valid voters and this voter has only voted
once. With the given key set 𝒴, message msg, and signature 𝜎, the verifier checks
whether

𝑣
?= 𝜓

∏︀
𝑦∈𝒴

𝑦

mod 𝑁

and the validity of 𝜎′ respect to the SPK represented in Equation (1). If these two
conditions hold, the Verify function returns accept otherwise reject.

– Linkability: Link(𝜎1, 𝜎2)→ linked/unlinked is a function to test the linkability of the
given signatures 𝜎1 and 𝜎2. It extracts their respective linkability tags 𝑦1 and 𝑦2 from
𝜎1 and 𝜎2, respectively and returns linked if they are signed by the same person or
unlinked otherwise.

Theorem 1. Under the assumptions that Decisional Diffie-Hellman (DDH) problem over

QR(𝑁), the Link Decisional RSA (LD-RSA) problem, and the strong RSA (SRSA) are

hard, the SLRS construction of A.3 is not only unforgeable in the random oracle model

but also linkably-anonymous and non-slanderable w.r.t. the definition 1 to definition 4.

Proof. The proof is given in [2].

Platform-independent Secure Blockchain-Based Voting System 23

B Public-Key Encryption

Syntax: A public-key encryption scheme PKE = (Gen,Enc,Dec) consists of three algo-
rithms and a finite message spaceℳ (which we assume to be efficiently recognizable).
The key generation algorithm Gen outputs a key pair (pk, sk), where pk also defines a
randomness space ℛ = ℛ(pk). The encryption algorithm Enc, on input pk and a message
𝑚 ∈ℳ, outputs an encryption 𝑐← Enc(pk,𝑚) of 𝑚 under the public key 𝑝𝑘. If necessary,
we make the used randomness of encryption explicit by writing 𝑐 := Enc(pk,𝑚; 𝑟), where
𝑟

$←− ℛ and ℛ is the randomness space. The decryption algorithm Dec, on input sk and
a ciphertext 𝑐, outputs either a message 𝑚 = Dec(sk, 𝑐) ∈ℳ or a special symbol ⊥/∈ℳ
to indicate that 𝑐 is not a valid ciphertext.

Correctness: We call a public-key encryption scheme is correct if

E[max
𝑚∈ℳ

Pr[Dec(sk, 𝑐) ̸= 𝑚|𝑐← Enc(pk,𝑚)]] ≤ 𝜎,

where the expectation is taken over (pk, sk)← Gen.
Security: Let PKE = (Gen,Enc,Dec) be a public-key encryption scheme with message

spaceℳ. We define the indistinguishable against Chosen-Plaintext Attacks (IND-CPA)
game is shown as below, and the IND-CPA advantage function of an adversary 𝐴 =
(𝐴1, 𝐴2) against PKE (such that 𝐴2 has binary output) as

AdvIND-CAP
PKE (𝐴) :=

⃒⃒⃒⃒
Pr[IND-CAP𝐴 ⇒ 1]− 1

2

⃒⃒⃒⃒
.

1. (pk, sk)← Gen
2. 𝑏 $←− {0, 1}
3. (𝑚*

0,𝑚
*
0, 𝑠𝑡)← 𝐴1(pk)

4. 𝑐* ← Enc(pk,𝑚*
𝑏)

5. 𝑏′ ← 𝐴2(pk, 𝑐*, 𝑠𝑡)
6. return [[𝑏′ = 𝑏]]

B.1 Paillier Encryption System [34]

Let 𝐺 = Z*
𝑛2 and 𝑔 be a random element from 𝐺, the Paillier encryption system is a

randomised encryption scheme that encrypts the message 𝑚𝑠𝑔 by raising basis 𝑔 to the
power of 𝑚𝑠𝑔 and randomises it by a random factor. Given public key and the encryptions
of 𝑚𝑠𝑔1 and 𝑚𝑠𝑔2, one can compute the encryption of 𝑚𝑠𝑔1 + 𝑚𝑠𝑔2 without knowing
𝑚𝑠𝑔1 and 𝑚𝑠𝑔2. We use gcd(𝑣, 𝑤) and lcm(𝑣, 𝑤) to denote the greatest common divisor
and least common multiple of two values 𝑣 and 𝑤, respectively. The quotient of 𝑎 divided
by 𝑏 is denoted by 𝑎÷ 𝑏.

– Key Generation: (skPaillier, pkPaillier) := GenPaillier(𝐾len) is the function to generate
the secret key skPaillier and the corresponding public key pkPaillier with the given key
length 𝐾len. We choose two large prime numbers 𝑝 and 𝑞 randomly and independently
of each other and make sure gcd(𝑝, 𝑞−1) = gcd(𝑝−1, 𝑞) = 1. Let 𝜆 = lcm(𝑝−1, 𝑞−1)
and 𝐿(𝑏) = 𝑏−1

𝑛 , where 𝑏 ∈ Z*
𝑛2 and 𝑛 = 𝑝 · 𝑞. Select random integer 𝑔 where 𝑔 ∈ Z*

𝑛2

and compute 𝜇 = (𝐿(𝑔𝜆 mod 𝑛2))−1 mod 𝑛. The public key is pkPaillier = (𝑛, 𝑔) and
the secret key is skPaillier = (𝜆, 𝜇, 𝑝, 𝑞). We store 𝑝 and 𝑞 in our secret key as we will use
these parameters to prove the correctness of the decryption in Paillier cryptosystem.

24 Bin Yu et al.

– Encryption: 𝐶 ← EncPaillier(𝜁, pkPaillier) Let 𝜁 ∈ Z𝑛 be the plaintext to be encrypted.
Select random 𝑟 ∈ Z*

𝑛 and compute 𝐶 = 𝑔𝜁𝑟𝑛 mod 𝑛2.
– Decryption: 𝜁 := DecPaillier(𝐶, skPaillier) Let 𝐶 ∈ Z*

𝑛 be the ciphertext, compute the
plaintext as 𝜁 = (𝐿(𝐶𝜆 mod 𝑛2) · 𝜇) mod 𝑛.

– Message Membership Proof of Knowledge [3]: {𝑣𝑗 , 𝑒𝑗 , 𝑢𝑗}𝑗∈𝒫 := PoKmem(𝐶, 𝛶).
In [3], the authors propose an efficient method to prove that a given encrypted
message is 1 out of 𝑛 messages in a set. The non-interactive version of this proof of
knowledge is described as follows. Let 𝑛 be the RSA modulus from Paillier system,
𝛶 = {𝜁1, 𝜁2, . . . , 𝜁𝜌} the set of 𝜌 encoded candidates, 𝒫 be the set of 𝑛 messages, and
𝐶 the encryption of one encoded candidate. In this proof, the prover P convinces the
verifier V that 𝐶 encrypts the 𝑖th message in 𝛶 :

1. P picks 𝜅 randomly from Z*
𝑛, 𝜌− 1 values {𝑒𝑗}𝑗 ̸=𝑖 in Z𝑛, and 𝜌− 1 values {𝑣𝑗}𝑗 ̸=𝑖

in Z*
𝑛. Then, (s)he computes 𝑢𝑖 = 𝜅𝑛 mod 𝑛2 and

{𝑢𝑗 = 𝑣𝑛
𝑗 (𝑔𝜁𝑗/𝐶)𝑒𝑗 mod 𝑛2}𝑗 ̸=𝑖

The prover sets 𝑒 ∈ {0, 1}𝐿 as the hash value of
∑︀𝑛

𝑘=1,𝑘 ̸=𝑖 𝑢𝑘 (in our system, we
set 𝐿 as 80). The prover further lets 𝑒𝑖= 𝑒−

∑︀
𝑘 ̸=𝑖 𝑒𝑘 mod 𝑛 and calculates

𝑣𝑖 = 𝜌 · 𝑟𝑒𝑖 · 𝑔
(︀

𝑒−
∑︀

𝑗 ̸=𝑖
𝑒𝑗

)︀
÷𝑛 mod 𝑛.

Finally, the prover sends {𝑣𝑗 , 𝑒𝑗 , 𝑢𝑗}𝑗∈𝒫 to the verifier.
2. The verifier sets 𝑒 ∈ {0, 1}𝐿 as the hash value of

∑︀𝑛
𝑘=1,𝑘 ̸=𝑖 𝑢𝑘 and checks whether

𝑒
?=

∑︀𝑝

𝑘=1 𝑒𝑘 and that 𝑣𝑛
𝑗

?= 𝑢𝑗(𝐶/𝑔𝜁𝑗)𝑒𝑗 mod 𝑛2 for each 𝑗 ∈ 𝒫.

– Decryption Correctness Proof of Knowledge:We define (𝛿, 𝑟) := PoK(𝐶, skPaillier),
which is the function to compute the plaintext 𝛿 and the random factor 𝑟 to the
ciphertext 𝐶 with the given Paillier system secret key skPaillier = (𝑛, 𝑔, 𝑝, 𝑞). As Paillier
system is bijective [34] meaning EncPaillier : Z*

𝑛 × Z𝑛 → Z𝑛2 is both one-to-one and
onto. The prover sends 𝛿 and 𝑟 to the verifier to prove that (𝛿, 𝑟) is the only pair to
construct 𝐶.
The main idea to compute 𝑟 ∈ Z*

𝑛 is described as follows: we denote 𝑔(𝑟) = 𝑟𝑛 mod 𝑛2.
The 𝑔(𝑟) can be calculated by 𝑐 · 𝑔−𝑚. Then, based on the Little Fermat theorem,
𝑟𝑝 = 𝑟 mod 𝑝, thus, 𝑔(𝑟) = 𝑟𝑛 ≡ 𝑟𝑞 mod 𝑝. Since gcd(𝑞, 𝑝 − 1) = 1, there exists 𝑖1
such that 𝑞 · 𝑖1 = 1 + 𝑘(𝑝− 1) and we get

𝑔(𝑟)𝑖1 = (𝑟𝑞)𝑖1 = 𝑟1+𝑘(𝑝−1) = 𝑟 · 𝑟𝑘(𝑝−1) = 𝑟 mod 𝑝

Similarly, we denote 𝑖2 as the modular inverse of 𝑝 modulo 𝑞 − 1 and we get 𝑔(𝑟)𝑖2 =
𝑟 mod 𝑞. We finally get 𝑟 mod 𝑝 and 𝑟 mod 𝑞 respectively and apply the Chinese
Remainder Theorem to obtain 𝑟 mod 𝑛.

Platform-independent Secure Blockchain-Based Voting System 25

C Public key Accumulation algorithms

Algorithm 1 Bottom half: Server side WS generation.

Input: 𝒴: voter’s SLRS public key set with |𝒴| = 𝑏.
Input: Num: number of keys in one group.
Input: 𝜓, 𝑁 , and 𝜑(𝑁): SLRS parameters.
Input: thisgroup :: temporary set containing SLRS keys belonging to a group.
Output: WS, gkeys.
1: function GenWs(Num,𝒴, 𝑏)
2: groupsv← GenGroupsv(𝒴, 𝑏,Num)
3: for 𝑗 = 0 : 1 : len(groupsv) do
4: val← 𝜓
5: for 𝑖 = 0 : 1 : len(groupsv) do
6: if 𝑗 ̸= 𝑖 then
7: val← valgroupsv[𝑖] mod 𝑁
8: end if
9: end for

10: WS[𝑗]← val
11: end for
12: return WS
13: end function
14: function GenGroupsv(𝒴, 𝑏,Num)
15: if 𝑏 <= Num then
16: localv← 1
17: for 𝑖 = 0 : 1 : 𝑏 do
18: localv = localv · 𝒴[𝑖]
19: end for
20: groupsv[0] = localv
21: return groupsv
22: else
23: thisgroup← 0
24: for 𝑖 = 0 : 1 : 𝑏− 1 do
25: localv = (localv · 𝒴[𝑖]) mod (𝜑(𝑁))
26: thisgroup = append(kgroup,𝒴[𝑖])
27: if (𝑖 mod Num) == Num− 1 then
28: groupsv = append(groupsv, localv) and gkeys = append(gkeys, thisgroup)
29: thisgroup← 0 and localv = 1
30: end if
31: end for
32: groupsv = append(groupsv, localv)
33: end if
34: return groupsv, gkeys
35: end function
36:

26 Bin Yu et al.

Algorithm 2 Top half: Voter computes the key accumulation.

Input: WS: array contains key accumulation from bottom half.
Input: 𝑌 ′: public keys array that this voter’s key belongs to.
Input: 𝑁 and 𝜑(𝑁): SLRS parameters.
Input: 𝑗: the index of this voter.
Input: idx: the index of this voter’s public key in WS.
Output: ret: the result of key accumulation for this voter.

function GenKeyAcc(WS, 𝑌, 𝑗, idx,Num)
2: 𝑥← 1

for 𝑖 = 0 : 1 : Num− 1 do
4: if then𝑗 ̸= 𝑖

𝑥 = (𝑥 · 𝑌 ′[𝑖]) mod 𝜑(𝑁)
6: end if

end for
8: ret←WS[idx]𝑥 mod 𝑁

return ret
10: end function

	Platform-independent Secure Blockchain-Based Voting System

