
Fast Secure Matrix Multiplications
over Ring-Based Homomorphic Encryption

Pradeep Kumar Mishra1, Deevashwer Rathee2, Dung Hoang Duong3, and
Masaya Yasuda4

1 Graduate School of Mathematics, Kyushu University,
744 Motooka Nishi-ku, Fukuoka 819-0395, Japan

p-mishra@math.kyushu-u.ac.jp
2 Department of Computer Science and Engineering,

Indian Institute of Technology (BHU) Varanasi 221005, India.
deevashwer.student.cse15@iitbhu.ac.in

3 School of Computing and Information Technology, University of Wollongong,
Northfields Avenue, Wollongong NSW 2522, Australia.

hduong@uow.edu.au
4 Institute of Mathematics for Industry, Kyushu University,

744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
yasuda@imi.kyushu-u.ac.jp

Abstract. Secure matrix computation is one of the most fundamen-
tal and useful operations for statistical analysis and machine learning
with protecting the confidentiality of input data. Secure computation
can be achieved by homomorphic encryption, supporting meaningful op-
erations over encrypted data. HElib is a software library that implements
the Brakerski-Gentry-Vaikuntanathan (BGV) homomorphic scheme, in
which secure matrix-vector multiplication is proposed for operating ma-
trices. Recently, Duong et al. (Tatra Mt. Publ. 2016) proposed a new
method for secure single matrix multiplication over a ring-LWE-based
scheme. In this paper, we generalize Duong et al.’s method for secure
multiple matrix multiplications over the BGV scheme. We also imple-
ment our method using HElib and show that our method is much faster
than the matrix-vector multiplication in HElib for secure matrix multi-
plications.

Key words: Secure matrix multiplications, Leveled fully homomorphic
encryption, Packing methods.

1 Introduction

Recent development of cloud computing allows users to easily outsource their
data in the cloud. On the other hand, security and privacy concerns for stored
data in the cloud have risen. An excellent solution for the issue is to store all the
data in encrypted format and perform operations on encrypted data. Homomor-
phic encryption can achieve the solution, and hence it has been expected as a
powerful tool in cloud computing. The concept of homomorphic encryption was



first introduced by Rivest et al. in 1978 [25]. About 30 years later, the first scheme
of fully homomorphic encryption (FHE) that supports arbitrary operations on
encrypted data was constructed by Gentry [11]. After Gentry’s pioneering work,
a number of FHE schemes have been proposed and improved in both theory and
practice. However, currently known FHE schemes are yet impractical for real
applications. For example, it is reported in a recent work [7] that it takes 52
milliseconds for single gate bootstrapping to refresh the error in a ciphertext for
unlimited operations. On the other hand, the Paillier scheme [24] and the BGN
scheme [2] are practical, but their functionality is very limited. In recent years,
somewhat homomorphic encryption (SHE), initially used as a building block for
FHE construction, and its leveled improvement (called leveled FHE ) have at-
tracted a lot of attention from various communities. Both SHE and leveled FHE
can support only a limited number of additions and multiplications, but it is
applicable in various scenarios with reasonable performance (e.g., see [23, 13, 29,
1, 31, 6]). In particular, since leveled FHE has slower growth of the error in a
ciphertext, it is more useful to evaluate a circuit of large depth.

Matrix computation is one of the most basic and useful operations for var-
ious applications, including statistical analysis, image processing and machine
learning. In this paper, we focus on secure matrix multiplications (see Figure 1
below for an image of our goal). At present, ring-based leveled FHE schemes,
such as BGV [4], FV [10], YASHE [3], and NTRU [19], are efficient and useful.
BGV and FV schemes are based on the ring-LWE (learning with errors) as-
sumption [21], and YASHE is a variant of NTRU. Costache and Smart [8] com-
pared features of such schemes (see also [18] for a comparison), and showed that
the BGV scheme is more efficient for large plaintext space than other schemes.
Hence we use HElib [16] as a software library in our implementation of the BGV
scheme. (Recently, HElib has been improved for efficiency [17].) For secure ma-
trix computation, matrix-vector multiplication is proposed in HElib (see [15] for
its manual). Recently, Lu et al. [20] slightly modified the matrix-vector multipli-
cation for secure statistical analysis over HElib. As an individual work, Duong
et al. [9] proposed efficient methods for secure single matrix multiplication over
ring-based SHE schemes. Later, Wang et al. [28] modified Duong et al.’s meth-
ods for flexible matrix computation, but their modification is much less efficient
for matrices of larger size.

Our Contributions We generalize Duong et al.’s methods [9] for secure mul-
tiple matrix multiplications over the BGV scheme using R = Z[x]/(xn + 1) as
the base ring for a 2-power integer n. Our method can be used over the other
ring-based SHE schemes. For secure multiplication between two matrices A and
B, a main ingredient of [9] is to pack A and B into two types of polynomial
over R, and then encrypt the polynomials. The homomorphic property of the
native plaintext space of the BGV scheme enables us to compute all the entries
of A×B over packed ciphertexts by homomorphic multiplication. Our new strat-
egy for multiple matrix multiplications A1 × · · · ×A` is to propose three types
of polynomial in R for A1 ×A2, A3 × · · · ×A`−1, and A`. Specifically, we pack

2



A1 by the first transformation of [9], and flip the columns of A2 and pack them
using a method similar to A1 to obtain the entries of A1 × A2 in polynomial
format. We propose new transformation to pack the product A3 × · · · ×A`−1
into polynomial format. In contrast, we make use of the second transformation
of [9] for A`. But our method requires for us to take an appropriate jump for ex-
ponents of the variable x of the polynomial ring R greater than the total degree
of polynomials over R corresponding to the matrices A1, . . . ,A`−1, in order to
avoid overlapping the coefficients of the decryption polynomial.

Different from ours, the matrix-vector multiplication implemented in HElib

makes use of the plaintext slots of the BGV scheme, useful for SIMD (Single
Instruction Multiple Data) operations (see [13] for a typical use). While the
matrix-vector multiplication can only pack a row or column vector into a single
ciphertext, ours can pack a matrix. Our method can also perform secure matrix
multiplications by a few homomorphic multiplications over our packed cipher-
texts. For a comparison of performance, we implement our method and compare
with the matrix-vector multiplication over HElib. With our implementation re-
sults, we also discuss advantages and limitations of our method.

This is a fully revised paper of the conference paper [22]. Main differences
are as follows:

1. We complete a proof of our secure matrix multiplications among three ma-
trices (Theorem 2 below).

2. We also give a generalization of Duong et al.’s method for A1 × · · · × A`

with ` ≥ 4 (Subsection 3.2 below).
3. While the BV scheme [5] is implemented in [22], we here implement the BGV

scheme over HElib for our secure matrix multiplications. Furthermore, we
compare performance results of our method and the matrix-vector multipli-
cation over HElib (Section 4 below).

2 Preliminaries

HElib [16] is an open-source C++ library that implements a variant of the ring-
LWE-based BGV scheme [4], improved by Gentry, Halevi and Smart [12]. It
includes the Smart-Vercauteren ciphertext packing [26], high-level procedures for
data-movement and simple linear algebra, modulus and key switching operations,
and bootstrapping. In this section, we review the BGV scheme implemented in
HElib.

2.1 The BGV Scheme

The BGV scheme is a leveled homomorphic encryption scheme based on ring-
LWE. For a positive integer N , the scheme is defined over the ring

R = Z[x]/(ΦN (x)),

where ΦN (x) is the N -th cyclotomic polynomial of degree φ(N) (here φ is the
Euler’s totient function). Every polynomial in R can be represented as a vector

3



with coefficients in Z (coefficient representation). A distribution χ over R is
implemented in HElib for error polynomials, drawing a random polynomial in
R with every coefficient chosen at random from a discrete Gaussian distribution
with zero mean and variance σ2 for a parameter σ (σ = 3.2 is default in HElib).
For an odd prime q, denote by [·]q the reduction modulo q, mapping an element of
R to the element of R with every coefficient equal to the unique representative
of its equivalence class modulo q in the interval (−q/2, q/2]. For a prime or
prime-power p, we denote the ring Rp = R/pR.

The native plaintext space of the BGV scheme, implemented in HElib, is Rt
for a prime-power t = pr (cf., see Subsection 2.3 below for plaintext slots). The
scheme is parametrized by a sequence of decreasing moduli

qL > qL−1 > · · · > q0 (1)

for homomorphic evaluation. For every modulus qi, an i-th level ciphertext in
the scheme is a vector in R2

qi . A secret key in HElib is chosen as an element
s ∈ R with coefficients in {0,±1} and low Hamming weight H (e.g., H =
64). Set sk = (1,−s) as a secret key. For correct decryption, every i-th level
ciphertext vi = (c0, c1) ∈ R2

qi of a plaintext α ∈ Rt should satisfy that the “noise”
polynomial [〈sk, vi〉]qi = [c0 − c1s]qi ∈ R has the form α + tε for some “small”
error ε ∈ R (i.e., all the coefficients of tε ∈ R are considerably smaller than qi).
Then the decryption procedure Dec(vi, sk) = [〈sk, vi〉]qi mod t can recover the
correct plaintext.

A public key is a pair pk = (a, b) ∈ R2
qL , where a is uniformly sampled from

RqL and b = [as + te]qL is generated by sampling e from the distribution χ. A
“fresh” ciphertext (i.e., an L-th level ciphertext) vL = Enc(α, pk) = (c0, c1) ∈
R2
qL of a plaintext α ∈ Rt is given by{

c0 = α+ bv + te0,

c1 = av + te1,

where v ∈ R is a randomly chosen polynomial with coefficients in {0,±1}, and
e0, e1 ∈ R are chosen from χ. Since

c0 − c1s = α+ bv + te0 − s(av + te1)

≡ α+ t(ve+ e0 − se1) mod qL, (2)

the noise polynomial of vL satisfies the requirement of correct decryption if large
qL is taken (note that every coefficient of ve+ e0− se1 is small). Other i-th level
ciphertexts, computed after homomorphic operations, are described below.

2.2 Homomorphic Operations and Noise Control

The noise polynomial of a ciphertext should be small for correct decryption.
In HElib, the size of such noise is measured by the canonical embedding norm
(see [13, Appendix A]). Specifically, every i-th level ciphertext (c0, c1) ∈ R2

qi is

4



represented as ((c0, c1), i, ν), where ν is an estimate on the noise magnitude in
the ciphertext. For example, according to equation (2), an estimate for a fresh
ciphertext is initialized by four parameters (N, t, σ,H) in HElib (see [14, Sub-
section 3.1.4]). Given c = ((c0, c1), i, ν) and c′ = ((c′0, c

′
1), i′, ν′), homomorphic

operations are defined as follows:

1. Homomorphic Addition: If i = i′, we add these two ciphertext vectors and
two noise estimates as

c + c′ = (([c0 + c′0]qi , [c1 + c′1]qi) , i, ν + ν′) .

If i 6= i′, we reduce the larger one modulo the smaller of the two moduli to
bring them to the same level.

2. Homomorphic Multiplication: If needed, we bring the two ciphertexts to
the same level. When i = i′, we first perform the tensor product of c
and c′ as ((d0, d1, d2) , i, νν′), where (d0, d1, d2) is the extended ciphertext
(c0c

′
0, c0c

′
1 + c′0c1, c1c

′
1) ∈ R3

qi . We then perform the “relinearlization/key-
switching” operation [14, Subsection 3.1.4] to obtain a canonical ciphertext
(c′′0 , c

′′
1) ∈ R2

qi of the same plaintext, and estimate its noise magnitude ν′′.
As a result, homomorphic multiplication outputs the information

c ∗ c′ = ((c′′0 , c
′′
1), i, ν′′) .

The homomorphic correctness of the BGV scheme follows the ring structure
of the plaintext space Rt; For two i-th level ciphertexts c and c′ of plaintexts α
and α′, we have {

Dec(c + c′, sk) = α+ α′,

Dec(c ∗ c′, sk) = αα′,
(3)

if the i-th level modulus qi is sufficiently large. In contrast, every homomor-
phic operation grows the noise of a ciphertext, and it might fail to decrypt the
ciphertext after a number of operations. In particular, homomorphic multiplica-
tion grows the noise much larger than addition, and the noise grows only linearly
with the number of multiplications. The “modulus-switching” operation takes as
input an i-th level ciphertext to output an (i−1)-th level ciphertext of the same
plaintext, but it can reduce the noise size (see [14, Subsection 3.1.5]). In HElib, if
one of the input ciphertexts for homomorphic multiplication have larger noises
than a preset constant, the modulus-switching is performed before the multi-
plication in order to avoid decryption failure. Namely, noises of ciphertexts are
automatically controlled in HElib. Then we can ignore the noise magnitude and
the level of a ciphertext in using HElib.

2.3 Plaintext Slots of the BGV Scheme

Here we take a prime p as the plaintext modulus for slots. The N -th cyclotomic
polynomial factors modulo p into k irreducible factors as ΦN (x) ≡ F1(x) ×

5



F2(x) × · · · × Fk(x) (mod p) for some k ∈ Z. Every polynomial Fi(x) ∈ Fp[x]
has degree d = φ(N)/k. Due to the ring-isomorphism

Rp ' Fp[x]/(F1(x))× · · · × Fp[x]/(Fk(x)), (4)

any plaintext polynomial α ∈ Rp can be identified as the vector (α mod Fi(x))ki=1.
Conversely, since every space Fp[x]/(Fi(x)) is isomorphic to the extension field
Fpd , we can handle any vector a = (a1, . . . , ak) ∈ Fkpd as a plaintext (each entry

is called a “slot”), and encrypt the vector as Enc(a, pk). By the isomorphism (4),
for two ciphertexts c, c′ of vectors (a1, . . . , ak), (b1, . . . , bk), it satisfies{

Dec(c + c′, sk) = (a1 + b1, . . . , ak + bk),

Dec(c ∗ c′, sk) = (a1b1, . . . , akbk).
(5)

Namely, homomorphic addition (resp., multiplication) allows us to operate element-
wise addition (resp., multiplication) over plaintext slots (cf., the homomorphic
property (3) over the native plaintext space Rt). Simply speaking, it enables
SIMD operation over slots (see [13] for a typical use). Furthermore, procedures
for data-movement such as rotation and shift over slots are implemented in
HElib.

2.4 Other Optimizations

We describe the following two optimizations implemented in HElib, which shall
be used in our implementation.

1. Modulus Chain and Double-CRT Representation [14, Subsection 1.2]: For
the moduli chain (1), small primes p0, p1, . . . , pL are chosen so that ΦN (x)
factors modulo pi to linear terms for all 0 ≤ i ≤ L. The `-th modulus
in the chain is defined as q` =

∏`
j=0 pj in HElib. For efficient arithmetic

over ciphertexts, a polynomial a(x) ∈ Rq` (in coefficient representation)

is represented as an (` + 1) × φ(N) matrix DoubleCRT`(a) (in evaluation
representation), whose (i, j)-th entry is the evaluation of a(x) at j-th root
of ΦN (x) modulo pi. Addition and multiplication in Rq` is done entry-wise
modulo the appropriate primes pi. In the rest of description, we ignore the
double CRT representation of polynomials lying in the ciphertext space and
describe the scheme as if we were operating on polynomials directly.

2. Key Switching [14, Subsection 3.1.6]: The public key has key switching ma-
trices that transform a ciphertext decryptable by a secret key sk′ into a
ciphertext decryptable by another secret key sk. This transformation is used
in multiplication and data-movement over slots (in particular, this is an op-
timization in getting a canonical ciphertext).

3 Secure Matrix Multiplications

In this section, we review typical known methods for secure matrix multiplica-
tions over ring-LWE based homomorphic encryption (see also Figure 1 for its

6



image). We also extend the method of Duong et al. [9] for secure multiple matrix
multiplications. For simplicity, in this paper, we only handle square matrices of
size m with positive integer entries.

3.1 Typical Known Methods

Matrix-Vector Multiplication in HElib To perform secure matrix multi-
plications, several methods for the matrix-vector multiplication over the BGV
scheme are implemented in HElib. According to [15, Subsection 4.3], the method
to put a matrix in diagonal order is the best solution if the matrix is given to us
in plaintext (cf., if a matrix is encrypted, expensive data movement techniques in
HElib are required to change the representation of the matrix). Let A = (aij) be
an integer square matrix of size m, and v = (vi) a column vector of length m. We
represent A by m column vectors in diagonal order as d1 = (a1,1, a2,2, . . . , am,m)
and

di = (a1,i, a2,i+1, . . . , am−i+1,m, am−i+2,1, · · · , am,i−1)

for 2 ≤ i ≤ m. Then the product A × v can be computed as
∑m
i=1 di × (v ≪

i) ∈ Zm, where (v ≪ i) is the i times left-rotated vector of v and a × b is
the element-wise multiplication between two vectors a and b. To evaluate this
procedure over the BGV scheme, we encrypt vectors di and v encoded in slots
as ci = Enc(di, pk) and c = Enc(v, pk) (it requires at least m slots). From the
homomorphic property (5) over slots, a combination of homomorphic operations

m∑
i=1

ci ∗ Rotatei−1(c)

outputs a ciphertext of the product A× v, where Rotatej(c) is the j times left-
rotated ciphertext of c. This requires (m − 1) rotations and additions, and m
multiplications. The hoisting technique mentioned in [17] can be used to make
rotations more efficient when multiple rotations are to be performed on the same
ciphertext. This matrix-vector multiplication can be applied to matrix multipli-
cations. (Recently, Lu et al. [20] slightly modified the matrix-vector multipli-
cation of [15, Section 4.3] for homomorphic evaluation of principal component
analysis and linear regression.)

Duong et al.’s Method for Single Matrix Multiplication While the above
method makes use of the homomorphic property (5) over slots, Duong et al. [9]
use the property (3) over the native plaintext space Rt of the BGV scheme (they
in [9] implemented their method over the BV scheme [5], the origin of the BGV
scheme without optimizations).

For a 2-power integer n, we here take N = 2n as the parameter defining the
base ring R of the BGV scheme. Then we have ΦN (x) = xn + 1 and hence

R = Z[x]/(xn + 1).

7



Fig. 1. An image of secure matrix multiplication A×B in the cloud

Let A and B be two square matrices of size m with positive integer entries. We
pack each row Ai = (ai,0, . . . , ai,m−1) and column BTj = (b0,j , . . . , bm−1,j) of
matrices A and B, respectively, into polynomials of R as follows:

pm
(1)
2 (Ai) :=

m−1∑
u=0

ai,ux
u,

pm
(2)
2 (BTj ) := −

m∑
v=0

bv,jx
n−v.

Furthermore, define the following two types of polynomial in R associated to
two matrices A and B:

Pol
(1)
2 (A) :=

m∑
i=1

pm
(1)
2 (Ai)x

(i−1)m,

Pol
(2)
2 (B) :=

m∑
j=1

pm
(2)
2 (BTj )x(j−1)m

2

.

We then encrypt the two types of polynomial as

ct
(i)
2 (A) := Enc

(
Pol

(i)
2 (A), pk

)
for i = 1, 2.

Over packed ciphertexts, we have the following result [9, Theorem 7] (they mod-
ify the result for large entries in [9, Subsection 4.2], based on Yasuda et al.’s
modification [31]):

Theorem 1. Assume n ≥ m3. Let

ct2 = ct
(1)
2 (A) ∗ ct(2)2 (B)

8



and let Dec(ct2, sk) ∈ Rt denote its decryption polynomial. If decryption is correct
for ct2, then the inner product

〈
Ai, B

T
j

〉
modulo t is equal to the coefficient of

x(i−1)m+(j−1)m2

in Dec(ct2, sk) for every 1 ≤ i, j ≤ m.

Proof. Here we only give a sketch of proof. Due to the homomorphic property (3)
over the native plaintext space Rt, the decryption result of ct2 is equal to

F (x) := Pol
(1)
2 (A)× Pol

(2)
2 (B)

modulo t. All the entries
〈
Ai, B

T
j

〉
of A × B are obtained from coefficients of

the polynomial F (x) ∈ Rt at certain positions. This is due to the structure
of the special ring Rt = Ft[x]/(xn + 1). This idea is based on Yasuda et al.’s
method [30] for secure multiple inner products, but suitable arrangement of
entries of a matrix is required for secure matrix multiplication to avoid overlaps.
For details, see the proof of Theorem 2 below for the case of three matrices.

By Theorem 1, if we take sufficiently large t, all the entries of A × B can
be obtained from coefficients of the decryption polynomial Dec(ct2, sk) ∈ Rt.
This method can pack a matrix into a single ciphertext, and it requires only one
homomorphic multiplication over packed ciphertexts for a single secure matrix
multiplication A×B. (cf., the method described in Subsection 3.1 packs a row
or column vector of a matrix into a single ciphertext, and it requires at least m2

homomorphic multiplications for A×B.) An obstacle of Duong et al.’s method is
that it requires considerably large n and t for large size m and entries of matrices
(see Subsection 4.1 below for this obstacle).

Remark 1. In Duong et al.’s method, types of packed polynomial are different
for two matrices A and B, and hence we can not change the order of matrices
for multiplication. In [28], Wang et al. modified Duong et al.’s packing method
so that it can pack a matrix into a single ciphertext in the same way, and it can
also compute both A × B and B ×A simultaneously over packed ciphertexts.
However, Wang et al.’s method requires larger n for the ring R = Z[x]/(xn + 1)
to pack a matrix, and it would be much less efficient than Duong et al.’s method
for matrices of larger size.

3.2 Generalization of Duong et al.’s Method for Multiple Matrix
Multiplications

The method by Duong et al. [9] is only for a single secure multiplication. Here
we generalize their method to multiple matrix multiplications A1 × · · · × A`.
Throughout this subsection, we let Ai (resp., ATi ) denote the ith row (resp.,
column) of a matrix A. We use the notation “pm`” for packing a row (or a
column) of matrix, where ` stands for the number of matrices being multiplied.

Case of ` = 3 We begin to consider the case of three matrices. Let A be a
square matrix of size m whose entries are positive integers. As in the previous

9



subsection, we give two types of polynomial in R = Z[x]/(xn + 1) for each row
Ai = (ai,0, . . . , ai,m−1) of A as follows:

pm
(1)
3 (Ai) :=

m−1∑
u=0

ai,ux
u,

pm
(2)
3 (Ai) := −

m−1∑
u=0

ai,ux
n−um2−m+1,

Now we define three types of polynomial in R associated with three matrices
A,B, and C as follows:

Pol
(1)
3 (A) :=

m∑
i=1

pm
(1)
3 (Ai)x

(i−1)m,

Pol
(2)
3 (B) :=

m∑
j=1

pm
(1)
3

(
B
T

j

)
x(j−1)m

2

,

Pol
(3)
3 (C) :=

m∑
k=1

pm
(2)
3

(
CTk
)
x(k−1)m

3

,

where BTj = (b0,j , . . . , bm−1,j) and CTk are the jth and the kth columns of B and
C, respectively, and set

B
T

j = (bm−1,j , . . . , b0,j)

(i.e., flipping the column BTj ). Now we define three types of packed ciphertext
for a matrix A to be

ct
(i)
3 (A) := Enc

(
Pol

(i)
3 (A), pk

)
for i = 1, 2, 3.

Then we have a similar result to Theorem 1 for the case of three matrices as
follows:

Theorem 2. Assume n ≥ m4. Let

ct3 = ct
(1)
3 (A) ∗ ct(2)3 (B) ∗ ct(3)3 (C),

and let Dec(ct3, sk) ∈ Rt denote its decryption polynomial. If decryption is correct
for ct3, then the (i, k)th entry of A×B×C modulo t is equal to the coefficient

of x(i−1)m+(k−1)m3

in Dec(ct3, sk) for every 1 ≤ i, k ≤ m.

Proof. The idea is the same as the proof of Theorem 1. It follows from our
construction that

pm
(1)
3 (Ai)× pm

(1)
3

(
B
T

j

)
=

m∑
u=1

m∑
v=1

aiubm−v+1,jx
u+v−2

=
〈
Ai, B

T
j

〉
xm−1 + other terms of degree (u+ v − 2)

10



with u 6= m− v+ 1 and u, v ∈ {0, . . . ,m− 1}. As seen from the above equation,

the coefficient of the monomial xm−1 in pm
(1)
3 (Ai)× pm

(1)
3

(
B
T

j

)
∈ R gives the

inner product
〈
Ai, B

T
j

〉
. Furthermore we have

pm
(1)
3 (Ai)× Pol

(2)
3 (B)

=

m∑
j=1

〈
Ai, B

T
j

〉
x(j−1)m

2+m−1 + other terms of degree (u+ v − 2 + (j − 1)m2).

Furthermore, since xn = −1 holds over R, we obtain

pm
(1)
3 (Ai)× Pol

(2)
3 (B)× pm

(2)
3

(
CTk
)

=

m∑
j=1

〈
Ai, B

T
j

〉
x(j−1)m

2+m−1 × pm
(2)
3

(
CTk
)

+ other terms of degree (n+ u+ v −m− 1 + (j − 1)m2 − (w − 1)m2)

=−
m∑
j=1

m∑
w=1

〈
Ai, B

T
j

〉
ck,wx

n+(j−1)m2−(w−1)m2

+ other terms of degree (n+ u+ v −m− 1 + (j − w)m2)

=
〈
Vi, C

T
k

〉
+ other terms of degree (n+ u+ v −m− 1 + (j − w)m2)

with w 6= j for w, j ∈ {0, . . . ,m − 1}, where we set Vi =
(〈
Ai, B

T
j

〉)m
j=1

for

1 ≤ i ≤ m. If decryption is correct for the ciphertext ct3, we have

Dec(ct3, sk) =Pol
(1)
3 (A)× Pol

(2)
3 (B)× Pol

(3)
3 (C)

=

m∑
i=1

m∑
k=1

pm
(1)
3 (Ai)× Pol

(2)
m,3(B)× pm

(2)
3

(
CTk
)
x(i−1)m+(k−1)m3

.

Furthermore, for fixed indices i and k, we have

pm
(1)
3 (Ai)× Pol

(2)
3 (B)× pm

(2)
3

(
CTk
)
x(i−1)m+(k−1)m3

=
〈
Vi, C

T
k

〉
x(i−1)m+(k−1)m3

+ other terms of degree (n+u+v−m−1+(j−w)m2+(i− 1)m+ (k − 1)m3

with u+v 6= m+1 and w 6= j for u, v, j, w ∈ {0, . . . ,m−1}. The exponent of x is
modulo n over R, and therefore n+u+v−m−1+(j−w)m2+(h−1)m+(`−1)m3

is never equal to (i−1)m+(k−1)m3 for u+v 6= m+1, w 6= j and j, w, h, `, i, k ∈
{1, . . . ,m}. This implies that the term of degree (i− 1)m+ (k − 1)m3 in

Pol
(1)
3 (A)× Pol

(2)
3 (B)× Pol

(3)
3 (C)

is exactly the term of degree (i− 1)m+ (k − 1)m3 in

pm
(1)
3 (Ai)× Pol

(2)
3 (B)× pm

(2)
3

(
CTk
)
x(i−1)m+(k−1)m3

.

11



Hence the inner product
〈
Vi, C

T
k

〉
, the (i, k)th entry of A × B × C, can be

recovered from the coefficient of x(i−1)m+(k−1)m3

in the decryption polynomial
Dec(ct3, sk) ∈ Rt.

Case of ` ≥ 4 Let A be a square matrix of size m. For more than three matri-
ces, we define (`−1) types of polynomial in R for each row Ai = (ai,0, . . . , ai,m−1)
of A as follows:

pm
(1)
` (Ai) :=

m−1∑
u=0

ai,ux
u,

pm
(2)
` (Ai) := −

m−1∑
u=0

ai,ux
n−(α+β+m−1),

pm
(w)
` (Ai) :=

m−1∑
u=0

ai,ux
umw−1

for 3 ≤ w ≤ `− 1,

where α = um`−1 and β =
∑`−2
s=2(m − 1)ms. Furthermore, we define ` types of

polynomial in R associated to matrices A1, . . . ,A` as follows:

Pol
(1)
` (A1) :=

m∑
i=1

pm
(1)
` (A1,i)x

(i−1)m,

Pol
(2)
` (A2) :=

m∑
j=1

pm
(1)
`

(
A
T

2,j

)
x(j−1)m

2

,

Pol
(h)
` (Ah) :=

m∑
k=1

pm
(h)
`

(
A
T

h,k

)
x(k−1)m

h

(3≤h≤`−1),

Pol
(`)
` (A`) :=

m∑
w=1

pm
(2)
`

(
AT`,w

)
x(w−1)m

`

,

where Ah,j and ATh,j =
(
a
(h)
0,j , . . . , a

(h)
m−1,j

)
are the row and column of Ah re-

spectively, and A
T

h,j =
(
a
(h)
m−1,j , . . . , a

(h)
0,j

)
(i.e., flipping the column ATh,j) for

3 ≤ h ≤ `− 1. Define ` types of packed ciphertext for a given matrix A to be

ct
(h)
` (A) := Enc

(
Pol

(h)
` (A), pk

)
for 1 ≤ h ≤ `.

Similar to Theorem 2, we obtain the following result for secure matrix multipli-
cations over packed ciphertexts:

Theorem 3. Assume n ≥ m`+1. Let

ct` =
∏̀
h=1

ct
(h)
` (Ah)

12



and let Dec(ct`, sk) ∈ Rt denote its decryption polynomial. If decryption is correct
for ct`, then the (i, j)th entry of A1×· · ·×A` modulo t is equal to the coefficient

of x(i−1)m+(j−1)m`

in Dec(ct`, sk) for every 1 ≤ i, j ≤ m.

4 Implementation Results

In this section, we show implementation results for our secure multiple matrix
multiplications (described in Subsection 3.2) over HElib [16]. Specifically, we
show performance of secure matrix multiplications A1 × · · · ×A`, where every
Ai is a square matrix of size m with positive integer entries of p-bit for ` = 2, 3, 4,
m = 16, 32 and p = 16, 32. Note that the case ` = 2 stands for Duong et al.’s
method [9], presented in Subsection 3.1.

4.1 Some Modifications

As described in the paragraph before Remark 1, Duong et al.’s and our packing
methods require very large n (degree of ΦN (x) for N = 2n) and t (plaintext
modulus) for matrices with large size and entries. (This problem is not specific to
our method, and in particular, such large t might be required in any technique.)
Such setting makes the BGV scheme very slow. Here we give two modifications
to relax the problem.

Block-Matrix Method Let A be a square matrix of size m. We take a block
size M satisfying m = bM for some b ∈ Z. Consider A as a matrix with b2

sub-matrices Aij with size M ×M for 1 ≤ i, j ≤ b. In this method, we pack each
sub-matrix Aij into a single polynomial by our packing method, and encrypt
the polynomial. This enables us to take small n for packing every M ×M sub-
matrix Aij , instead of the whole matrix A (this requires n ≥ M `+1, instead
of n ≥ m`+1). On the other hand, this method requires more homomorphic
operations. For example, it requires b3 homomorphic multiplications and b2(b−1)
homomorphic additions for secure matrix multiplication between two matrices.

CRT Method for Plaintext Modulus We can split the plaintext modulus t
into e small different primes ti as

t =

e∏
i=1

ti

for some e ∈ Z. Given a message modulo t, we encrypt the plaintext modulo
every ti. After decryption modulo every ti, we can recover the original message
by the CRT method. This enables us to use Fti [x]/(xn + 1) as the plaintext
space for every ti. On the other hand, it requires e ciphertexts for encrypting
a message. (This problem can be alleviated through multi-threading. Moreover,
smaller plaintext moduli require less number of moduli for leveled ciphertext
spaces.)

13



4.2 Selection of Parameters

Here we describe how to select suitable parameters of the BGV scheme for our
secure matrix multiplications. In our experiments, we use our CRT method with
e = 4, suitable for running our programs over 4 threads (it requires to set
different primes ti for 1 ≤ i ≤ 4). In using HElib, we basically need to select the
following three parameters (see [14, Section 5] for usage):

– n: 2-power integer defining R = Z[x]/(xn + 1)
– ti: prime moduli of plaintext spaces for 1 ≤ i ≤ 4
– L: number of moduli for leveled ciphertext spaces

For other parameters in HElib, we use default parameters such as σ = 3.2
(standard deviation parameter for discrete Gaussian distribution) and H = 64
(Hamming weight of secret keys). We also set k = 128 as the security parameter
(actually, our chosen parameters have much more than 128-bit security level from
the estimate of HElib since our method requires large n). In our experiments,
we use our block-matrix method with block size M = 16 (resp., M = 8) for
` = 2 (resp., ` = 3, 4). Then we select a 2-power integer n satisfying n ≥M `+1,
suitable for both security and efficiency. Since every coefficient of A1 × · · · ×A`

in our block-matrix method is at most M `−12`p, it needs to take t > M `−12`p

for obtaining the correct decryption result, where p is the maximum bit size of
entries of Ai and t is the plaintext modulus without our CRT method. Then we
take 4 different small primes for ti’s satisfying

ti >
(
M `−12`p

)1/4
.

In contrast, choice of the parameter L depends on the number ` of successive
homomorphic multiplications and the size of plaintext space ti to accept any
noises in evaluation. For our experiments, we select around 2` ∼ 3` for the
parameter L. (See Table 1 below for our chosen parameters.)

4.3 Implementation and Performance Results

Implementation We implemented our secure matrix multiplications. Our ex-
periments ran on an Intel(R)Xeon(R) CPU E5-46170@2.90GHz, using HElib [16]
as a library. In our experiments, we make use of multi-threaded implementation
(4 threads), compatible with our CRT-method. (cf., Our pre-experiments show
that computation over 4 threads is about 2.5 times faster than a single thread.)
In particular, we use the half-primes optimization in making the moduli chain (1)
for efficiency (see [13, Section 3]).

Performance Results In Table 1, we show our chosen parameters of the BGV
scheme and running time for secure matrix multiplications A1×· · ·×A`, where
every square matrix Ai has size m and p-bit positive integer entries. In the
following, we compare with known performance results for each of ` = 2, 3, 4:

14



Table 1. Performance of our secure matrix multiplications A1 × · · · ×A` over HElib,
where every square matrix Ai has size m and p-bit integer entries (we represent Ai as
M ×M sub-matrices in our block-matrix method, and split the plaintext modulus into
4 primes t1, . . . , t4 in our CRT method)

Setting of matrices Parameters of the scheme Performance (Seconds)

` m M p n blog2(ti)c L Encryption Matrix Mul. Decryption Total Time

2

16 16
16 8192 9 5 0.0588 0.0379 0.0171 0.1140

32 8192 18 5 0.0582 0.0462 0.0174 0.1219

32 16
16 8192 10 5 0.1495 0.3103 0.0413 0.5012

32 8192 18 5 0.3202 0.3436 0.0378 0.7017

3

16 8
16 16384 14 7 0.4944 1.1257 0.0970 1.7173

32 16384 26 9 0.6183 1.2187 0.1027 1.9399

32 8
16 16384 15 7 1.2954 9.2480 0.2116 10.7552

32 16384 27 9 1.3680 10.3408 0.2118 11.9207

4

16 8
16 32768 19 9 1.4408 4.3138 0.2001 5.9547

32 32768 35 11 1.5811 4.5999 0.2456 6.4266

32 8
16 32768 20 9 3.7801 30.6657 0.4299 34.8759

32 32768 36 11 3.7211 32.0827 0.5195 36.3234

1. For the case ` = 2, our method is the same as Duong et al.’s method [9]. For
two square matrices of size m = 16 with p = 10-bit entries, Duong et al.’s
packing method (the modified version for large entries) in [9, Subsection 4.2]
needs n = 131072 by [9, Theorem 10], and it took about 7.27 seconds from
[9, Table 2]. In contrast, Table 1 shows that it took only 0.1140 seconds for
m = 16 and p = 16. This is mainly due to our modifications since n = 8192
is sufficient in our block-matrix method.

2. For the case ` = 3, performance results are given in our conference paper [22].
From [22, Table 2], n = 65536 is set without our CRT-method and it took
45.8430 (resp., 58.7190) seconds for m = 32 and p = 16 (resp., p = 32)
over a single thread of Intel Core i7-4790 CPU with 3.60 GHz, using PARI

library [27] (version 2.9.2) in C programs for implementing the BV scheme [5].
In this full version paper, we use M = 8 as the size of sub-matrices (cf.,
M = 16 is used in [22]), and hence smaller n is sufficient. From Table 1,
our method took 10.7552 (resp., 11.9207) seconds for m = 32 and p = 16
(resp., p = 32). This is about 4 or 5 times faster than [22, Table 2], mainly
due to smaller n and use of 4 threads over HElib. (Arithmetic in HElib is
faster than PARI since it is optimized for the BGV scheme.) In particular, our
implementation requires less time of both decryption and circuit because of
relinearlization. It also requires less ciphertext modulus size due to modulus
switching.

3. For the case ` = 4, we use M = 8 and n = 32768, and it took 34.8759 (resp.,
36.3234) seconds for m = 32 and p = 16 (resp., p = 32). (cf., The time was
around 645 seconds in our PARI implementation for the BV scheme. This
shows that relinearlization and modulus switching have a greater impact for
large `.) As seen from Table 1, this is about 3 or 4 times slower than the case
` = 3. However, for larger `, the performance might be considerably slower

15



since huge n is required in our method. Actually, big jumping exponents
are used in our packed polynomials for large ` (see Subsection 3.2). See also
Subsection 4.4 below for advantages and limitations of our method.

4.4 Comparison in Matrix-Vector Multiplications

As described in Subsection 3.1, the diagonal-based matrix-vector multiplication
is implemented in HElib. For ` ≥ 2 and m ≥ 1, let A1, · · · ,A`−1 be `−1 square
matrices of size m and v a column vector of length m. For a 2-power integer
n, our packing method over R = Z[x]/(xn + 1) enables us to perform secure
matrix-vector multiplications as follows (the following result holds for ` ≥ 4, but
a similar result for ` = 2, 3 can be obtained from Subsections 3.1 and 3.2):

Theorem 4. Let ` ≥ 4 and assume n ≥ m`. Let

ct = ct(`)(v)×
`−1∏
h=1

ct
(h)
` (Ah) ,

where ct(`)(v) = Enc
(

pm
(2)
` (v), pk

)
is a packed ciphertext of v (see also Subsec-

tion 3.2 for other packed ciphertexts). Let Dec(ct, sk) ∈ Rt denote its decryption
polynomial. If decryption is correct for ct, then the ith entry of the column vector
A1×· · ·×A`−1×v modulo t is equal to the coefficient of x(i−1)m in Dec(ct, sk).

Performance Comparison In Table 2, we compare the performance of our
method with the diagonal-based method in HElib for secure matrix-vector mul-
tiplications A1 × · · · ×A`−1 × v for ` = 2, 3 and 4, where every square matrix
Ai and column vector v have size m and p-bit integer entries. We performed
experiments over 4 threads with our CRT-method as in Table 1. We also used
the hoisting optimization mentioned in [17] to further speed up the diagonal-
based method (this optimization makes the performance about 1.3 faster in our
experiments). In the following, we describe how to select parameters of the BGV
schemes in our experiments for both our method and the diagonal-based method:

1. For our method, we selected parameters of the BGV scheme in the same way
as in Subsection 4.2. For secure matrix-vector multiplications, we set larger
M as the size of every sub-matrix than Table 1, but we used slightly smaller
n for the base ring R = Z[x]/(xn + 1). Since noise estimates in HElib are
suitable for plaintext slots, our chosen parameters might be not optimal.

2. For the diagonal-based method, we used the same split plaintext moduli
t1, · · · , t4 as in our method. To define the base ring R = Z[x]/(ΦN (x)) of the
BGV scheme, we selected a prime of form N = a ·m+ 1 with gcd(a,m) = 1
for some a ∈ Z to obtain m slots in the BGV scheme (cf., our method
requires N = 2n for a 2-power integer n). This form of N has been chosen to
get a one-dimensional encrypted array with a good dimension of order m for

16



Table 2. Performance comparison of our method (Theorem 4) with the diagonal-based
method (Subsection 3.1) for secure matrix-vector multiplications A1 × · · ·A`−1 × v,
where every square matrix Ai and column vector v have size m and p-bit integer
entries. We represent Ai as M × M sub-matrices in our block-matrix method and
vector v is represented as M size sub-vectors, and split the plaintext modulus into 4
primes t1, · · · , t4 in our CRT method. The performance of our method is shown in bold
face (our method uses Z[x]/(ΦN (x)) for N = 2n with 2-power integer n).

Setting of matrices Parameters of the scheme Performance (Seconds)

` m M p blog2(ti)c N L Encryption Circuit Decryption Total Time

2

16 16

16 10
6553 5 0.4033 0.6496 0.0236 1.0765

2 · 8192 5 0.0217 0.0367 0.0080 0.0664

32 18
6737 5 0.4792 0.7117 0.0397 1.02306

2 · 8192 5 0.0237 0.0286 0.0072 0.0595

32 32

16 10
6689 5 0.8514 1.3918 0.0397 1.2306

2 · 8192 5 0.0489 0.0605 0.0118 0.1212

32 18
7457 5 0.9925 1.5331 0.1539 2.6795

2 · 8192 5 0.0170 0.0201 0.0051 0.0422

3

16 16

16 15
8753 7 1.7826 2.9803 0.0529 4.8158

2 · 8192 7 0.0284 0.0645 0.0051 0.0980

32 28
13649 9 2.5603 4.1327 0.2313 6.9243

2 · 16384 9 0.0925 0.2523 0.0291 0.3739

32

32
16 15

8929 7 4.5275 5.9489 0.2178 10.6942

16 2 · 8192 7 0.1408 0.3099 0.0122 0.4629

32
32 28

13217 11 6.1762 9.2014 0.1439 15.5215

16 2 · 16384 9 0.3156 0.8628 0.0332 1.2116

4

16

16
16 20

13649 11 4.2130 7.4059 0.0946 11.7135

8 2 · 16384 9 0.4277 1.3914 0.0290 1.8481

16
32 36

20753 15 10.0600 17.5948 0.5150 28.1698

8 2 · 16384 11 0.4508 1.5136 0.0272 1.9916

32

32
16 20

13217 11 8.5144 13.9225 0.1439 22.5808

8 2 · 16384 9 1.9307 8.3040 0.0582 10.2929

32
32 36

20897 17 23.4615 38.7671 0.3008 62.5294

8 2 · 16384 11 1.6782 9.0052 0.0633 10.7467

efficient and true rotations over slots (see [15, Section 5] for good and bad
dimensions). The parameter L has been chosen through experimentation, but
our chosen L for the diagonal-based method is equal to or slightly larger than
our method for correct decryption (around 2` ∼ 3` was chosen for L as in
our method). In practice, the diagonal-based method works efficiently when
ciphertexts are multiplied one after other, and hence a larger L is required.
For ` = 4, the diagonal-based method takes 3 successive multiplications while
ours takes 2 successive multiplications.

Remark 2. For ` = 4, m = 32 and p = 32 in Table 2, our method required 3.5
GB (0.6 GB excluding context) for secure matrix-vector multiplications. (cf., it
required 10.6 GB (1.2 GB excluding context) for secure matrix multiplications
with same parameters.) In contrast, the diagonal-based matrix-vector multipli-
cations required 2.8 GB (2 GB excluding context). We observed that the total

17



Fig. 2. Plot showing comparison of the results between our method and the diagonal-
based method for secure matrix-vector multiplications A1×· · ·×A`−1×v. Dashed lines
and solid lines are used to represent the total time of our method and the diagonal-
based method, respectively (the data are given from Table 2).

memory usage of the diagonal-based method is less than our method, but our
method required less memory once the context got initialized. The context gen-
erates some components consuming a lot of memory, which are not being used
by our method. Hence for a better instantiation of the scheme, without the un-
necessary components of context, our method will require less memory than the
diagonal-based method.

Advantages and Limitations of Our Method In Figure 2, we summarize
comparison results of the total time of both our method and the diagonal-based
method for secure matrix-vector multiplications A1×· · ·×A`−1×v from Table 2.
In the following, we shall discuss advantages and limitations of our method (the
same discussion holds for secure matrix multiplications):

Advantages As seen from Table 2 and Figure 2, our method is much faster than
the diagonal-based method for ` = 2, 3 and 4. This is mainly due to that as
described in Section 3, our method basically requires (`− 1) homomorphic mul-
tiplications over every thread while the diagonal-based method requires at least

18



m(`−1) homomorphic multiplications and (expensive) rotations, where m is the
size of every square matrix Ai. More precisely, our method takes O(log `) suc-
cessive multiplications while the diagonal-based method takes O(`) successive
multiplications. Hence a considerably large L is required for the diagonal-based
method, as a result, a large N is required for security considerations. This is why
for the slopes in Figure 2 for the diagonal-based method is much larger than ours
for larger `. We also see from Table 2 that encryption time of our method is con-
siderably faster than the diagonal-based method (expensive encoding encryption
in the diagonal-based method also makes the performance slow). This is due to
that our method can pack a matrix (or a vector) into a single ciphertext, but
the diagonal-based method can only pack a row or column vector into slots.

Limitations For large ` such as ` ≥ 8, we predict that our method would be
slower than the diagonal-based method. This is due to that huge N = 2n with
2-power n is required in our method while flexible primes N can be chosen in
the diagonal-based method. Furthermore, since our packing method is different
for each matrix Ai, our method does not allow to operate packed ciphertexts
flexibly. For example, we can not change the order of matrices for multiplications
in our method as described in Remark 1. On the other hand, since the diagonal-
based method can pack a row or column vector of a matrix in the same way, it
enables to operate packed ciphertexts more flexibly over HElib with high-level
procedures for data-movement over slots (see [15]).

5 Conclusion

We generalized Duong et al.’s packing method [9] for secure multiple matrix mul-
tiplications A1×· · ·×A` with integer entries over the BGV scheme. Our method
can pack a matrix into a single ciphertext while the diagonal-based method im-
plemented in HElib can only pack a row or column vector. Furthermore, our
method enables us to perform secure matrix multiplications by only a few ho-
momorphic multiplications over packed ciphertexts. In particular, our method
makes use of the homomorphic property over the native plaintext space of the
BGV scheme while the diagonal-based method uses plaintext slots, suitable for
SIMD. Our experimental results showed that our method is much faster than the
diagonal-based method implemented in HElib for small ` such as ` = 2, 3 and 4
(our method might be slower for large ` ≥ 8). Compared to the diagonal-based
method, ours is not flexible for operating matrices in encrypted format, but it
requires much less memory. Therefore we hope that our method would be useful
in evaluating a fixed circuit including matrix multiplications.

Acknowledgment

This work was supported by JST CREST Grant Number JPMJCR14D6, Japan.
This work was also supported by JSPS KAKENHI Grant Number 16H02830.

19



References

1. Dan Boneh, Craig Gentry, Shai Halevi, Frank Wang, and David J Wu. Private
database queries using somewhat homomorphic encryption. In Applied Cryptogra-
phy and Network Security–ACNS 2013, volume 7954 of Lecture Notes in Computer
Science, pages 102–118. Springer, 2013.

2. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ci-
phertexts. In Theory of Cryptography–TCC 2005, volume 3378 of Lecture Notes in
Computer Science, pages 325–341. Springer, 2005.

3. Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved secu-
rity for a ring-based fully homomorphic encryption scheme. In Cryptography and
Coding–IMACC 2013, volume 8308 of Lecture Notes in Computer Science, pages
45–64. Springer, 2013.

4. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. ACM Transactions on Computation
Theory (TOCT) - Special issue on innovations in theoretical computer science 2012
- Part II, 6(3):13, 2014.

5. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In Advances in Cryptology–
CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 505–524.
Springer, 2011.

6. Jung Hee Cheon, Miran Kim, and Myungsun Kim. Optimized search-and-compute
circuits and their application to query evaluation on encrypted data. IEEE Trans-
actions on Information Forensics and Security, 11(1):188–199, 2016.

7. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster
fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In Advacens
in Cryptology–ASIACRYPT 2016, volume 10031 of Lecture Notes in Computer
Science, pages 3–33. Springer, 2016.

8. Ana Costache and Nigel P. Smart. Which ring based somewhat homomorphic
encryption scheme is best? In Topics in Cryptology–CT-RSA 2016, volume 9610
of Lecture Notes in Computer Science, pages 325–340. Springer, 2016.

9. Dung Hoang Duong, Pradeep Kumar Mishra, and Masaya Yasuda. Efficient secure
matrix multiplication over LWE-based homomorphic encryption. Tatra Mountains
Mathematical Publications, 67(1), 2016.

10. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive, Report 2012/144, 2012.

11. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Symposium
on Theory of Computing–STOC 2009, pages 169–178. ACM, 2009.

12. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption
with polylog overhead. In Advances in Cryptology – EUROCRYPT 2012, volume
7237 of Lecture Notes in Computer Science, pages 465–482. Springer, 2012.

13. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the
AES circuit. In Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture
Notes in Computer Science, pages 850–867. Springer, 2012.

14. Shai Halevi and Victor Shoup. Design and implementation of a homomorphic-
encryption library, 2013.

15. Shai Halevi and Victor Shoup. Algorithms in HElib. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology – CRYPTO 2014, pages 554–571, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

16. Shai Halevi and Victor Shoup. Helib https://github.com/shaih/HElib, 2014.

20



17. Shai Halevi and Victor Shoup. Faster homomorphic linear transformations in
HElib. Cryptology ePrint Archive, Report 2018/244, 2018.

18. Tancrede Lepoint and Michael Naehrig. A comparison of the homomorphic encryp-
tion schemes FV and YASHE. In Progress in Cryptology–AFRICACRYPT 2014,
volume 8469 of Lecture Notes in Computer Science, pages 318–335. Springer, 2014.

19. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption. In
Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing–
STOC 2012, pages 1219–1234. ACM, 2012.

20. Wenjie Lu, Shohei Kawasaki, and Jun Sakuma. Using fully homomorphic encryp-
tion for statistical analysis of categorical, ordinal and numerical data (this is the
full version of the conference paper presented at NDSS 2017). IACR Cryptology
ePrint Archive, Report 2016/1163, 2016.

21. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. Journal of the ACM (JACM), 60(6):43, 2013.

22. Pradeep Kumar Mishra, Dung Hoang Duong, and Masaya Yasuda. Enhancement
for secure multiple matrix multiplications over ring-LWE homomorphic encryption.
In International Conference on Information Security Practice and Experience–
ISPEC 2017, volume 10701 of Lecture Notes in Computer Science, pages 320–330.
Springer, 2017.

23. Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic
encryption be practical? In Proceedings of the 3rd ACM Workshop on Cloud Com-
puting Security Workshop–CCSW 2011, pages 113–124. ACM, 2011.

24. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Advances in Cryptology–EUROCRYPT 1999, volume 1592 of Lecture
Notes in Computer Science, pages 223–238, 1999.

25. Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

26. Nigel P Smart and Frederik Vercauteren. Fully homomorphic SIMD operations.
Designs, codes and cryptography, 71(1):57–81, 2014.

27. The PARI Group, Bordeaux. Pari/gp https://pari.math.u-bordeaux.fr/

download.html.
28. Lihua Wang, Yoshinori Aono, and Le Trieu Phong. A new secure matrix multi-

plication from ring-LWE. In International Conference on Cryptology and Network
Security–CANS 2017. to be published.

29. Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and
Takeshi Koshiba. Secure pattern matching using somewhat homomorphic encryp-
tion. In Proceedings of the 2013 ACM workshop on Cloud computing security
workshop–CCSW 2013, pages 65–76. ACM, 2013.

30. Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and
Takeshi Koshiba. New packing method in somewhat homomorphic encryption and
its applications. Security and Communication Networks, 8(13):2194–2213, 2015.

31. Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and
Takeshi Koshiba. Secure statistical analysis using RLWE-based homomorphic en-
cryption. In Australasian Conference on Information Security and Privacy–ACISP
2015, volume 9144 of Lecture Notes in Computer Science, pages 471–487. Springer,
2015.

21


