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Abstract. In this paper, we analyze the security of an end-to-end encryption scheme (E2EE)
of LINE, a.k.a Letter Sealing. LINE is one of the most widely-deployed instant messaging
applications, especially in East Asia. By a close inspection of their protocols, we give sev-
eral attacks against the message integrity of Letter Sealing. Specifically, we propose forgery
and impersonation attacks on the one-to-one message encryption and the group message
encryption. All of our attacks are feasible with the help of an end-to-end adversary, who has
access to the inside of the LINE server (e.g. service provider LINE themselves). We stress
that the main purpose of E2EE is to provide a protection against the end-to-end adversary.
In addition, we found some attacks that even do not need the help of E2E adversary, which
shows a critical security flaw of the protocol. Our results reveal that the E2EE scheme of
LINE do not sufficiently guarantee the integrity of messages compared to the state-of-the-art
E2EE schemes such as Signal, which is used by WhatApp and Facebook Messenger. We also
provide some countermeasures against our attacks. We have shared our findings with LINE
corporation in advance. The LINE corporation has confirmed our attacks are valid as long
as the E2E adversary is involved, and officially recognizes our results as a vulnerability of
encryption break.
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1 Introduction

1.1 Background

An end-to-end encryption (E2EE) is a secure communication scheme for messaging applications
where the only people who are communicating can send and read the messages, i.e. no other party,
even service providers of communication system, cannot access to the cryptographic keys needed to
encrypt the message, and decrypt the ciphertexts. After Snowden’s revelation, the E2EE receives a
lot of attentions as a technology to protect a user privacy from mass interception and surveillance
of communications carried out by governmental organizations such as NSA (National Security
Agency).

Apple first supported an E2EE scheme in their widely-deployed messaging application, iMes-
sage, where a message that is compressed by gzip is encrypted by a sender’s secret key and dis-
tributed with a digital signature for the guarantee of the integrity to the recipient. Unfortunately,
several security flaws of the initial iMessage are pointed out in 2016 [26]. A Signal is a new E2EE
protocol for instant messaging. The core of the Signal protocol has been adopted by WhatsApp,
Facebook Messenger, and Google Allo. A novel technology called ratcheting key update structure
enables advanced security properties such as perfect forward secrecy and so-called post-compromise
security [21]. Since Signal is an open-source application and its source code for Android and iOS
are available on Github [31], its security has been studied well from the cryptographic commu-
nity [19,20,32].

LINE is one of the most widely-deployed messaging applications, especially in East Asia. The
number of monthly active users of four key countries, namely Japan, Taiwan, Thailand and In-
donesia is about 217 million in January 2017. Their market is still growing, and at the same time
their applications are expanding such as banking, payment, shopping, music services. Indeed, it
is currently a key platform for any IT services in these countries. For example, Japanese govern-
ment recently launched a portal cite for management of Japanese social security number, called
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“My number” or “Individual number”, in cooperation with LINE [7]. In fact, LINE dominates the
market of mobile messaging application in Japan. It is estimated that more than 85% smartphone
users in Japan are regularly using LINE in 2017 [8].

In 2015, LINE announced their new E2EE scheme, called Letter Sealing, for a pairwise secure
communication between the end users [6]. It became a default feature in 2016, and was also de-
ployed for the group messaging service. While the specification of Letter Sealing was initially not
public, after some details were revealed by the reverse engineering [23], a whitepaper describing
the high-level specification was published in 2016 [29]. Letter Sealing consists of key generation
and registration, client-to-client key exchange, and message encryption phases. To the best of our
knowledge, there is only one result of its security analysis by Espinoza et. al [24] which pointed
out the lack of forward secrecy and the feasibility of reply attack.

1.2 Our Contribution

In this paper, we show several attacks on the E2EE scheme of LINE by a close inspection of
their protocols described in the whitepaper [29] and some reverse engineering results publicly
available [23, 24]. Our attacks exploit vulnerabilities of the group messaging protocol, the key
exchange phase, and the message encryption phases, respectively. Some of them were already
pointed out in the previous work [23,24].

Impersonation and Forgery Attacks on Group Message Encryption. We show imperson-
ation and forgery attacks on the group message encryption scheme by a malicious group member,
who is a legitimate member of a target group but aims to break the integrity of the message sent
by an honest group member. These attacks exploit a vulnerability of the key derivation phase in
the group message encryption such that any group member, even a malicious member, is able to
derive an encryption key of another member for a group messaging without any knowledge of a
target member’s secret. By exploiting this vulnerability, a malicious member is able to send a mes-
sage to a group as if it was from an honest member, that is, an impersonation attack. Moreover,
if a malicious member colludes with an E2E adversary, who bypasses client-to-server encryption
(e.g. LINE themselves) or if a malicious member herself is the E2E adversary, she freely modifies
a message sent by an honest member without being noticed by the other members about the fact
that it was tampered, that is, a forgery attack.

Considering a rapid growth of group message services of LINE, there is a significant risk that
a group member is malicious. We believe that our attacks crucially threaten the fundamental
security of the group messaging service of LINE. Indeed, other major messaging applications based
on Signal (e.g. WhatApp and Facebook Messenger) and Apple’s iMessage guarantee the security
against a malicious member for group messaging [19,32].

Malicious Key Exchange Attacks. We propose a malicious key exchange of the one-to-one
E2EE to mount impersonation attacks by a malicious user who is a legitimate member of a target
group but aims to break the integrity of the message in the other sessions. Exploiting vulnerabilities
both of the key exchange and the message encryption phases, a malicious user C establishes a
malicious E2EE session with a victim B in which a shared secret between C and B is the same
as the one used in a different E2EE session between B and another victim A. Then, the malicious
user C is able to impersonate victims A and B. More specifically, the malicious user C is able to

– send a message, that is originally sent to C from B, to A as a message from B (impersonation
attack 1),

– send a message, that is originally sent to B from A, to B as a message from C (impersonation
attack 2).

Unlike the replay attack [24], our attacks can send a message derived in a session to a different
session. It might cause crucial security problems, e.g. a private information of the victim might be
unintentionally disclosed.

Our impersonation attacks are possible by a malicious user who has a trusted relationship
with one of the two victims between which a pairwise secure channel is already established. For
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Table 1. Comparison with previous [24] and our attacks: E2E is an adversary who has access to
the inside of the LINE server. Malicious member is a legitimate member of a target group but tries
to break the integrity of the message sent by an honest member. Malicious user is an end user who
is trusted by the victim B where the victim A and B have a pairwise secure connection which is
an attack target by the malicious user.

Target Attack Type Adversary Reference

One-to-One Encryption Replay E2E [24]
Group Encryption Impersonation Malicious Member Sec. 4.1

Forgery Malicious Member w/ E2E Sec. 4.2
One-to-One Encryption Impersonation 1 Malicious User Sec. 5.2

Impersonation 2 Malicious User w/ E2E Sec. 5.3
One-to-One and Forgery E2E Sec. 6

Group Encryption

example, a victim A and the malicious user C are B’s friend in the real world, or are company’s
accounts that B can trust, while the victim A does not need to trust C, and might even not know
C. Importantly, even a normal user, who is not an E2E adversary (LINE), is able to perform the
impersonation attack 1 as long as the above assumption holds. We think that these situations can
happen in the real-world use cases of LINE. On the other hand, for the impersonation attack 2, a
malicious user needs to collude with E2E adversary (LINE) to bypass the server-client encryption.

Forgery Attack on Authenticated Encryption Scheme. Finally, we evaluate the security of
an authenticated encryption (AE) scheme used in the message encryption phase, which combines
AES-256 and SHA-256 in a non-standard way. We show that the E2E adversary is able to mount
a forgery attack, i.e. the adversary made a forgery message which is accepted as valid by the
recipient. Compared to the previous attacks, this forgery attack does not require the assumption
that the adversary has a trusted relation to the victim in advance. Thus, any user in the one-to-one
and group message encryptions could be the victim of this attack. Furthermore, we give a rigorous
security analysis of AE in LINE as a general-purpose authenticated encryption.

This attack is not much practical in terms of the time complexity of the attack, because it needs
2b offline computation and 2d online computation for b+ d = 128, implying 64-bit security. The
popular AE schemes using 128-bit block cipher also have 64-bit security, however, this is about
the online data complexity (i.e. it is secure if one key is used with data smaller than 264). Thus,
the implications are quite different. For example, AE in LINE can be broken with 280 offline
computation plus 240 online computation, which is not the case of generic composition of CBC
mode using AES-256 plus HMAC-SHA-256, as used by Signal.

The attack with 2b offline computation and 2d online computation for b+d = 128 may be within
reach by powerful national organizations such as NSA. Compared to AE schemes used in Signal
and the stare-of-the-art AE schemes, we show that AE in LINE does not provide a sufficient-level
security from the cryptographic point of view.

Summary. Table 1 summarizes our results. All of our attacks are possible for the E2E adversary,
which is the original target adversary of the E2EE scheme, and more powerful than the previous
one [24] as impersonation and forgery attacks violate the integrity of the message, which is one
of the fundamental security properties. Some of our attacks are performed by not only the E2E
adversary but also weaker adversaries such as a malicious group member and a malicious user.
Therefore, E2EE of LINE does not provide the integrity of the message, which is one of the
fundamental security requirements of E2EE.

Responsible Disclosure. In December 2017, we delivered our results in this paper to LINE
Corporation via the LINE security bug bounty program. They acknowledged that all of our attacks
are feasible with the help of E2E adversary, and officially recognized our findings as a vulnerability
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of encryption break in the bug bounty program. LINE Corporation told us (and granted us to
make it public) that they have a plan to change the key exchange protocol, the group messaging
scheme, and the authenticated encryption scheme to improve the security of Letter Sealing in the
near future.

On the other hand, they told us that our attacks by a malicious member (Section 4.1) and
a malicious user (Section 5.2) not colluding with LINE Corporation (i.e. E2E adversary) can be
mitigated by certain server-side countermeasures. For instance, a malicious key exchange can be
prevented by checking the duplication of public keys in the LINE key server. Since they hope to
keep the details of their server-side countermeasures secret, we will not explain them here. We
consider that it seems difficult to directly apply our attacks without the help of the E2E adversary
after we informed LINE Corporation in December 2017. That is, these attacks are now applicable
only with the help of E2E adversary who can bypass the server-side countermeasures.

We remark that the Signal protocol guarantees these securities against a malicious member
and a malicious user without relying on the server-side countermeasures, meaning that the E2EE
cryptographic protocol prevents these attacks. This is a significant difference from the security
point of view, because the server side countermeasures cannot be formally analyzed by the 3rd
party, and cannot rely on the well-evaluated computational hard problems. In addition, server-side
countermeasures are not an essential protection for the E2EE, since the server may be malicious
and the clients do not have a mean to verify if they are correctly implemented by the server.
Otherwise, the server-client encryptions are enough.

2 Specification of E2EE Scheme of LINE

In this section, we give a high-level description of the E2EE scheme of LINE, called Letter Sealing.
The whitepaper published by LINE Corporation [29] describes two types of E2EE schemes: a
one-to-one message encryption and a one-to-N group message encryption.

2.1 One-to-One Message Encryption

The one-to-one message encryption scheme of LINE consists of key generation and registration,
client-to-client key exchange, and message encryption phases.

Key Generation and Registration Phase. When a LINE application is launched at the first
time, each client application generates a key pair of (sk, pk) for the key exchange, where sk
and pk are a secret key and a public key for Elliptic curve Diffie–Hellman (ECDH) based on
Curve25519 [13], respectively. The client stores the secret key sk into application’s private storage
area, and registers the public key pk with a LINE messaging server. The server associates the
public key pk with the currently authenticated client and sends back a unique key ID to the client.
Each key ID is bound to a user and includes the version information of the key.

Client-to-Client Key Exchange Phase. To start a session for exchanging messages between a
client and a recipient, the client shares the key called SharedSecret with the recipient as follows.

1. Retrieve the recipient public key pkr from a LINE messaging server.
2. Generate a shared secret SharedSecret from the public key pkr and a client secret key skc by

ECDH over Curve25519 as

SharedSecret = ECDHCurve25519(skc, pkr),

where ECDHCurve25519 is a key exchange function (see [13] for details).

At the same time, the recipient generates the same SharedSecret with the recipient secret key skr
and the client public key pkc as

SharedSecret = ECDHCurve25519(skr, pkc).

Figure 1 illustrates this key exchange phase.
To make sure that the retrieved public key is a correct one, the fingerprint of a recipient’s public

key can be displayed in the device. Users can verify it out-of-band.
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Fig. 1. Key exchange phase based on ECDH over Curve25519

Message Encryption Phase. A message is encrypted by a unique pair of a 256-bit key Ke and
a 128-bit IV (Initialization Vector) IVe, generated for each message. Ke and IVe are derived from
SharedSecret and a randomly-chosen 8-byte salt as follows.

Ke = SHA256(SharedSecret ‖ salt ‖ Key), (1)

IVpre = SHA256(SharedSecret ‖ salt ‖ IV), (2)

IVe = IV left
pre ⊕ IV right

pre . (3)

Here, SHA256(·) denotes SHA-256 hash function that outputs a 256-bit digest from an arbitrary-
length input [5], and IVpre is a 256-bit variable, and IV left

pre and IV right
pre are left and right 128-bit

values of IVpre, respectively, i.e. IVpre = IV left
pre ‖ IV right

pre . The constants Key and IV denote the
corresponding ASCII strings in base64 [23].

A message M is encrypted with Ke and IVe, and a ciphertext C is obtained as

C = CBC[E](Ke, IVe,M),

where CBC[E](K, IV,M) denotes CBC encryption mode with AES-256 that takes a 256-bit key
K and a 128-bit IV IV , and an arbitrary-length message M as inputs, and outputs a ciphertext
C. See [1, 2] for details of AES-256 and CBC mode. A padding scheme is needed in case the bit
length of M is not a multiple of 128, however it is not described in the whitepaper.

Next, the ciphertext C is hashed by a variant of SHA256 called SHA′256 defined as

V = SHA256(C), and Tpre = V left
pre ⊕ V right

pre ,

where V is a 256-bit value, and V left
pre and V right

pre are left and right 128-bit values of V , and Tpre is
a 128-bit variable. Then, a 128-bit message authentication tag T is computed by

T = E(Ke, Tpre),

where E(K,M) denotes an encryption of 128-bit M using AES-256 with 256-bit key K. Figure 2
shows the overview of the authenticated encryption scheme of LINE.

Finally, the client sends the packet D including the ciphertext C and the tag T with associated
data (AD). The form of packet D is as follows.

D = version ‖ content type ‖ salt ‖C ‖T ‖
sender key ID ‖ recipient key ID. (4)
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Fig. 2. Authenticated encryption scheme of LINE

Here, AD consists of version, content type, sender key ID and recipient key ID. The first two fields
serve to identity the Letter Sealing version used to create the message. The recipient uses the
sender key ID to retrieve the public key used to encrypt the message. The recipient key ID value
helps to verify that the message can be decrypted using the current local private key. Messages
that are processed by a previous key pair (such as one used before migrating to the current device)
cannot be decrypted. To facilitate a device migration, the client automatically requests the recent
messages processed by a previous key pair to be resent. Once the recipient received the packet
D from the client, he derives the same key Ke, and IV IVe from the shared secret SharedSecret
as described above. Next, he calculates the tag T from the received ciphertext C, and compares
it with the tag value included in the message. If they match, the contents of the message M is
decrypted and displayed. Otherwise, the message is discarded.

2.2 One-to-N Group Message Encryption

In the one-to-N group messaging, a group key Kg is shared with all group members via one-to-one
message encryption channels. The first member who starts a end-to-end group messaging generates
Kg and shares it with all group members as follows.

1. Generate a pair of a secret key skg and a public key pkg for ECDH over Curve25519, where
skg is used as a group key Kg.

2. Retrieve public keys of all group members from the LINE server, and calculate N shared
secrets SharedSecret for all members from own private key and a public key of each member
to establish a one-to-one message encryption to each member.

3. Broadcast kg to all members via one-to-one message encryption channels.

Whenever members join or leave the group, Kg is renewed and shared with the group.

Once Kg is shared with all members, a member A who wants to send a message to the group
derives a 256-bit encryption key KA

e and a 128-bit IV IV A
e from Kg and A’s public key pkA as

6



follows.

SharedSecretAg = ECDHCurve25519(Kg, pkA), (5)

Ke = SHA256(SharedSecretAg ‖ salt ‖ Key), (6)

IVpre = SHA256(SharedSecretAg ‖ salt ‖ IV), (7)

IVe = IV left
pre ⊕ IV right

pre . (8)

The message data is encrypted and formatted as described in the one-to-one message encryption
with the only difference that the recipient key ID field is replaced with the key ID of the group’s
shared key.

3 Security Model of E2EE

In this section, we explain adversary models and security requirements of E2EE.

3.1 Adversary Model

In a E2EE scheme, no one except a client and a recipient can be trusted, i.e. there is no any trusted
third party, and even a service provider (e.g., LINE) is a potential adversary. In this setting, the
client-to-server transport encryption (cf. Section 3 in [29]) is useless, as the adversary can control
the LINE server which stores the secret key for the client-to-server transport encryption. We call
such an adversary E2E adversary.

Definition 1 (E2E adversary) An E2E adversary is able to intercept, read and modify any
messages sent over the network, and has full access to the messaging server, i.e. bypasses the
client-to-server encryption.

Generally, the E2E adversary is assumed to have a very strong computational power to cap-
ture the powerful national organizations for intelligence, such as NSA and GCHQ (Government
Communications Headquarters), because one of the objectives of E2EE is to protect user privacy
from the mass interception and surveillance of communications against such organizations. Indeed,
WhatsApp was unable to comply with Brazilian government demands for user’s plaintext mes-
sages [17], because of its E2EE. Apple also opposes the order from FBI to unlock the iPhone due
to the basic principle of the E2EE [22]. Previous replay attack on LINE [24] also assumes the E2E
adversary. In addition, we define a weaker adversary, malicious user.

Definition 2 (Malicious User) An malicious user is a legitimate of one-to-one E2EE but she
tries to break one of the subsequently defined security goals of the other E2EE session by maliciously
manipulating the protocol.

A malicious user is much weaker than the original targeted adversary of the E2E adversary, because
any user is potentially a malicious user. We will show that even such a weaker adversary than the
original target of E2EE can attack the E2EE protocol of LINE.

The existence of malicious group member in One-to-N group message encryption must be taken
into consideration, as already discussed in some recent papers [19,32].

Definition 3 (Malicious group member) A malicious group member, who is a legitimate group
member and possesses a shared group key, tries to break the subsequently defined security goals by
deviating from the protocol.

Note that a malicious user and a malicious group member can collude with the E2E adversary
in the security model of E2EE, or the E2E adversary herself can be a malicious user and a malicious
group member.
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Fig. 3. Impersonation attack

3.2 Security Goals

We explain the following two fundamental security goals of E2EE.

Definition 4 (Confidentiality) Only the two participants of pair-wise messaging or legitimate
group member of group messaging can see the message plaintext.

Definition 5 (Integrity) If a message is received and successfully validated, then it was indeed
sent by the given sender, i.e., other users cannot plant messages into it and they can not modify
it.

We remark that more advanced security properties of E2EE can be found in the literature, such
as forward secrecy, post-compromise security, and traceable delivery [19–21, 32]. Still, an E2EE
scheme should guarantee at least the confidentiality and the integrity against the E2E adversary.
Since a malicious user and a malicious group member are weaker than the E2E adversary, a secure
E2EE scheme should also be secure against any attack by them.

Since a malicious member has a group shared key Kg for the group message encryption, she is
able to decrypt any group message. Thus, it is natural to assume that her purpose is to break the
integrity.

4 Impersonation and Forgery Attacks on Group Message

This section gives impersonation and forgery attacks on the group message encryption by a mali-
cious group member. Both attacks exploit a following vulnerability of the key derivation phase in
the group message encryption.

Vulnerability 1 (Key Derivation of Group Message) The key and IV for the symmetric-key
encryption are derived from a group-shared key Kg and sender’s public information.

A group member A, who wants to send a message to a group, first computes a shared secret
SharedSecretAg from a group key Kg and sender’s public key pkA. Since a malicious member also
possesses Kg and is able to retrieve sender’s public key pkA from the LINE server, she can compute

SharedSecretAg by which, thus is able to derive KA
e and IV A

e as shown in Equations (6) and (8).
Hence, a malicious member is able to compute any group member’s key and IV for the group
message.

4.1 Impersonation Attack

Exploiting Vulnerability 1, a malicious group member impersonates an honest member A in the
group message encryption as follows.
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1. Retrieve A’s public key pkA from the LINE server.

2. Derive KA
e and IV A

e from a group-shared key Kg, pkA and a randomly-generated salt.

3. Generate a ciphertext C and a tag T of the message M that the malicious group member
chooses.

4. Prepare a packet D following the Equation (4) by properly choosing AD where sender key ID
is set to the victim A’s one.

5. Broadcast D to all members via the LINE server.

Figure 3 shows the overview of our impersonation attack. Since the tag T is generated by the valid
key of the member A, group members except A do not notice that it is created by the malicious
member. When A sees this fake message, A should notice, however, there is no formal way to
refute. Therefore, this attack reveals that the group message encryption of LINE does not provides
the authenticity of the message against a malicious member.

Furthermore, if the malicious member colludes with the LINE server (E2E adversary), it is
possible to broadcast D, made by the malicious member, to all members except the victim A.
Then, the victim A does not notice that such a attack is mounted by the malicious member.

4.2 Forgery Attack

If a malicious member intercepts a group message that the honest member A sends, she is able to
mount a forgery attack as follows (see also Fig. 4).

1. Intercept a packet D sent by the member A, by watching the communication between the
victim A and the LINE server.

2. Compute KA
e and IV A

e from a group key Kg and a public key pkA, and salt which is derived
from D.

3. Decrypt it with KA
e and IV A

e and modify the message M of the victim A.

4. Re-encrypt the modified message M ′ with KA
e and IV A

e to generate a new ciphertext C ′ and
a tag T ′.

5. Broadcast D′ including C ′, T ′ and associated data to all members except A, and send the
original D to the victim A via the LINE server.

To mount the above attack, a malicious member (C) must intercept packet D between the
victim A and the server before it is sent to all members by the LINE server. Since this channel
is protected by the client-to-server transport encryption, the malicious member is not able to get
D that is encrypted by only KA

e and IV A
e . Recall that the E2E adversary is able to bypass the

client-to-server transport encryption. If the malicious member colludes with the E2E adversary or
the malicious member herself is the E2E adversary, this forgery attack is successful. Furthermore,
since the E2E adversary sends unmodified packet D to only the victim A, the victim A does not
notice the forgery attack is mounted. Thus, this attack shows that the E2EE of group messages
of LINE does not satisfies the integrity of the message when a malicious member colludes with the
E2E adversary.

4.3 Discussion

The specification of LINE currently allows a group of up to 500 members (as of April 2018), and
the applications of the group messaging service are rapidly expanding, from private to business,
banking, advertising, payments, and social network service. In some use cases, it is hard to strictly
check the identity of group members, e.g. an online group for common interest and hobby. We
believe that there is a significant risk that a group member is malicious. Furthermore if the LINE
official account is involved in the target group, the scenario of the forgery attack, i.e., malicious
member collude with the E2E adversary, is easily realized. In this case, the impersonation attack
is also feasible.
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Fig. 4. Forgery attack on the group message

4.4 Countermeasures

Several countermeasures have been employed by the messaging applications other than LINE. The
E2EEs of WhatsApp and Facebook Messenger, which are the most popular messaging applications,
are based on Signal protocol [19, 20]. In the group message of the Signal protocol, each group
member sends Sender key to all group members via pair-wise secure E2EE at the first time. Here,
Sender key contains an encryption key of symmetric-key encryption schemes (e.g. AES-CBC) and a
verification key of the digital signature of the sender. When a member sends a message to a group,
he encrypts the message using an ephemeral key that is derived from the encryption key, and
signs the ciphertext by sender’s signature key. The receiver is able to check whether the message
is from the sender by verifying the signature by the sender’s verification key in Sender key. We
refer to [20] for the details of key exchange protocol. Since a malicious group member does not
knows target sender’s signature key, she is not able to make a signature of the ciphertext. Thus,
our attacks are not applicable to the Signal protocol. Attaching the sender’s digital signature is a
typical countermeasure against our attacks.

Apple’s iMessage implements group messaging using pairwise channels. That is, a message is
sent to all group members via each one-to-one encryption channel. Although this also thwarts our
attacks, it might be less efficient than Signal protocol.

5 Malicious Key Exchange Attack on One-to-One Message Encryption

This section presents a malicious key exchange of the one-to-one message encryption, which leads
to an impersonation attack. Our attacks exploit the following vulnerabilities of the key exchange
and the message encryption phases.

Vulnerability 2 (No key confirmation) In the client-to-client key exchange phase, there is no
key confirmation.

In the client-to-client key exchange phase, after individually computing a shared secret SharedSecret
in both client and recipient sides, there is no key confirmation phase between the client and the
recipient. Thus, even if SharedSecret is not correctly shared between the client and the recipient,
the client is not able to confirm that the recipient possess a shared secret, and vice versa.

Vulnerability 3 (Integrity of packet) In the message encryption phase, the integrity of the
elements of associated data in a packet D, such as sender key ID and recipient key ID, is not
guaranteed.
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Fig. 5. Malicious key exchange

When computing a message authentication tag, T , SHA′256(·) takes a ciphertext C as a sole input,
and the associated data is just appended to the ciphertext C and the tag T . Hence, the recipient
is unable to verify the integrity of associated data. This vulnerability has been pointed out in the
previous works [23,24], and used for replay attacks.

5.1 Malicious Key Exchange

Our malicious key exchange is a variant of unknown key share attack [15]. An adversary (malicious
user) C shares a secret key with a victim B where the shared secret key is the same as one used
in a different session between victims A and B, while the victim A does not know the fact. Our
attack is performed under the following assumptions.

Assumption 1 Two victims A and B have already established a pairwise E2EE session.

Assumption 2 An adversary (malicious user) C is able to establish another E2EE session with
B which has not been established yet.

In other words, a victim B trusts both a victim A and a malicious user C, e.g. A and C are B’s
friend in the real world, or are company’s accounts that B can trust, while the victim A does not
need to trust C and might even not know the adversary C. Under these assumptions, C attacks on
the E2EE session between A and B. Specifically, C tries to establish a fake E2EE session with B
where the key and IV are the same as those used in the A-B session.

To establish this fake session, C performs the following procedures in the key generation and
registration phases by exploiting Vulnerability 2 (see Fig. 5).

1. Retrieve a public key pkA from the LINE server.

2. Registers pkA in the LINE messaging server as C’s public key.

3. Request a new E2EE session with B.

After that, the victim B computes a shared secret SharedSecretBC for the one-to-one, E2EE between
B and C as

SharedSecretBC = ECDHCurve25519(skB , pkA).

which is the same as the shared secret between A and B. Here, C does not know the value of
SharedSecretBC , because she does not know skA. Nevertheless, due to the lack of the key confirma-
tion (Vulnerability 2), the protocol will not abort, and an E2E session will be established between
B and C.
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Fig. 6. Impersonation attack against B

5.2 Impersonation Attack 1: Impersonating B

After the malicious key exchange, the malicious user C is able to send a packet to A which was
originally sent from B to C by impersonating B.

1. Receive a packet D which is sent from B to C.

2. Create a new packet D′ where recipient key ID is modified from C to A.

3. Send the packet D′ to A as a message from the malicious user C via the LINE server.

Figure 6 shows the overview of impersonation attack against B. Due to the lack of the integrity
check for recipient key ID in the associated data (Vulnerability 3), the victim A believes that the
message is sent from B instead of C while B believes that the message is sent to C and does not
notice the message is sent to A.

5.3 Impersonation Attack 2: Impersonating A

The malicious user C can also send a message to B by impersonating A.

1. Intercept a packet D which is sent from A to B.

2. Create a new packet D′ where sender key ID is modified from A to C.

3. Send the packet D′ to B as a message from the adversary C.

If the adversary colludes with an E2E adversary or she herself is an E2E adversary, she can
bypass the client-to-server encryption, and intercept a packet D. Indeed, a packet D is sent to B
from A via the LINE server.

5.4 Discussion

Our impersonation attack 1 is feasible as long as the assumption 1 and 2 hold. This implies that
even a normal user, who is not an E2E adversary, is able to mount the attack. Suppose that
the victim B sends a very personal request (e.g. asking for debt) to the malicious user C, then
C can send a request to the victim A by impersonating B. Then, B’s sensitive information is
unintentionally disclosed to A as a valid message from B. It is a significant problem of privacy.

The impersonation attack 2 is feasible if the assumption 1 and 2 hold and the client-to-server
encryption is bypassed. For example, if the LINE official account is an E2E adversary, this account
is able to mount the impersonation attack 2.
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Fig. 7. Impersonation attack against A

5.5 Countermeasures

There are several countermeasures against these attacks. The first one is to implement the key
confirmation phase after the key exchanges to get rid of Vulnerability 2. It prevents from the
adversary to mount a malicious key exchange, i.e. the message exchanging session does not start
if the two parties do not correctly share their secret values. Indeed, the key exchange protocol of
TLS1.3 provide a key confirmation [25], and prevents such attacks.

The second countermeasure is to guarantee the integrity of associated data by adding these to
a input of SHA′256(·) for computing a message authentication tag T , which is a common practice
for authenticated encryption, provided message authentication itself is secure. Then, even if the
malicious key exchange is succeeded, the adversary is not able to change sender key ID and recipient
key ID.

In Signal protocol [19,20], the computation of a shared secret in the key exchange phase involves
One-Time Pre Key, which is used only once. This changes the shared secret at every execution of
the key exchange even if the public keys are the same, thus our attacks do not work.

6 Security Evaluation of Message Encryption Scheme

This section evaluates the security of the authenticated encryption scheme in the message encryp-
tion phase (hereafter, we call it LINE-AE), and presents a forgery attack by the E2E adversary. Our
forgery attack exploits the vulnerability of LINE-AE, which is an original authenticated encryption
scheme, i.e. it is not a standard scheme such as generic composition of an encryption and a message
authentication code (MAC), e.g. CBC mode and HMAC, or dedicated schemes (modes) such as
GCM [4] and CCM [3].

Compared to the previous attacks in Section 5, this forgery attack does not require the as-
sumption that the adversary has a trusted relation to the victim in advance. Thus, any user in the
one-to-one and group message encryptions could be the victim of this attack.

6.1 Authenticated Encryption: LINE-AE

As shown by Section 2.1, LINE-AE first encrypts a message by CBC mode with AES-256, and
generates a ciphertext C. After that, a tag T for the ciphertext C is computed as follows: the
ciphertext C is hashed by SHA′256(C), and then Tpre, which is an output of SHA′256(C), is encrypted
by ECB mode with AES-256.

Let LINE-MAC denote the tag generation function, that is, E(Ke,SHA′256(C)). Our attack
exploits the following vulnerabilities of LINE-AE.

Vulnerability 4 (LINE-MAC) A 128-bit intermediate value Tpre of LINE-MAC is computable
without any secret information.
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In LINE-MAC, SHA′256(·) is a public function for which anyone is able to evaluate. A set of in-
put/output pairs of SHA′256(·) can be computed by the adversary without any knowledge of the
256-bit key.

Vulnerability 5 (Same Key in encryption and LINE-MAC) In the CBC encryption and LINE-
MAC, the same key Ke is used for AES-256.

For each message encryption, a 256-bit key Ke is given to not only AES-256 for CBC mode but
also AES-256 ECB mode for LINE-MAC. This vulnerability was already pointed out in the previous
works [23,24], though they did not find any actual attacks based on it.

6.2 Forgery Attacks

We propose a forgery attack on LINE-AE. Assuming the E2E session between victim A and B, an
E2E adversary collect the data between A and B and tries to create a forgery message for this
session.

In the offline phase, the adversary precomputes a set of pairs of input/output of (X,Y (=
SHA′256(X))) in LINE-MAC by exploiting Vulnerability 4. In the online phase, she obtains the
packets and extracts the sets of C, T and associated data sent by a victim, and she computes
pairs of (Tpre(= SHA′256(C)), T ) which are pairs of input/output of one-block AES-256. If Tpre

matches with Y computed in the offline phase, a new valid pair of input and output of LINE-MAC
is obtained as (X,T (= E(K,SHA′256(X)))) without knowing a 256-bit key K. If the adversary
sends the pair of (X,T ) with properly-chosen associated data, the victim A or B is not able to
detect whether it is made by the adversary. Our attack consists of offline and online phases, see
Figure 9). The detailed procedures are as follows.

Offline Phase.

1. Compute 2b pairs of input/output of (X,Y (= SHA′256(X))) in LINE-MAC.
2. Store these results into a table indexed by values of Y .

Online Phase.

1. Get 2d sets of C, T and associated data sent by a victim.
2. Compute Tpre (= SHA′256(C)) from a set of C, T and additional data.
3. Check whether Tpre collides with Y in the table created in the offline phase. If a collision exists,

obtain a new valid pair (X,T (= E(K,SHA′256(X)))) of LINE-MAC.
4. Repeat Steps 2 to 3 for all 2d sets of C, T and additional data .

Evaluation. The offline phase requires 2b hash computations and 2b memory. The online phase
requires 2d data and 2d hash computations. The success probability of our forgery attack is esti-
mated as 2−128+b+d. The whole time complexity (Time) is 2b + 2d and data complexity (Data) is
2d. Thus if Data ·Time ≥ 2128, our attack is successful with a high probability. We remark that the
order of the offline and online can be changed. If the online phase is first, the memory consumption
for storing (Tpre(= SHA′256(C)), T ) is 2d, and the offline phase does not requires memory.

This attack is not much practical in terms of the time complexity of the attack, because it
needs 2b offline computation and 2d online computation for b + d = 128, thus 64-bit security. The
popular AE schemes using 128-bit block cipher also have 64-bit security in terms of online data
complexity (i.e. it is secure if one key is used with data smaller than 264), however, the implications
are quite different. For example, AE in LINE can be broken with 280 offline computation plus 240

online computation, which is not the case of generic composition of CBC mode using AES-256 plus
HMAC-SHA-256, as used by Signal.

In the following, we will explain some idea how to efficiently collect the required data to make
our attack practical.
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Fig. 8. Forgery Attack

Multi-User Setting. The essence of our forgery attack is to find a matching pair of (X,Y ) and
(Tpre, T ) such that Y = Tpre. Here, (X,Y ), which is computed in the offline phase, is independent
from the key Ke used in the computation of (Tpre, T ). Thus, the precomutation table of (X,Y ) in
the offline phase can be used for any value of Ke in the online phase.

Since a encrypted key Ke is refreshed with a new salt by the key derivation function in each
encryption call, we assume that Ke is randomly chosen in each message. It means that in the
online phase, each (Tpre, T ) is generated by different values of Ke. Therefore, there is no difference
between single user setting, where an attack is successful if it compromises the security of a single
target user, and multiuser setting, where an attack is successful if it compromises the security of
one out of many users.

The multiuser setting enables increasing the number of available data for the E2E adversary. In
the case of LINE, since all messages are send to all recipients via the LINE servers, all transactions
of the E2EE are used for our attacks. In the multiuser setting, the adversary aims to make a forgery
message of one of multiple users.

The number of monthly active users of four key countries, namely Japan, Taiwan, Thailand
and Indonesia, is about 170 million (= 227.34) in 2017 [18]. Assuming that each user sends 500
message per each month, the number of all transactions of each month and year is estimated as
236.29 and 239.87, respectively.

Partial Known Plaintext Setting. Since each packet D, consisting of C, T and associated
data, gives only one pair of (Tpre(= SHA′256(C)), T ), to get 2d pairs of (Tpre(= SHA′256(C)), T ), 2d

packets are required.

Using the known plaintext setting and Vulnerability 5, the number of available pairs (Tpre(=
SHA′256(C)), T ) from each D can be increased. Suppose that 2z blocks of a plaintext are known,
2z−1 pairs of input/output of one-block AES-256 is obtained from a packet D, where an input of the
first block is not known because IVe is kept secret to the adversary. From Vulnerability 5, these in-
put/output pairs of one-block AES-256 can be used in the online phase as (Tpre(= SHA′256(C)), T ).
For example, assuming each packet D gives us four pairs of (Tpre(= SHA′256(C)), T ) on average,
the number of available pairs in each month and year is estimated as 238.29 and 241.87, respectively.
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Fig. 9. Forgery Attack

6.3 Discussion

Given 241.87 pairs of (Tpre, T ) in the one-year online phase, it requires 286.13 computations in the
offline phase for a successful forgery attack. At the time of this writing, a bitcoin mining hardware
which is capable of 8.6 TH/sec (= 239.65 hashing/sec) is available by only 1,000 dollars [33]. It
enables about 261 and 264.6 hashing operations in a month and one year, respectively. Thus, if the
adversary prepares 221.53 hardwares, 286.13 computations is feasible in one year. The cost is approx-
imated as about 3 billion dollars (3,070,410,245 dollars), which seems affordable for the national
organizations3. Also, the current Bitcoin mining cost for generation of one block is approximately
272 hashing, and it is done with about 15 minutes [14], as of April 2018. Hence, 286.13 computations
is feasible within one month if the adversary has a power of whole mining computers, though the
cost of network and memory is surely a barrier even with this hypothetical attack scenario.

We emphasize that our estimation is based on only commercially available ASIC hardware at
this time (April 2018). If the adversary (e.g. NSA) develops a dedicated hardware, the cost can be
further reduced. Also, the cost of such hardware is going to be cheaper with the development of
technology year by year. Thus, we conclude that LINE-AE is not sufficiently secure as the E2EE
scheme from the point of the view of a long term security.

6.4 LINE-AE as a General-Purpose Authenticated Encryption

If we take LINE-AE as a general-purpose AE, we expect it to have a sufficient level of security
in terms of standard AE security notions, i.e., privacy and authenticity [11, 12]. In this respect,
except the lack of authenticity of associated data (Vulnerability 3), the most significant shortage of
LINE-AE is its short salt. Apparently, 64-bit salt would collide after 232 encryptions, which leads to
a break in the privacy notion (confidentiality of plaintext) of AE. Besides, as mentioned at Sec. 2.1
the whitepaper [29] does not specify the padding scheme needed for CBC. Hence, depending on the
actual padding scheme, there might be a risk of padding-oracle attack introduced by Vaudenay [34],
which exploits the weakness of the padding scheme applied to CBC. Padding-oracle attack is
notoriously hard to avoid in practice, as shown by POODLE [16] or Lucky13 [10].

3 For example, FY2012 budget for the U.S. Consolidated Cryptologic Program (which includes the NSA)
was 10.5 billion [9].
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Due to the structural similarity, it may make sense to compare LINE-AE with a generic com-
position of CBC encryption using AES-256 and HMAC-SHA-256 in terms of security. Here, we
assume a random 128-bit initial vector (IV) or salt, and HMAC output is truncated to 128 bits,
and CBC and HMAC are composed in the encrypt-then-mac fashion, using independent keys.
Given the composition is correctly done, following Krawczyk [28] and Namprempre et. al. [30], and
the standard cryptographic assumptions on AES and (the compression function of) SHA-256, the
composition CBC+HMAC has 64-bit security for privacy, which comes from the provable security
of CBC encryption (where 64-bit security of CBC is from the collision probability among the in-
puts to AES), and 128-bit for authenticity from the security of HMAC [27]. The privacy bound of
LINE-AE is 32 bits, and if the salt was 128 bits, it seems not hard to derive 64-bit privacy bound,
which is largely equivalent to CBC+HMAC. On the contrary, it seems less trivial to derive the
authenticity bound. We expect it is possible to derive one assuming the second preimage resistance
of the 128-bit SHA′-256 hash function. Our attack of Section 6.2 supports this observation, since
it essentially breaks the second preimage resistance of SHA′-256 using 2d targets.

However, we stress that our attack against LINE-AE allows treading-off of offline and online
computations, and needs only single forgery attempt to have a sufficiently high success probability.
At the extreme case, we can attack LINE-AE using 2128 offline computation with single ciphertext
and single forgery attempt, which seems not possible with CBC+HMAC using 256-bit keys.

7 Conclusion

In this paper, we have evaluated the security of the E2EE scheme of LINE, one of the popular
messaging applications in East Asia, and proposed several practical attacks. We first showed im-
personation and forgery attacks on the group messaging scheme by a malicious group member.
Next, we presented the malicious key exchange attack on the one-to-one messaging scheme. Then,
we evaluated the security of the authenticated encryption scheme used in the message encryption
phase, and presented the forgery attack against the the authenticated encryption scheme by the
E2E adversary. We discussed practicality and feasibility of our attacks by considering the use cases
of LINE. As a result, we conclude that the E2EE scheme of LINE do not provide a sufficient level of
security compared to the start-of-the-art E2EE schemes such as Signal, which is used by WhatApp
and Facebook Messenger, and Apple’s iMessage.
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