A Systematic Study of the Impact of Graphical
Models on Inference-based Attacks on AES

Joey Green, Arnab Roy, Elisabeth Oswald

Department of Computer Science, University of Bristol, Merchant Venturers Building,
Woodland Road, Bristol, BS8 1UB, United Kingdom.

firstname.lastname@bristol.ac.uk

Abstract. Belief propagation, or the sum-product algorithm, is a powerful
and well known method for inference on probabilistic graphical models,
which has been proposed for the specific use in side channel analysis by
Veyrat-Charvillon et al. [13].

We define a novel metric to capture the importance of variable nodes in fac-
tor graphs, we propose two improvements to the sum-product algorithm for
the specific use case in side channel analysis, and we explicitly define and
examine different ways of combining information from multiple side chan-
nel traces. With these new considerations we systematically investigate a
number of graphical models that “naturally” follow from an implementa-
tion of AES. Our results are unexpected: neither a larger graph (i.e. more
side channel information) nor more connectedness necessarily lead to sig-
nificantly better attacks. In fact our results demonstrate that in practice
the (on balance) best choice is to utilise an acyclic graph in an independent
graph combination setting, which gives us provable convergence to the cor-
rect key distribution. We provide evidence using both extensive simulations
and a final confirmatory analysis on real trace data.

Keywords: Belief Propagation, Factor Graphs, AES, Inference Based At-
tacks, Side Channel Attacks, Template Attacks

1 Introduction

Side channels in the form of power or EM traces are a significant source of informa-
tion for adversaries. Extracting as much as possible of this information is clearly
desirable, and the utilisation of graphical models for this purpose was early on
described in publications such as [5,11,2]. These papers represented the algorithm
under attack as a Markov model and inferred information about the underlying
hidden state by using statistical inference, e.g. the max-product algorithm.

The key idea in such types of attacks is that the graphical model defines how
variables (observed and hidden) depend on each other. By using different types
of algorithms it is possible to infer information about the hidden variables. The
use of the sum-product algorithm (aka belief propagation, BP) on a factor graph
was proposed recently in [13] as a way to utilise graphical models for complex
algorithms such as AES. It proved to be very powerful: in comparison to other
profiled attacks, this method can cope with very noisy side channel traces, and
even combine information from many traces effectively. In follow on works this
type of attack was compared to other types of DPA style attacks [3], and used in

different contexts [12]. Although the method performed well in all these papers,
it is well known that there are no guarantees for convergence, or even for the
inferred distributions to be at all meaningful. This is due to the nature of the
factor graphs that result from a typical implementation of e.g. AES. Thus like
many other analysis methods it is possible that the method completely fails in
some contexts, but is strong in other contexts.

In this submission we set out to determine how to best configure a graphical
model to ensure attack success. We focus our study around the AES algorithm
that was also chosen by the seminal papers introducing this method. Our results
challenge in particular the intuition that “more” leakage makes for stronger at-
tacks. This is interesting because more leakage intuitively implies more potential
information: even if multiple leakages may provide redundant information (it is
well known that AES achieves full diffusion after two rounds), this redundant in-
formation could be hoped to implicitly improve the signal quality. Consequently,
one could expect that the more leakage information about AES is included in a
factor graph, the more of this information can propagate to the key bytes.

1.1 Contributions and Outline of this Paper

We review the necessary background on using (loopy) belief propagation in Sec-
tion 2, covering the basic concepts ranging from the definition of a factor graph,
over the sum-product algorithm to implementation specifics for the AES factor
graph and our attack setup.

Thereafter in Section 3 we explain two improvements of the sum-product al-
gorithm. The first improvement is a termination criterion that signals when no
further significant information is propagating to the key nodes. The second im-
provement is a check for the consistency of the belief about the plaintext bytes
after the sum-product algorithm has finished. We compare the belief about the
plaintext bytes before and after the run of the sum-product algorithm: if as a re-
sult of the sum-product algorithm we find that our new belief is highly inconsistent
with what we know to be the “truth” about the plaintext, we are able to discard
the plaintext that led to this result as “too bad”. Hence we can avoid introducing
false beliefs into our graphs, which can be detrimental to attack results.

In Section 4 we give a novel definition that captures the importance of a vari-
able node. We also define several variations of factor graphs of particular interest
for attacks on AES. These variations essentially represent progressively smaller
graphs, whereby the smallest is an acyclic graph requiring the least memory. For
this graph the results guarantee convergence of the sum-product algorithm with-
out any loss of success rate and efficiency. We also spell out three methods for
combining multiple traces.

Sections 5, 6, and 7 present results of experiments using simulated (we simulate
leakage according to a weighted bit model, and add Gaussian noise) and real trace
data. Surprisingly we observe that our round reduced and node reduced graphs
do not result in severely weakened attack performances. In fact we observe that
except for the noisiest of cases the acyclic graph with the most pragmatic trace
combination method is on par with more complex variations. Hence unexpectedly
the acyclic graph offers the most reliable attack success (guaranteed convergence
with the least memory overhead).

To aid the flow of the paper we opted to supplying comprehensive tables and
figures only in the appendix. The text however does summarise the most important
findings from both tables and figures.

2 Preliminaries

The key ingredients for the attacks that we aim to study are a suitable graphical
model and an algorithm for inference. We review these briefly using and relating
them to AES as appropriate (for a more in-depth description we refer the reader
to [6]). At the end of this section we provide the necessary details about our
simulation environment.

2.1 Inference on Graphical Models

A factor graph is a bipartite graph G = (V, F,) where V, F are two finite sets of
vertices and € (C V x F) is a set of undirected edges. We will refer to the vertices
in V as variable nodes and the vertices in F as factor nodes. We will use the i, j, k
to denote the variable nodes and f, g, h to denote the factor nodes. Given i € V,
the set 0i is defined as 9i := {f € F : (i,f) € £}. For any f € F the adjacent
vertices Jf is defined in the same way.

A factor graph gives the joint distribution of the random variables X, :=
(X1,...,X}y|) where each X; corresponds to a vertex in V. For any subset of
variable nodes 7 := {41, i2,...,im,} C V we will denote the corresponding random
variables as
Xz = (Xiy, Xiyy---,X;,,). The values of these random variables xz, are also
defined in a similar way.

For our application each random variable X; can have values x; € X' := {0,1}".
For the rest of this article X will denote the set {0,1}™ unless specified otherwise.

Definition 1. The joint distribution p over x € XV factors in the factor graph
G = (V, F,&) if there exists a set of functions 3 = {B; : f € F} and By : X97 —
R, such that

p(0) = 7 [T Br(xay) 1)

feF

The normalisation constant Z is given as

Z =311 8s(xoa)

x feF

Note that there must be at least one x € XV for which Bf(xs,) > 0 so that
the distribution is well defined.

Constructing a factor graph A factor graph can be constructed from (the
implementation of) any iterative function F!. The input variables, intermediate
variables used in the iterative function, and the output variables are represented

1 A factor graph can also be constructed for non-iterative functions but this is not
necessary for our work

as the variable nodes of the factor graph. The factor nodes correspond to the basic
functions/operations used to define (or implement) F. A factor node is usually
connected to two or more variable nodes which represent the inputs and outputs
of the function.

In practice an AES assembly implementation can be easily translated to a
factor graph. The sixteen plaintext bytes and key bytes are represented as variable
nodes. Parsing the (assembly) code, whenever an arithmetic operation is performed
we add a factor node for this operation, and a new variable node to represent
the output of the operation, and connect these elements to the existing graph.
Although leaky, we excluded memory operations, such as 1dr and str operations
from our factor graph (so we do not artificially inflate leakages). Our AES factor
graph thus includes the following factor operations: XOR, SBOX, and XTIMES.

The sum-product algorithm The sum-product algorithm, also known as the
belief propagation (BP) algorithm, is an iterative “message” passing algorithm
where the messages are the probability distributions over the single variable space
X . For each edge in € there are two such distributions v;_, ¢(-), which is the message
from variable node to factor node and o¢_,;(-), which is the message from a function
node to variable node. The messages at the tth iteration are denoted as Vz(f_)> f

For any function f the compatibility function ¢, (in Eq. 3) is defined as the
indicator function xy of the corresponding function i.e ¥y := xs(x,y).

_{1, if f(x) =y
.

0, otherwise

and

At each iteration the messages are updated according to the following rules

1 1 .
e = 5— T 70 2)
=1 geoins
_(t+1 1
V](ft:i)(xi) =7 Z Vr(xor) H Vl(cgf(xk') (3)
F=% xopns kEdf\i

where Z;_,; and Z;_,; are normalisation constants and ¢y is the compatibility
function. In the BP algorithm the updates are done in parallel for all the variable
nodes and then in parallel for all the function nodes, and so on.

It can be proven that in a tree-structured graph the BP algorithm converges to
a fixed point v*, 0* after t* iterations which is equal to the diameter of the graph.
In other words, for any ¢t > t*, v® = v* and v* = v(®).

After ¢ iterations the estimate of the marginal distribution pu(x;) of any variable
x; is given by [] feai V7—;(x;). The marginal distribution is exact when computed
on a tree-structured graph.

The BP algorithm can be applied to cyclic graphical structures by following
the same message update rules given in the equations 2 and 3. This is known as
loopy belief propagation. However, the sequence of messages is not guaranteed to
converge to a fixed point after any number of iterations. A frequently used heuristic
to stop the BP algorithm in such cases is to terminate after t,,4, iterations which

is a fixed parameter to the algorithm. Typically one chooses t,,4, in line with the
size (i.e. diameter) of the graph.

For further details on factor graphs and BP algorithm we refer the interested
readers to [6,10].

In our implementation, all variable nodes send their initial distribution along
all their connected edges in the first round of the algorithm. Once completed, the
factor nodes send their messages, by selecting an adjacent variable node, then
collecting all incoming messages (excluding the one from the target variable node)
and applying their own ‘function’ on these messages. They do this for all adjacent
variable nodes. Upon termination of the algorithm, the marginal distributions of
all sixteen key bytes are computed. This is done by taking the product of each
key’s initial distribution with all incoming messages to the respective key byte. To
judge success of an attack, the keys are ranked according their probability.

2.2 Attack Setup and Implementation Details

The work presented in this paper uses an adaptation of AES FURIOUS (originally
written for Atmel’s AVR) written in the ARM Thumb assembly language. Our lab
setup consists of custom host board with an ARM Cortex-MO0 of the LPC series.
The board has an on board signal amplifier and filter. We utilise a stable external
clock running at 125MHz. The data is recorded by a PicoScope 2000 Series instru-
ment. We took 150000 traces, of which 120000 were used for template building and
30000 for doing repeat attacks. In any attack the result of the template matching
is utilised as the input probability distributions for the (leaky) variable nodes.

Because real trace data implies a fixed device leakage model and a correspond-
ing signal-to-noise ratio (SNR), we also performed two types of simulations with
varying SNRs. The first simulation was via using the tool ELMO [9], which emu-
lates the leakage of a Cortex-M0. The emulator was built by profiling a different
type of M0, manufactured by ST Micro. Thus we would expect the simulation
results (when appropriate levels of Gaussian noise is added) to match our real
trace results. We also performed Hamming weight (HW) based simulation, which
turned out to give identical results to the ELMO simulations hence we opted to
not include them in our tables.

In our implementation we set the value of ¢4, (used by the BP algorithm) to
be 50. This value was chosen because it is greater than the diameter of the largest
graph G (which has a diameter of 42), and thus gives room for propagation around
the loops. For the calculation of first-order success rates (SR) and key ranks, we
follow the recommendation of [8] and compute average key ranks over 200 repeat
experiments.

3 Improving Loopy Belief Propagation

Different variations of the (loopy) BP algorithm are proposed in the literature. We
add our own improvements and explain the resulting algorithm in this section.

3.1 Epsilon Exhaustion

One of the parameters for the Belief Propagation Algorithm is how many iterations
to run. This is represented by the value t,,,4.. In this paper we propose an additional
termination criterion, which allows the algorithm to terminate early, if certain
conditions are met. As the BP algorithm is a message passing algorithm, there may

Algorithm 1: BP algorithm with epsilon exhaustion and ground truth
check
1 function BPA (Gaes, €, €5, €9y tmaz, k™, ip)
/* k™ i, are the variable nodes corresponding to the key and
plaintext respectively */

2 Initialize the messages as i.i.d uniform random variables
3 count :=0
4 foreach t € {1,...,tmaa} do
5 foreach (i, f) € £ do
6 update Vi(ﬂf according to (2)
7 end
8 foreach (i, f) € £ do
9 update D}il according to (3)
10 end
11 if (k*,f) €&, |75, — 7V ||l < € then
12 count = count + 1
13 if count = ¢ then
/* Epsilon Ezhaustion check */
14 break
15 else
16 count =0
17 end
18 end
19 if ||vyi, — pelip)lleo < €y then
/* Ground truth check */
/* pclip] is the leakage distribution at node i, */
20 return 0;
21 else
22 return —1 /* Discard trace */

come a point after a number of iterations where the messages being updated have
received most of the information in the graph, and will not change significantly.
If this is detected over a series of consecutive rounds, we can deduce that the
factor graph has reached a stable equilibrium, and we can therefore terminate the
algorithm without being at risk of discarding useful information.

We implement this by having two user defined parameters, € and e,. After each
iteration of the BP algorithm, we observe the incoming messages at the sixteen
key byte nodes. If the Euclidean distance between the message from the current
iteration and the message from the previous iteration is greater than the threshold
€, we conclude that the current round did not provide the key bytes with enough
new information. If this occurs over e, consecutive rounds, we conclude that as
enough information has propagated, further rounds would not benefit the key
bytes, and it is safe to terminate the BP algorithm early.

We used the Euclidean distance metric to measure the difference between two
probability distributions after considering other possibilities, see also Sect. 4.1.

3.2 Ground Truth Checking

One open problem encountered in template-based DPA style attacks is differen-
tiating a ‘good’ trace from a ‘bad’ one, when it is not simply characterised by a
large variance. For instance, even a small clock jitter can slightly misalign a trace
in relation to the template values, which typically means that template matching
gives very poor results. Such a trace can have a strongly detrimental impact on
an attack and is best not used. In this paper we present a way of detecting an
erroneous trace, by considering a known plaintext attack against AES.

Assuming we know the plaintext values, the idea is to check the “belief” about
them after BP has terminated. We would expect that for a good trace, once
all information has propagated through the graph, the belief about the plaintext
values would be consistent with what we know to be the true values. If this is not
the case, then BP is unlikely to have converged to a meaningful key distribution
either. We measure the consistency between the initial distribution of the plaintext
bytes and the distribution after BP using the Euclidean distance (as with the
termination criterion).

For the ground truth check to work we need to assume some leakage on the
key bytes in the graph (this may come from the key schedule for instance). If the
probability distribution on the key bytes was uniform (i.e. we assume no infor-
mation on the key bytes), then, because the key byte nodes are connected to the
plaintext byte nodes via an XOR factor node, we could not infer any information
about the plaintext byte nodes. This is due to the XOR “locking effect”: XOR the
acts like a one-time pad if one of the two inputs is uniform.

4 Studying AES FURIOUS Factor Graphs

Previous work already explored the effect of some choices regarding the actual
construction of the factor graph for implementations of AES. We are interested
whether or not there is a trade-off between the number of included factor nodes
and the efficiency of an attack. Utilising fewer nodes is advantageous in practice
not only because fewer profiles have to be created (and therefore fewer profiling
traces are required) but also because having to correctly match fewer templates
during an attack leads to more robust attacks (in practice traces are not perfectly
aligned).

Our “base” graph G takes into account all intermediate steps, and we also
assume some leakage via the key schedule on the key bytes. We then introduce
a measure that is novel in the context of Belief Propagation in the context of
side channels to judge the “importance” of a node in relation to the key bytes in
Sect. 4.1, and then study reduced graphs systematically in Sect. 4.2.

4.1 Importance of a Variable node

We want to assess whether or not it is necessary to include all the nodes of the
factor graph from the full AES. More specifically, one could wonder what “effect”
the information from nodes from the second and further rounds of AES have on
the key. It is known that AES reaches full state diffusion after two rounds of AES,
but there is no implication that nodes from future rounds provide more or less
information than nodes in the first two rounds.

To quantify the “effect” of a node we somehow want to consider its contribution
in the detection of the (unknown) key. For an important node we would expect

that any change in it’s input distribution would result in a change in a key byte(s)
distribution.

The effect or importance of a node in the factor graph is quantified by the
“distance” of it’s distribution from the key node distribution. In the graphical
model the variable nodes have an associated (discrete) distribution. Thus it seems
natural to look for a suitable distance metric in relation to (discrete) distributions.

We determine the marginal distribution of the key node say K, given the dis-
tribution of the other nodes: we thus determine p(K) = >y Pr(K, X1, Xa,...)
where X; is the random variable corresponding to the variable node in the factor
graph. In the AES factor graph these nodes correspond to the different interme-
diate variables e.g. k1,%; etc in figure 4. In the following paragraph we will refer
to a node by the associated random variable.

For a (randomly) fixed unknown key and a fixed plaintext the value of the
intermediate variable at the node X; is also fixed. Suppose we have a perfect
leakage corresponding to the different values of the intermediate variable at X;.
This can be described by fixing a value of the random variable X; = x and Pr(X; =
x) = 1 whereas Pr(X; # x) = 0. For the correct value of X;, the distribution
e (K) = ZXj Pr(K, X1, Xo,...,X; = 2,X,11,...) is expected to be “closer” to
1 compared to the distribution obtained by fixing an incorrect value of X;. For
defining this notion of distance between two distribution we use Hellinger distance.
The Hellinger distance is a well known measure to quantify the similarity of two
distributions. In contrast to other (similar) measures it is directly related to the
Euclidean distance metric (in the discrete case) and thus is an actual distance
metric.

Definition 2. The importance of a node X is defined as

Z(X) = {D(u(K), px=2(K))}
where D(-,-) is the Hellinger distance between the distributions.

Note that Z(X) is a set of “distances” for different values z of X.

Definition 3. (Hellinger Distance) For two discrete distributions {p;} and
{q;} the Hellinger distance is defined as

Dip.a) = 5 [SO(i — V). (1)

i

Because we are in a profiled scenario, we know all the necessary distributions
to compute this distance metric for any node in the graph.

4.2 AES Factor Graphs

We now detail the graphs that we study. They range from a “full graph”, including
nodes for intermediates across all ten AES rounds, to a very sparse graph, includ-
ing only a few intermediates from the first round. The larger the graph is, the more
memory it requires. The memory requirements can be derived based on the number
of nodes and edges. All variable nodes store an initial distribution, and each edge
has two probability distributions, corresponding to incoming and outgoing mes-
sages from the connected variable node. Because AES FURIOUS essentially is byte

oriented implementation of AES, all distributions in our graph are represented by
256 floating point values. The exact memory requirements are thus dependent on
the specific implementation/use of a float. In the following description we assume
the use of a C style floating point data type (four bytes).

G : corresponds to the full AES encryption algorithm. It requires =~ 6.6MB of
memory per trace.

(1 : corresponds to the first encryption round only, excluding the key schedule.
We provide (part of) this graph in Fig. 3, which shows the first column of the
first round. It requires &~ 0.7MB of memory per trace. Several factor nodes are
drawn in red in this graph. Removing them leads to G

G : corresponds to Gy, with the addition of the Add Round Key step and the
SubBytes output of the second round. It requires ~ 0.9MB of memory per
trace.

G4 : corresponds to an acyclic factor graph of the first encryption round, as shown
in Fig. 4. It requires ~ 0.54MB of memory per trace.

GES . corresponds to G, with the addition of the key schedule variables. It re-
quires ~ 0.84MB of memory per trace.

As an example, to mount a 200 trace BPA attack against graph G, one would
require =~ 1.3GB memory. To mount an attack using the graphs Giand G4 one
would only need ~ 140MB and ~ 108MB memory respectively.

Considerations regarding node removal for G’l‘1 To convert the one round
AES factor graph G into an acyclic graph G4 we choose to remove a set of factor
nodes which are marked in red in Figure 3. One obvious reason to choose this set of
nodes is that in the AES algorithm these nodes are part of the diffusion layer. Since
the diffusion layer causes the cyclic structure of the AES factor graph, removal of
these nodes leaves the factor graph acyclic. Removal of any node naturally is
followed by the removal of the edges to that node, along with any leaf nodes
(which would otherwise be disconnected from the rest of the graph and thus not
contributing any messages).

4.3 Combining AES Factor Graphs

In many real world settings adversaries may gain access to several leakage traces.
These traces may correspond to different inputs for instance. In any case so far we
have only discussed factor graphs that take input (e.g. the plaintext) and thus we
now look at ways in which we can process multiple inputs.

Large Factor Graph (LFG) Method. In [13] they approach the problem of
combining graphs from different inputs by associating each input with a dedicated
graph, and then they produce a “large factor graph” by connecting all factor
graphs through some common nodes. In the particular case of AES (the same
would apply to other algorithms too), the nodes representing the key bytes are
common (because all traces would be for the same unknown secret key). We show
this principle in Fig. 6, and call this method the LFG Method.

The potential advantage of this method is that information from one trace can
propagate through the common nodes into the “adjacent’ graph, which may (pos-
itively) affect the attack outcome. However, the clear downside to this method is
that it potentially incurs a large memory overhead (unless one swaps “subgraphs”

in and out of memory but this clearly implies a performance penalty and poten-
tially some limitations on the message passing). It is also difficult to apply our
ground truth check in this case because our intuition of “discarding” traces is
made challenging due to all traces being interconnected; as information can prop-
agate from one trace to another, it is not possible to pinpoint which trace affected
the plaintext bytes. Finally there are a large number of cycles in such a graph,
which means that it is impossible to make any statements about convergence or
any meaningful outcome.

Independent Factor Graph (IFG) method. In contrast to assembling one
large graph, we could also treat each leakage trace independently and only have
one copy of the graph in memory. Each trace then produces a set of distributions
for the unknown key bytes, which can be combined using Bayes theorem.

The advantage for this method is that it can be executed in parallel (distributed
over different cores) or sequential, allowing an easy speed-memory trade-off. Also,
no further cycles are added, thus for our acyclic graphs we can be assured of
convergence even in a multiple trace setting. The disadvantage may be that infor-
mation cannot propagate from one leakage trace (associated graph) to another. It
is possible to use the ground truth check here.

Sequential Factor Graph (SFG) method. An easy tweak to the IFG method
that enables information to “propagate” from one graph to another, would be to
use the key distribution that is derived from the i — 1th leakage trace as prior
distribution for the graph with the i—th leakage trace. This turns the IFG method
into a strictly sequential method (thus SFG); it thus retains IFG’s memory effi-
ciency, convergence for acyclic graphs, and the possibility to implement a ground
truth check.

5 Studying the Effect of Reduced Graphs in a Single Trace
Setting

In the remainder of this paper we discuss experiments that aim to determine the
impact of our tweaks to the BP algorithm, the variations of graphs and graph com-
bination methods. We start in a single trace setting, and first consider the effects
of nodes in later rounds, then we examine the effectiveness of our improvements on
the BP algorithm, followed by an enquiry into the impact of using reduced graphs
(in particular Gyand G1') on the attack outcomes.

5.1 Effect of Nodes in Later Rounds

We previously defined a metric that enables us to judge the effect that a node in
the graphical model has on the key bytes. To use this metric practically we set
up an experiment on the full graph G in which we supply simulated, HW based
leaks with minimal noise (SNR = 2) and we let the BP algorithm run for the full
tmaz = 50. As implied by the definition, we first let BP run and produce a key
distribution. Then we fix the input for the node that we are computing the effect
of and fix this to a value (running through all input values of this node one by
one), which enables us to compute the effect as defined in Sect. 4.1.

Our findings are that variable nodes from later rounds have no effect on the
key distribution. To provide some evidence for this, we include one graph that is
representative for all results. Figure 1 visualises the result from the variable node s

10

1, Round 1
17, Round 2
‘ s33, Round 3
081 | S19. Round 4

Hellinger Distance

0 64 128 192 256
Value of fixed node(s)

Fig. 1. Hellinger Distance of k; to different fixed value s nodes

(which corresponds to the Sbox output) in different rounds of AES to key byte k;.
Recall that our definition is based on the Hellinger distance metric: any number
that is close to zero indicates that a node has no effect. Figure 1 demonstrates
then that this particular node as a great effect in round one, and some small effect
in round two, but thereafter it has no effect on this key byte. Other variable nodes
show the same behaviour: first round nodes have an effect, second round nodes
have a very small effect, and from round three onwards our metric indicates that
they have no effect.

5.2 Effectiveness of our Improvements to the BP Algorithm

We investigated the effect of our epsilon exhaustion technique on by running repeat
experiments using ELMO simulations. These showed that in cases of high and low
noise, the information can be exhausted before reaching t,,,.. iterations (nearly all
experiments terminated via the epsilon exhaustion rather than ¢,,,,). Interestingly
having more noise does not mean that the algorithm is more likely to run up to
tmaz iterations. In fact often the epsilon exhaustion was considerably earlier, e.g.
in for SNR=2! on average around 20 Belief Propagation iterations are required
before reaching a stable point.

We also investigated how often the ground truth check kicks in. We configured
our criterion to reject only “extreme outliers”. Unsurprisingly, we found that it is
much harder to detect such cases in high noise settings, where the information from
a single trace is insufficient for any meaningful result. We note that in such cases,
where one would require multiple traces anyway, the ground truth check could be
applied to consecutive traces and we noticed in our implementation that if there
are two “bad” traces fed into BP consecutively, then our ground truth method
would pick this up. The experiments also indicate that cycles in the graph may
“amplify” unhelpful information, because in the experiments on graphs without
cycles our ground truth check criterion was never met; the ground truth method
spotted erroneous traces after BP had iterated for more than 15 rounds, but as
the acyclic graph is run for a maximum of 8 iterations, these erroneous messages
did not appear.

Data from this experiment can be found in the appendix. Table 1 shows the
percentage of traces terminated through the Epsilon Exhaustion tweak for two
different graphs (we did not include the acyclic graph G4' because it provably

11

terminates after 8 iterations, which corresponds to the diameter of the graph).
Table 2 shows how many traces were detected to be “bad”.

5.3 Impact of Graphs on Attack Success

As measures for the success of attacks we look at the (first-order) success rate,
as well as the lowest (i.e. best) rank for the key. For the specific purpose of this
experiment, we elected not to invoke our termination criterion for the cyclic graphs
and instead allow BP to run up to 50 iterations (for G we did experimentally verify
that increasing t,,4, did not lead to better success). We did this for a range of
SNR’s, but choose two representative cases for inclusion in the appendix as Table 3
and Table 4. In both settings, the high signal and the high noise, the performance
of the attack using G is nearly identical to the performance of the attack using
the whole AES graph, or when including the key schedule, or when looking at
two rounds, whereas there is a clear gap to the performance when using G4'. This
shouldn’t come as a huge surprise: we know from works such as [7,1] on SPA
attacks on block ciphers, that the information from either the key schedule or just
the encryption round goes a long way to recovering the key.

With such little difference in performance between the whole graph and Gy, it
seems reasonable to utilise only the first round. This has not only the advantage
of dealing with much smaller graphs, crucially it implies that also less profiling
effort is necessary, which could be a practical advantage. For instance, if traces
become increasingly misaligned (e.g. because the clock frequency of the processor
is changeable), having to only profile the beginning (or end) round of an imple-
mentation could be more feasible than having to profile across the entire trace.
With respect to G, although we see a large performance gap in the success rate
(when compared to the whole graph and G7), the ‘Best Rank’ results show that
the G4 method is still effective as an attack. The advantage G4! has in this attack
scenario is that convergence is guaranteed after 8 BP iterations.

Our results also showed, surprisingly, that better SNRs do not imply that
fewer BP iterations are required. We observed that for SNR = 2!, we needed 20
BP iterations; but for SNR = 273 we needed fewer iterations, namely 15. We also
noticed that, for SNR = 2! in the case of G, there was a success rate drop when
using 50 iterations over 25. We speculate that this is due to the large number
of cycles in the graph. From these results clear that there is no simple way of
choose t,,4, optimally. However, by using our Epsilon Exhaustion improvement
(see Section 3.1) we can terminate BP when the information updating the key has
reached a stable equilibrium.

The results of all experiments are summarised Table 3 and Table 4 which can
be found in the appendix.

6 Studying the Effect of Different Graph Combination
Methods

Having established that attack results based on using the whole graph or just
Gy are nearly identical in a single trace setting, we now turn our attention to
attacks that utilise multiple leakage traces. We now compare the performance of
the G and the G4! graphs specifically to see if the performance difference between
them persists across different trace combination methods.

12

We ran simulations ranging from high signal to high noise scenarios. In the
high signal scenarios there were no differences between the graphs w.r.t to dif-
ferent combination methods. Only in noisy scenarios did we observe differences.
For our discussion we include two particularly striking sets of results as Tables 5
and 6 in the appendix. Each table starts from two traces, but in the high noise
scenario we provided more traces than in the high signal case. The tables pro-
vide attack outcomes for the different graph combination methods as applied to
different graphs.

In the case of SNR of 27! we see, surprisingly, that the acyclic graph G{' can
outperform G across different combination methods, and that LFG for G{‘ isn’t
strictly the best method. When we use ten or more traces, G§* has a constant
success rate, compared to GG; when using IFG and SFG for the same number of
traces. We saw the same results for an SNR of 273, Only when decreasing the
SNR to 27¢, G, performed better than G and LFG is the best combination for
G1. The IFG method with G;only starts to succeed after 45 traces, when the LFG
method has over a 90% success rate. We also observe here that although IFG is
favoured over SFG when the SNR is high (27!), SFG becomes more effective when
the SNR is lower, needing around 70 traces to have an 80% success rate. When
using G4! in a low noise scenario, the graph connecting method seems to have
little effect on the results, and we see no signs of success until we use 60 or more
traces. We hypothesise that in a low SNR setting having more dependent variables
helps to compensate for the noise, an observation that has been made elsewhere in
the same context [4]. However it would appear that in the context of a relatively
large graph that takes into account “sufficient” leakage from the first round, extra
information from later rounds is not as important. These results show that neither
more rounds nor more intermediates or more connected graphs necessarily make
for a more effective attack overall.

7 Studying the Effect of Reduced Graphs in a Multiple
Traces Setting

As afinal experiment we simulated multiple trace attacks (with IFG) using reduced
graphs. We studied different noise levels (low, medium, and high), and provide
Tab. 7, Tab. 8, and Tab. 9 in the appendix. In short, only when moving to high
noise settings Table 9 the larger graphs proved to be slightly advantageous (in
line with the observations in the previous section) in terms of first-order success
rate. However, if we consider the median ranks of the experiments, we see the
effectiveness of the acyclic methods is still comparable to the cyclic methods; when
using 90 traces, the acyclic graphs ranked the correct key with the second highest
probability.

For confirmation purposes we also ran these attacks on our real trace set. We
determined the SNR on those traces and reran the simulations with a matching
SNR (=277). Fig. 2 shows the outcomes of these experiments. In the left pane we
visualise the comparison based on using G'1 between real and simulated traces. The
right pane shows the same comparison using G1A. Clearly the simulation results
are a very good match with the real traces. We can also see that the performance
of G1A is again nearly identical to G1.

13

——= Gy Simulated Data —=- G{ Simulated Data
Gy Real Data - G{' Real Data

10

Final Key Rank (log,)
Final Key Rank (log

Fig. 2. Comparison of a BP Attack on Real Trace Data against Simulated Data, using
Graphs G1 and G‘f.

8 Conclusions

The approach of using a belief propagation algorithm on a factor graph that de-
scribes an implementation under attack leads to a very powerful attack strategy.
However there are many options to concretely instantiate this idea, and these
options are expected to have an impact on the performance of concrete attacks.
So far there exist very few publications about this important attack vector and
none of them has drilled into the details related to building a graph for a specific
implementation.

Our submission makes the first step into developing an understanding how
choices in instantiating this attack vector impact on the resulting attacks. We
specialise our investigation to AES Furious, and look at the attack performance
when reducing elements from the graph as it would “immediately” follow from the
AES Furious implementation. Alongside our experiments we provide a new metric
to capture the effect of a variable node, and introduce two improvements to the
(loopy) Belief Propagation algorithm that are useful specifically in the context of
side channel analysis.

Our findings show that assumptions that might have been made in previous
work, and that seem to naturally follow from the intuition about the working
principle of Belief Propagation on factor graphs are not always met in practice.
E.g. including more leakage does not always make a significant difference (our
findings show that only in very noisy settings there is a slight advantage for our
full factor graph). Combining multiple traces into a large factor graph is also not
necessarily the best option. In fact our experiments suggest that the best option
(except for the noisiest of settings) is to use an acyclic graph (which is guaranteed
to converge to a correct result) in either the independent or sequential combination
method because this will guarantee attack success at the expense of marginally
more traces (in medium noise settings the approach works in fact as well as the
best other approach). This is particularly interesting for the potential use of such
a method in an evaluation setting: as a configuration is possible that guarantees
convergence, and we have theoretical understanding about the necessary number of
Belief Propagation iterations, we can avoid the attack failing with no explanation.

14

9

Acknowledgements

This work has been supported in part by EPSRC via grant EP/N011635/1, and
a studentship from GCHQ.

References

1.

10.

11.

12.

13.

A

V. Banciu and E. Oswald. Pragmatism vs. elegance: Comparing two approaches to
simple power attacks on AES. In Constructive Side-Channel Analysis and Secure
Design - 5th International Workshop, COSADE 201/, Paris, France, April 13-15,
201/. Revised Selected Papers, pages 29-40, 2014.

P. J. Green, R. Noad, and N. P. Smart. Further hidden Markov model cryptanalysis.
In J. R. Rao and B. Sunar, editors, CHES 2005, volume 3659 of LNCS, pages 61-74.
Springer, Heidelberg, Aug. / Sept. 2005.

V. Grosso and F.-X. Standaert. ASCA, SASCA and DPA with enumeration: Which
one beats the other and when? 1In T. Iwata and J. H. Cheon, editors, ASI-
ACRYPT 2015, Part II, volume 9453 of LNCS, pages 291-312. Springer, Heidelberg,
Nov. / Dec. 2015.

V. Grosso and F.-X. Standaert. Masking proofs are tight (and how to exploit
it in security evaluations). Cryptology ePrint Archive, Report 2017/116, 2017.
http://eprint.iacr.org/2017/116.

C. Karlof and D. Wagner. Hidden Markov model cryptanalysis. In C. D. Walter,
Cetin Kaya. Kog, and C. Paar, editors, CHES 2003, volume 2779 of LNCS, pages
17-34. Springer, Heidelberg, Sept. 2003.

D. J. C. MacKay. Information theory, inference, and learning algorithms. Cambridge
University Press, 2003.

S. Mangard. A simple power-analysis (spa) attack on implementations of the AES
key expansion. In P. J. Lee and C. H. Lim, editors, ICISC 02, volume 2587 of LNCS,
pages 343-358. Springer, Heidelberg, Nov. 2003.

D. P. Martin, L. Mather, E. Oswald, and M. Stam. Characterisation and estimation
of the key rank distribution in the context of side channel evaluations. In J. H. Cheon
and T. Takagi, editors, ASTACRYPT 2016, Part I, volume 10031 of LNCS, pages
548-572. Springer, Heidelberg, Dec. 2016.

D. McCann, E. Oswald, and C. Whitnall. Towards practical tools for side chan-
nel aware software engineering: ’grey box’ modelling for instruction leakages. In 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, Au-
gust 16-18, 2017., pages 199-216, 2017.

M. Mezard and A. Montanari. Information, Physics, and Computation. Oxford
University Press, Inc., New York, NY, USA, 2009.

E. Oswald. Enhancing simple power-analysis attacks on elliptic curve cryptosystems.
In B. S. Kaliski Jr., Cetin Kaya. Kog, and C. Paar, editors, CHES 2002, volume 2523
of LNCS, pages 82-97. Springer, Heidelberg, Aug. 2003.

R. Primas, P. Pessl, and S. Mangard. Single-trace side-channel attacks on masked
lattice-based encryption. In CHES 2017, LNCS, pages 513-533. Springer, Heidelberg,
2017.

N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert. Soft analytical side-channel
attacks. In P. Sarkar and T. Iwata, editors, ASTACRYPT 2014, Part I, volume 8873
of LNCS, pages 282-296. Springer, Heidelberg, Dec. 2014.

Graphical Models

15

*SN0THNA SV JO punod 3sig oyj ut uwnjod e jo uoneinduwos o) urjueserdsr yderd 10yoeq ¢ *S1.q4

te‘e» S -0
F:(0)'¢

16

ONICa=20s =G
XOR @
XO0R
o, O
SEIe®
()
o (e ()
XURXOR
U ome

Fig. 4. Acyclic factor graph representation of the computation of the first column in the
first round of AES FURIOQUS.

XOR e

XOR

> >
o o
o o
4] 4]
H H
Lol
o
!

Fig. 5. Acyclic factor graph representation of the computation of the first column with
the mc leaf nodes removed.

17

Fig. 6. Connecting two (or more) traces to form a large factor graph. The blue and red
nodes correspond to two different factor graphs (traces) where the node k1 is common to
both of them

B Tables

Table 1. Per-

centage of

Traces where Table 2.

BP termi- Percentage

nated with of Traces

the Epsilon that failed

Exhaustion the Ground

tweak Truth check
‘G G1 ‘G G1

2T 199.5799.4 2T 10.42 0.57
2711446 1144 27'1.16 0.88
273162.3165.12 2730 0
2751100 100 2760 o

18

Table 3. Single Trace Attack, SNR =21

First Order
Success Rate (%)

Best Rank (logs)

Iter.|G G2 Gi Gf GI° |G G2 Gi Gf GIf
0O [0 0 0 0 O 53 52 53 53 53
1 0 0 0 O O 26 25 29 29 40
2 |0 0 0 0 O 9 8 6 6 16
3 |0 0 0 0 O 7 5 5 6 11
4 12 4 2 0 0 0 0 0 4 1
5 |48 42 38 0 6 0 0 0 4 0
6 (64 72 68 0 14 0 0 0 4 0
7 |18 90 78 0 34 0 0 0 4 0
8 192 94 83 0 48 0 0 0 6 0
9 192 96 92 0 50 0 0 0 6 0
10 (92 98 96 0 70 0 0 0 6 0
15 (92 98 98 0 92 0 0 0 6 0
20 |96 100 1000 94 0 0 0 6 0
25 196 100 1000 94 0 0 0 6 O
50 (96 100 100 0 96 0 0 0 6 0
Table 4. Single Trace Attack, SNR = 273
First Order Success Rate|Best Rank (logs2)
(%)
Iter.|G G2 Gy qu G{(S G G2 Gy qu G{(S
0O [0 0 0 0 O 78 7T 73 73 T3
1 0 0 0 O O 65 62 64 64 63
2 0O 0 0 0 O 52 48 56 56 55
3 [0 0 0 0 O 52 51 52 55 53
4 10 0 0O O O 50 48 47 53 49
5 0O 0 0 0 O 46 44 44 53 47
6 0 0 0O 0 O 42 43 42 52 44
7 |10 0 0O 0 O 39 42 42 52 44
8 0O 0 0 0 O 41 43 39 52 41
9 |0 0 O 0 O 39 43 39 52 39
10 0 0 0 O O 40 44 39 52 39
15 /0 0 0 0 O 40 41 37 52 40
20 [0 0 O O O 40 43 36 52 44
25 0 0 0 O O 40 42 38 52 45
50 0 0 0 0 O 40 41 39 52 45

19

Table 5. Multiple Trace Attack, SNR of 27!

First Order Success Rate (%) Median Rank (log2)
Gi Gi G1 Gi

Traces|LFG IFG SFG|LFG IFG SFG|LFG IFG SFG|LFG IFG SFG
2 82.5 35.561.51|0 0 0 0 2 0 15 15 15
5 100 94.5 75.5(51.5 49.552 |0 0 0 0 1 0
10 100 97.577.5(99.5 98.599 |0 0 O 0 0 0
15 100 97.5 75.5|100 100 100 |0 0 O 0 0 0
20 100 97.578.5|100 100 100 |0 0 0 0 0 0
25 100 96.5 79.5|100 100 100 |0 0 O 0 0 O
30 100 97.5 77.5|100 100 100 |0 0 O 0 0 0
35 100 96 80.5|100 100 100 |0 0 0 0 0 0
40 100 97 80.5|100 100 100 |0 0 O 0 0 O
45 100 97 81.5|100 100 100 |0 0 O 0 0 0
50 100 99 80.5|100 100 100 |0 0 O 0 0 0
60 100 97 83.5|100 100 100 |0 0 O 0 0 O
70 100 98 80 |100 100 100 |0 0 O 0 0 0
80 100 96.583 |100 100 100 |0 0 0 0 0 0
90 100 98.5 82.5|100 100 100 |0 0 O 0 0 O
100 {100 98 81 |100 100 100 |O 0 O 0 0 0

Table 6. Multiple Trace Attack, SNR of 27¢

First Order Success Rate (%) Median Rank (log2)
Gi Gi G1 Gi

Traces|LFG IFG SFG|LFG IFG SFG|LFG IFG SFG|LFG IFG SFG
2 0 0 0 0 0 0 86 86 86 [86 86 86
5 0 0 O 0 0 0 72 72 72 |73 73 73
10 0 0 O 0 0 0 55 56 55 [57.5 57.5 58
15 1 0 0 0 0 0 36 46 43 |47 4T 47
20 10 0 O 0 0 0 19 37 31 |38 38 38
25 3250 O 0 0 0 10 29 21 |31 31 31
30 63 0 4 0 0 0 0 22 13 (245 25 25
35 7850 85 |0 0 0 0 17 9 20 20 20
40 86.5 0 22 |0 0 0 0 14 5 15 15 15
45 91.5 0.5 38 |0 0 0 0 10 2 12 12 12
50 95.5 0.5 49 |0 0 0 0 8 1 10 10 9.5
60 98.5 2.5 67.5]1 1 1 0 5 0 6 6 6
70 98.5 9.5 80.51|7 T 0 3 0 4 4 4
80 99 21 83513 13 13 |0 2 0 2 2 2
90 100 32 89 |27 27 27 |0 1 0 1 1 1
100 {100 54 93 |38.5 39 39.5|0 0 0 1 1 1
110 100 66 93 |57 57.557.5|0 0 O 1 0 O
120 |100 74594 |67 67 67.5]0 0 0 1 0 O
130 100 84.596 |77 77 77 |0 0 0 1 0 O
140 100 93 96.5|89 89 89 |0 0 0 1 0 O
150 {100 92 97 (92 91.591 |0 0 0 1 0 O
160 {100 97.597.5(93 93 93 |0 0 0 1 0 O
170 100 97 97 |95 94.594.5|0 0 0 1 0 O
180 {100 98.597.5(96 96.5 96.5 |0 0 0 1 0 O
190 100 97598 (95 95.595.5|0 0 0 1 0 0
200 100 98.598.5|96 96.5 96.5 |0 0 O 1 0 O

20

Table 7. Reduced Graphs, Multiple Traces, IFG Connect-
ing Method, SNR of 271

First Order Success Rate (%) Median Rank (log2)
Traces|G G Gi ‘G G G4
2 44 3550 12 15
5 96 94.549.5
10 98.5 97.5 98.5
15 96.5 97.5 100

o O O
o O O
o O

Table 8. Reduced Graphs, Multiple Traces, IFG Connect-
ing Method, SNR of 273

First Order Success Rate (%) Median Rank (log2)
Traces|G Gi Gf' G G GY

10 20521 5 22 3

15 67 67 50.5
20 92 92 82
25 97.5 96.5 98
30 98.5 98.5 98.5
35 99.5 99.5 99.5
40 99.5 100 100

OO O O oo
OO O O OoOo
OO O O oo

Table 9. Reduced Graphs, Multiple Traces, IFG Connect-
ing Method, SNR. of 276

First Order Success Rate (%) Median Rank (logz)

Traces|G Gi1 G G G, G}
45 05050 10 10 12
50 0.50.50 8 8 10
60 25251 6

70 95957
80 21 21 13
90 32 32 27
100 |54 54 39

S = N Wt
S = N W WL
o= N

21

