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Abstract. Quantum computing threatens conventional public-key cryp-
tography. In response, standards bodies such as NIST increasingly focus on
post-quantum cryptography. In particular, hash-based signature schemes
are notable candidates for deployment. No rigorous side-channel analysis
of hash-based signature schemes has been conducted so far. This work
bridges this gap. We analyse the stateful hash-based signature schemes
XMSS and XMSSMT , which are currently undergoing standardisation at
IETF, as well as SPHINCS — the only practical stateless hash-based
scheme. While timing and simple power analysis attacks are unpromising,
we show that the differential power analysis resistance of XMSS can be
reduced to the differential power analysis resistance of the underlying
pseudorandom number generator. This first systematic analysis helps to
further increase confidence in XMSS, supporting current standardisation
efforts. Furthermore, we show that at least a 32-bit chunk of the SPHINCS
secret key can be recovered using a differential power analysis attack due
to its stateless construction. We present novel differential power analyses
on a SHA-2-based pseudorandom number generator for XMSS and a
BLAKE-256-based pseudorandom function for SPHINCS-256 in the Ham-
ming weight model. The first attack is not threatening current versions of
XMSS, unless a customised pseudorandom number generator is used. The
second one compromises the security of a hardware implementation of
SPHINCS-256. Our analysis is supported by a power simulator implemen-
tation of SHA-2 for XMSS and a hardware implementation of BLAKE for
SPHINCS. We also provide recommendations for XMSS implementers.
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1 Introduction

Due to the wide applicability of Shor’s algorithm [29], conventional public-key
cryptography (e.g., RSA, DSA, and ECDSA) is vulnerable to attacks using



quantum computers. Some cryptographic schemes, known as post-quantum [7],
are believed to remain safe in the presence of quantum computers. Post-quantum
cryptography was already introduced in the 70s, but not deployed at that time.
Engineering progress in quantum computing [21] is creating a new sense of urgency.
Current standardisation efforts — for instance at NIST [27] and IETF [14] —
signal a shift towards real-world use [8]. It is therefore important to further
analyse the security of candidate schemes.

In particular, the side-channel resistance of hash-based signature (HBS)
schemes has not been evaluated systematically so far. HBS schemes rely on the
security of an underlying hash function, and use a binary hash tree structure.
While these schemes are conjectured to be “naturally” side-channel resistant [14],
a deeper look is desirable to uncover potential weaknesses and increase confidence
in them. We provide a side-channel analysis (SCA) of two prominent HBS schemes:
XMSS (including its variant XMSSMT ) and SPHINCS. We chose them because
XMSS is being standardised, SPHINCS is the only practical stateless HBS scheme
(see Sec. 2 for an explanation of statefulness), and both are recommended by the
PQCRYPTO EU project [28].

1.1 Related Work

The side-channel resistance of HBS schemes is rarely addressed. Eisenbarth et
al. [11] investigate the side-channel leakage of a customised Merkle-based HBS
scheme. Leakage experiments using an AES-based hash function are performed.
XMSS is not directly analysed, and only a brief SCA is provided.

For other categories of post-quantum cryptography, SCAs are mainly available
for implementations of lattice-based and code-based schemes. In particular, the
NTRUEncrypt [20,30] and McEliece [22] schemes have been thoroughly examined.
Several differential power analysis (DPA) attacks have been proposed on hash-
based message authentication codes (HMACs) based upon SHA-2 [2, 23] and
SHA-3 [32,33]. However, none of them directly applies to HBS.

We only address purely passive attacks. The fault attack vulnerability of
SPHINCS was recently analysed by Castelnovi et al. [9].

1.2 Outline

The remainder of the paper is organised as follows. We start by recalling basics
about the schemes under consideration and the more elementary schemes they
rely upon: W-OTS+, XMSS, XMSSMT , and SPHINCS (Sec. 2). We next analyse
the side-channel resistance of XMSS and XMSSMT (Sec. 3) and describe a DPA
on a SHA-2-based pseudorandom number generator (PRNG) which applies to
both schemes. SPHINCS-256 is then analysed in the same respect (Sec. 4); we
introduce a novel DPA on a BLAKE-256-based pseudorandom function (PRF).
Impact analyses and discussions of implications for implementers appear in both
main sections. We then conclude (Sec. 5).



2 XMSS, XMSSMT and SPHINCS

In HBS schemes, many one-time signature key pairs are combined into a single
structure, using a binary hash tree. Numerous improvements upon seminal
constructions by Lamport [19] and Merkle [25] have culminated in modern schemes
such as XMSS [4], its hierarchical variant XMSSMT [15] and SPHINCS [3].

These are the schemes analysed in this paper; in particular, for XMSS and
XMSSMT , we examine the recently proposed IETF standard [14]. XMSS has
minimal security requirements, since it only requires a second-preimage resistant
hash function for its security. XMSS and XMSSMT are stateful: after signing,
the secret key is updated. If this update is not carried out properly, the security
of the cryptographic scheme degrades or vanishes. As a result, extra care is
required [24]. Stateful hash-based signature schemes are particularly suited to
the use case of software update authentication, where signing frequency is low.
SPHINCS is conveniently stateless, but its signatures are significantly larger and
speed also suffers.

We start by recalling a one-time signature scheme which is typically not used
on its own, but constitutes a cornerstone of these three schemes: W-OTS+ [13].
Due to space limitations, we only describe parts of the schemes relevant for SCA.
Self-contained algorithm descriptions and security proofs can be found in the
original papers.

2.1 W-OTS+

W-OTS+ improves upon the W-OTS [10]. It is parametrised by the Winternitz
parameter w = 2ω, which enables a time/space trade-off. Large values of w
yield small keys and signatures, but slow down the scheme. Given a keyed hash
function fk : {0, 1}n × {0, 1}n → {0, 1}n, W-OTS+ defines the chaining function
ci

k :

c0
k(x, r) = x, ci

k(x, r) = fk(ci−1
k (x, r)⊕ ri), r = (r1, . . . , rj), j > i.

We recall the W-OTS+ key generation and signature generation algorithms,
which involve secret information and are, thus, relevant for SCA.

W-OTS+ key generation Given the security parameter n and length `, the
secret key X = (x0, . . . , x`−1) ∈R {0, 1}n×`, the randomisation bitmasks r =
(r1, . . . , rw−1) ∈R {0, 1}n×w−1 and the key k ∈R {0, 1}n are chosen uniformly at
random. The public key Y is computed from X by applying ck (w − 1) times:

Y = (y0, . . . , y`−1) ∈ {0, 1}n×`, yi = cw−1
k (xi, r), 0 ≤ i < `.

The secret key is X and the public key is (Y, r, k). To compress the public key,
r and k can also be replaced by an n-bit seed to generate r and k pseudorandomly.



W-OTS+ signature generation Given the secret key X and the digest D ∈
{0, 1}n of a message M , the digest D is divided into `1 blocks of ω bits each:
D = b`−1 || . . . || b`−`1 . Using D, a checksum C = b`2−1 || . . . || b0 is calculated.
The blocks b`−1, . . . , b0 are then used to calculate the signature:

σW -OT S+ =
(
c

b`−1
k (x`−1, r), . . . , cb1

k (x1, r), cb0
k (x0, r)

)
.

2.2 XMSS

XMSS is a stateful digital signature scheme built upon the one-time signature
scheme W-OTS (or its optimised version W-OTS+) as a building block. XMSS was
introduced by Buchmann et al. in 2011 [4]; it is EU-CMA secure, forward-secure
and efficient.

Given the security parameter n, XMSS requires a cryptographic hash function
h : {0, 1}2n → {0, 1}n. Denoting H the XMSS tree height, up to 2H messages
can be signed, using as many W-OTS+ key pairs.

XMSS key generation Given H, the key generation algorithm first generates 2H

W-OTS+ key pairs (skW-OTS+,i,pkW-OTS+,i), where 0 ≤ i < 2H . The W-OTS+

public keys are then used to construct an XMSS tree. The inner nodes of the
XMSS tree are computed as

vh[j] = h ((vh−1[2j]⊕ bl,h) || (vh−1[2j + 1]⊕ br,h)) ,

where bl,h and br,h are public randomisation elements derived from a public seed
using a PRNG. Each leaf of the XMSS v0[i] (0 ≤ i < 2H) tree is derived from the
corresponding W-OTS+ public keys using another XMSS tree, which is called
L-tree. An L-tree compresses an n× ` bit public key to a single n bit value using
the same construction for the inner nodes. Since ` is not a power of 2 in general,
the rightmost leaves of the L-tree are lifted up to form a binary tree.

The XMSS public key is the root of the XMSS tree vh[0] and the public
seed required to generate the randomisation elements in W-OTS+, the XMSS
tree, and the L-trees. The XMSS secret key is comprised of all W-OTS+ secret
keys skW-OTS+ and the index s of the next unused leaf (initially s = 0). Since
storing all W-OTS+ secret keys results in an enormous key (2H · ` · n bits), it is
recommended to use a PRNG to generate them and just store the n-bit seed.

XMSS signature generation Given the secret key (skW-OTS+ , s) and the digest
D ∈ {0, 1}n of a message M , XMSS first computes the W-OTS+ signature
σW -OT S+ for M using skW-OTS+,s. It is imperative to increment s in the XMSS
secret key to ensure that this one-time key pair is not used again in subsequent
signature generations. In addition to pkW-OTS+,s, the verifier requires several
nodes of the XMSS tree to reconstruct the root of the hash tree. This is achieved
by appending the authentication path As = (a0, . . . , ah−1) to the signature, which
contains one node in each layer of the hash tree. The ah are either left or right
neighbours of the nodes in the path from v0[s] to vh[0]:



ah =
{
vh[s/2h − 1], if bs/2hc ≡ 1 (mod 2)
vh[s/2h + 1], if bs/2hc ≡ 0 (mod 2).

The XMSS signature is, thus, σ = (s, σW-OTS+ ,pkW-OTS+,s, As).

2.3 XMSSMT

While optimised implementations of XMSS provide sufficient performance during
signature generation and signature verification, key generation is slow for high
trees, e.g., H > 20. Since this is problematic in some use cases, an extension of
XMSS was proposed using multiple layers of XMSS trees. This tree chaining idea
was initially used in the CMSS scheme [6]. Combined with improved distributed
signature generation, it resulted in the XMSSMT scheme [15]. It is also specified
in the Internet-Draft by Hülsing et al. [14].

A hyper-tree is used. Its upper layers are used to sign the roots of the
layers below, and only the lowest layer is used to actually sign messages. Thus,
an XMSSMT hyper-tree consists of T ≥ 2 layers of XMSS trees with heights
H0, . . . ,HT −1, where H0 is the height of the trees at the lowest level. The Internet-
Draft further restricts the heights to be equal, i.e., H0 = H1 = . . . = HT −1. The
W-OTS+ key pairs corresponding to the leaves of layer i are used to sign the
roots of the trees on layer i− 1. The root of layer T − 1 is the XMSSMT public
key. Using XMSSMT is especially sensible if a large number of messages is to be
signed. In that case, the use of a PRNG is recommended. Otherwise, the required
storage and slow random number generation outweigh the performance gain of
XMSSMT .

2.4 SPHINCS

In 2014, Bernstein et al. introduced SPHINCS [3], a practical stateless HBS
scheme. SPHINCS uses components as XMSSMT , but includes a layer of few-
times signatures named HORST beneath the extended Merkle multi-trees, whose
instances are pseudorandomly selected to sign messages.

SPHINCS-256 The SPHINCS authors have suggested a standard instantiation for
their scheme in [3] that achieves 128 bits of post-quantum security. This instance
is called SPHINCS-256 and requires two secret keys (sk1, sk2) of 32 bytes each.
Since SPHINCS-256 is stateless, the hash-based instances within the scheme are
referred to with an addressing scheme. The ith W-OTS+ instance at the leaf of
the jth sub-tree at layer l is addressed with the binary concatenation of all these
indices, i.e., A(i, j, l) = (l || j || i) where the first 4 most significant bits refer to
layer l, the next 55 bits to sub-tree j, and the last 5 bits its leaf i.

To sign a given message M , a pseudorandom value R is generated according
to M and sk2. This value represents the selected branch of our hyper-tree, i.e.,
it allows the computation of the HORST instance address AHORST and the
W-OTS+ addresses Al

i at each layer 0 ≤ l < T and for each leaf 0 ≤ i < 2Hi . The



secret seeds of these instances are computed using this address. In SPHINCS-256,
SeedA = BLAKE-256(sk1 || A) where BLAKE-256 is the cryptographic hash
function [1] used as a PRF. When fed to a PRNG, this seed generates the secret
key of the addressed instance.

3 Side-Channel Analysis of XMSS

3.1 Assumptions

To provide a sound analysis of side-channel resistance that is relatively indepen-
dent of the actual implementation, we first assume that the used hash functions
and PRNG suffer no side-channel leakage at all. Obviously, this assumption does
not hold for any real world implementations, but it allows us to separate the
analysis of the schemes (Sec. 3.2- 3.4) from the analysis of the hash function
and PRNG (Sec. 3.5). We perform a bottom-up SCA, i.e., we start by analysing
W-OTS+ and then extend the analysis to XMSS and XMSSMT . An extended
version of this analysis is contained in [16].

3.2 W-OTS+
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Fig. 1. Parts of W-OTS+ relevant for SCA

As illustrated in Fig. 1, the only secret data processed inside W-OTS+ are
the secret key parts xi. The used randomisation elements r and keys k are public
values and, thus, are of no interest for an attacker. The xi are only used as input
to the chaining function ck.



To mount a DPA attack, a function depending upon a part of the secret
key and a known variable input data must be found. At first sight, ci

k(x, r)
seems to be a perfect target for a power analysis attack. For i = 1, the signer
calculates x ⊕ ri, where x is some secret key block and ri is a randomisation
bitmask known to the adversary. However, this function is only called twice:
once during key generation and once during signature generation. This limited
number of executions alone prevents the majority of side-channel attacks due
to measurement noise. Additionally, ri is the same for both evaluations. This
prevents DPA attacks, which rely upon different inputs to the target function.
Also, simple power analysis (SPA) attacks are unable to recover any relevant
portion of the secret key.

3.3 XMSS

We just saw that W-OTS+ barely leaks information via power side-channels.
Since XMSS is built using many W-OTS+ keys, intuitively XMSS provides
this resistance as well. However, one major difference that makes XMSS more
vulnerable than W-OTS+ is that W-OTS+ key generation is called much more
often during authentication path computation.

XMSS 

Tree

L-tree

W-OTS+

Public Key

W-OTS+

Secret Key
Seed PRNG

public ⇒ leakage-agnostic

secret

… …

Fig. 2. Parts of XMSS relevant for SCA

Fig. 2 summarises the parts of XMSS relevant for SCA. The entire XMSS
tree is public and, thus, leakage-agnostic. Even if leaked entirely, the adversary
does not learn anything secret. This includes the W-OTS+ public keys and the
intermediate values in the L-trees, which are used to compute the XMSS tree
leaves. The relevant parts are shown in the lower part of the figure and include



the seed used for the pseudorandom W-OTS+ secret key generation and the
W-OTS+ secret keys itself.

It was found above that the power leakage resistance of W-OTS+ can mainly
be guaranteed because both the key generation and the signature generation are
only executed once. For an XMSS signature using the W-OTS+ secret key at
index s, the signer first computes the W-OTS+ signature, using skOT S,s, and then
the authentication path for v0[s]. The authentication path calculation requires
that all other v0[i] are computed too. While some nodes of the authentication
path can be reused, some must be recomputed. Assuming the signer does not
reuse nodes at all, we know that, at the time of the signature generation for
index s, the skOT S,s already leaked a few times before.

Assuming the most powerful side-channel adversary [31] who can choose the
leakage function arbitrarily and adaptively change it for each signature generation,
this leads to a leakage of 2H+1 · λ bits, where λ is a bound for the bits leaked per
W-OTS+ key generation and signature generation. Even a small bound λ trivially
breaks the security of XMSS for any reasonable choice of H and n. However,
in practice such an adversary does not exist. When considering a real-world
leakage model, the attack becomes infeasible: During each signature generation
the W-OTS+ chaining function is called with the exact same inputs to produce
the same W-OTS+ public keys. While this is useful for filtering out noise, which
is inevitable in every power analysis attack, the leaked information is still meagre.

When combining this finding with the assumption that the PRNG and hash
function have no leakage and the findings above, we find that XMSS has the
same leakage as W-OTS+, but the adversary can use the multiple computations
to reduce the noise.

3.4 Applicability to XMSSMT

The conclusions we drew so far can be generalised to XMSSMT , since an XMSSMT

signature generated using a hyper-tree with T layers can be viewed as T indepen-
dent XMSS signatures from a side-channel perspective. One major difference is
that the W-OTS+ signature generations on the upper layers are executed more
than once (if no caching is implemented). Intuitively, this seems to provide more
leakage than the single tree variant of XMSS. However, since no relevant leakage
could be identified during W-OTS+ signature generation, XMSSMT provides
similar side-channel resistance.

3.5 Hash Function and PRNG Side-Channel Resistance

So far, we concluded that W-OTS+, XMSS, and XMSSMT provide strong side-
channel resistance, under the assumption that the used hash function and the
PRNG are side-channel resistant. Although the actual fulfilment of this re-
quirement is implementation-specific, we now discuss the general side-channel
resistance of the used building blocks.



Hash function The used hash function is the only function within W-OTS+ which
processes secret data. However, a hash function per se cannot be vulnerable or
resistant to side-channel attacks, since it can be used in numerous ways which do
not necessarily involve a secret key. In the XMSS Internet-Draft [14], the keyed
hash function fk of W-OTS+ is implemented using either a hash function of the
SHA-2 or SHA-3 function family using the construction fk(x) = f(0n || k || x),
where f is SHA-256, SHA-512, SHAKE-128, or SHAKE-256. However, the key k is
generated from a public seed, while the actual secret data is x.

Several side-channel attacks, all of which being DPA attacks, have been
proposed on both SHA-2 and SHA-3 hash function in the context of HMACs [2,
23,32,33]. However, they are not applicable to the W-OTS+ chaining function,
since each secret key part is only used with constant randomisation bitmasks (k
and r). Additionally, SPA attacks are unable to recover any significant amount
of secret key bits due to the absence of conditional branches depending upon
the secret key for both SHA-2 and SHA-3. Note that the hash function may be
replaced in future XMSS standards. It is thus imperative to analyse whether the
replacement still provides similar side-channel resistance.

PRNG The PRNG which may be used for generating the W-OTS+ secret keys is
not specified by the XMSS Internet-Draft [14]. Thus, an implementer may freely
choose a secure PRNG which matches the security parameter n.

For n = 256 and the SHA-2 hash function family, the XMSS Internet-Draft
recommends the use of the following construction to generate a pseudorandom
value for the index i from a seed: SHA-256 (0x000..03 || seed || i). For other
parameters, similar recommended constructions are given.

This construction can be analysed with respect to side-channel attacks building
upon the conclusions for the W-OTS+ chaining function. The non-existence of
conditional branches depending upon the input of the hash function implies that
no SPA can be mounted upon any of the recommended PRNG. However, all
constructions are good candidates for DPA attacks, since the hash functions are
evaluated for the same seed with different indices.

3.6 DPA Attack on SHA-2 PRNG

To the best of our knowledge, only hash function side-channel resistance in the
context of HMAC has been addressed in the literature. We adapt the attack on
a SHA-2 HMAC [2] for the recommended XMSS PRNG. We briefly recall the
attack by Belaïd et al.:

An HMAC for the message m can be computed by applying a hash function
H twice [18]: HMAC(m, k) = H ((k ⊕ opad) || H ((k ⊕ ipad) || m)). The bitmasks
opad and ipad denote constants 0x5c5c . . . 5c and 0x3636 . . . 36. When using a
Merkle-Damgård-based hash function, the key is padded to the block length of
the hash function (e.g., 512 bits for SHA-256), such that each evaluation of H
results in at least 2 evaluations of the compression function cf .

The inner hash-evaluation of the HMAC is illustrated in Fig. 3. First, the
compression function cf is called with the masked key (k ⊕ ipad) and the fixed



Algorithm 1 SHA-256 compression function cf [26]. Relevant operations for
recovering D(0) are highlighted in blue.
1: Input: IV (256 bit), mi (512 bit)
2: Wt ← m

(t)
i 0 ≤ t ≤ 15

3: Wt ← σ1(Wt−2) +Wt−7 + σ0(Wt−16) +Wt−15 16 ≤ t ≤ 63
4: A← IV (0);B ← IV (1);C ← IV (2);D ← IV (3);
5: E ← IV (4);F ← IV (5);G← IV (6);H ← IV (7);
6: for t = 0; t < 64; t+ + do
7: T1← H +Σ1(E) + Ch(E,F,G) +Kt +Wt

8: T2← Σ0(A) +Maj(A,B,C)
9: H ← G; G← F ; F ← E; E ← D + T1;
10: D ← C; C ← B; B ← A; A← T1 + T2
11: end for
12: return [IV (0) +A, IV (1) +B, IV (2) +C, IV (3) +D,

IV (4) +E, IV (5) +F, IV (6) +G, IV (7) +H]

initialisation vector (IV). Then, for each block in the message m, an additional
call to cf iteratively combines the resulting IV from the previous iteration with
512 bits of the message m. Since the first evaluation only processes the key, but
no variable data, it is not possible to mount a DPA attack on the computations
inside. Instead, Belaïd et al. target the second evaluation of cf , which processes
the first block of m and the result of the first evaluation of cf , denoted by IV1.
The computations inside cf can be used to entirely recover IV1 which is enough
to forge the inner part of the HMAC.

The actual attack is based upon intermediate values inside the SHA-2 com-
pression function cf shown in Alg. 1. For definitions of Ch, Maj, Σ0, Σ1, σ0,
and σ1, see [26]. Let D(i) denote the value of D before iteration t = i, thus
D(0) = IV

(3)
1 . Similarly, T1(i) is the value of T1 that was computed during

iteration t = i − 1. Additionally, let values that are different for each HMAC
generation be denoted by bold letters (e.g., Wt), while values that are the same
for all generations are in standard letters (e.g., T1). To attack the HMAC, the
adversary now mounts several DPA attacks building upon each other to recover

𝐼𝑉0 = 0x6a09…

𝑘 ⊕ 𝑖𝑝𝑎𝑑
512
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512
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𝐼𝑉1

…
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Fig. 3. DPA on SHA-256 HMAC (simplified from [2])



A(0), . . . ,H(0). These values are enough to forge the hash output of the inner
hash function output for arbitrary message. The outer hash is attacked similarly.

As an illustration, we briefly describe howD(0) can be recovered and refer to [2]
for the full attack. We define δ(1) := H(0) +Σ1(E(0)) +Ch(E(0), F (0), G(0)) +K0,
i.e., line 7 computes T1(1) ← δ(1) +W0. A DPA can easily recover δ(1), since δ(1)

is fixed and Wt is known and variable. Once the adversary knows δ(1), they can
compute T1(1) for each known word W0. The second DPA attack then recovers
D(0) from E(1) ← D(0) + T1(1) using known values for T1(1). Building upon the
recovered values of T1(1), another 7 DPAs in the first and second iteration can be
used to recover the values of A(0), B(0), C(0), E(0), F (0), G(0) and H(0) (see [2]).

Application to hash-based PRNG: To the best of our knowledge, no power
analysis attack on hash-based PRNG has been presented so far. However, the
HMAC construction above resembles the PRNG suggested by the XMSS Internet-
Draft [14] for the generation of W-OTS+ secret keys. Trying to apply the attack
of Belaïd et al. [2], we notice that the message words W0 and W1, which were
used to mount the DPA attack, are always zero for any reasonable parameter
choice (h ≤ 448). If these known values are fixed, a DPA attack does not work.

The attack can be adapted to use W14 and W15 instead, assuming i < 264.
The adversary is able to recover A(14), . . . ,H(14) from the computations in
iteration 14 and 15. Although this does not allow to recover IV1, it is still sufficient
to recompute all pseudorandom secret keys, since Wk = 0 for 0 ≤ k ≤ 13 which
consequently means that A(14), . . . ,H(14) are the same for all values of i.

For our proof-of-concept, we assume that the PRNG is called for uniformly
random values between 0 and 264 − 1. In XMSS it is called for subsequent values
which are no bigger than 220. However, using these parameters, our attack is
unable to recover all bits of A(14), . . . ,H(14). We leave the analysis on how much
bits can be recovered for a certain parameter set to future work.

Implementation To validate that our attack indeed can be used to recover all
W-OTS+ secret keys, we created a proof-of-concept implementation of the attack.
The source code of our implementation is available [17].

Power Simulation Since an actual hardware implementation of XMSS was not
available, we implemented a power simulator which is capable of creating power
traces in the Hamming weight (HW) leakage model. Since a DPA attack requires
the computation of hypothetical power consumption values for each possible key
hypothesis, our implementation recovers each byte of A(14), . . . ,H(14) separately.
At first, we assume that we have a byte-wise leakage of the HW, which allows the
recovery of the key with few traces. However, since this is not realistic, we also
extend this to work with the leakage of the HW per 32-bit word using partial
DPA.

Some of the DPA used to attack the PRNG target a 32-bit modular addition
and some target bitwise AND. They require slightly different hypothesis calculation
due to carry handling. For details we refer to our source code [17].
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Fig. 4. Maximum PCC of all possible key hypotheses in the 8-bit HW leakage model.
The correct sub-key (34) can be easily detected

Results We started evaluating our proposed attack in the 8-bit HW leakage
model. Fig. 4 illustrates the maximum correlation values of each possible key
hypothesis for computing the least significant byte of δ(15), i.e., this is a DPA on
a part of a 32-bit modular addition. We use the Pearson correlation coefficient
(PCC) throughout the experiments for this paper. The correct hypothesis results
in a correlation of 1.0, which is significantly higher than any other correlation,
which allows the recovery of the least significant byte of δ(15). Correlation values
when using physically measured traces will be smaller than 1.0 due to noise. The
detection of the correct sub-key will therefore be harder, and, in consequence,
may require more traces. Fig. 4 also shows that correlation values are small
(< 0.4) for most key candidates and only higher for 16 key candidates in this
experiment. Thus, even if the noise is too high to successfully require the correct
sub-key, it still allows a drastic reduction in the search space which can then be
enumerated to find the correct key.

Next, we wanted to evaluate the success probability of the entire attack,
which includes 9 DPA on 32-bit operation, i.e., 36 DPA when using the 8-bit HW
leakage model. The success rates of the single DPA are not independent of each
other due to two reasons: Firstly, when attacking addition, the higher significant
bytes can only be recovered reliably if the lower significant byte key guesses are
correct, since only then we can correctly calculate the carry bits. Secondly, the
attacked operations depend on each other, e.g., the DPA attack on D(14) requires
that the DPA on δ(15) was successful. Thus, the success rate of the entire attack
is certainly smaller than for each individual DPA.

Fig. 5 shows the success rate of the full key recovery attack using different
numbers of traces, where one trace corresponds to an execution of the PRNG with
an uniformly random index between 0 and 264− 1. When using only T = 8 traces
per experiment, the recovery failed for 100% of our trials, whereas using T = 10
already resulted in a success probability of almost 60%. This further increased to
93.3% for T = 512. However, we noticed that the DPA on AND operations always
failed to recover the key if the sub-key is equal to zero. This is because for a zero
key value the calculated value always has a HW of zero. Since this is a constant
value, no correlation can be found with DPA. However, this can be detected by
the adversary, and they can conjecture that the key must be zero. We did not
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Fig. 5. Success rate of the full DPA key recovery attack on the vulnerable PRNG in
the 8-bit HW leakage model

implement this optimisation in our proof-of-concept implementation, thus, since
the attacked values are uniformly distributed and we have a total of 16 DPA on
AND, the probability of having all key bytes 6= 0 is

( 255
256
)16 ≈ 0.939. Therefore, we

conjecture that the best achievable success rate in this set-up is about 93.9%, no
matter how many traces are used. The actual numbers from these experiments
can only provide a lower bound, since our traces contain no noise. In real-world
measurements, the required number of traces is larger depending on noise.

Partial DPA So far, we assumed that the implementation leaks the HW of
each byte separately, such that we can mount independent DPA upon them.
However, since SHA-2 only involves 32-bit arithmetic, a byte-wise implementation
is unrealistic. Most implementations will use 32-bit words and, thus, only leak
the HW of the entire words.

Luckily, the strategy can be adapted and still be used to recover each byte
separately using partial DPA [2], although requiring a much higher number of
traces. We integrated this in our proof-of-concept implementation and were able
to reproduce the results of [2].

3.7 Impact

Our proof-of-concept implementation shows that if the SHA-2-based PRNG
(SHA-256 (0x000..03 || seed || i)) is called for indices i which vary in 64 bits, an
adversary is able to recover an intermediate value which allows one to calculate
the output of the PRNG for arbitrary indices. Applied to XMSS and XMSSMT ,
this allows an adversary to recover all W-OTS+ secret keys which trivially
compromises the security of the scheme.

However, in both schemes, the PRNG is never called for indices larger than
220, which prevents the presented attack. If a different PRNG is used, it may
be vulnerable to our attack with current XMSS parameters. For example, if the
PRNG is modified to SHA-256 (0x000..03 || seed || SHA-256(i)), the inner hash
evaluation results in uniformly random inputs to the outer hash evaluation which
makes our attack practical. This emphasises that if a different PRNG is used,
not only the black-box security needs to be considered, but also its side-channel
resistance.



3.8 Recommendations

Since XMSS is currently being standardised, practical implementations which
need to be protected against power analysis attacks are likely to be created soon.
Our results suggest that the most critical part to protect is the PRNG. While the
proposed XMSS standard leaves open the actual choice of the PRNG, we showed
that the PRNG selection is critical for side-channel resistance. It is crucial to use
a PRNG which is well-studied with respect to side-channel attacks, like the one
recommended by the XMSS Internet-Draft.

We also found that optimised authentication path computation (e.g., using
the BDS algorithm [5]) greatly decreases the side-channel leakage of XMSS
because it minimises the accesses to the secret keys and, consequently, executions
of the PRNG. Although this optimisation is deemed optional by the XMSS
Internet-Draft, every implementation should use it.

Timing attacks were not discussed in this paper, but protecting implementa-
tions against them is also necessary. Since constant time implementations exist
for all used hash functions, PRNGs, and PRFs, protecting XMSS and SPHINCS
against such attacks is straightforward.

4 SPHINCS-256: A DPA on BLAKE

In the previous section, we analysed the side-channel resistance of XMSS and
XMSSMT and presented a DPA attack on a SHA-256-based PRNG which is
used within both XMSS and XMSSMT . To extend the analysis, we evaluate
SPHINCS-256 in the same regard.

SPHINCS relies on XMSSMT , HORST, and a stateless way of addressing
hash-based instances within the scheme. Since the HORST hash tree construction
does not leak anything about its secret key, we can assume this component to be
side-channel resistant. Moreover, XMSSMT can also be assumed secure by the
previous analysis. This leaves us only with the stateless way of computing the
PRNG seeds, which we now analyse. This analysis was initially studied in [12].

SPHINCS-256 PRF In SPHINCS-256, the W-OTS+ and HORST secret seeds
are generated with BLAKE-256(sk1 || A) where sk1 ∈ {0, 1}256 is the SPHINCS
secret key, A ∈ {0, 1}64 the address of the instance, and BLAKE-256 the hash
function [1]. Recovering sk1 would therefore result in a total security break. We
now present a 6-DPA attack on the BLAKE hash function in the context of
SPHINCS-256 that recovers one 32-bit chunk of the secret key sk1.

4.1 DPA

The BLAKE-256 compression procedure takes 12 similar rounds during which
the input is mixed. Similarly as in Sec. 3, the goal is to subsequently recover
intermediate values at certain points in the procedure, to eventually recover
one secret chunk. As these values are mixed with variable values early in the
procedure, the DPAs focus on the first two rounds. Within SPHINCS-256, the



first round is summarised in Alg. 2. Here, the values vi for 0 ≤ i < 15 are
initialised with known constant values. A general mixing subroutine Mix involved
in these steps is shown in Alg. 3. Here, Mi ∈ {0, 1}32 for 0 ≤ i < 15 is a chunk of
the input padded with a constant and known padding. The function σz(i) is a
permutation that depends on the round 0 ≤ z < 12. Again, the values of Ci for
0 ≤ i < 15 are given constants.

Algorithm 2 Round z = 0 of BLAKE-256 compression algorithm [1].
Input: (s0, . . . , s7) — secret key sk1 split into 8 chunks of 32 bits each
Input: (a0, a1) — address A split into two chunks of 32 bits each

1: Mix(v0, v4, v8, v12; s0, s1)
2: Mix(v1, v5, v9, v13; s2, s3)
3: Mix(v2, v6, v10, v14; s4, s5)
4: Mix(v3, v7, v11, v15; s6, s7)

5: Mix(v0, v5, v10, v15; a0, a1)
6: Mix(v1, v6, v11, v12; 0x80000000, 0x00000000)
7: Mix(v2, v7, v8, v13; 0x00000000, 0x00000001)
8: Mix(v3, v4, v9, v14; 0x00000000, 0x00000140)

Algorithm 3 Mix procedure involved in Alg. 2.
Input: (va, vb, vc, vd) — intermediate values of 32 bits each
Input: (Mσz(e), Mσz(e+1)) — hash function input chunks of 32 bits each

1: va ← (va+vb)+(Mσz(e)⊕Cσz(e+1))
2: vd ← (vd ⊕ va) ≪ 16
3: vc ← vc + vd
4: vb ← (vb ⊕ vc) ≪ 12

5: va ← (va + vb) + (Mσz(e+1) ⊕ Cσz(e))
6: vd ← (vd ⊕ va) ≪ 8
7: vc ← vc + vd
8: vb ← (vb ⊕ vc) ≪ 7

In Alg. 2, line 5 involves v0, v5, v10, and v15, which all respectively depend on two
constant chunks of sk1, and the address. When the Mix procedure is unrolled, the
operation v0 ← (v0 + v5) + (a0 ⊕ C9) at line 1 involves (v0 + v5), and (a0 ⊕ C9):
the first half of the address A masked with a constant. By targeting this addition,
we can recover (v0 + v5) with a first DPA. Once recovered, the following values
for v5, v10, and v15 can be consecutively recovered with additional DPAs. Since
the rest of the Mix procedure does not involve any other unknown value, and
since these values are not mixed again during round 0, they are, therefore, all
known at the beginning of round 1.
On round 1 of the BLAKE-256 compression algorithm, Mix(v1, v5, v9, v13; s4, s5)
is called. Line 1 in Alg. 3 for this call involves v5 which has been recovered from
before, and v1 which can be recovered with a fifth DPA. Finally, a sixth DPA on
(v1 + v5) + (s4 ⊕C5) can recover s4, which consists of one chunk of 32 bits of the
secret key sk1.

Setup and implementation The SCA was performed on an Arduino Due micro-
controller, based on the Atmel SAM3X8E Cortex-M3 CPU. Power consumption
was collected by placing a local near-field probe on the chip at the position shown



in Fig. 6. The attack considers the BLAKE-256 reference implementation [1] with
an additional assumption: the addition of (va + vb) at lines 1 and 4 in Alg. 3 is
performed before the rest. This makes the recovery of va or vb alone harder, but
should not affect our results. We provide the code that was used for evaluating
the attack at [17].

Fig. 6. Position of an EM probe on a SAM3X8E Cortex-M3 microcontroller at which
strong EM radiations could be collected

4.2 Real-Device Analysis and Results

To confirm the practicality of the attack, we performed the first two DPAs of
our attack on real traces. We collected t = 10000 different traces of the two
targeted operations, where the secret key sk1 was fixed and the addresses A were
drawn uniformly at random. This number can be obtained by signing around
2000 different messages, as BLAKE-256 is called on 7 different layers with a
different a0 for a single signature. We use the HW leakage model.

We evaluated the relation between the power traces and the guesses on, first,
(v0 + v5), and, then, on v15, using Pearson’s correlation with a partial DPA on
16 bits, as explained in Sec. 3. The leakages of both the addition and the XOR
operation are shown in Fig. 7. The upper plots show the main correlation peaks



of 1000 guesses on the most significant bits of the targeted value, while the lower
plots show the power consumption average.

Fig. 7. Power traces average and main PCC peaks on the frist half of the targeted
values for the addition and XOR operations (t = 10000)

By computing the maximum PCC of the 216 possible values for the most
significant bits of v0 + v5 (in the case of the addition) and v15 (in the case of the
XOR operation) we obtain Figure 8. In both cases, the candidate with the bigger
correlation factor in absolute value always happens to be the right value. Similar
results were found with the least significant bits, which confirms that the overall
attack can be successfully mounted, as the other DPAs target the same kind of
operations.

4.3 Impact

The described attack recovers s4, the fifth 32-bit chunk of sk1. This makes the
stateless construction of SPHINCS-256 vulnerable to DPA. Recovering this chunk
potentially leads to the recovery of other chunks, but additional investigation is
required.

4.4 Countermeasures

In order to mitigate the effect of this attack, we suggest hiding the order of the
Mix procedures. During a BLAKE-256 round, the first four calls — as well as the



Fig. 8. Maximum PCC of all possible hypotheses on the first half of the targeted values.
On the upper plot (addition), the most positively correlated value corresponds to the
correct half of (v0 + v5), while the lower plot (XOR), the most negatively correlated
value corresponds to the correct half of v15

next four — do not depend on each other. Their order can thus be rearranged
randomly. This forces an attacker to synchronise the collected traces, making the
DPAs more complex.

5 Conclusion

In this paper, we analysed the side-channel resistance of two modern HBS schemes,
XMSS and SPHINCS, with a focus on DPA resistance. We presented a novel
DPA vulnerability of a SHA-2-based PRNG for XMSS, as well as an attack on
the BLAKE-256-based PRF used within SPHINCS-256. While the first attack
is not threatening current versions of XMSS, the second one is practical for the
actual parameters of SPHINCS-256.

Besides these two found vulnerabilities, we performed a thorough analysis
of the building blocks of both XMSS and SPHINCS. Our results confirm the
conjecture that XMSS provides strong protection against differential power
analysis attacks. This further increases the confidence in the security of stateful
HBS schemes, which contributes to a rigorous standardisation process.
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