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Abstract. The majority of currently deployed cryptographic public-key
schemes are at risk of becoming insecure once large scale quantum com-
puters become practical. Therefore, substitutes resistant to quantum
attacks—known as post-quantum cryptography—are required. In partic-
ular, hash-based signature schemes appear to be the most conservative
choice for post-quantum digital signatures.
In this work, we mount the first practical fault attack against hash-based
cryptography. The attack was originally proposed by Castelnovi et al. [8]
and allows the creation of a universal signature forgery that applies
to all current standardisation candidates (XMSS, LMS, SPHINCS+,
and Gravity-SPHINCS). We perform the attack on an Arduino Due
board featuring an ARM Cortex-M3 microprocessor running the original
stateless scheme SPHINCS with a focus on practicality. We describe how
the attack is mountable with a simple voltage glitch injection on the
targeted platform, which allowed us to collect enough faulty signatures
to create a universal forgery within seconds.
As the attack also applies to stateful schemes, we show how caching
one-time signatures can entirely prevent the attack for stateful schemes,
such as XMSS and LMS. However, we discuss how protecting stateless
schemes, like SPHINCS, SPHINCS+, and Gravity-SPHINCS, is more
challenging, as this countermeasure does not apply as efficiently as in
stateful schemes.

Keywords: SPHINCS · hash-based signature · voltage glitching · fault
attack · digital signature

1 Introduction

With the arrival of large-scale quantum computers, current public-key cryptogra-
phy is at risk. This is the result of Shor’s quantum algorithm [18] which is able
to efficiently factor large integers and solve the discrete logarithm problem. As a
? This work was done while Matthias J. Kannwischer was at TU Darmstadt and the
University of Surrey.



result, substitutes resistant to attacks by quantum computers—also known as
post-quantum cryptosystems—need to be developed.

One family of post-quantum cryptography known for creating digital signa-
tures with the sole use of a cryptographic hash function is hash-based cryptography.
The main advantage of such schemes is that their security relies only on certain
cryptographic properties of a generic hash function. Thus, if the chosen hash
functions are broken in the future, they can be easily replaced with new hash
constructions. Besides, from a quantum standpoint, the effectiveness of generic
attacks against hash functions cannot exceed Grover’s algorithm [19], i.e., a
quantum adversary cannot obtain more than a square-root speed-up compared
to classic preimage search.

The urge to transition from current cryptosystems to post-quantum cryp-
tography has recently gained a lot of popularity [17], mainly due to progress
in quantum computing. In 2017, 82 proposals for post-quantum cryptography
were received by NIST of which 69 submissions were accepted for a first round of
evaluation.

While many researchers contributing to NIST’s evaluation focus on theoretical
cryptanalysis, implementation aspects also need to be assessed and are expected to
be an important criterion for the selection of future post-quantum cryptography
standards. Physical attacks have been shown to have disastrous impact on
certain implementations of cryptography, often completely compromising the
security at low cost. Indeed, while post-quantum schemes need to resist quantum
computers, they must run on classical computers, such as embedded devices.
This paper evaluates the susceptibility of hash-based signatures—in particular,
SPHINCS [3]—to fault injection attacks.

Fault injection attacks. A fault, either natural or malicious, is a misbe-
haviour of a device that causes the computation to deviate from its specification.
For example, a fault can flip bits in a certain memory cell, corrupting the value
held in this register. In a fault injection attack, an adversary is able to actively
inject malicious faults into a cryptographic device, such that its process outputs
faulty data. Invalid outputs, potentially combined with valid ones, are then used
to reconstruct parts of secret data, such as signing keys.

Research during the last two decades found that many widely used schemes,
when implemented without specific fault protection, can be broken by fault
attacks. The first successful attack dates back to 1997 [4], where Boneh et al.
exploited both a faulty and a valid RSA signature to recover the private key of a
device.

These attacks are primarily relevant for embedded cryptographic devices like
smart cards, where it is reasonable to assume that an adversary has direct access
to the device and can control when cryptographic operations are performed.

Faults can be induced in various ways. The most classical ones include exposing
the device to voltage variations or manipulating the clock frequency, leading to
operation outside of the tolerance of the cryptographic devices.

When analysing the fault vulnerability of an implementation, the capability
of the adversary needs to be taken into account. This involves measuring the



accuracy of the injected faults in terms of location, timing, number of bits affected,
success probability, duration, ... The more precisely the fault injection can be
tuned, the more powerful are the possible attacks.

Related work. Mozaffari-Kermani et al. [15] propose and evaluate the
performance of countermeasures that protect Merkle tree constructions from
natural and malicious faults. However, they neither evaluate the practicality of
fault injection attacks against unprotected implementations, or the effectiveness
of their countermeasure. Work by Castelnovi et al. [8], performed partially in
parallel to ours, proposes the same attack as we do, but does not provide a
practical verification. Kannwischer et al. [14] recently analysed the differential
power analysis vulnerability of XMSS and SPHINCS. They limit their analysis
to purely passive adversaries, i.e., entirely exclude fault injection attacks.

Contributions. This work shows the first practical fault attack on hash-
based signatures with a focus on SPHINCS [3]—the stateless hash-based signature
scheme that led to SPHINCS+ [11] and Gravity-SPHINCS [2], both candidates
to the NIST standardisation process. The attack is based on the existing work of
Castelnovi et al. [8] who analysed the impact of a fault injection on the security
of SPHINCS-like structures, but without proof of concept. This paper brings
new insights into the subject by focusing on the practical details to perform the
fault attack on a generic embedded device. We show how a low-cost injection
of a single glitch is enough capability to obtain exploitable faulty signatures,
and highlight which procedures are critical to protect. Finally, we conclude on a
discussion on how to completely thwart the attack on stateful schemes, and why
protecting stateless schemes is a difficult task.

2 Preliminaries

Hash-based signature schemes use hash functions to create digital signatures.
They mainly provide constructions for one-time signatures (OTS) and few-
time signatures (FTS), which can then be combined with a binary hash tree
(Merkle tree) to design many-time signatures (MTS). As their names indicate,
an OTS must not be used more than once, the security of an FTS degrades over
uses, and an MTS can be used only a specific number of times.

Until recently, practical hash-based signatures schemes were stateful, meaning
that a state needed to be maintained as a part of the secret key (e.g., XMSS [6,12],
and LMS [16]). This introduced a severe requirement for the executing device
and prevented a drop-in replacement of schemes currently deployed. In 2015,
Bernstein et al. proposed SPHINCS [3], the first practical scheme that has the
particularity of being stateless. This was a huge step in the development of
hash-based schemes, as they can potentially become the next digital signatures
standard in a post-quantum world.

Recently, two extensions of SPHINCS have been submitted to the NIST post-
quantum standardisation project [17]: SPHINCS+ [11] and Gravity-SPHINCS [2].
Despite such improvements, this paper focuses on the original SPHINCS scheme.



However, due to their similarity to SPHINCS, SPHINCS+ and Gravity-SPHINCS
can be attacked in a very similar way.

Due to space limitations, we limit the preliminaries to the parts of the
schemes relevant for the fault injection attack. Particularly, we skip the signature
verification of the schemes, as well as the FTS scheme HORST since this building
block is not targeted. For self-contained descriptions of the algorithms, we refer
the reader to the original publications [3, 6, 10] or an introduction to hash-based
signatures.

2.1 W-OTS+

W-OTS+, as well as its predecessor the Winternitz one-time signature (W-OTS),
implements a time/space trade-off parametrised by the Winternitz parameter
w = 2W . A small value of w results in a faster scheme, but leads to larger keys
and signatures, as the scheme signs W bits at once by hashing a secret value at
most 2W − 1 times.

For a security parameter n ∈ N, given a second-preimage resistant hash
function F : {0, 1}n → {0, 1}n and a set of bitmasks r = (r1, . . . , rw−1) ∈
{0, 1}(w−1)×n, the W-OTS+ chaining function ci(x, r) is defined as{

c0(x, r) = x
ci(x, r) = F (ci−1(x, r)⊕ ri), i < w.

Also, let the following lengths be

`1 =
⌈ n
W

⌉
, `2 =

⌊
log (`1(w − 1))

W

⌋
+ 1, ` = `1 + `2.

W-OTS+.keyGen Given security parameter n,

1. Choose secret seed S ∈ {0, 1}n and randomisation bitmasks r ∈ {0, 1}n×(w−1).
2. Expand S to sk = (sk1, . . . , sk`) ∈ {0, 1}`×n.
3. Compute public key pk = (pk1, . . . ,pk`) =

(
cw−1(sk1, r), . . . , cw−1(sk`, r)

)
.

4. Output:
– Secret key: S.
– Public key: randomisation bitmasks Q and pk.

W-OTS+.sign Given message M ∈ {0, 1}n, secret seed S and bitmasks r,

1. Split M into blocks of W bits M = (b1, . . . , b`1) with bi ∈ {0, . . . w − 1}.
2. Compute checksum C from M and split up into blocks of W bits.
3. Concatenate M and C such that B = M ||C = (b1, . . . , b`).
4. Re-compute sk from S.
5. Compute signature as σW-OTS+ = (σ1, . . . , σ`) =

(
cb1(sk1, r), . . . , cb`(sk`, r)

)
.

W-OTS+.keyExtract To compute the pk from σW-OTS+ and M ,

1. Re-compute (b1, . . . , b`) from B = M ||C as above.
2. Compute pki = cw−1−bi(σi, r) for 1 ≤ i ≤ `.



2.2 MSS

SPHINCS uses the Merkle Signature Scheme (MSS) to construct an MTS
that combines many W-OTS+ key pairs using a Merkle tree. Given a secu-
rity parameter n, the scheme requires a second-preimage resistant hash function
H : {0, 1}2n → {0, 1}n.

MSS.keyGen Given Merkle tree height h,

1. Choose secret seed SMSS ∈ {0, 1}n and randomisation bitmasksQ ∈ {0, 1}2n×h.
2. Expand SMSS to Si for 0 ≤ i < 2h.
3. Generate 2h W-OTS+ key pairs using Si for 0 ≤ i < 2h.
4. Organise W-OTS+ public keys as a binary hash tree, where

(a) Leaves v0[j] (0 ≤ j < 2h) consist of the compressed public keys (see [12])
(b) Inner nodes vi[j] are computed as vi[j] = H((vi−1[2j]||vi−1[2j+ 1])⊕Qi)

for 1 ≤ i ≤ h and 0 ≤ j < 2h−i.
5. Output:

– Secret key: SMSS and index of next unused leaf s := 0.
– Public key: randomisation bitmasks Q and root of the Merkle tree vh[0].

MSS.sign Given message M ∈ {0, 1}n, SMSS, s, and Q

1. Re-compute the W-OTS+ secret key Ss from SMSS.
2. Create σW-OTS+ for M using Ss.
3. Increment next unused leaf counter s.
4. Compute the authentication path for the selected W-OTS+ key pair. The au-

thentication path consists of the nodes in the MSS tree required to recompute
its root:

Auth =
(
v0[s⊕ 1], . . . , vh−1

[⌊
s/2h−1⌋⊕ 1

])
5. Output σW-OTS+ , index s, and the authentication path.

public key

mss

mss mss

mss mss mss mss

M0 M1 M2 M3 M4 M5 M6 M7

Fig. 1. Example of an instance of the tree chaining method CMSS. The hypertree is of
height h = 3 and consists of d = 3 layers of sub trees.



2.3 CMSS

While MSS allows the signing of a large number of messages by choosing a
large h, there are still some limitations: the key generation and signing require
O(2h) operations. While the former can be solved using optimised authentication
path computation, the latter is addressed by CMSS [7]; an improved hash-based
scheme that chains multiple MSS together. CMSS uses a multi-layered hypertree
of MSS where the upper layers sign the root of the lower layers. The lowest layer
is used to sign messages.

CMSS.keyGen Given total height h and number of layers d,

1. Choose SCMSS ∈ {0, 1}n which is used to derive SMSS,i,j for each subtree.
2. Choose randomisation bitmasks Q for MSS and W-OTS+

3. Generate top-most tree of height h/d using SMSS,d−1,0.
4. Output:

– Secret key: SCMSS and index of next unused leaf s := 0.
– Public key: root of the topmost tree and randomisation bitmasks Q.

Fig. 1 illustrates a CMSS hypertree for d = 3 and h = 3, resulting in
intermediate Merkle trees of height h/d = 1 with 2 leaves.

CMSS.sign Given a message M ∈ {0, 1}n, SCMSS, and Q

1. Expand SCMSS to the corresponding seeds SMSS,i,j for each 0 ≤ i < h/d
where j =

⌊
s/(2(i+1)(h/d)⌋.

2. Create a MSS signature for M using the bottom tree corresponding to s.
3. Increment next unused leaf counter s.
4. Create one MSS signature for each non-bottom layer, where the Merkle trees

on the upper layers are used to sign the roots of the lower layers.

2.4 SPHINCS

The major downside of stateful hash-based signature schemes like CMSS is that
each leaf of the hypertree must not be used more than once which requires
securely maintaining a state.

If an adversary is able to manipulate the state, such that the signer uses the
same key pair multiple times, the security of CMSS and other stateful hash-based
signature schemes degrades significantly. This, among other reasons, prevents
the wide adoption of stateful hash-based signature schemes.

To address the situation, the SPHINCS proposal [3] has made the elimination
of the state possible by bringing two alterations to a huge CMSS. First, the OTS
on the lowest layer of the hypertree are replaced with the FTS scheme HORST 4.
Second, the leaves are not used consecutively, but are selected pseudorandomly,
depending on the message and the secret key. Fig. 2 illustrates a small example
of a SPHINCS hypertree. Note that all layers, except for the bottom one, still
work as in CMSS.
4 For details on the HORST signing procedure, we refer to [3].
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Fig. 2. Example of SPHINCS.

SPHINCS.keyGen
1. Choose secret key SK = (SK1,SK2) ∈ {0, 1}n × {0, 1}n uniformly at random.

– SK1 is used for pseudorandom generation of W-OTS+ and HORST keys.
– SK2 is used for pseudorandom selection of a HORST instance for signing.

2. Choose random bitmasks Q for MSS, W-OTS+, and HORST
3. Compute single MSS tree on the top layer.
4. Output:

– Secret key: SK.
– Public key: randomisaton bit masks Q and root of top MSS tree.

SPHINCS.sign Given message M , secret key SK, and Q
1. Compute pseudorandom values R1, R2 from M and SK2.
2. Compute randomised message digest D from M and R1.
3. Re-compute HORST key pair at index R2.
4. Create HORST signature σH for D.
5. Compute CMSS signature to authenticate the HORST public key.
6. Output signature consisting of:

– R1 and R2.
– The HORST signature σH .
– The CMSS signature consisting of d MSS signatures.

3 Fault attack on SPHINCS
This section describes how a universal SPHINCS signature forgery can be created
by injecting faults during its signing procedure. First, we explain the different
steps of the attack and highlight the procedures that lead to exploitable faulty
signatures. Then, the described attack is simulated to illustrate the complexity
of the attack in terms of faulty signatures obtained. The section ends with a
practical verification on an Arduino Due board using voltage glitching.



3.1 Attack description

The attack is based upon Castelnovi et al. [8] who showed in 2018 that SPHINCS-
like schemes are notably intolerant to the presence of faults during execution.
This is because their CMSS structure uses OTS to sign the roots of intermediate
Merkle trees. Since the subtrees are not supposed to change from one execution
to another, they are re-computed on-the-fly and re-signed using the same OTS
instance. Therefore, a corruption on the root computation results in an OTS
instance signing a different message, weakening its security.

Attacking SPHINCS with faults first requires signing a message M to obtain
a valid signature

Σ = (R1, R2, σH , σW,0,Auth0, . . . , σW,d−1,Authd−1).

By re-signing the same M , the scheme will produce the same signature,
passing through the exact same path of the hypertree. However, if an error occurs
during the construction of any non-top subtree 0 ≤ i < d− 1, the algorithm will
output a different signature Σ̂ where σ̂W,i 6= σW,i.

Combining the secret values from σ̂W,i and σW,i, the attack consists of at-
tempting to forge a signature σ′W,i for a known subtree. Once the subtree is
successfully forged, it can be used to maliciously produce (R′1, R′2, σ′H , σ′W,j ,Authj)
for 0 ≤ j ≤ i and, thus, maliciously signs an arbitrary M ′. The rest of the signa-
ture is simply taken from the valid signature, i.e., (σ′W,j ,Auth

′
j) = (σW,j ,Authj)

for i < j < d.

public key

mss

mss mss

mss mss mssmss

horst

M

zs

=⇒

public key

mss

mss

mssmss mss

mss mss

mss

mss

horst

M ′

Fig. 3. An illustration of the tree grafting against SPHINCS.

An illustration of the attack is shown in Fig. 3. The picture on the left shows
a message M being signed with a SPHINCS hypertree while the highlighted
subtree is being attacked. Then, on the right, the hypertree is cut at this subtree
and grafted with a branch of forged subtrees, allowing an arbitrary message M ′
to be signed.



Processing faulty signatures. As the fault attack forces an OTS to be
reused, a post-processing procedure is required to exploit the faulty signatures.
Since we have no information on the corrupted messages, the W-OTS+ secret
values inside the faulty signatures need to be identified. This is done by using
the W-OTS+ public key, which can be extracted only with a correct W-OTS+

signature of the attacked subtree.
Using the public key of the W-OTS+ instance, the secret values can be

identified by correctly guessing all the blocks of the corrupted subtree root.
Each block can be confirmed separately by applying ci(x, r) a number of times
equivalent to the presumed value of the block. The resulting values are stored in
σ′i and correspond to the blocks b′i for 0 ≤ i < `.

Once the W-OTS+ secret values have been recognized, the universal forgery
is created by trying to graft a subtree on the existing SPHINCS structure. For
this, the attack creates a subtree from a random secret key SK′1 and tries to sign
its root using the recovered values. If (b1, . . . , b`) denote the result of splitting
the root in W-OTS+ blocks, the signature succeeds if bi ≤ b′i for 1 ≤ i ≤ `. In
this case, a valid W-OTS+ signature for the grafted subtree is then forged. This
subtree can then be used to sign the root of all the previous subtrees, which
consequently allows universal forgeries. Otherwise, the attempt can be repeated
over with a different SK′1 until it succeeds.

Following the above processing steps, we derived our own post-processing
algorithm in Fig. 4. This algorithm optimally exploits the information obtained
from the available faulty signatures to create a universal forgery on SPHINCS.
An implementation in Python of the algorithm is made available at [9].

Attack complexity. In order to succeed, the adversary needs to find a
Merkle tree that can be correctly signed using the secret values from q different
faulty signatures. This corresponds to drawing random bi for such that all bi ≤ b′i
for 1 ≤ i ≤ `.

To measure the number of attempts to obtain bi ≤ b′i for 1 ≤ i ≤ `, we
approximate the probability of such an occurrence with a generalization of the
work of Bruinderink et al. [5]. Assuming that all blocks b1, . . . , b` are uniformly
random, we obtain:

P = 1
w`

(
w−1∑
x=0

(
1−

(
w − (x+ 1)

w

)q+1
))`

. (1)

For example, as w = 16 and ` = 67 for SPHINCS, if an adversary obtains
q = 20 faulty signatures, the W-OTS+ forgery succeeds with a probability of
P ≈ 0.243. Since the second part of the algorithm follows a geometric distribution,
the expected number of attempts is simply 1/0.243 ≈ 4.12.

Note that for the last `2 blocks (i.e., the checksum), the assumption of
uniformity does not hold. This is because the blocks actually correspond to a
sum of uniform variables. This leads to a slightly lower success probability in
practice, which will be highlighted in our simulations.

SPHINCS+ and Gravity-SPHINCS. As noticed by Castelnovi et al. [8],
the attack also applies to the newer schemes SPHINCS+ and Gravity-SPHINCS.



Require: M : the valid subtree root
Require: σW : the valid W-OTS+ signature for M
Require: σ̂W,i : q faulty signatures
1: pk←W-OTS+.keyExtract(M,σW )
2: Initialise (θ1, . . . , θ`) with (σ1, . . . , σ`) from σW

3: Initialise (b1, . . . , b`) with M and its checksum C
4: for each σ̂W,i do
5: for each σ̂j in σ̂W,i = (σ̂1, . . . , σ̂`) do
6: Identify b̂j s.t. cw−1−̂bj (σ̂j , r) = pkj

7: if b̂j < bj then
8: bj ← b̂j and θj ← σ̂j

9: end if
10: end for
11: end for

12: Initialise σ′ = (σ′1, . . . , σ′`)
13: Draw SK′1 ∈ {0, 1}n at random
14: Create Merkle tree of root M ′ with SK′1
15: Initialise (b′1, . . . , b′`) with M ′ and its checksum C′

16: for each b′i in (b′1, . . . , b′`) do
17: if bi ≤ b′i then
18: σ′i ← cb′

i−bi (θi, r)
19: else
20: Go to line 13
21: end if
22: end for
23: return (SK′1, σ′)

Fig. 4. Forgery procedure which finds an SK′1 able to forge a signature for any message
given a sufficient number of faulty signatures.

In Gravity-SPHINCS, the signing algorithm is still deterministic, which makes
the attack almost equivalent to the one described above. The scheme however
suggests caching the OTS at high levels, forcing the attacker to target subtrees
at lower levels. This causes no problem, as the forged signature is grafted to the
upper part of a valid one anyway. The authors have also replaced HORST with
a safer FTS scheme; PORS, whose generation could also be attacked to obtain
faulty signatures.

The SPHINCS+ scheme, for its part, proposes an optional randomiser to
avoid deterministic signing. Thanks to this feature, focusing a single subtree
becomes harder, as even signing a same message takes a different path in the
hypertree. However, as the subtrees on higher layers are likelier to repeat, the
attacker might inject a fault on the penultimate layer (i.e., i = d − 1). More
injections are required than with its deterministic variants, but because of the
birthday paradox, a W-OTS+ instance is being re-used within 2h/2d successful
corruption. Even with the maximum level of security, h = 64 and d = 8, making



a re-use successfully occur every 16 corruption in average. HORST in SPHINCS+

is replaced by FORST, but is an inefficient target, as argued before.

3.2 Simulation
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Fig. 5. Success rate of the W-OTS+ forgery with n = 256 and w = 16 using a
single forgery attempt. The simulated success probability is slightly lower than the
approximation in Eq. 1 due to the checksum.

To evaluate the practicality of the attack and verify our expected complexity,
we first simulated the fault injection attack. We modified the signature generation
such that few bits were randomly flipped during the procedure. Then, we tried
our forgery attack for different numbers of faulty signatures q.

The success probability that the forgery succeeds in a single attempt is
illustrated in Fig 5. For comparison, the figure also contains the approximation
in Eq. 1. The gap between the approximated and the simulated results is due to
the inaccurate approximation of the checksum.

There exists an interesting trade-off on the number of faulty signatures and
the complexity of the attack. This is because the partial intermediate hash chain
values are sufficient to sign some messages. To evaluate this, we simulated the
attack for certain values of q and the maximum number of forgery attempts p an
adversary can afford. The results are shown in Fig. 6. For q = 8 an adversary
still has a success probability of over 30% by attempting the forgery 64 times.
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Fig. 6. Simulated success probability of the tree grafting attack given q faulty signatures.
By investing more computational power (p) the adversary can forge signatures with
fewer faulty signatures.

In practice, an adversary may be able to attempt many more forgeries, since
the majority of the computation can be done offline and ahead of time. Even for
q = 1, the forgery is expected to succeed after an average of 234 different seeds
are tried, which is still feasible within a reasonably long period of time [5].

3.3 Experimental verification on SPHINCS

The following subsection explains how the described fault attack can be performed
on a real device. We chose to attack an Arduino Due board which features a
SAM3X8E ARM Cortex-M3 microcontroller. A custom ARM implementation of
SPHINCS-256, adapted from the ARMed SPHINCS implementation written by
Hülsing et al. [13], was written for the project. Our code is made available at [9].

In our attack scenario, we fixed a secret key SK1 and signed a message to first
obtain a valid SPHINCS signature. Then, to speed up the process, we considered
only a portion of the signing algorithm; namely, the construction of a single
subtree. In other words, the attacked piece of code takes the address of a W-OTS+

instance used in the path of the SPHINCS signature, constructs the subtree that
contains this instance, and authenticates it by printing its authentication path
within the subtree. The resulting root is then finally signed. Moreover, to obtain
information on the duration and timing of this construction, a GPIO was toggled
for the whole procedure.



To obtain faulty signatures, the code was provided with the address of the
W-OTS+ instance from the first subtree layer in the valid SPHINCS signature.
We executed this subtree construction multiple times during which a single
voltage glitch was injected in the core power domain. Note that, although these
changes ease the experimentation, an adversary can mount the attack on the
unmodified implementation with negligible additional effort.

Setup. The board was modified to permit the injection of transient faults
during code execution with voltage glitching. The goal is to provide an isolated
access to the power core (VDDCORE) where glitches will be injected. We refer to
the official Atmel ARM-based SAM3X8E datasheet and schematics [1] to locate
the elements that have been modified:

– The VDDOUT pin from the 144-lead LQFP package was lifted.
– The ferrite bead L5 MH2029-300Y was unsoldered, decoupling VDDCORE from

VDDPLL.
– The end of the removed ferrite corresponding to VDDCORE was soldered to a

wire.
– The other end (corresponding to VDDPLL) was wired to the lifted VDDOUT pin.
– Each capacitor on the path of VDDOUT was removed, i.e., C11 to C17.

Fig. 7. Zoom on the modified part of the Arduino Due board.

With these modifications, a pulse generator is able to externally supply
VDDCORE alone and inject glitches, while VDDPLL and VDDOUT were provided with
a constant voltage. The resulting board can be seen in Fig. 7.

Fault process. Recording the GPIO trigger which was toggled during the
first SPHINCS subtree construction indicates that the subtree construction takes



1026 ms. By synchronising on its rising edge, we would be able to target a specific
subprocedure to inject glitch. The fault process requires a single corruption of
any of the following subprocedures:

– W-OTS+ public key generation at the leaves of a subtree, including:
• Address computation.
• Secret seed derivation with PRF.
• Secret values derivation with PRNG.
• Hash-chain application.

– L-tree compression of W-OTS+ public key.
– Intermediate Merkle tree nodes computation.

The HORST layer can also be targeted, but the forgery of a HORST instance
is more expensive than an MSS subtree. In our proof of concept, we arbitrarily
toggled a second GPIO during the computation of the tree node v3[1] to syn-
chronise our glitch injection. The injection was therefore controlled to randomly
corrupt any instruction of this particular node compression.

Note that, given the length of the overall computation, glitching VDDCORE
blindly by synchronising on the UART communication would have led to equiva-
lent results. Also, the attack is still possible even if the adversary is unable to
control the message but requires more faulty signatures. Moreover, if the fault
occurs on a node below the authentication path, the resulting faulty signature is
stealthy [8], meaning that a verifier will still accept it as valid.

The glitch injection is controlled with four parameters:

– The delay which controls the point in time at which the injection occurs.
– The width or the duration of the power outage.
– The initial voltage at which VDDCORE was supplied.
– The depth that describes how low the voltage drops.

These parameters were explored empirically until frequent corruptions of the
node could be observed. The resulting values for each of them are given in Tab. 1.

Table 1. Parameters used to obtain faulty signatures.

Parameter Value
Delay 195ns
Width 37ns
Voltage 0.85V
Depth −3.1V

Using these parameters, we suspect that we hit the XOR operation between the
hash function input bytes and the randomisation bitmasks. The glitch injection
was performed 10000 times which led to a total of 85 different faulty signatures.

Results. Using the algorithm in Fig. 4 with the q = 85 faulty signatures, we
were able to recover all of the attacked W-OTS+ secret values. This obviously



allowed us to graft a subtree on the first trial. The forged subtree allowed us to
forge another signature for a custom HORST instance which was then used to
produce a signature for an arbitrary message. The signatures for the subtrees
above these were simply taken from a valid signature, which resulted in an overall
SPHINCS signature for a message of our choice. The details for all of these
signatures are provided online in [9], as the results are too lengthy to be shown
in paper.

To verify our simulation in Sec. 3.2, we also randomly picked q = 20 signatures
from the obtained set of faulty signatures. The subtree forgery of Fig. 4 succeeded
with an average of 4.6 attempts. This is close to the results simulated, which
gives us confidence in the correctness of our assumptions. The least amount of
signatures used to create a universal forgery is q = 5.

4 Countermeasures

Protecting hash-based schemes that implement CMSS, such as SPHINCS, from
fault attacks is challenging. This is because the main vulnerability comes from
the intermediate Merkle trees being signed by instances of OTS. As this feature
is usually a core improvement in the practicality of these schemes, they cannot
be “algorithmically fixed”. Consequently, additional countermeasures need to be
considered.

Currently, the only fault detection countermeasure for hash-based stateless
digital signatures, such as SPHINCS, was developed by Mozaffari-Kermani et
al. [15]. Their study first presents a method that detects faults by recomputing
subtrees with swapped nodes, as well as an enhanced hash function that inherently
protects against faults. This method unfortunately does not cover every aspect
of the fault attack, as other vulnerable instructions need to be taken care of.
Interestingly, their study was released before fault attacks on hash-based were
researched.

The only way to completely thwart the fault threat in a CMSS structure is
to compute every OTS once, and store them so the result can be output every
time needed. For stateful schemes like XMSSMT and the hierarchical variant of
LMS, an efficient way of storing intermediate trees signatures is to consider a
caching system. In this case, the cache only needs to store one OTS per layer
of subtrees, and refresh them each time the signing algorithm discovers a new
subtree. If a corruption occurs on a subtree while its signature is being cached,
the adversary learns nothing about the secret key. However, the scheme would
be disabled, as the cached OTS will always be wrong.

Similar caching techniques can also be designed for stateless schemes. Gravity-
SPHINCS already recommends caching the top subtrees to speed up perfor-
mance [2], which also happens to mitigate the attack. This technique is however
not totally effective, as the attacker can still work around the cache to obtain
faulty signatures.

Let us finally mention classic error detection and correction mechanisms. All
the vulnerable instructions could be recomputed several times and compared to



each other, so a mismatch can be detected or the majority of the same result can
be taken. These recomputations could be done by different hardware modules, so
obtaining the same fault is unlikely. Note that faulty signatures still verify as
valid signatures in the majority of cases. Thus, verifying after signing is not an
effective way of detecting faults.

We consider innovative ways of protecting stateless hash-based signatures as
interesting future work.

5 Conclusion

This work shows how SPHINCS-like structures on embedded devices can be
easily defeated by low-cost fault injections. As the future NIST standards will
definitely need to be industrialised, the candidates should be designed in a way
that already protects against physical attacks. Unfortunately for SPHINCS and
its variants, their designs are inherently vulnerable to fault attacks. Moreover,
the lack of definitive countermeasure discourages embedded implementation.
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