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Abstract. Lattice-based cryptographic primitives are believed to have
the property against attacks by quantum computers. In this work, we
present a KEA-style authenticated key exchange protocol based on the
ring learning with errors problem whose security is proven in the BR
model with weak perfect forward secrecy. With properties of KEA such as
implicit key authentication and simplicity, our protocol also enjoys many
properties of lattice-based cryptography, namely asymptotic efficiency,
conceptual simplicity, worst-case hardness assumption, and resistance
to attacks by quantum computers. Our lattice-based authenticated key
exchange protocol is more efficient than the protocol of Zhang et al.
(EUROCRYPT 2015) with more concise structure, smaller key size and
lower bandwidth. Also, our protocol enjoys the advantage of optimal
online efficiency and we improve our protocol with pre-computation.

Keywords: lattice-based cryptography, authenticated key exchange, post-
quantum cryptography, ring-LWE

1 Introduction

1.1 KE and AKE

Key exchange (KE) is one of the most fundamental cryptographic primitives.
In practice, a common secret key (session key) generated by their personal keys
(static key) should be shared with KE before the session starts, as the network is
considered to be insecure. The communication data will later be transmitted on a
trusted channel established with the session key. An authenticated key exchange
(AKE) is quite similar to KE while AKE provides authentication which can
avoid man-in-the-middle attack.

AKE can be divided into explicit AKE and implicit AKE according to the
technique that achieves authentication. Explicit AKE always needs extra cryp-
tographic primitives such as signatures, message authentication codes, or hash
functions to provide authentication, which brings additional computation and
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communication overhead and makes the protocol more complicated. The IKE
[22], SIGMA [24], SSL [16], TLS [13], JFK [2] are all explicit AKEs. Implicit
AKE achieves authentication by ingenious design of the algebraic structure. The
KEA [33], OPACITY [32], MQV [29], HMQV [23] and OAKE [34] are families
of implicitly AKE.

Intuitively, an AKE is secure if no probabilistic polynomial time (PPT) ad-
versary is able to extract any useful information from the data exchanged during
the session. Formally, the widely used security models for AKE include the BR
model [4, 35], the CK model [10] and the ACCE model [20]. The BR model, which
is introduced by Bellare and Rogaway, is an indistinguishability-based security
model. The CK model, which accounts for scenarios in which the adversary can
obtain information about a party’s static secret key or a session state, inherit-
s from Krawczyk’s SIGMA family of protocols. The ACCE model is a variant
of the BR model which has separated properties for entity authentication and
channel security.

Another property of AKE protocols is perfect forward secrecy (PFS). PFS
requires that an adversary who corrupts one of the parties can not destroy the
security of previous sessions. However, Krawzcyk [23] showed that no 2-pass
AKE protocol can achieve PFS. Alternatively, he presented a notion of weak
perfect forward secrecy (wPFS) which says that the session key of an honest
session remains secure if the static keys are compromised after the session is
finished.

1.2 Lattice-Based Cryptosystems and Key Reused Attack

It is important to construct protocols based on lattice problems as lattice-based
cryptography is believed to resist quantum computers attacks. For instance, a
post-quantum cryptography competition is held by NIST to advance the process
of post-quantum cryptography standard.

The most widely used lattice problem to construct lattice-based cryptography
is the learning with errors (LWE) problem which was first proposed by Regev
[31] as an extension of learning parity with noise (LPN) problem [5]. Later in [28],
Lyubashevsky et al. introduced the ring-LWE which is the ring -based analogue
of LWE, and proved the hardness of ring-LWE. (ring-)LWE has attracted a lot
of attention in theories and applications due to its good asymptotical efficiency,
strong security, and exquisite construction. LWE has been used to construct
public-key encryption [19, 26, 31], identity-based encryption [1, 11], key exchange
[3, 7, 14, 35, 21], and fully homomorphic encryption [8, 9], etc.

1.3 Techniques and Relation to KEA

The key idea behind our protocol, which was firstly proposed by Linder et al.
[26], is that the two parties share a common secret: I(x, y) = xAy, where x and
y ∈ Znq are the static keys of two parties, and A is randomly chosen from Rn×nq .
When it comes to ring-LWE, the form is simpler: I(x, y) = xay, where x and
y ∈ R are the static keys of two parties, and a is randomly chosen from R.
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The definition of ring-LWE indicates that it will bring some small errors
during the session. These small errors may be beneficial in security, but they
make the protocol incorrect. A common method to deal with these errors is
reconciliation mechanism which was first proposed by Ding et al. [14] and soon
improved with a more bandwidth-efficient and unbiased one presented by Peikert
[30]. In [3], Erdem et al. proposed a more efficient reconciliation mechanism
based on a varying error distribution at the expense of security. In [21], Jin
et al. formalized reconciliation mechanism as a black-box called key consensus
(KC) and gave the upper bound on parameters for any KC. What’s more, they
designed a KC called OKCN which can achieve the upper bound.

Our AKE protocol is inspired by KEA which was designed by the NSA
and later standardized by the NIST. However, they are very different in the
underlying algebraic structures. In the original KEA protocol, the shared key
is HK(Ay ⊕ Xb). Later in [25], Lauter et al. improved the original KEA with
a provably secure version KEA+. Throughout our work, we simply refer KEA
to the provably secure version KEA+. Formally, let G be a cyclic group with
generator g ∈ G and |G| = n. Randomly choose si, sj ∈ {1, ..., n} as the static
keys of Party i and Party j. The specification of KEA is given in Fig. 1, where
H is a hash function.

Party i Party j

PK: Pi = gsi ∈ G PK: Pj = gsj ∈ G
SK: si ∈ {1, ..., n} SK: sj ∈ {1, ..., n}

X = gx

x randomly chosen from {1, ..., n} i,X−−→ Y = gy

j,Y←−− y randomly chosen from {1, ..., n}
Ki = H(Y si , P xj , i, j) Kj = H(P yi , X

sj , i, j)

Fig. 1. Specification of KEA

As shown in [34], KEA enjoys the advantage of optimal online efficiency. The
separation of two exponentiations, which allow off-line pre-computation, makes
KEA much more desirable for deployments on low-power devices, such as smart
cards and phones over wireless setting. Take Party i as an example, Party i pre-
computes X and P xj before session starts, where j is one of the potential parties
which Party i may communicate with.

Thanks to the simplicity of KEA, there is no complicated computation for
each party to compute a closed value for reconciliation mechanism. Compared
to the protocol in [35], the error of these two values is smaller. Consequently, a
smaller q is sufficient for ensuring the correctness of reconciliation mechanism,
which has two advantages: 1) A smaller q can reduce the bit length of public
keys and the bandwidth as they are proportional to log q; 2) For any fixed error



4 Z. Wang et al.

rate α, higher security level can be achieved with a smaller q as the security of
(ring-)LWE is partially dependent on the ratio of q and α.

In KEA, the Xsj = gxsj do not reveal any information about sj even x is
chosen by adversary. However, it is well-known that the Regev’s encryption [31]
is not chosen-ciphertext attack (CCA) secure. This vulnerability was utilized by
Ding et al. [15] who show an attack depends on the leakage of signal function
[14]. The adversary can extract the static key of target party after 2q queries.
But this type of attack is inefficient to our protocol for two reasons: 1) Similar
as PKI, the public keys of parties will be updated periodically, and there are no
enough queries for adversary to extract the static keys; 2) The signal function in
our protocol is probabilistic polynomial time algorithm. It is more difficult for
adversary to decide the period of the signal value during the attack.

1.4 Related Works and Our Contributions

The raise of attention to post-quantum cryptography stimulates more construc-
tions of lattice-based AKE protocols in the last few years. A passive-secure KE
protocol based on (ring-)LWE, which was proposed by Ding et al., is translated
from standard Diffie-Hellman protocol [14]. The most significant contribution of
Ding’ work is that they proposed the concept of reconciliation mechanism to deal
with the errors. Fujioka et al. [17] proposed a generic construction of AKE from
CCA secure KEMs, which can be proven secure in the CK+ model. However,
their construction was just of theoretic interest. In [18], Fujioka et al. gave a
more practical AKE protocol which can be constructed from any one-way CCA
secure KEM in the random oracle model. In [30], Peikert presented an efficient
key encapsulation mechanism (KEM) based on ring-LWE, and then translated it
into an AKE protocol using the SIGMA-style structure. After that, Bos et al. [7]
utilized Peikerts KEM as a DH-like KE protocol, and integrated it into the TLS
protocol. Strictly speaking, their protocol is not a lattice-based AKE protocol
because classical signatures were employed to provide explicit authentication.
Alkim et al. [3] then improved the performance of Peikert’s KEM to make the
AKE protocol more practical, and their new protocol that called NewHope was
applied to the Google’s browser Chrome. It is the first post-quantum AKE pro-
tocol adopted by real world. Zhang et al. [35] proposed the first lattice-based
implicit AKE whose structure is similar as HMQV. In [21], Jin et al. introduced
the notion of key consensus (KC) as a tool and presented generic constructions
of KE based on KC.

A rough comparison of lattice-based AKEs is given in Table 1. A more de-
tailed comparison between our protocols and the protocol in [35] is showed in
Table 2 as they are very similar and are all implicit AKE protocols.

1.5 Organization

Section 2 presents some basic notations and facts. The AKE protocol based on
ring-LWE problem is given in Section 3 and the analysis of the protocol from
Section 3 is given in Section 4. In Section 5, a new protocol which is more efficient
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Table 1. Comparison of lattice-based AKEs.

Protocols KEM/PKE Signature Message-pass Security Num. of Rings

Fujioka [7] CCA - 2-pass CK+ � 7

Fujioka [3] OW-CCA - 2-pass CK+ 7

Peikert [30] CPA EUF-CMA 3-pass SK-security > 2(1)

Bos [7] CPA EUF-CMA 4-pass ACCE 2

Alkim [3] CPA EUF-CMA 4-pass - 2 + x(2)

Zhang [35] - implicit 2-pass BR with wPFS 2

Ours - implicit 2-pass BR with wPFS 2

(1) 2 ring elements for KEM and more for the concrete lattice-based signatures.
(2) The actual number of ring elements depends on the signature, and it can be

a traditional signature, so x ≥ 0

Table 2. Comparison between ours and Zhang’s protocol [35] with 80 bits security.
mult. refers to the total number of multiplications over rings.

Protocols n α log q mult. pk sk init. msg resp. msg

Zhang [35] 1024 3.397 45 4 5.625 KB 1.5 KB 5.625 KB 5.75 KB

Section 3 1024 3.192 30 3 3.75 KB 0.75 KB 3.75 KB 4 KB

Section 4 1024 3.192 30 1 3.75 KB 0.75 KB 3.75 KB 4 KB

for the Internet is considered. In the last section, we analyze the concrete choices
of parameters along with the consideration of their security.

2 Preliminaries

2.1 Notation:

Let κ be the security parameter. Bold capital letters denote matrices. Bold low-
ercase letters denote vectors. For any integer q, let Zq denote the quotient ring
Z/qZ. We use a←r B to denote that a is an element randomly chosen from B,
where B is a distribution or a finite set. When we say that a function f(x) is
negligible, we mean that for every c > 0, there exists a X satisfies: f(x) < 1/xc

for all x > X. The statistical distance between two distributions, X and Y , over
some finite set S is defined as:

∆(X,Y ) =
1

2

∑
s∈S
|Pr(X = s)− Pr(Y = s)| .

If ∆(X,Y ) is negligible, we say that X and Y are statistically indistinguishable.
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2.2 Lattice and Gaussian Distributions

A lattice always connects to a matrix B, and it is finitely generated as the integer
linear combinations of the column vectors of B = {b1, ..., bk}:

L = L(B) = {
n∑
i=1

zibi : zi ∈ Z} .

The integer n is called the rank of the basis, and it is an invariant of the lat-
tice. For any positive integer n and real s > 0, define the Gaussian function of
parameter s as:

ρs(x) = exp(−π‖x‖/s2) .

We define a Gaussian distribution over lattice L as:

Ds(x) = ρs(x)/ρs(L) .

where ρs(L) =
∑

x∈L ρs(x).

Fact 1 Let χ denote the Gaussian distribution with standard deviation σ and
mean zero. Then, for all C > 0, it holds that:

Pr(e←r χ : |e| > C · σ) ≤ 2

C
√

2π
exp(−C2/2) .

This fact shows that the samples from χ are around mean with very high prob-
ability. Specially, for C = 10, the probability is less than 2−70.

Fact 2 Let x, y ∈ R be two polynomials whose coefficients are distributed ac-
cording to a discrete Gaussian distribution with standard deviation σ and τ ,
respectively. The individual coefficient of the x · y is then normally distributed
with standard deviation στ

√
n, where n is the degree of the polynomial.

Let the integer n be a power of 2. For any positive integer, we define the ring
R = Z[x]/(xn + 1), and Rq = Zq[x]/(xn + 1). Obviously, the discrete Gaussian
distribution over the ring R can be naturally defined as the distribution of ring
elements whose coefficients are distributed according to the discrete Gaussian
distribution over Zn. Consequently, for any x ∈ Rq, we define x←r χα that we
sample x whose coefficients are distributed according to χα.

Define Rq as above. For any s ∈ Rq, the ring-LWE distribution As,χ over
Rq × Rq is sampled by choosing a ←r Rq at random, choosing e ←r χ and e is
independent of a, and outputting (a, b = s · a+ emod q).

Definition 1. Let As,χ be defined as above. Given m independent samples (ai, bi)
∈ Rq × Rq where every sample is distributed according to either: (1) As,χ for
a uniformly random s ←r Rq (fixed for all samples), or (2) the uniform distri-
bution, no PPT algorithm can distinguish, with non-negligible probability, which
distribution they are chosen from.

The ring-LWE assumption can be reduced to some hard lattice problems such
as the Shortest Independent Vectors Problem (SIVP) over ideal lattices [28]:



Efficient KEA-Style Lattice-Based Authenticated Key Exchange 7

Lemma 1. (Hardness of the Ring-LWE Assumption) Let n be a power of 2 and
α be a real number in (0, 1). Let q and Rq be defined as above. Then there exists
a polynomial time quantum reduction from O(

√
n/α)− SIV P in the worst case

to average-case ring-LWEq,β, where β = αq · (n` = log(n`))1/4.

In [28], Lyubashevsky et al. showed that the ring-LWE assumption still holds
even if s is chosen according to the error distribution χβ rather than uniformly.

2.3 Reconciliation Mechanism

Reconciliation mechanism was first proposed by Ding et al. [14] and later be
reconstructed by a series of works [3, 21, 30]. It enables two parties to extract
identical information from two “almost” same elements σ1 and σ2 ∈ Zq. In
our protocol, the reconciliation mechanism OKCN [21] is adopted, and a brief
description of OKCN is given as follows.

The OKCN consists of two algorithms (Con,Rec) which have parameters
q (dominating security and efficiency), m (parameterizing range of consensus
key), g (parameterizing bandwidth), and d (parameterizing error rate). Define
params = (q,m, g, d, aux) where aux = (q′ = lcm(q,m), α = q′/q, β = q′/m).
The probabilistic polynomial time algorithm Con takes a security parameter
(σ1, params = (q,m, g, d)) as input and outputs (k1, ω) where k1 ∈ Zm is the
shared value and ω ∈ Zg is the signal that will be publicly delivered to the
communicating peer. The deterministic algorithm Rec, on input (σ2, ω, params),
outputs k2 which is identical to k1 with overwhelming probability. The details
of OKCN are presented in Algorithm 1.

Algorithm 1 Reconciliation Mechanism: OKCN

1: function Con(σ1, params)
2: e← [−b(α− 1)/2c, bα/2c]
3: σA = (ασ1 + e)mod q′

4: k1 = bσA/βc
5: ω = b(σAmodβ)g/βc ∈ Zg
6: return (k1, ω)
7: end function
8: function Rec(σ2, ω, params)
9: k2 = bασ2/β − (ω + 1/2)/gemodm

10: return k2
11: end function

Lemma 2. For OKCN: 1) k1 and ω are independent, and k1 is uniformly
distributed over Zm, whenever σ1 ← Zq; 2) If the system parameters satisfy
(2d + 1)m < q(1 − 1/g) where m ≥ 2 and g ≥ 2, then the OKCN is correct
(k1 = k2).
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2.4 Security Model

The BR security model, which is one of the most common models for KE proto-
col, is usually strong enough for many practical applications. It was first proposed
by Bellare and Rogaway in [4], and later in [6], the BR model was extended to
adapt to the public-key setting.

A protocol is a pair of functions P = (Π,G), where Π specifies how parties
behave and G generates keys for each party. For an AKE protocol, define N to
be the maximum number of parties in the AKE protocol. Each party is iden-
tified by an integer i ∈ {1, 2, 3, ..., N}. A single run of the protocol is called a
session. A session starts with message (ID, I, i, j) or (ID,R, j, i,Xi), where ID
is the identification of the protocol, and I and R stand for the party’s roles.
We define session identifier for the session activated by message (ID, I, i, j) as
sid = (ID, I, i, j,Xi, Yj) and session identifier for the session activated by mes-
sage (ID,R, j, i,Xi) as sid = (ID,R, j, i,Xi, Yj). A session is said to be complet-
ed when its owner successfully computes a session key. The matching session of

sid = (ID, I, i, j,Xi, Yj) is the session with identifier s̃id = (ID,R, j, i,Xi, Yj).
We adopt the technique in [35] to describe the adversarial capabilities: an

adversary, A, is a PPT Turing Machine taking the security parameter 1k as
input. We allow A to make six types of queries to simulate the capabilities of A
in the real world.

– Send0(ID, I, i, j) : A activates Party i as an initiator. The oracle returns a
message Xi intended for Party j.

– Send1(ID,R, j, i,Xi): A activates Party j as a responder using message Xi.
The oracle returns a message Yj intended for Party i.

– Send2(ID,R, i, j,Xi, Yj) : A sends Party i the message Yj to complete a
session previously activated by a Send0(ID, I, i, j) query that returned Xi.

– SessionKeyReveal(sid) : The oracle returns the session key in the session
sid if it has been generated.

– Corrupt(i): The oracle returns the static secret key of Party i. A party
whose key is given to A in this way is called dishonest; a party who does not
compromise in this way is called honest.

– Test(sid∗) : The oracle chooses a bit b←r {0, 1}. If b = 0, it returns a key
chosen uniformly at random; if b = 1, it returns the session key associated
with sid∗. We only allow A to query this oracle once, and only on a fresh
session sid∗.

Definition 2. (Freshness): Let sid∗ = (ID, I, i∗, j∗, Xi, Yj) or (ID,R, j∗, i∗, Xi, Yj)
be a completed session with initiator Party i∗ and responder Party j∗. We say
that sid∗ is fresh under the following conditions:

(1) A has not made a SessionKeyReveal query on sid∗.
(2) A has not made a SessionKeyReveal query on sid∗’s matching session.
(3) Neither Party i∗ nor Party j∗ is dishonest if sid∗’s matching session does

not exist.
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Security Definition: The adversary A can make any sequence of queries to
the first five oracles above. After that A can make a query to test on a fresh
session. Then A outputs a guess b

′
for b. We define the advantage of A:

AdvIDA = |Pr(b
′

= b)− 1/2| .

Definition 3. (Security): An AKE protocol ID is secure under the following
conditions:

(1) Two honest parties get the same session key with overwhelming probability.

(2) For any PPT adversary A, AdvID,A is negligible.

3 The KEA-style Authenticated Key Exchange

In this section, we describe our protocol in details. Let n be a power of 2. De-
fine ring Rq = Zq[x]/(xn + 1). Let H : {0, 1}∗ → {0, 1}κ be a hash function
to derive session keys, where κ is the length of the session key. In our protocol,
this hash function is simulated by a random oracle. Let χα be a discrete Gaus-
sian distribution with parameter α ∈ R+. Let a ∈ Rq be the public parameter
uniformly chosen from Rq. Suppose Party i is the initiator, and Party j is the
responder. Let si ←r χα be the static secret key of Party i, and pi = asi + ei
is the public key of Party i, where ei ←r χα. Similarly, sj ←r χα is the stat-
ic secret key of Party j, and Party j’s public key is pj = asj+ej , where ej ←r χα.

Initiation: Initiator i proceeds as follows to activate the session:

a. Sample ri, fi ←r χα, and compute xi = ari + fi;

b. Send xi to Party j.

Response: After receiving xi from Party i, Party j proceeds as follows:

1. Sample rj , fj ←r χα, and compute yj = arj + fj ;

2. Sample gj1, gj2 ←r χα, and compute kj1 = pi ·rj +gj1 and kj2 = xi ·sj +gj2;

3. Compute (σj1, ωj1)← Con(kj1, params) and (σj2, ωj2)← Con(kj2, params);

4. Party j derives his session key skj = H(σj1, σj2, i, j, xi, yj , ωj1, ωj2);

5. Send yj , ωj1, ωj2 to Party i.

Finish: After receiving yj , ωj1, ωj2 from Party j, Party i proceeds as follows:

c. Sample gi1, gi2 ←r χα, and compute ki1 = pj · ri + gi1, ki2 = yj · si + gi2;

d. Compute σi1 = Rec(ki1, ωj1, params) and σi2 = Rec(ki2, ωj2, params), then
Party i derives his session key ski = H(σi2, σi1, i, j, xi, yj , ωj1, ωj2);
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Party i Party j

PK: pi = asi + ei ∈ Rq PK: pj = asj + ej ∈ Rq
SK: si ←r χα SK: sj ←r χα

xi = ari + fi ∈ Rq
where ri, fi ←r χα

xi−→ yj = arj + fj ∈ Rq
where rj , fj ←r χα

kj1 = pi · rj + gj1
kj2 = xi · sj + gj2

where gj1, gj2 ←r χα
(σj1, ωj1)← Con(kj1, params)

ki1 = pj · ri + gi1
yj ,ωj1,ωj2←−−−−−−− (σj2, ωj2)← Con(kj2, params)

ki2 = yj · si + gi2
where gi1, gi2 ←r χα

σi1 = Rec(ki1, ωj1, params)
σi2 = Rec(ki2, ωj2, params)

ski = H(σi2, σi1, i, j, xi, yj , ωj1, ωj2) skj = H(σj1, σj2, i, j, xi, yj , ωj1, ωj2)

Fig. 2. Our AKE protocol from ring-LWE

3.1 Analysis of the Protocol

Theorem 1. (Correctness) For appropriately chosen parameters, both parties
compute the same session key with overwhelming probability, which means ski =
skj.

Proof. To show ski = skj , it is sufficient to show that σi1 = σj2 and σi2 = σj1
according to the way the session keys are computed. We just need to show that
ki1 is closed to kj2 and ki2 is closed to kj1. Due to the symmetry, we only estimate
the size of ‖ki2 − kj1‖.

ki2 − kj1 = ((arj + fj)si + gi2)− ((asi + ei)rj + gj1)

= (fjsi − eirj) + (gi2 − gj1) . (1)

According to Lemma 2, if ‖ki2 − kj1‖ < (g−1)q−gm
2gm , we have σi2 = σj1. Sim-

ilarly, we have σi1 = σj2. Here we just need to know if q is big enough, then
the inequality can be satisfied. The concrete parameters will be considered in
Section 5. �

Theorem 2. (Security) Let n, q, α be defined as above. Let H be a random
oracle. If ring-LWEq,α is hard, then the proposed AKE is secure.

The proof of Theorem 2 appears in Appendix, and a proof sketch is given as
follows.

Proof. (sketch) The proof proceeds by a sequence of games. In each game, a
simulator S answers the queries of A. We show that the output of S in the first
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game is computationally indistinguishable with the output in the last game, and
AdvIDA of last game is negligible. Here are the basic ideas.

a. (Pi, a) (with secret si) and (Pj , a) (with secret sj) are ring-LWE pairs. Given
Pi and Pj , A cannot get any information about si and sj .

b. (xi, a) (with secret ri) and (yj , a) (with secret rj) are ring-LWE pairs. Given
xi and yj , A cannot get any information about ri and rj .

c. Due to the nice properties of ring-LWE, kj1, kj2, ki1, ki2 are randomly dis-
tributed in Rq.

d. The distribution of ωj1 and ωj2 reveals no information about kj1 and kj2.

These together indicate that the shared session key is secure. That is to say,
the session key is uniformly random and independent of the messages exchanged
during the session. �

4 Efficient AKE with Pre-Computing

In this section, we consider the pre-computation to make our AKE protocol more
efficient for the Internet. As we see, the most inefficient operation in our protocol
is the multiplication over a ring. Inspired by KEA, we show that it is possible to
pre-compute something off-line in our protocol, which can reduce the number of
multiplication over a ring on-line. Define N is the maximum number of parties,
and [N ] := {0, ..., N − 1}. Let si ←r χα be the static secret key of Party i, and
pi = asi+ ei is the public key of Party i, where ei ←r χα. Similarly, sj ←r χα is
the static secret key of Party j, and Party j’s public key is pj = asj + ej , where
ej ←r χα. We give the description of our pre-computing version AKE protocol:

Off-line: Take Party i as an example. Party i chooses ri, fi ←r χα, and com-
putes xi = ari + fi and kji1 = pj · ri + gi1 for every j ∈ [N ]/i. Party i holds the

Table Ti which stores the N values (xi and kji1 for j ∈ [N ]/i) computed above.
Similarly, for j ∈ N/i, Party j executes the same as Party i, and holds its Table
Tj .

On-line: Suppose Party i is a initiator and Party j is a responder.
Initiation: Party i proceeds as follows to activate the session:

a. Look up the Table Ti for xi.
b. Send xi to Party j.

Response: After receiving xi from Party i, Party j proceeds as follows:

1. Look up the table Sj for yj ;
2. Sample gj1, gj2 ←r χα, and compute kj2 = xi · sj + gj2. Look up the Table
Tj for kj1 = kij1;

3. Compute (σj1, ωj1)← Con(kj1, params) and (σj2, ωj2)← Con(kj2, params);
4. Party j derives his session key skj = H(σj1, σj2, i, j, xi, yj , ωj1, ωj2);
5. Send yj , ωj1, ωj2 to Party i.
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Finish: After receiving yj , ωj1, ωj2 from Party j, Party i proceeds as follows:

c. Sample gi1, gi2 ←r χα, and compute ki2 = yj · si + gi2. Look up the Table

Ti for ki1 = kji1;
d. Compute σi1 = Rec(ki1, ωj1, params) and σi2 = Rec(ki2, ωj2, params), then

Party i derives his session key ski = H(σi2, σi1, i, j, xi, yj , ωj1, ωj2);

In practice, the number N is not very big. Therefore, the size of Table Ti is N
ring elements, which is small. Table lookups have advantages in efficiency over
multiplication over rings. There is only 1 multiplication in our protocol compared
with 3 multiplications in the protocol from Section 3 and 4 multiplications in
the protocol from [35].

5 Parameters and Conclusions

To maintain the property of correctness, according to the conclusion of Theo-

rem 1, ‖ki2 − kj1‖ < (g−1)q−gm
2gm must be satisfied, that is to say:

(fjsi − eirj) + (gi1 − gj1) <
(g − 1)q − gm

2gm
. (2)

Combine the Fact 1 and Fact 2, with high probability, we have:

(fjsi − eirj) + (gi1 − gj1) ≤ (‖fjsi‖+ ‖eirj‖+ ‖gi1‖+ ‖gj1‖)
≤ (6α2

√
n+ 6α2

√
n+ 6α+ 6α)

= 12(α2
√
n+ α) .

So we have the inequality:

q >
24gm(α2

√
n+ α)

g − 1
. (3)

As recommended in [26, 31], it is necessary to set the Gaussian parameter α as:

α ≥ 8/
√

2π . (4)

To estimate the concrete security of our protocol, we consider the approach
of [12], which investigates the two most efficient ways to solve the underlying
(ring-)LWE problem, namely the embedding attack and the decoding attack.
The embedding attack is more efficient than the decoding attack when the ad-
versary only has access to a few samples. In our protocol, the decoding attack is
more efficient as m is close to the optimal dimension

√
nlg(q)/lg(δ)). Thus we

concentrate on the decoding attack.
The decoding attack was introduced by Lindner et al. [26], which is inherent-
ly from nearest-plane algorithm. It is further improved by Liu et al. [27] with
pruned enumeration approach. For a instance of (ring-)LWE, the decoding attack
first uses a lattice reduction algorithm, and then applies a decoding algorithm
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from [26] or [27]. The output is a set of vectors closed to the target vector. There
is a continuous correspondence between the success probability of returning the
actual closest vector and the Hermite factor. In our analysis, we follow the ap-
proach proposed by Lindner et al. [26] to predict this success probability, and
the runtime of lattice reduction algorithm is predicted by T (δ) = 1.8/lg(δ)−110.

Above all, the candidates of our parameters are given in Table 3. The size
of sk is the value of expectation computed using Fact 1 (sk ∈ (−10α, 10α) with
high probability).

Table 3. Candidates of our parameters.

n m g α log q Security pk sk init. msg resp. msg |K|
1024 24 21 3.192 32 80 4 KB 0.75 KB 4 KB 4.25KB 2KB

1024 22 21 3.192 24 132 3 KB 0.75 KB 3 KB 3.25 KB 0.5KB

1024 21 21 3.192 18 190 2.25 KB 0.75 KB 2.25 KB 2.5 KB 0.125KB
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Appendix: Proof of Theorem 2

The strategy of our proof is from [35]. First of all, we classify all the adversaries
into five types, which give a complete description of all situations. Let M =
ploy(n) be the maximum number of sessions for each party. We distinguish the
five types of adversaries as:

– TYPE I: sid∗ = (ID, I, i∗, j∗, xi∗ , (yj∗ , ωj∗1, ωj∗2)) is the test session, and
yj∗ is output by a session activated at Party j∗ by a Send1(ID,R, j∗, i∗, xi∗)
query.

– TYPE II: sid∗ = (ID, I, i∗, j∗, xi∗ , (yj∗ , ωj∗1, ωj∗2)) is the test session, and
yj∗ is not output by a session activated at Party j∗ by a Send1(ID,R, j∗, i∗, xi∗)
query.

– TYPE III: sid∗ = (ID, I, j∗, i∗, xi∗ , (yj∗ , ωj∗1, ωj∗2)) is the test session, and
xi∗ is not output by a session activated at Party i∗ by a Send0(ID, I, i∗, j∗, )
query.

– TYPE IV: sid∗ = (ID, I, j∗, i∗, xi∗ , (yj∗ , ωj∗1, ωj∗2)) is the test session, and
xi∗ is output by a session activated at Party i∗ by a Send0(ID, I, i∗, j∗, )
query, but i∗ either never completes the session, or i∗ completes it with
exact yj∗ .

– TYPE V: sid∗ = (ID, I, j∗, i∗, xi∗ , (yj∗ , ωj∗1, ωj∗2)) is the test session, and
xi∗ is output by a session activated at Party i∗ by a Send0(ID, I, i∗, j∗, )
query, but i∗ completes the session with another y,j 6= yj∗ .

To prove Theorem 2, it is sufficient to show that the protocol is security under
each type of adversary. The proof of different types of adversaries are similar, so
we only give the detailed security proof for TypeI adversary in next lemma.
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Lemma 3. Let n be a power of 2, q is a prime satisfying q = 1mod 2n, real
β = ω(αγn

√
nlog n). Then, if ring-LWEq,α is hard, the proposed AKE is secure

against any PPT TypeI adversary A in the random oracle model.
Proof of Lemma 3: A simulator S will be constructed to answer the queries

from A. After a sequence of games, Game m for 0 ≤ m ≤ 4, we show that the
advantage of A is negligible. In Game 0, S executes as the original protocol,
while the last game Game 4 is a fake one with randomly and independently
chosen session key for the test session. The security is established by showing
that any two consecutive games are computationally indistinguishable. As any
two consecutive games are very similar, we only show the difference between two
games by framing them.

Game 0: S uses the original protocol to simulates the security game for A. S
chooses i∗, j∗ ←r {1, ..., N},mi∗ ,mj∗ ←r {1, ...,M}, and supposes the sid for the
test session is sid∗ = (ID, I, i∗, j∗, xi∗ , (yj∗ , ωj∗1, ωj∗2)), where xi∗ is output by
the mi∗ -th session of Party i∗, and yj∗ is output by the mj∗ -th session of Party
j∗ activated by a Send1(ID,R, j∗, i∗, xi∗) query. Then, S chooses a ←r Rq,
generates static public keys for all parties. Besides, S maintains a table L for
the hash function H to serve as a random oracle. After that, S answers A’s
queries as follows:

– H(in): If there does not exist a tuple (in, out) in L, choose an invertible
element out ∈ χγ at random, and add (in, out) into L. Then, return out to
A.

– Send0(ID, I, i, j) : A intends to activate a new session with Party j, and
S proceeds as follows:
a. Sample ri, fi ←r χα, and compute xi = ari + fi;
b. Send xi to Party j.

– Send1(ID,R, j, i, xi): S computes skj as follows:
1. Sample rj , fj ←r χα, and compute yj = arj + fj ;
2. Sample gj1, gj2 ←r χα, and compute kj1 = pi · rj + gj1 and kj2 =
xi · sj + gj2;

3. Compute (σj1, ωj1)← Con(kj1, params) and (σj2, ωj2)← Con(kj2, params);
4. Party j derives his session key skj = H(σj1, σj2, i, j, xi, yj , ωj1, ωj2);
5. Send yj , ωj1, ωj2 to Party i.

– Send2(ID, I, i, j, xi, (yj , ωj1, ωj2)): S proceeds as follows:
c. Sample gi1, gi2 ←r χα, and compute ki1 = pj · ri + gi1, ki2 = yj · si + gi2;
d. Compute σi1 = Rec(ki1, ωj1, params) and σi2 = Rec(ki2, ωj2, params),

then Party i derives his session key ski = H(σi2, σi1, i, j, xi, yj , ωj1, ωj2);
– SessionKeyReveal(sid): After receiving sid from A, S returns ski if the

session key of sid has been generated.
– Corrupt(i): Return the static secret key si of Party i to A.
– Test(sid): The input of this query is sid = (ID, I, i, j, xi, (yj , ωj1, ωj2). After

receiving sid from A, firstly, S should make sure that (i, j) = (i∗, j∗); xi and
yj are output by the mi∗ -th session of Party i∗ and the m∗-th session of
Party j∗ respectively. If not, S aborts. Else S chooses a random b ∈ {0, 1}.
S returns ski of sid if b = 1, else returns sk

′

i ←r {0, 1}κ.
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We define EQUALi as the event that A outputs b∗ and b∗ = b in Game i. Then
we consider the probability that S will not abort in Game 0.

Claim 1. Pr(S will not abort) = 1/M2N2.

Proof. i∗ and j∗ are randomly chosen from {1, ..., N}, and mi∗ and mj∗ are ran-
dom chosen from {1, ...,M} by S, which are independently from the view of A.
So the probability that (i, j) = (i∗, j∗), and xi and yj are output by the mi∗ -th
session of Party i∗ and the m∗-th session of Party j∗ respectively is 1/M2N2.
�

Game 1: In Game 1, S behaves almost the same as in Game 0, except the
computation of ski

– Send2(ID, I, i, j, xi, (yj , ωj1, ωj2)): If (i, j) 6= (i∗, j∗), or xi is not the s∗i -th
session of i∗, S behaves the same as in Game 2. Else if (yj , ωj1, ωj2) is output

by the s∗j -th session of Party j∗, S directly sets ski = skj and return it to A ,

where skj is the session key of sid = (ID,R, j, i, xi, (yj , ωj1, ωj2)). Other-
wise, S samples gi1, gi2 ←r χα, and computes ki1 = pj · ri + gi1, ki2 =
yj · si + gi2. Finally, it computes σi1 = Rec(ki1, ωj1, params) and σi2 =
Rec(ki2, ωj2, params), and derives ski = H(σi2, σi1, i, j, xi, yj , ωj1, ωj2).

Claim 2. Pr(EQUAL1) = Pr(EQUAL0)− negl(κ)

Proof. In the second case, it is just a conceptual change of Game 0 due to the
correctness of the protocol. �

We know that yj is output by the s∗j -th session of Party j∗. But we n-
ever know whether (ωj1, ωj2) = (ω′j1, ω

′
j2). But for convenience, we suppose

(ωj1, ωj2) = (ω′j1, ω
′
j2), and we consider the situation (ωj1, ωj2) 6= (ω′j1, ω

′
j2) lat-

er. We define Ql as the event in Game Game l that: 1) (yj , ω
′
j , ω
′
j2) is output by

the s∗j -th session of party j∗ but (ωj , ωj2) 6= (ω′j , ω
′
j2), and 2) A makes a query

to H that is exactly used to generate the session key ski for the s∗i -th session of
party i∗.

Game 2: S behaves almost the same as in Game 1 except in the follow case:

– Send0(ID, I, i, j) : If (i, j) 6= (i∗, j∗), or it is not the s∗i -th session of i∗, S
behaves the same as in Game 1. Otherwise, S proceeds as follows:
a. Sample ri, fi ←r χα;

b. Randomly chooses xi ←r Rq ;

c. Send xi to A.
– Send1(ID,R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the s∗j -th session of j∗,
S behaves the same as in Game 2. Otherwise, S computes skj as follows:

1. Randomly chooses yj ←r Rq ;

2. Sample gj1, gj2 ←r χα, and compute kj1 = pi · rj + gj1 and kj2 =
xi · sj + gj2;
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3. Compute (σj1, ωj1)← Con(kj1, params) and (σj2, ωj2)← Con(kj2, params);
4. Party j derives his session key skj = H(σj1, σj2, i, j, xi, yj , ωj1, ωj2);
5. Send yj , ωj1, ωj2 to Party i.

– Send2(ID, I, i, j, xi, (yj , ωj1, ωj2)): If (i, j) 6= (i∗, j∗), or xi is not the s∗i -th
session of i∗, or (yj , ωj1, ωj2) is output by the s∗j -th session of Party j∗, S
behaves the same as in Game 1. Otherwise, S proceeds as folllows

c. Randomly chooses ki1, ki2 ←r Rq ;

d. Compute σi1 = Rec(ki1, ωj1, params) and σi2 = Rec(ki2, ωj2, params),
then Party i derives his session key ski = H(σi2, σi1, i, j, xi, yj , ωj1, ωj2);

Claim 3. : If ring-LWEq,α is hard, we have Pr(Q2) = Pr(Q1) − negl(κ), and
Pr(EQUAL2|¬Q2) = Pr(EQUAL1|¬Q1)− negl(κ).

Proof. Since H is a random oracle, the event Qi (i = 1, 2) is independent from
the distribution of the corresponding ski. In addition, under the ring-LWEq,α
assumption, we have xi = ari+fi and yj = arj+fj in Game 1 are computation-
ally indistinguishable from uniform distribution over Rq, so Pr(Q2) = Pr(Q1).
Suppose Qi (i = 1, 2) does not happen, A gains no information about ski which
means Pr(EQUAL2|¬Q2) = Pr(EQUAL1|¬Q1)− negl(κ). �

Game 3: S behaves almost the same as in Game 2 except in the follow case:

– Send1(ID,R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the s∗j -th session of j∗,
S behaves the same as in Game 2. Otherwise, S computes skj as follows:
1. Randomly chooses yj ←r Rq;

2. Randomly chooses kj1, kj2 ←r Rq ;

3. Compute (σj1, ωj1)← Con(kj1, params) and (σj2, ωj2)← Con(kj2, params);
4. Party j derives his session key skj = H(σj1, σj2, i, j, xi, yj , ωj1, ωj2);
5. Send yj , ωj1, ωj2 to Party i.

Claim 4. : If ring-LWEq,α is hard, we have Game 2 and Game 3 are compu-
tationally indistinguishable. In particular, we have Pr(Q3) = Pr(Q2)− negl(κ)
and Pr(EQUAL3|¬Q3) = Pr(EQUAL2|¬Q2)− negl(κ)

Proof. It is easy to identify that kj1 and kj2 are ring-LWEq,α samples. Under the
ring-LWEq,α assumption, we have kj1 and kj2 in Game 2 are computationally
indistinguishable from uniform distribution over Rq. �

Now it is enough to show that the event Q3 is happen with negligible prob-
ability:

Claim 5. We have Pr[Q3] = 2−n + negl(κ).

Proof. Let ki1,l and ki2,l be the element computed by S for the s∗i -th session at
party i∗ in Game l, and kj1,l and kj2,l be the element computed by S for the
s∗j -th session at party j∗. By the correctness of the protocol, we have that ki1,1 =
kj1,1 + ĝ1 and ki2,1 = kj2,1 + ĝ2 for some ĝ1, ĝ2 with small coefficients. As we
have proven that the view of the adversary before Ql happens is computationally
indistinguishable, the equation ki1,3 = kj1,3 + ĝ1

′ and ki2,3 = kj2,3 + ĝ2
′ should
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still holds for some ĝ1
′, ĝ2

′ with small coefficients. In Game 3, kj1,3 and kj2,3 are
randomly chosen from Rq, and under the property of OKCN in Lemma 2, we
have that the adversary makes a query to H that is exactly used to generate the
session key ski for the s∗i -th session of party i∗ is 2−n + negl(κ). �

Claim 6. Pr[EQUAL3|¬Q3] = 1/2 + negl()

Proof. Let (yj , ωj1, ωj2) be output by the s∗j -th session of Party j, and j =
j∗. (yj , ω

,
j1, ω

,
j2) be the message that is used to complete the test session. We

conclude the proof by the following two cases:

– ωj = ω,j : Since kj1 and kj2 is randomly chosen from Rq, so σj1, σj2 ∈
{0, 1}n is random duo to the property of reconciliation mechanism. Thus,
the probability that A has made a query H with the exact (σj1, σj2) is
2−n + negl(κ).

– ωj 6= ω,j : According to Claim 5, A will never make a query H with the exact
(σj1, σj2). �

Combining the Claim 1 to Claim 6, we have that Lemma 3 follows.
Similarly, it’s simple to show that our protocol is security against adversary

of TYPE II, TYPE III, TYPE IV and TYPE V. As we know, These five
types of adversaries give a complete partition of all the adversaries, it’s sufficient
to complete the proof of Theorem 2. �


