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Abstract. Searchable symmetric encryption (SSE) schemes are com-
monly proposed to enable search in a protected unstructured documents
such as email archives or any set of sensitive text files. However, some
SSE schemes have been recently proposed in order to protect relational
databases. Most of the previous attacks on SSE schemes have only tar-
geted its common use case, protecting unstructured data. In this work,
we propose a new inference attack on relational databases protected via
SSE schemes. Our inference attack enables a passive adversary with only
basic knowledge about the meta-data information of the target relational
database to recover the attribute names of some observed queries. This
violates query privacy since the attribute name of a query is secret.

1 Introduction

Searchable symmetric encryption (SSE) schemes provide one of the practical
solutions for searching on encrypted data. It was firstly proposed by Song et al.
in [26] and later improved by Curtmola et al.’s [10]. Based on Curtmola et al.’s
security model many SSE schemes were proposed such as [9,8,7]. The efficiency of
SSE schemes comes at the cost of some leakage that might make them vulnerable
to inference attacks [15,6].

Traditionally, SSE schemes are designed to protect a set of unstructured doc-
uments (e.g. email archives or a backup or any set of sensitive text files). How-
ever, recently Cash et al. proposed an elegant scheme [8] that targets relational
databases by increasing the functionality through supporting a large subset of
Boolean queries. Their scheme also has good performance as it achieves a query
speed that is comparable to the query speed under the unprotected MySQL (re-
lease 5.5) but with a storage cost of up to seven times the unencrypted data [8,14].

The security of SSE schemes has been well studied against inference at-
tacks [15,6] in their traditional use case scenario where document datasets such
as email archives are protected. More recently, the work in [1] presented the
first security analysis of searchable encrypted relational databases (i.e. relational
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databases protected via SSE) by proposing an inference attack, called Relational-
Count, exploiting the structural properties of relational databases and using only
knowledge about the frequency distribution of the attribute-value pairs which is
much less than the prior knowledge (i.e. joint frequency of attribute-value pairs
which is equivalent to knowledge of the whole plaintext database) required by
the Count attack [6].

In this work, we further improve the analysis of searchable encrypted rela-
tional databases and show that there is an extra leakage that could reveal the
attribute name (also known as column name) of all the queries (i.e. encrypted
attribute-value pairs) belonging to a specific database column.

Henceforth, we will use the words “query” and “query token” interchangeably
to mean an encrypted attribute-value pair that has been queried (or an encrypted
keyword in the context of unstructured databases). Thus, query recovery means
finding the actual plaintext of the query which is an attribute-value pair (or a
keyword). Also, relational database tables protected via SSE schemes will either
be called SSE-protected databases or searchable encrypted relational databases.
Finally, the words “attribute” and “column” will also be used interchangeably
throughout the paper.

Our Contribution. The contribution of this paper is twofold. First, we propose
a new attack on searchable encrypted relational databases. Our attack recovers
the attribute names or column names of queries and thus we call it the Attribute-
Name recovery attack. Our attack breaks the query privacy by recovering the
secret attribute names of some of the observed queries. We propose two simple
algorithms (one is deterministic and the other is heuristic), that take as input the
set of issued queries and divide it into different subsets where each subset repre-
sents all the values belonging to a specific column. Table 2 shows the number of
columns recovered by our attack on three different real world databases protected
by an SSE scheme. It is apparent from Table 2 that for the Adult [19] and the
Bank [25] database tables which have 14/32561 and 17/4521 columns/records
respectively, our attack recovers almost all the columns and thus completely
breaks the privacy of queries. However, regarding larger database tables such as
the Census which has 40/299285 columns/records, we are able to recover slightly
more than half of the columns. Most notably, our attack works using only the
meta-data information (i.e. column names and their cardinalities where the car-
dinality of a column is defined as the number of unique elements in the column)
and the number of records about the protected relational database table under
attack. This lesser amount of required knowledge makes our Attribute-Name
recovery attack more applicable in practice than all previous attacks on SSE
schemes [15,6,1] as they require at least prior knowledge about the frequency
distribution of the keywords or attribute-value pairs in the target database.

Second, we combine our Attribute-Name recovery attack with the Relational-
Count attack [1]. This gives us a second attack that recovers the values of queries
but requires knowledge about the frequency distribution of the attribute-value
pairs in the target database. The results about the number of recovered queries
in different SSE-protected relational databases are shown in Table 3.
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Related Work. Query recovery attacks exploiting the access pattern leakage of
SSE schemes were proposed by Islam et al. [15] and later improved by Cash et
al. [6]. The recent inference attack on searchable encrypted relational databases
by Abdelraheem et al. [1] exploits the properties of relational databases. This
reduces the attacker’s knowledge from full database knowledge required by pre-
vious inference attacks [15,6] to only partial knowledge represented by the fre-
quency distribution of the attribute-value pairs in the target database. Unlike
Abdelraheem et al.’s Relational-Count attack [1] which still requires the fre-
quency distribution of the attribute-value pairs in the target database, our first
proposed attack recovers the attribute names of queries by requiring only the
attacker’s knowledge about the meta-data information of the target protected
database. Moreover, as shown in Table 3, our second proposed attack recov-
ers more queries than those recovered by Abdelraheem et al.’s Relational-Count
attack [1].

Naveed et al. [22] proposed a number of attacks targeting relational database
columns encrypted using deterministic encryption [4] or order preserving encryp-
tion algorithms [2,5] in CryptDB [24] where encrypted values belonging to the
same column whose name is encrypted are collected together as one set or more
precisely one column vector. While the approach seems similar, their column
finder procedure is significantly different than our attribute recovery attack. It
takes as input the set of encrypted values (i.e. column vector of encrypted val-
ues) belonging to the same unknown column whose name is encrypted. Their
approach recovers the encrypted name by matching the number of distinct en-
crypted values with each column’s cardinality defined in the set of plaintext
columns (i.e. a column name and its possible values are known) belonging to the
attacker’s auxiliary or background data. Their procedure relies mainly on the
attributes’ (i.e. columns) cardinalities.

In contrast, our attack described in Algorithm 1 takes as input all the ob-
served encrypted queries in an SSE scheme. Then using the access pattern leak-
age inherent in SSE schemes in addition to basic background data about the
number of records and attributes’ cardinalities, it divides the observed encrypted
queries into different classes where each class contains a set of encrypted queries
belonging to the same attribute. Thus, each class or set of encrypted queries
found by our attack is actually the input used by Naveed et al’s column finder
procedure.

The recent generic attacks [17] proposed at CCS 2016 target any secure
database systems supporting range queries but leaking the access pattern with-
out any prior knowledge about the database under attack. Most notably, one
of their generic attacks target even secure encrypted search methods support-
ing range queries and only leaking the communication volume (i.e. query result
size) such as fully homomorphic encryption or ORAM schemes. Their attacks
only target range queries and they require the attacker to gather at least N4

queries (N is the domain size) to mount the attack successfully. However, our
work targets relational databases protected by SSE schemes dealing with equal-
ity queries. There are only two things in common between our attack and theirs,
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and that is the requirement of knowing the number of records and the query
result size (or communication volume as defined in [17]).

Organization of the paper. Section 2 gives a brief overview of SSE schemes
and inference attacks. In Section 3, we point out the security risks of using
SSE schemes in relational databases by proposing a new frequency attack ex-
ploiting the properties of relational databases. In Section 4, we present detailed
experimental results demonstrating our attacks and then discuss some counter-
measures. Section 5 concludes the paper.

2 Background about SSE Schemes

Definition. An SSE scheme takes as inputs a plaintext database index together
with the client’s secret keys and outputs an encrypted index where each key-
word w in the plaintext index is transformed into a token t using a deterministic
encryption algorithm and its corresponding documents’ identifiers are encrypted
using a randomized encryption algorithm. An SSE scheme encrypts the original
documents by employing a randomized encryption algorithm using the client’s
secret keys and stores the encrypted documents in an encrypted database in-
dexed by the document identifiers. Both the encrypted index and the encrypted
documents database are sent to the cloud server. To search for for a keyword w,
the client issues a query by generating its token t using its secret keys and sends
it to the server. The server responds by sending the corresponding encrypted
documents from the encrypted documents database to the client.

Our focus will be on analyzing the security of relational databases protected
by SSE schemes that are adaptively secure as defined by Curtmola et al. [10].
The use of SSE schemes to protect SSE schemes was firstly proposed by Cash
el al. [8,7] where the database records are considered as documents and the
attribute-value pairs are considered as keywords (e.g. each keyword is represented
as wi = (attributei, vi) where attributei is the attribute name and vi is its value).

Leakage Profile. An SSE scheme leaks the access pattern: the result of the
query or the record (or document) IDs corresponding to the queried keyword
wi, DB(wi), and also leaks the search pattern: the fact that whether two searches
are the same or not.

Attack Model. All recent SSE schemes follow the adaptive security definition
proposed by Curtmola et al. [10] where security is achieved against an honest-
but-curious server. That means a passive adversary following the protocol but
curious to use the leakage profile to learn about the queries and the encrypted
records.

Inference Attacks on SSE Schemes. Classical ciphers were broken by fre-
quency analysis which is a standard example of an inference attack where an
attacker can recover a plaintext character by inferring some information about
its corresponding ciphertext character using language statistics. Similarly, using
publicly-available auxiliary data, an inference attack can be mounted on adap-
tive SSE schemes to recover the plaintext of queries issued by the client and
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observed by the attacker (e.g. honest-but-curious server or passive external at-
tacker). This kind of attack performs query recovery and was proposed by Islam,
Kuzu, and Kantarcioglu (IKK) in [15]. Their attack, known in the literature as
the IKK attack, targets the strongest kinds of SSE schemes which are those
proved to be secure under the adaptive security definition. The IKK attack as-
sumes knowledge about the joint frequency (or co-occurrence count) of any two
plaintext attribute-value pairs (or two keywords) wi, wj ∈ W. It also assumes
knowledge about the plaintext of a subset of queries issued by the client.

A similar inference attack has been proposed recently by Cash et al. is called
the Count attack [6]. The Count attack assumes the attacker’s knowledge about
the number of occurrences of each keyword/attribute-value over all the doc-
uments/records (i.e.|DB(wi)| where wi ∈ W and DB is the original plaintext
dataset). This is also called keyword frequency knowledge and we denote this
knowledge by KF . Similar to the IKK attack, it also assumes knowledge about
the joint frequency (or co-occurrence count) of any two plaintext attribute-value
pairs (or two keywords) wi, wj ∈ W. Both, the IKK and the Count attacks,
represent the joint frequency knowledge in a matrix called the co-occurrence
knowledge-matrix, Cw. Therefore, both attacks require a complete knowledge
about the plaintext dataset under attack in order to form the co-occurrence
knowledge-matrix. Both attacks exploit the access pattern leakage inherent in
SSE schemes, in this case enabling the computation of the result size of any ob-
served query and also the observed joint frequency of any two observed queries.
In the relational database setting, this is equal to the size of the set resulting
from the intersection between the result sets of the two queries. A joint co-
occurrence query-matrix, Ct, is then formed and compared to the co-occurrence
knowledge-matrix, Cw in both attacks.

The recent Relational-Count [1] inference attack also performs query recov-
ery but on searchable encrypted relational databases. Its query recovery rate
is less than the Count attack but it is more practical than the Count attack
since it requires only the knowledge of the frequency distribution of the plain-
text attribute-value pairs in the target database rather than the joint frequency
knowledge required by the Count attack. The difference lies in the fact that the
Relational-Count attack uses Observation 1 (See Section 3) to discard the wrong
candidates in the list of possible candidates for a query with non-unique result
size in contrast to the Count attack which uses prior joint frequency knowledge
to discard wrong candidates from the same list.

3 Attacking Searchable Encrypted Relational Databases

As demonstrated in the recent Relational-Count inference attack [1], the struc-
ture of relational databases does enable an attack on searchable encrypted re-
lational databases without resorting to the co-occurrence knowledge-matrix Cw

about the relational database under attack. In the following, we describe our
Attribute-Name recovery attack. Our attack works under the assumption that
enough queries have been observed and that the attacker knows the meta-data
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information about the target database (e.g. column names A and the cardinal-
ity of each column which is equivalent to the number of unique values in the
column).

Note that the meta-data information represents the least possible prior knowl-
edge that could be acquired by an attacker. We define this as the attacker’s basic
background knowledge KB. This is definitely much less than the prior knowledge
required by previously discussed inference attacks and could be guessed or ac-
quired from public data. For example, if an honest-but-curious server holds an
encrypted medical data, then an attacker can easily acquire the columns’ or
attributes’ names of the protected data by referring to publicly-available infor-
mation such as the meta-data about database tables used in standard medical
software applications such as OpenEMR [23]4.

In addition to this basic knowledge, our attack assumes also the attacker’s
knowledge of the number of records in the target database which can be dynamic
depending on the protected database under attack. The number of records could
be gained either through a guess-and-determine process especially for small or
medium sized databases or through a leakage of the SSE scheme under attack
which is the case in some notable SSE schemes such as [9,27,20,16]. Moreover,
our attack could also recover the attribute value of a given attribute name ‘a’
under the assumption that the attacker knows KF .

3.1 Attribute-Name Recovery Attacks (First Attack)

We make use of the following simple observation, proposed in [1], about the
joint frequency (or the co-occurrence count) of observed queries sharing the
same attribute name on searchable encrypted relational databases.

Observation 1. The observed joint frequency (or observed co-occurrence count)
between any two different queries is non-zero only when their corresponding at-
tribute names are different.

The observation should be clear from the fact that each relational database
record has only one value for each column or attribute name. For example,
let t1 be the query token corresponding to the plaintext attribute-value pair
“Sex : Male”, t2 be the query token corresponding to the plaintext attribute-value
pair “Sex : Female”, and t3 be the query token corresponding to the plaintext
attribute-value pair “Age : 18”. Now, the observed joint frequency of t1 and t2
must be zero as there cannot be a relational database record whose “Sex” value
is both “Male” and “Female”. Also there is no guarantee that the observed joint
frequency of t1 and t3 (or t2 and t3) is zero since their corresponding attribute
names are different.

More generally, Observation 1 might allow an attacker to answer the following
question “Do the queries ti and tj have the same attribute name ?”. Here the
attacker does not need any knowledge other than the observed access pattern

4 OpenEMR is a well known open source medical software supporting Electronic Med-
ical Records (EMR)
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leakage Ct. If the value Ct[ti, tj ] does not equal zero, then ti and tj definitely
have different attribute names. Otherwise, the attacker cannot answer.

Our first proposed attack, the attribute-name recovery attack, is based on
Observation 2 which follows immediately from Observation 1 and the fact that
the total frequency of all the domain values of an attribute a in a searchable
encrypted relational database (EDB) equals the number of records in EDB. Going
back to our previous example and assuming that the number of records in EDB
is n, one can see that since t1 and t2 have the same attribute name and |Sex| =
2 (i.e. the cardinality of “Sex”) then the following equation will be satisfied:
|t1|+ |t2| = n. This gives an example that explains the following observation.

Observation 2. Let t = {t1, · · · , tl} be the set of observed queries where l ≤
|W|. Let |ti| denote the result size of query token ti. Let Ct be the observed co-
occurrence query-matrix. Let n be number of records in a searchable encrypted
relational database EDB. Let ‘a’ be an attribute name in the EDB with cardinality
|a|. Then there exists a subset 5 s ⊆ t where

∑
ti∈s |ti| = n, |s| = |a|, and

∀ti, tj ∈ s , Ct[ti, tj ] = 0 when l = |W |.

Observation 2 can be used to develop an algorithm that distinguishes between
observed queries. Such a distinguisher algorithm can be mounted by a weak
attacker (hence a strong attack) who observes only the access pattern leakage
of queries and has no prior knowledge other than KB (i.e. number of records,
column names and their cardinalities).

Description of Algorithm 1. Algorithm 1 takes as input a set of observed
query tokens t = {t1, ..., tl} and the attacker’s basic background knowledge KB.
It divides and classifies these tokens according to their attribute names into
different sets where each set Ga belongs to one attribute name a = (ai) or
multiple attributes names a = (ai, aj) sharing the same cardinality |ai|. Note
that the pseudo-code of Algorithm 1 provides only an overview about the steps
and does not represent a description of our implementation. In the following, we
discuss how to efficiently implement Algorithm 1.

Step 7 and Step 8 can give us an idea about the time complexity of Algo-
rithm 1 since they form the known k-SUM problem (i.e. Given A = {a1, · · · , as}
and a target sum t. Is there any subset of indices {i1, · · · , ik} such that

∑k
j=1 |aij | =

t ?) with an additional condition that the observed joint frequency (or co-
occurrence count) value between any two elements in the subset is zero. The
k-Sum problem is a parameterized version of the subset sum problem which
is a known NP-complete problem. The brute force algorithm for the k-SUM
problem takes O(sk) where s is the size of the given set. There are simple algo-

rithms solving this problem in O(s
k
2 log s) when k is even and O(s

k+1
2 ) when k

is odd [3,11,13].
However, employing the observed joint frequency (or co-occurrence count)

condition might reduce the above complexity times but this needs further inves-
tigation. Obviously, Algorithm 1 performs well when k is small (i.e. the attribute

5 If the cardinality |a| is not unique, then k subsets will exist where k is the number
of attributes whose cardinalities are equal to |a|.
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Algorithm 1 Attribute Recovery Attack

Require: KB and observed query tokens t = {t1, ..., tl} and their results. |a| ≡ cardi-
nality of a ∈ A where a can represent a single attribute name or multiple attribute
names sharing the same cardinality |a|. |ti| ≡ result size of query token ti.

Ensure: Recover the attribute name of observed queries.
1: Set R = {}. Compute the co-occurrence query-matrix Ct from query tokens t.
2: For each ti, create a list Qi holding ti in its head (i.e. Qi[1] = ti) and all other

query tokens tj ’s where Ct[ti, tj ] = 0.
3: Sort all the lists Qi according to their size in ascending order. Add all the sorted

lists Qi’s to a lists’ container L where L[i, j] is the jth query in the ith list L[i].
4: Set Ga ← {} for each attribute a and ctr = 1.
5: while ctr ≤ l AND A 6= ∅ do
6: L[ctr]← L[ctr]\R
7: for all S ⊆ L[ctr] where L[ctr, 1] ∈ S do
8: if

∑
tu∈S |tu| = n and Ct[tu, tv] = 0 , ∀tu, tv ∈ S then

9: for all a ∈ A do
10: if |S| = |a| then
11: Ga ← Ga ∪ S
12: R← R ∪Ga

13: A ← A\a
14: print(“Possible solution for cardinality ”,|a|, “ is ”,Ga)
15: goto Step 16

16: ctr = ctr + 1

17: return R.

cardinality is small). When the target sum t is not very large (i.e. number of
records n is not very large), one can use the known dynamic programming tech-
nique to solve the subset sum problem in pseudo-polynomial time O(st) [18].

Another way to look at Algorithm 1 is to consider the co-occurrence query-
matrix as the adjacency matrix of a weighted graph GCo whose nodes are the
queries and any two nodes are connected by an edge whose weight is the observed
joint frequency (or co-occurrence count) value between the two connected nodes
(i.e. a zero value for the joint frequency (or co-occurrence count) means no edge
or edge with weight zero). This allows us to consider the elements of the list
L[ctr] created in Algorithm 1 as nodes in another smaller weighed graph GL[ctr]

whose adjacent matrix is a submatrix of the co-occurrence query-matrix (i.e.
adjacent matrix of the bigger graph GCo containing all queries).

Now rather than looking at the subsets of L[ctr] (Note that the first element
L[ctr, 1] should be included in all subsets) whose size is equivalent to a given
cardinality |a|, one can look at the independent sets of the graph GL[ctr] cor-
responding to the list L[ctr] whose size is equivalent to |a| with the additional
condition that the total sum of the frequency of each node (i.e. query) equals
the total number of records n. This is the known independent set NP-Complete
problem with an additional filtering condition. We have implemented Step 8 in
Algorithm 1 using a greedy solution to the independent set problem where a
node with the maximum degree is included in the solution and all its neighbors
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are discarded (See Section 4). Appendix A gives an example where the queries
are represented in a graph and the problem of finding the attribute name of each
query is equivalent to finding solutions to the independent set problem of a given
graph.

Now, one can ask, which approach (i.e. independent set algorithms or k-
SUM algorithms or dynamic programming of subset sum) is better to implement
Step 7 and Step 8 in Algorithm 1. The answer depends on the target database
table and the available queries. We have implemented the dynamic programming
algorithm for the subset problem where all the solutions are traced back and
the joint frequency (or co-occurrence count) condition is evaluated after finding
each solution. This is practical when O(st) is pseudo-polynomial which means
that the number of records t is not large and for each cardinality there exists a
constructed list L[ctr] whose size s is not large.

However, Algorithm 1 will not be practical to apply when the constructed
lists are large. Therefore, we propose Algorithm 2, which is an efficient heuristic
algorithm that can find valid solutions faster. Algorithm 2 takes as input the con-
structed lists L[ctr], the number of records, and the observed query-matrix. The
algorithm is based on the observation that “the intersection between lists whose
heads belong to a similar attribute name gives a list containing queries whose re-
sult sizes add up to the number of records”. The problem here lies in identifying
the lists whose heads belong to the same attribute name. Our heuristic approach
allows the intersection between lists whose heads are queries that are disjoint.
Its time complexity is O(|W |2) where |W | is the number of attribute-value pairs
which is equivalent also the number of lists L[i].

Unlike Algorithm 1 which needs to find all the solutions of a subset sum
problem (see Step 8 in Algorithm 1), the heuristic approach only needs to find the
intersection (see Step 8 in Algorithm 2) between two sorted sets at each iteration
which takes O(m1 log(m2)) where m1 is the size of the small list and m2 is the
size of the larger. For each list L[i], it outputs a possible solution R[i]. Note that
a correct solution R[i] is more likely to appear and to be confirmed many times
but not more than |R[i]| times. No doubt false positives will appear especially
for columns with small cardinalities, even if the number of confirmations for a
solution R[i], C[R[i]], is exactly |R[i]|. The order of lists L[i] affects the results
of the intersections, so the algorithm might not succeed in finding the right
solution. So further work is required to study the success rate of our heuristic
approach.

However, experiments show that such false positive solutions are discarded by
Step 17. As long as there are no intersections between solutions, any number of
confirmations more than one will give us confidence that our solution is correct.
In our experiments, for small cardinalities ≤ 15, we require that the number of
confirmations to be exactly equivalent to the number of confirmations. But for
other cardinalities, we require that the number of confirmations ≥ 10.

Experiments show that Algorithm 2 managed to recover many attributes in
large databases such as the Census database [21] while Algorithm 1 succeeded
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in recovering almost all the columns (12/14) in the Adult database [19] which is
a small database with only 498 attribute-value pairs.

Algorithm 1 and Algorithm 2 break query privacy after observing enough
queries using a less amount of required knowledge. To realize their effect, assume
that an attacker has observed enough queries on a searchable encrypted relational
database, then Algorithm 1 can give us an answer to: “Have all possible values
about attribute ‘x’ been queried ?”. To answer such a question, an attacker
needs to know the number of records n which could be possible as noted above.
The attacker also needs to know the cardinality of x, |x|, which could also be
possible as many relational database tables are standard such as the sensitive
OpenEMR [23] relational databases. Employing Algorithm 1, after observing
enough queries, might return all the queries with the same attribute that have
result sizes whose sum is equivalent to n. If there is only one attribute whose
cardinality equals ‘|x|’, then Algorithm 1 will yield one solution if all values
of ‘x’ have been queried. The ability to answer the above question does break
the query privacy meant to be provided by using SSE and confirms the recent
results [1] that the leakage resulting from protecting relational databases with
SSE schemes is more than the leakage resulting from protecting unstructured
data with SSE schemes.

Algorithm 2 Heuristic Approach

1: procedure Heuristic(L,Ct, n, t = {t1, ..., tl},A)
2: R = {}
3: C = {} . Hash table to map similar entries in R to one entry
4: while L is decreasing do
5: for all L[i] do
6: R[i]← L[i]
7: for all L[j] where L[j, 1] ∈ L[i] do
8: S ← R[i] ∩ L[j]
9: if

∑
tu∈S |tu| ≥ n then

10: R[i]← S

11: if
∑

tu∈R[i] |tu| = n & Ct[tu, tv] = 0 , ∀tu, tv ∈ R[i] then

12: R[i]← Sort(R[i]) . Sort according to query no.
13: if R[i] ∈ C then
14: C[R[i]]← C[R[i]] + 1
15: else
16: C[R[i]]← 0

17: for all R[i] where |R[i]| ∈ |A| & (R[i] ∩ R\R[i] = φ) do
18: if C[R[i]] ≈ |R[i]| then
19: print(R[i], “ holds queries of an attribute with card. ”,|R[i]|)
20: for all L[j] do
21: if L[j, 1] ∈ R[i] then
22: L← L\L[j]
23: else
24: L[j]← L[j]\R[i]
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3.2 Recovering Attribute Values (Second Attack)

Algorithm 1 and Algorithm 2 might enable an attacker to recover the attribute
names of some queries without any knowledge except the basic knowledge, KB.
Now with KB, the attacker knows the domain or space values of a given attribute
name. Moreover, with the access pattern leakage, the attacker knows the result
set size (i.e. number of records holding the corresponding attribute-value pair
for the query token) of each observed query.

However, in order to recover the attribute values of observed queries whose at-
tribute names are recovered with Algorithm 1, without any prior joint frequency
knowledge such as those used in the Count attack KF and Cw, an attacker needs
to know at least the rank-size or rank-frequency distribution of the attribute val-
ues. Note that the knowledge of the rank-size or rank-frequency distribution of a
given attribute value does not necessarily imply the knowledge of the frequency
of each attribute value KF . For example, an attacker might know that in a cer-
tain country, from Census data, that the number of females exceeds the number
of males without knowing the exact numbers.

Using rank-size distribution knowledge only instead of KF knowledge, an
attacker can create a list La containing the attribute values of an attribute
named a that is sorted according to their rank-size in descending order. Let Lq

be a list containing the result-size of of each query such that Lq[i] contains the
result size of query token ti. Let Sort(Lq) be the list obtained after sorting Lq in
descending order. Let Find(Sort(Lq), Lq[i]) be a function that gives the location
corresponding to ti in the sorted list. Then the value of the query token ti will
be La[Find(Sort(Lq), Lq[i])]. If all the result sizes of queries in Lq are unique,
then the above attack succeeds with probability one. Otherwise, there might be
an error whenever we have a tie in the result sizes between two or more queries
in Lq.

UsingKF knowledge which is a very strong assumption compared to the rank-
size distribution knowledge, an attacker can populate a list of lists data structure,
say La, where La[j] gives the value (or a list of values) of the attribute ‘a’ whose
frequency value (values) equals j. Assuming, for example, that Algorithm 1 has
recovered the attribute name of a query token ti to be ‘a’, then one can see
that by adding the result-size of observed queries to a dictionary Dq (i.e. Dq[ti]
gives the result-size of query token ti), then La[Dq[ti]] will be the attribute value
(or the possible attribute values) of an observed query token ti whose attribute
name is a. If each list in La (i.e. La[j]) has size 1, then this process yields
one value for the query token ti whose frequency matches the result-size of ti,
Dq[ti]. Otherwise, it will return the list of all the possible values of the query
token ti which appear Dq[ti] times over all the database records. The two above
procedures are standard frequency analysis attacks similar to the one described
by Naveed et al. [22] for attacking columns of a relational database encrypted
using deterministic encryption.

However, our attacks target searchable encrypted relational databases by
firstly recovering the attribute name of a given query using only the meta-data
information about the databases and then secondly recovering its value when
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background knowledge about the databases (i.e. the distribution of the attribute-
value pairs) under attack is known. Moreover, rather than firstly recovering all
the attribute names of the issued queries and then secondly recovering all the
values using the attacker’s frequency knowledge, we can use the frequency knowl-
edge and use our attribute-name recovery attack and at the same time apply
the Relational-Count attack proposed by Abdelraheem et al. [1]. Combining the
Attribute-Name Recovery attack and the Relational-Count attack allows us to
recover more queries. This combination represents our second proposed attack.
See the graph on the right in Fig. 1 at Appendix A to see the effect of our second
attack when combined with our first attack. In Section 4, we give some exper-
imental results on the Bank database [25] where this combination significantly
increases the number of recovered queries and closes the security gap between
deterministic encryption and searchable encryption schemes.

4 Experimental Results and Countermeasures

In this section, we show the practical viability and threat posed by our first
proposed attack (attribute-name recovery) as well as our second proposed attack
which recovers the actual plaintext values of the queries.

Our first attack is represented by Algorithm 1 (subset sum approach or In-
dependent set approach) and Algorithm 2. We also combine both Algorithm 2
and Algorithm 1 (subset sum approach) by using Algorithm 2 first and then
using the reduced and unresolved lists produced by Algorithm 2 as an input
for Algorithm 1 (subset sum approach) in order to tackle the unresolved lists
with small sizes. Our attack takes as input the access pattern of the observed
queries (i.e. access pattern = record IDs and result size), which enables the at-
tacker to compute the observed co-occurrence matrix Ct. It also takes as input
the basic background information represented in only the meta-data information
about the relational database under attack (i.e. KB). Our goal is to distinguish
between queries belonging to different attribute names and gather all queries be-
longing to the same attribute in a single unit column. This will reduce that the
security offered by SSE and make it close to the security offered by deterministic
encryption when enough queries are issued which will enable an attacker with
background knowledge about the actual database or its distribution to recover
all queries and thus all attribute values of the target database as demonstrated
by Naveed et al. [22] and discussed above in Section 3.2.

We tested our attacks against the three relational database tables used in [1],
namely, the Adult [19], the Bank [25], and the Census [21]. The implementation
of our attacks can be accessed from the link https://goo.gl/WxmSU4. Before
describing our experimental results, we give a short description about these
three databases.

Relational Databases. The three relational database tables are publicly avail-
able online at the UCI Machine Learning Repository [12]: (1) Adult [19]: consists
of 32561 rows (records), 14 columns (attributes), and has 498 distinct attribute-
value pairs. (2) Bank [25]: consists of 4521 rows, 17 columns (attributes), and
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has 3720 distinct attribute-value pairs. (3) Census [21]: consists of 299285 rows,
40 columns (attributes), and has 4001 distinct attribute-value pairs.

Query Generation. Using a single-keyword Bitmap-based SSE scheme sim-
ilar to the ones described in [27,15], each target relational database is trans-
formed into a separate searchable encryption relational database where all pos-
sible queries within it are issued. The queries were chosen randomly from the
set of all available queries (498 queries for the Adult database, 3720 queries for
the bank database and 3993 queries for the Census database) by a client and
each query result set and its access pattern leakage were recorded by an honest-
but-curious server. Using this observed-queries knowledge, our attacker (i.e. the
honest-but-curious server) can compute the joint frequency (or co-occurrence
count) value between any two queries and thus the whole co-occurrence query-
matrix, Ct.

Sizes of the Sorted Lists. Both Algorithm 1 and Algorithm 2 depend on
the lists L[ctr] whose sizes determine the time complexity of both algorithms.
The sizes of the lists L[ctr] vary depending on the database under attack and the
number of issued queries. For example, Table 1 shows that in the Adult database
when all the 498 queries are issued, the smallest list has size 13 and the largest
list has size 485 whereas in the Bank database when all the 3720 queries are
issued, the smallest list has size 37 and the largest list has size 3704 and in the
Census database when all the 4001 queries are issued, the smallest list has size
11 and the largest list has size 3962.

4.1 Experimental Results of our first attack

Experiments with Algorithm 1. Algorithm 1 is implemented using two ap-
proaches. The first approach is the known dynamic programming with a back-
tracking procedure to solve the subset sum problem in each list L[ctr] and the
second approach is a greedy algorithm that solves the independent set prob-
lem. Table 2 shows the results of using the two approaches of implementing
Algorithm 1 on the above three databases. The results show that the subset
sum implementation is more successful than the independent set implementa-
tion when the database table has a small number of attribute-value pairs such
as the Adult database which has only 498 attribute-value pairs and thus at
most 498 queries. So regarding the Adult database, all the columns or attribute
names whose cardinalities are unique have been recovered successfully. However,
columns with the same cardinality such as the “sex” and salary “class”, where
each has two values, have been distinguished from the other attributes but one
can not tell which of the two values point to the “sex” attribute and which point
to the “class” attribute. Similarly, each of the “education” and “education-num”
attributes has 16 values6. However, all their values were in one list ranked at
position ctr = 13 in the sorted lists’ container and at the same time each value
in each attribute has zero joint frequency (or co-occurrence count) value with
all the other values except one value. This makes it impossible to separate the

6 There is one-to-one correspondence between education and education-num.
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values of each attribute as we did for the “sex” and “class” attributes. In fact,
our dynamic programming implementation of Algorithm 1 generated exactly
32678 = 215 solutions. The reason is that the first element of each list is in-
cluded in each solution but each of all the other 15 values has two possibilities
which gives us in total 215 solutions. However, the set of all queries belong-
ing to “education” and “education-num” will be identified and separated from
the other queries but not from each other. In such scenarios Algorithm 1 fails
completely to recover the attribute name of a class of queries.

Table 1: Sizes of the Sorted Lists (increasing order) in each of the three databases
(i.e. Adult, Bank and Census) when all the possible queries are issued in each
protected database. The 1st list (L[1]) for the Adult database has size 13, the 2nd
list (L[2]) has size 28 and so on. last refers to the last list which corresponds to
the 498th list in the Adult database, the 3720th list in the Bank database and the
4001th list in the Census database.
Data Set 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... last

Adult 13 28 41 45 52 67 89 89 93 118 118 119 129 135 136 ... 485
Bank 37 288 374 662 662 662 770 852 954 1184 1465 1518 1812 1878 1963 ... 3704
Census 11 25 25 30 34 55 107 110 111 127 127 152 157 197 198 ... 3962

Regarding the Census and the Bank databases, the greedy approach of the
independent set implementation of Algorithm 1 is more effective as it recovers
more columns. Note that the subset sum approach is deterministic but it takes
too long time to resolve a single list L[ctr] with a large size. For example, we are
only able to resolve the first three lists in the Bank database using the subset sum
implementation but we cannot resolve the 4th ranked list in the Bank database
whose size is 662 and all the other lists corresponding to the Bank database in
a reasonable time using the subset sum implementation. However, when we use
the greedy approach for the independent set (note that this approach is heuristic
so we check the intersections between solutions similar to Step 17 in Algorithm 2
to discard false positives), we are able to recover 10/17 columns compared to
only 3/17 recovered columns when using the subset sum implementation.

Experiments with Algorithm 2. The heuristic approach presented in Algo-
rithm 2 was more effective than the deterministic approach presented in Algo-
rithm 1. We tested Algorithm 2 against the three above databases. The results
are depicted in Table 2 and they show clearly that the heuristic approach pre-
sented in Algorithm 2 recovers more columns. For example, it recovered 20/40
columns in the Census database compared to only 6/40 when Algorithm 1 (inde-
pendent set approach) is employed. Moreover, when we combine the intersection
heuristic approach with the subset sum approach, we recover even more columns
in the Census database as shown in the last row of Table 2 where 22/40 queries
are recovered.
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4.2 Experiments to Recover the Attribute Values

Under the assumption that the attacker has background knowledge represented
only in the frequency distribution, we apply both the Attribute-Name Recovery
attack and the Relational-Count attack on the Bank database. Our goal is to
recover more queries compared to the case where only the Relational-Count
attack is applied.

Table 2: Attribute-Name Recovery Results on Different Relational Databases
when all the possible queries are issued. The entry 22/40 indicates that we have
recovered 22 columns out of 40 columns in the Census database.

Algorithm Census Bank Adult

1 (Subset sum) 6/40 3/17 12/14
1 (Independent set) 6/40 10/17 2/14

2 (Intersection) 20/40 12/17 10/14
2 (Int.)+1 (Sub.) 22/40 12/17 12/14

Combining Algorithm 2 and the Relational-Count attack allows us to re-
cover more queries than those recovered when only the Relational-Count is ap-
plied [1]. Table 3 summarizes the results of experiments to recover the attribute
values using our second attack (i.e. combination of the Attribute-Name and the
Relational-Count attack). The table shows that when all queries are issued, our
second attack recovers more queries than those recovered using the Relational-
Count attack. So one can conclude that for some relational database tables (e.g.
small number of columns, unique cardinality, non-zero co-occurrence between
attribute-value pairs belonging to different columns), SSE schemes security level
is very close to the security level provided by deterministic encryption schemes.
Note that the maximum number of queries that can be recovered in each SSE-
protected database is upper bounded by the number of queries that can be
recovered when the columns’ of the relational database is protected using a de-
terministic encryption algorithm. This upper bound is equivalent to 272, 150 and
829 in the Adult, Bank and Census databases respectively due to the existence
of some values within the same column that have the same frequency in these
databases.

Table 3: The table shows the number of queries recovered from three SSE-
protected relational databases (Adult, Bank and Census) using both the
Relational-Count attack [1] and our second attack.

Attack Adult Bank Census

Our Second Attack 240/272 147/150 760/829
Relational-Count Attack [1] 236/272 122/150 757/829
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4.3 Countermeasures

The padding countermeasure, which is proposed in [15,6], hides the actual result
size of each query and therefore might prevent our Attribute-Name recovery
attack. However, depending on the padding level, a variant of the Attribute-
Name recovery attack that does not look for the exact number of records but for
a range of possible values for the number of records might still allow the attacker
to find queries belonging to the same column.

5 Conclusion

In this paper, we proposed two attacks on relational databases protected via SSE
schemes. Our first attack breaks query privacy as it classifies the set of issued
queries into different subsets where each subset holds the queries belonging to
a specific column. Remarkably, our first attack is more practical than all other
proposed attacks on SSE schemes [15,6,1] which require prior knowledge about
the frequency distribution of the attribute-value pairs in the target database.
This is because our attribute-name recovery attack does not require any prior
knowledge about the target database other than the meta-data information and
the number of records. An important message of this paper is that SSE schemes
leaking the number of records n should not be used.

Moreover, we improved the Relational-Count attack [1] by combining it with
our first attack. This combination allows us to recover more queries on some
databases. Our work is important because it shows that protecting relational
databases via SSE schemes breaks query privacy as it allows an attacker to
recover the attribute names of some of the observed queries. In particular, the
queries belonging to columns with low cardinality will be easily distinguished
from other queries without waiting for all queries to be issued.

Our experiments assume that all the possible queries on a searchable en-
crypted database are issued which is one limitation of our work. Observation 2
will not hold for some attributes when the number of issued queries is less than
the number of all the attribute-value pairs in the encrypted database since the
existence of a subset of observed queries belonging to a certain attribute is not
certain. Estimating the existence probability of a certain subset of observed
queries depends on the distribution of the issued queries which varies from one
user to another. So further work is required to estimate this probability.
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A Example Explaining Our Attribute-Name Recovery
Attack

In the following, we give a toy example to demonstrate our attack. Assume that
we have a relational database table as shown in Table 4. Using a deterministic
encryption algorithm to encrypt the “Sex” and “Education” columns and using
an order preserving encryption will transform our relational database table to
an encrypted relational database table as shown in Table 5. However, most se-
cure SSE schemes will transform an inverted index such as the one displayed in
Table 6 into a length-hiding encrypted index where the server does not know
the frequency or result length of each keyword token before being queried.

Table 4: The table shows a plaintext relational database table.
ID Sex Education Age

1 M Bsc 40
2 F Msc 39
3 F PhD 30
4 M PhD 45
5 M Bsc 25
6 F Bsc 23
7 M Msc 30

After observing all the queries issued on the encrypted index shown in Ta-
ble 6. Our attribute-name recovery attack tries to resolve the attribute name
of each observed query by exploiting the access pattern leakage. Fig. 1 shows
three graphs whose nodes represent the observed queries. The graph on the left
shows the server’s knowledge (represented by the frequencies or result lengths of
observed queries gained from the access pattern leakage) before launching our
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Table 5: The table shows an encrypted relational database table. DET refers to
Deterministic Encryption and OPE refers to Order Preserving Encryption. Col-
umn names can either be replaced by random labels or deterministically encrypted
using the table unique ID.
ID DET (Education||tableID,K0) DET (Age||tableID,K0) DET (Sex||tableID,K0)

1 DET (Bsc,K2) OPE(40,K3) DET (M,K1)
2 DET (Msc,K2) OPE(39,K3) DET (F,K1)
3 DET (PhD,K2) OPE(30,K3) DET (F,K1)
4 DET (PhD,K2) OPE(45,K3) DET (M,K1)
5 DET (Bsc,K2) OPE(25,K3) DET (M,K1)
6 DET (Bsc,K2) OPE(23,K3) DET (F,K1)
7 DET (Msc,K2) OPE(30,K3) DET (M,K1)

Table 6: The table shows an inverted index for the relational database table shown
in Table 4. Each keyword w is represented as w = (a : v) where a refers to its
attribute name and v refers to its value.

Keyword Record IDs

Sex:F 2, 3, 6
Sex:M 1, 4, 5, 7

Education:Bsc 1, 5, 6
Education:Msc 2, 7
Education:PhD 3, 4

Age:23 6
Age:25 5
Age:30 3, 7
Age:39 2
Age:40 1
Age:45 4

attacks. When we apply the Attribute-Name recovery attack using only as back-
ground knowledge the meta-data information about the table and the number
of records, the Server will know only the attribute names, “Education”, “Sex”
and “Age” represented by the graph on the middle in Fig. 1. Note that Naveed
et al. [22] attack recovers column names and values of the encrypted database
table shown in Table 5 using public background data. However, our attribute-
name recovery attack recovers the query issued on the encrypted index shown in
Table 7 using only meta-data information about the database table in addition
to the number of records which can be leaked by some SSE schemes or guessed
by the attacker.

Moreover, when we apply both the Attribute-Name recovery attack and the
Relational-Count attack using the frequency distribution knowledge, the Server
will know both the attribute names and their corresponding actual values. This
additional knowledge is represented in Fig. 1 by the graph on the right.
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Table 7: The table shows a length-hiding encrypted index before being randomly
permuted for the inverted index shown in Table 6. DET refers to deterministic
encryption and Enc refers for a randomized encryption algorithm. Note that
this encrypted index is not secure as the rows needs to be securely and randomly
shuffled and the number of rows needs to be padded to the maximum number of
keywords possible.

Keyword Record IDs

DET (Sex : F,K0) Enc(2||3||6||∗,K1)
DET (Sex : M,K0) Enc(1||4||5||7,K1)

DET (Education : Bsc,K0) Enc(1||5||6||∗,K1)
DET (Education : Msc,K0) Enc(2||7|| ∗ ||∗,K1)
DET (Education : PhD,K0) Enc(3||4|| ∗ ||∗,K1)

DET (Age : 23,K0) Enc(6|| ∗ || ∗ ||∗,K1)
DET (Age : 25,K0) Enc(5|| ∗ || ∗ ||∗,K1)
DET (Age : 30,K0) Enc(3||7|| ∗ ||∗,K1)
DET (Age : 39,K0) Enc(2|| ∗ || ∗ ||∗,K1)
DET (Age : 40,K0) Enc(1|| ∗ || ∗ ||∗,K1)
DET (Age : 45,K0) Enc(4|| ∗ || ∗ ||∗,K1)

Fig. 1: Nodes on the graphs represent all the possible queries that can be issued
in the relational database index table shown in Table 6 after being encrypted
by an SSE scheme. An edge between nodes (queries) exists if the intersection
between their corresponding result sets is non-zero. The graph on the left shows
queries as nodes of a graph labeled by their result lengths before applying our
attacks. The graph on the middle shows what the server will learn after applying
our attribute-name recovery attack. Note that the green color refers to the “Sex”
attribute name and the blue color refers to the “Education” attribute name and
the red color refers to the “Age” attribute name. The graph on the right shows
what the server could learn after applying our second attack (Attribute-Name
recovery attack combined with the Relational-Count attack).
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