
Shorter Messages and Faster Post-Quantum
Encryption with Round5 on Cortex M

Markku-Juhani O. Saarinen1, Sauvik Bhattacharya2, Oscar Garcia-Morchon2,
Ronald Rietman2, Ludo Tolhuizen2, and Zhenfei Zhang3

1 PQShield Ltd., United Kingdom. Email: mjos@mjos.fi
2 Philips, Netherlands. Email: first.lastname@philips.com

3 OnBoard Security, USA. Email: zzhang@onboardsecurity.com

Abstract. Round5 is a Public Key Encryption and Key Encapsulation
Mechanism (KEM) based on General Learning with Rounding (GLWR),
a lattice problem. We argue that the ring variant of GLWR is bet-
ter suited for embedded targets than the more common RLWE (Ring
Learning With Errors) due to significantly shorter keys and messages.
Round5 incorporates GLWR with error correction, building on design
features from NIST Post-Quantum Standardization candidates Round2
and Hila5. The proposal avoids Number Theoretic Transforms (NTT),
allowing more flexibility in parameter selection and making it simpler to
implement. We discuss implementation techniques of Round5 ring vari-
ants and compare them to other NIST PQC candidates on lightweight
Cortex M4 platform. We show that Round5 offers not only the shortest
key and ciphertext sizes among Lattice-based candidates, but also cur-
rently has leading performance and implementation size characteristics.

Keywords: Post-Quantum Cryptography, Lattice Cryptography, GLWR, Em-
bedded Implementation, Cortex M4

1 Introduction

There is well-founded speculation that the estimated time required for devel-
opment of quantum computers capable of breaking RSA and Elliptic Curve
Cryptography (ECC) [25,30] is shorter than the long term confidentiality re-
quirements of some current highly sensitive communications and data. Such
risk analysis prompted the National Security Agency (NSA) to revise its cryp-
tographic algorithm recommendations in 2015 and to announce a “transition
period” until quantum resistant replacement algorithms can be fielded [6,23].

The algorithm identification and standardization task fell largely to National
Institute of Standards and Technology (NIST), who specified evaluation criteria
and organized a public call for Post-Quantum Cryptography (PQC) algorithms
in 2016 [20,21]. A total of 69 public key encryption, key encapsulation, and digital
signature algorithm submissions were made by the November 2017 deadline [22].

The new proposals rely on a wide variety of quantum-resistant hard problems
from areas such as lattices, coding theory, isogenies of supersingular curves, and

1 Version 20180803133900

multivariate equations. A set of selected PQC algorithms is expected to eventu-
ally fulfill all of the tasks that have up to now been assigned to classically secure
(RSA and ECC) public key algorithm standards. This includes cryptography in
lightweight embedded applications and smart cards.

2 Round5

Round5 is an amalgam of two lattice-based first-round candidates in the NIST
Post-Quantum cryptography project, Round2 [14] and Hila5 [29]. Like its two
parent proposals, Round5 can be used for both public key encryption and key en-
capsulation, and it inherits the use of a rounding problem from Round2 (GLWR,
Section 2.1) and error correction from Hila5 (XEf, Section 3.1).

The use of a rounding problem together with error correction lends Round5
unique bandwidth efficiency properties. A full description of Round5, its design,
classical and quantum security analysis, and parameter selection can be found in
[?]. Details of that analysis are outside the scope of this work but we note that
the new parameter selection addresses the potential issues regarding classical
attack bounds in the original Round2 submission.

2.1 Generalized Learning With Rounding

There is a relatively large set of interrelated hard problems used in lattice cryp-
tography. One of the most common ones is Learning With Errors (LWE), which
has a security reduction to worst-case quantum hardness of shortest vector prob-
lems GapSVP and SIVP [26,27]. Learning With Rounding (LWR) was intro-
duced in [3], where it was shown to have a security reduction from LWE. Round2
utilizes a version called General Learning With Rounding (GLWR).

Definition 1 (General LWR (GLWR)). Let d, n, p, q be positive integers
such that q ≥ p ≥ 2, and n ∈ { 1, d }. Let Rn,q be a polynomial ring, and let Ds

be a probability distribution on Rd/nn .

– The search version of the GLWR problem sGLWRd,n,m,q,p(Ds) is as follows:
given m samples of the form (ai, bi = RCompressq→p(a

T
i s mod q)) with ai ∈

Rd/nn,q and a fixed s← Ds, recover s.

– The decision version of the GLWR problem dGLWRd,n,m,q,p(Ds) is to distin-

guish between the uniform distribution on Rd/nn,q ×Rn,p and the distribution

(ai, bi = RCompressq→p(a
T
i si mod q)) with ai ← Rd/nn,q and a fixed s← Ds.

Rounding and Compression. A key feature of (G/R)LWR is the use of
rounding in the form of randomized compression function, RCompress. Let bxe =
bx + 1

2c denote rounding of x to closest integer. Let a < b be integers, g =

2

gcd(a, b), and error e ∈
(
− b

2g ,
b
2g

]
∩ Z. Compression mapping of x ∈ Za to Zb

and its inverse are defined as:

Compressa→b(x, e) =

⌊
b

a
· x+

ge

a

⌉
mod b, (1)

Decompressb→a(x) =
⌊a
b
· x
⌉

mod a. (2)

The randomized variant is obtained by using uniformly distributed error:

RCompressa→b(x) = Compressa→b

(
x, e

$←
(
− b

2g
,
b

2g

]
∩ Z
)
. (3)

Note that when b divides a (as it does with our parameters), the error bound is
b
2g = 1

2 and the we have a deterministic case RCompressa→b(x) =
⌊
b
a · x

⌉
mod b.

2.2 Abundance of Parameter Sets: The Embedded Case

The n = 1 case of GLWR corresponds to the original LWR problem of [3]. In this
work we restrict ourselves to the n = d case, which corresponds to the Ring-LWR
(RLWR) problem and offers shorter public keys and ciphertext messages.

Round5 has both chosen ciphertext (CCA) and chosen plaintext (CPA) se-
cure versions. The CPA versions are faster and are configured to have smaller
keys at the price of a slightly higher failure rate, making them better suited
for ephemeral key establishment. On the other hand, parameter selection lead-
ing to a negligible error rate and the added security of CCA Fujisaki-Okamoto
Transform [13,15] is needed in public key encryption applications, where mes-
sages and public keys have long lifetimes. Therefore the CCA variant is referred
to as “Round5.PKE”, while the CPA version is called “Round5.KEM”. They
both internally rely on the same building lock, an IND-CPA encryption scheme.
Since both key establishment and public key encryption use cases are relevant
to embedded applications, we consider them both.

In addition to the LWR / RLWR and CCA / CPA distinctions, Round5 de-
fines parameter sets for each NIST encryption security category NIST1, NIST3,
and NIST5. These correspond to the security level of AES with 128, 192, and
256 - bit key length, respectively, against a quantum or classical adversary [21].
This leads to a total of 2× 2× 3 = 12 different Round5 variants.

However all applications clearly don’t need to implement all variants. We
adopt the strategy taken in NSA’s Commercial National Security Algorithm
(CNSA) suite [23] which standardizes on a single set of parameters and algo-
rithms at 192-bit (classical) security level. This facilitates interoperability and
parameter-specific implementation optimizations, leading to smaller implemen-
tation footprint. CNSA is approved up to TOP SECRET in United States.

Therefore this work focuses on two variants with designators R5ND_3KEM and
R5ND_3PKE. One can read the designators aloud as “Round 5” (R5), “ring variant”
(ND for n = d), “post-quantum security category 3” (3), “CPA security for
ephemeral keys” (KEM) or “CCA security for public key encryption” (PKE).

3

Table 1. Internal parameters and external attributes for the R5ND3 variants of Round5
discussed in this paper. The security estimates are made with very conservative assump-
tions and correspond to NIST3 security level. There are many more variants available
– please see Table 4 for a full list and [5] for the paremeter selection methodology used.

Parameter R5ND 3KEM R5ND 3PKE

Dimension n = 756 n = 786
Degree (n = d for ring variants) d = 756 d = 786
Nonzero elements in ternary secrets h = 242 h = 204
Large (main) modulus q = 215 q = 216

Rounding modulus p = 28 p = 28

Compression modulus t = 24 t = 26

Encrypted secret size (bits) |K| = 192 |K| = 192
Error correction code size (bits) l = 103 l = 103
Transmitted secret (bits µ = |K|+ l) µ = 295 µ = 295
Random bit flips corrected (by XEf) f = 3 f = 3

Public key size (bytes) 780 810
Secret key size (bytes) 24 858
Ciphertext expansion (bytes) 904 1032
Shared secret size (bytes) 24 24

Quantum security 2176 2181

Classical security 2193 2193

Decryption failure rate 2−75 2−128

2.3 High-Level Algorithm Overview

Table 1 summarizes the internal parameters and external attributes of our em-
bedded target algorithms. We note that the difference between the algorithms is
so small that a majority of of the program code can be shared between the two.

Round5 ring variants work in a ring of dimension and degree n = d. Ring
arithmetic is performed modulo Φn+1 = xn + · · ·+ x+ 1 with n+ 1 prime. This
is the same ring structure as in NTRU-KEM [16].

We note that (x − 1)Φ(n) = xn+1 − 1. Therefore one can utilize a lifting
trick, multiplying a ring element by (x− 1) (which involves just n additions and
subtractions) and performing multiplications in the much more efficient cyclic
polynomial ring xn+1− 1. Multiplication keeps the product in the same subring
and an equally simple “unlifting” step can reduce it back to the mod Φ(n) ring.

Ignoring a lot of detail, the basic key generation procedure KeyGenCPA()
is given by Algorithm 1 while Algorithms 2 and 3 describe the basic encryp-
tion and decryption operations EncryptCPA() and DecryptCPA(), respectively.
The small-norm secrets have special structure: sparse ternary polynomial set
D ⊂ {−1, 0, 1}n has h

2 coefficients set to +1, h
2 coefficients set to -1, and n− h

coefficients being zero.

4

Algorithm 1 KeyGenCPA(σ, γ): Key generation for CPA case.

Input: Random seeds σ, γ.

1: a
$σ← Zn

q Uniform polynomial, seed σ.

2: s
$γ← D Sparse ternary polynomial, seed γ.

3: b← RCompressq→p(a ∗ s) Compress product to range 0 ≤ bi < p.
4: pk = (a,b) Random seed σ instead of full a.
5: sk = s Random seed γ for s is sufficient.

Output: Public key pk = (a,b) and secret key sk = s.

Algorithm 2 EncryptCPA(m, pk, ρ): Public key encryption (CPA).

Input: Message m = {0, 1}m, public key pk = (a,b), random seed ρ.

1: r
$ρ← D Sparse ternary polynomial, seed ρ

2: u← RCompressq→p(a ∗ r) Compress product to range 0 ≤ ui < p.
3: v← RCompressp→t(b ∗ r) + t

2
m Compress to Zm

t , add message.
4: ct = (u,v) Truncate v to m: n log2 p+ µ log2 t bits.

Output: Ciphertext ct = (u,v).

CPA-KEM. The chosen-plaintext secure (IND-CPA) key encapsulation mode
used by R5ND_3KEM is constructed from EncryptCPA() and DecryptCPA() in straight-

forward fashion by randomizing a message m
$← {0, 1}µ and seed ρ. Both parties

compute the shared secret from hash ss = h(m, ct).

CCA-KEM. The CPA scheme is transformed into a chosen ciphertext (IND-
CCA2) secure one (in R5ND_3PKE) using the Fujisaki-Okamoto Transform [13,15]:

– Key generation requires storing secret coins z
$← {0, 1}µ and the public

key with the secret key: CCAsk = (sk, z, pk).
– Encapsulation. First create a triplet hash (l,g, ρ) = h(m, pk) from random

message m
$← {0, 1}µ and the public key. Compute c = (EncryptCPA(m, pk, ρ)

using ρ and set ct = (c,g) as ciphertext. The shared secret is ss = h(l, ct).
– Decapsulation computes m′ = DecryptCPA(c, sk) from the first part of

ciphertext and uses that to create its version of triplet (l′,g′, ρ′) = h(m′, pk).
This is then used in simulated encryption c′ = EncryptCPA(m′, pk, ρ′). If
there is a match ct = (c′,g′), we set ss = h(l′, ct). In case of mismatch
ct 6= (c′,g′) we use our stored coins z for deterministic output ss = h(z, ct).

Algorithm 3 DecryptCPA(ct, sk): Decryption (CPA).

Input: Ciphertext ct = (u,v), secret key sk = s.

1: t← u ∗ s− Decompresst→p(v) Remove mask to recover noisy message.
2: m← RCompressp→1(b ∗ r) Remove noise.

Output: Plaintext pt = m.

5

0 1,000 2,000 3,000 4,000

SIKEp751

R5ND 3KEM

R5ND 3PKE

Saber

Kyber-768

sntrup4591761

NTRU-HRSS17

NewHope1024-CCA

Bytes Transmitted

Public Key

Ciphertext

Fig. 1. Bandwidth usage in key establishment. In addition to other relatively
bandwidth-efficient lattice schemes, we include SIKEp751, which is the only candidate
with shorter messages at level 3.

KEMs and Public Key Encryption. While R5ND_3KEM (CPA) is sufficient
for purely ephemeral key establishment, we suggest R5ND_3PKE (CCA) for public
key encryption [7,31]. One of course needs to further define a Data Encapsulation
Mechanism (DEM) in order to transmit actual messages rather than just keys.

3 Implementation Tweaks and Optimizations

The operation of Round5 in a ring is analogous to “LP11” [19] encryption, but
using rounding instead of synthetic random error. Our lightweight implementa-
tion in particular shares some similarity with “half-truncated” lightweight Ring-
LWE scheme TRUNC8 [28], but uses a sparse ternary vector instead of a binary
secret. Here we highlight some key factors the embedded implementation to be
faster and more compact than the reference implementation (and Round2).

Fixed parameters. The original implementation of Round2 was an extremely
flexible “all-rounder” – the source code of numerous variants differs only in the
api.h file. Although that implementation showed that it is feasible to have good
performance for multiple parameter sets, fixing parameters to a small set is
desirable especially for embedded bare metal targets, as that lets us eliminate
dynamic (heap) memory allocation. Fixed parameters also allow us to optimize
things such as array indexing and to remove redundant loops and options. This
alone led to roughly 3× overall speedup of R5ND in comparison to an implemen-
tation of Round5 capable of handling all parameter sets.

Simplifications. There are a number of practical simplifications related to our
specific parameter choices. Since p and q are powers of two, there is a lot of

6

masking by p − 1 and q − 1. However much of this is unnecessary since carry
bits do not flow from higher bits towards lower bits in addition and subtraction.
Therefore all intermediate values can be kept at full word length. Most of the
arithmetic operates internally on 16-bit words, well suited for lightweight targets.

SHAKE-256. We use SHAKE-256 [11] consistently for hashing and random
byte sequence generation. Round2 used SHA3-512 for “short-output hashing”,
usually truncating the result to 32 bytes. SHA3-512 with its 1024-bit inter-
nal state and slow speed is clearly an overkill. Round2 furthermore specified a
“DRBG” based on AES-256 [10] in counter mode [9]. SHAKE-256 is designed
as a extendable output function (XOF) and takes over the functions of DRBG.

There were instances of double hashing within the algorithm, such as hashing
input to get a fixed-length DRBG seed – which is of course unnecessary in case
of an arbitrary-input XOF. Another case was the three-output G function which
was previously implemented with three iterations of hashing rather than cutting
a longer XOF output into pieces.

Faster generation of sparse ternary vectors. We use a rejection sampling
method rather than the sorting method originally used in Round2. This faster
method allows us to store a random seed instead of a full ternary vector as
the secret key. See Section 3.3 and Algorithm 4 for more details. The original
method was chosen to have constant time execution (even though it didn’t always
have that in practice). We note that even though rejection sampling has variable
execution time, it does not leak secrets iff the distribution is constant, the original
secret values are statistically independent, and a non-rejected result itself does
not cause a timing variation (e.g. via memory accesses).

3.1 Error Correcting Code XEf

A 3-error correcting block code is used to decrease the failure rate. The code is
built using the same strategy as codes used by TRUNC8 [28] (2-bit correction)
and HILA5 [29] (5-bit correction).

Our linear parity code consists of 2f = 6 “registers” Ri of size |Ri| = li. We
view the payload block m as a binary polynomial m|K|−1x

|K|−1+ · · ·+m1x+m0

of length equivalent to shared secret K. Registers are defined via cyclic reduction

Ri = m mod xli − 1, (4)

or equivalently by

r(i,j) =
∑

k≡j mod li

mk (5)

where r(i,j) is bit j of register Ri. A transmitted message consists of the payload
m concatenated with register set r (a total of |K|+

∑
li bits).

Upon receiving a message (m′ | r) one computes code r′ corresponding to m′

and compares it to the received code r – that may also have errors. Errors are

7

in coefficients m′j where there is parity disagreements r(i,j mod li) 6= r′(i,j mod li)

for multitude of registers Ri. We use a majority rule and flip bit m′j if

2f∑
i=1

((
r(i,j mod li) − r

′
(i,j mod li)

)
mod 2

)
≥ f + 1 (6)

where the sum is taken as the number of disagreeing register parity bits at j.
It is easy to show that if all length pairs satisfy lcm(li, lj) ≥ |K| when i 6= j

then this code always always corrects at least f errors. Typically one chooses
coprime lengths l1 < l2 < · · · < l2f so that l1l2 ≥ |K|.

Our variants have f = 3 and (l1, l2, · · · , l6) = (13, 15, 16, 17, 19, 23). The code
adds

∑
i li = l = 103 bits to the message, bringing the total to 192 + 103 = 295

bits. We have verified that our implementation always fixes 3 bit flips anywhere
in the 295-bit block and 4 bit flips with probability 44785504/309177995 ≈
14.5%. Its main advantage over other error-correcting codes is that it can be
implemented without table look-ups and conditional cases and it is therefore
resistant to timing attacks. See Tables 1 and 3 for overall failure rate estimates.

3.2 Arithmetic of Sparse ternary polynomials

Unlike many other fast lattice-based schemes, our R5ND3 variants do not use the
(Nussbaumer) Number Theoretic Transform (NTT) for its ring arithmetic [24].
This allows more flexibility for selection of n and greater variance in implemen-
tation techniques leading to substantial reduction in implementation footprint.

Multiplication of a ring element with {−1, 0,+1} coefficients requires only ad-
ditions and subtractions. Furthermore the use of power-of-2 moduli q, p, t means
that no modular reduction is required. This greatly simplifies implementation,
especially on hardware targets, but also on microcontrollers without a multiplier
(where performance gains are likely to be more significant than on Cortex M).

Implementation of sparse ternary multiplication required special attention as
that is the workhorse of Round2 and a large portion of its execution time is spent
performing this operation. Clearly its complexity is O(hn) but even though this
is asymptotically worse than O(n log n) of NTT, our findings indicate that it is
significantly better in practice with the parameters of R5ND_3KEM and R5ND_3PKE.

The lowest level loops in multiplication are simple vector additions and sub-
tractions. Since there is an equivalent number (h/2) of +1 and -1 terms in the
ternary polynomials, the computation is organized in a way that allows an ad-
dition and an subtraction to be paired in a each loop.

Similar techniques are highly effective on SIMD targets such as AVX2 as
well, but require special cache attack countermeasures. Cache attacks are not a
concern with Cortex M SoCs (since all memory is internal to the chip and there is
no RAM cache 4) but we note that our cache-resistant portable implementation
runs at about half of the speed of the normal version.

4 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0321a

8

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0321a

Algorithm 4 SparseTernary(s): A ternary vector with weight h from seed s.

Input: Seed value s, dimension and degree n, scaling factor k = b216/nc.
1: z← SHAKE256(s) Absorb the seed s into Keccak state.
2: v← 0n Initialize as zero.
3: for i = 0, 1, . . . h− 1 do
4: repeat
5: repeat
6: t′ ← two bytes from z z represents the (endless) output of XOF.
7: until t′ < kn Rejection step with the unscaled value.
8: t← bt′/kc Remove the integer scaling factor k.
9: until vt = 0 Another rejection. Vector is sparse.

10: vt ← (−1)i Alternating +1,−1,+1, · · · .
11: end for

Output: A vector v which has h
2

elements set to +1, h
2

set to -1 and n− h zeros.

3.3 Sparse ternary vector generation

Algorithm 4 describes our deterministic method for creating sparse ternary vec-
tors of weight h. It uses rejection sampling to obtain uniformly random index
0 ≤ t < n. This is clearly not a constant time operation – however we can see
that a rejection sampler does not leak information about t since bytes in z are
statistically independent. This has caused some false positives when automated
tools are used to detect timing leaks.

Even though Algorithm 4 produces correct results, in practice the vector v
is only used to store only an “occupancy table” of free slots, while the actual
indices t are stored in two lists of +1 and −1 coefficient offsets. These lists of
length h/2 are used in multiplication rather than scanning v. There is no reason
to sort the lists – a randomized pattern may even work as a free cache attack
countermeasure on targets where that may be a problem.

The use of scaling factor k greatly lowers the rejection rate of the inner
sampler. With R5ND_3KEM we have n = 700, k = b216/700c = 93, leading to
rejection rate of just 1 − kn/216 = 0.00665, while R5ND_3PKE has n = 756,
k = 86 and rejection rate of 0.00793.

There is a secondary rejection when finding non-empty slots in the v vector,
which might make an algorithm of this sort run in essentially quadratic time if
h is close to n. However in our case the density is bound by h/n ≤ 28%, so this
is not a significant problem.

A simple implementation of secondary rejection should be timing attack re-
sistant on the Cortex M4, which has no data cache. However we also have a
“countermeasure” version that stores the occupancy of vi in list of twelve 64-bit
words (the sign doesn’t matter, so a single bit is enough). This is version scans
the entire list with constant-time Boolean logic for every probe.

9

Table 2. Communication parameters and cycle count breakdown of the optimized C
implementation on Cortex-M4 for some NIST PQC candidate KEMs. First columns
give the size of public key, secret key, and ciphertext in bytes. The following columns
give the number of cycles required for key generation, encapsulation, and decapsulation.

Algorithm
Size in Bytes Cycles (k=1000, M=106)

PK SK CT KeyGen Encaps Decaps

R5ND 1KEM 538 16 632 647 k 920 k 355 k
R5ND 3KEM 780 24 904 1,026 k 1,437 k 504 k
R5ND 5KEM 1050 32 1207 1,376 k 1,919 k 637 k
R5ND 1PKE 562 594 672 545 k 847 k 1,067 k
R5ND 3PKE 810 858 1032 925 k 1,388 k 1,737 k
R5ND 5PKE 1140 1204 1376 1,245 k 1,823 k 2,229 k

Kyber-768 [2] 1088 2400 1152 1,333 k 1,765 k 1,935 k
NewHope1024CCA [1] 1824 3680 2208 1,505 k 2,326 k 2,493 k

Saber [8] 992 2304 1088 7,156 k 9,492 k 11,612 k
sntrup4591761 [4] 1218 1600 1047 166,215 k 11,274 k 31,733 k

NTRU-HRSS17 [16] 1138 1418 1278 187,525 k 5,429 k 15,405 k
SIKEp751 [17] 564 644 596 3,775 M 6,114 M 6,572 M

4 Performance on Cortex M4

We benchmarked a group of comparable NIST First Round KEM and PKE pro-
posals on Cortex-M4. A NIST Category 3 variant (“192 quantum bit security”)
was used if available. We used an optimized C version in our tests, linked with
an efficient assembler-language SHA3 implementation (excluded from code size).
Our results are summarized in Table 2 and Figures 1 and 2. We are also including
assembler optimized Cortex M4 numbers for Saber from [18] for completeness.
Our implementation is available at https://github.com/round5/r5nd_tiny.

Test Setup. We wanted a fair comparison that eliminates bias caused by poor
testing setup. For example the initial NIST tests of Hila5 indicated poor perfor-
mance, but this was caused by extremely poor implementation of randombytes()
in the NIST test suite. This function (i.e. the test suite itself) was consuming
80 % of cycles. Some other submitters were aware of this pitfall and created a
faster layer of random number generation inside their implementation. Our test
code consistently uses a fast implementation of SHAKE for random numbers.

Gnu C compiler arm-none-eabi-gcc was used with optimization flags set
to -Ofast -mthumb. Our testing was performed on MXP MK20DX256 Micro-
controller on a Teensy5 board, which we ran at 24 MHz. Cycle counts at higher
speeds are slightly less accurate due to interference by the memory controller.

5 Teensy 3.2 is an inexpensive (under $20) miniature (18 × 36 mm or 0.7 × 1.4”)
Cortex-M4 development board: https://www.pjrc.com/store/teensy32.html

10

https://github.com/round5/r5nd_tiny
https://www.pjrc.com/store/teensy32.html

0 1 2 3 4 5 6 7 8

R5ND 3KEM, C

R5ND 3PKE, C

Saber, Asm [18]

Kyber-768, Asm

Kyber-768, C

NewHope1024CCA, Asm

NewHope1024CCA, C

Saber, Ref C

Million Cycles

KeyGen()

Encaps()

Decaps()

Fig. 2. Visualization of relative speed of key establishment, including assembler ver-
sions from [18] and PQM4. We have excluded algorithms that require more than 200
M cycles (several seconds).

For comparison, a highly optimized X25519 multiplication is 907 k cycles on
Cortex M4 [12] – but has only 128-bit classical security. Four scalar multiplica-
tions are needed for Diffie-Hellman, so plain C implementations of R5ND 1KEM,
R5ND 3PKE, and even higher-security R5ND 3KEM are faster.

Dominance of Hashing in KEM Speed Measurement. Our measure-
ment results on other candidates are consistent with those produced by the
PQCRYPTO group in “PQM4: Post-quantum crypto library for the ARM Cortex-
M4” project6. However we didn’t use their testing script system as it is targeted
to a board using different flashing and communication mechanisms.

There were puzzling features in our initial results such as slightly faster decap-
sulation than encapsulation on some CCA algorithms – this is counter-intuitive
since the Fujisaki-Okamoto Transform [13,15] requires that a full “simulated
encryption” is included in every decapsulation operation.

The only reason for wide performance divergence was that PQM4 experi-
ments used a hand-crafted assembler implementation of the SHA3 core. The
optimized Sponge permutation takes 11,785 cycles, while its optimized C lan-
guage equivalent takes 32,639 cycles. The “faster CCA decapsulation” anomaly
was simply a manifestation of more hashing being required in encapsulation – a
faster hash made CCA encapsulation faster again.

The performance difference caused by hash implementation is more pro-
nounced in some candidates than others – 23% in our CCA candidate but as high
82% in case of Kyber-768. Therefore it is good to keep in mind that benchmarks
of fast lattice KEMs are also benchmarks of the hash function implementation.

6 PQM4 source code and results are available at https://github.com/mupq/pqm4

11

https://github.com/mupq/pqm4

Table 3. Engineering and security comparison for key establishment use case with
Cortex M4 at NIST Security Level 3. Xfer: Total data transferred (public key + ci-
phertext). Time: Time required for KeyGen() + Encaps() + Decaps() on Cortex-M4
at 24 MHz. Code: Size of implementation in bytes, excluding hash function and other
common parts. Fail: Decryption failure bound. PQ Sec: Claimed quantum complexity.
Classic: Claimed classical complexity.

Algorithm Xfer Time Code Fail PQ Sec Classic

R5ND_3KEM 1684 0.124s 4464 2−75 2176 2193

R5ND_3PKE 1842 0.169s 5232 2−129 2181 2193

Saber [8,18] 2080 0.172s ? 2−136 2180 2198

Kyber-768 [2] 2240 0.210s 7016 2−142 2161 2178

sntrup4591761 [4] 2265 8.718s 71024 0 ? 2248

NTRU-HRSS17 [16] 2416 7.814s 11956 0 2123 2136

NewHope1024-CCA [1] 4032 0.264s 12912 2−216 2233 ?
SIKEp751 [17] 1160 685.9s 19112 0 2124 2186

5 Conclusions

In this work have examined the suitability of Round5 post-quantum key estab-
lishment and public key encryption algorithm for embedded and other limited-
resource use cases. We focused on Cortex M4 implementation of R5ND_3KEM and
R5ND_3PKE variants and compared them to some other compact NIST PQC pro-
posals at the same security level.

Round5 combines the design features of two candidates in the NIST Post-
Quantum Cryptography project, Round2 and Hila5. Round5 has new parameter
selection, addressing various NIST PQC security levels and use cases. Optimiza-
tion of parameters was performed primarily for bandwidth at given security level;
the public key and ciphertext sizes of the new variant are smaller than those of
other lattice candidates and second smallest only to SIKE (which is not practical
on embedded targets due to its very high computational requirements).

Round5 relies on an error correcting code (based on that of Hila5) to further
reduce failure probability, and thus allow parameters to be adjusted for even
better bandwidth efficiency. There are many other new features and changes in
relation to Round2, such as use of SHAKE-256 for deterministic pseudorandom
sequence generation, and a new method for creating sparse ternary polynomials.

The avoidance of Number Theoretic Transform in multiplication helps to
bring the implementation size down, but has raised questions about performance.
We benchmarked the Round5 ring variants on a Cortex M4 microcontroller and
found them to have equivalent, or significantly better performance characteristics
than other comparable candidates. Table 3 offers an “engineering” comparison
for a key establishment use case at NIST Category 3 security level, and shows
why we see Round5 as a leading candidate, at least on embedded targets.

12

References

1. Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la Piedra,
Thomas Pöppelmann, Peter Schwabe, and Douglas Stebila. NewHope: Algorithm
specifcations and supporting documentation. First Round NIST PQC Project Sub-
mission Document, November 2017. URL: https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography/Round-1-Submissions.
2. Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-Kyber: Algorithm specifications and supporting documentation. Fist
Round NIST PQC Project Submission Document, November 2017. URL: https://
csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions.

3. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions
and lattices. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 719–737. Springer, 2012. doi:

10.1007/978-3-642-29011-4_42.
4. Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine

van Vredendaal. Ntru prime 20171130. Fist Round NIST PQC Project Sub-
mission Document, November 2017. URL: https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography/Round-1-Submissions.
5. Sauvik Bhattacharya, Oscar Garcia-Morchon, Thijs Laarhoven, Ronald Rietman,

Markku-Juhani O. Saarinen, Ludo Tolhuizen, and Zhenfei Zhang. Round5: Com-
pact and fast post-quantum public-key encryption. Submitted for publication,
August 2018. URL: https://eprint.iacr.org/2018/XXXX.

6. CNSS. Use of public standards for the secure sharing of information among na-
tional security systems. Committee on National Security Systems: CNSS Advisory
Memorandum, Information Assurance 02-15, July 2015.

7. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167–226, 2003. URL: http://www.shoup.net/papers/cca2.
pdf, doi:10.1137/S0097539702403773.

8. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Ver-
cauteren. SABER: Mod-LWR based KEM. Fist Round NIST PQC Project Sub-
mission Document, November 2017. URL: https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography/Round-1-Submissions.
9. Morris Dworkin. Recommendation for block cipher modes of operation: Methods

and techniques. NIST Special Publication 800-38A, December 2001. doi:10.6028/
NIST.SP.800-38A.

10. FIPS. Specification for the Advanced Encryption Standard (AES). Federal In-
formation Processing Standards Publication 197, November 2001. URL: http:

//csrc.nist.gov/publications/fips/fips197/fips-197.pdf.
11. FIPS. SHA-3 standard: Permutation-based hash and extendable-output functions.

Federal Information Processing Standards Publication 202, August 2015. doi:

10.6028/NIST.FIPS.202.
12. Hayato Fujii and Diego F. Aranha. Curve25519 for the Cortex-M4 and beyond.

In LATINCRYPT 2017, 2017. To appear. URL: http://www.cs.haifa.ac.il/

~orrd/LC17/paper39.pdf.
13. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and

symmetric encryption schemes. In Michael Wiener, editor, CRYPTO 1999, volume
1666 of LNCS, pages 537–554. Springer, 1999. doi:10.1007/3-540-48405-1_34.

13

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
http://dx.doi.org/10.1007/978-3-642-29011-4_42
http://dx.doi.org/10.1007/978-3-642-29011-4_42
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://eprint.iacr.org/2018/XXXX
http://www.shoup.net/papers/cca2.pdf
http://www.shoup.net/papers/cca2.pdf
http://dx.doi.org/10.1137/S0097539702403773
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
http://dx.doi.org/10.6028/NIST.SP.800-38A
http://dx.doi.org/10.6028/NIST.SP.800-38A
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.FIPS.202
http://www.cs.haifa.ac.il/~orrd/LC17/paper39.pdf
http://www.cs.haifa.ac.il/~orrd/LC17/paper39.pdf
http://dx.doi.org/10.1007/3-540-48405-1_34

14. Oscar Garcia-Morchon, Zhenfei Zhang, Sauvik Bhattacharya, Ronald Riet-
man, Ludo Tolhuizen, Jose-Luis Torre-Arce, and Hayo Baan. Round2: KEM
and PKE based on GLWE. First Round NIST PQC Project Submis-
sion Document, November 2017. URL: https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography/Round-1-Submissions.
15. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of

the fujisaki-okamoto transformation. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017 (I), volume 10677 of LNCS, pages 341–371. Springer, 2017. URL:
https://eprint.iacr.org/2017/604, doi:10.1007/978-3-319-70500-2_12.

16. Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe. NTRU-
HRSS-KEM: Algorithm specifications and supporting documentation. Fist Round
NIST PQC Project Submission Document, November 2017. URL: https://csrc.
nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions.

17. David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De
Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa,
Michael Naehrig, Joost Renes, Vladimir Soukharev, and David Urbanik. Su-
persingular isogeny key encapsulation. First Round NIST PQC Project Sub-
mission Document, November 2017. URL: https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography/Round-1-Submissions.
18. Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy, and Ingrid

Verbauwhede. Saber on ARM: CCA-secure module lattice-based key encapsulation
on ARM. In CHES 2018 – to appear, 2018. URL: https://eprint.iacr.org/
2018/682.

19. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS, pages
319–339. Springer, 2011. doi:10.1007/978-3-642-19074-2_21.

20. Dustin Moody. Post-quantum cryptography: NIST’s plan for the future. Talk given
at PQCrypto ’16 Conference, 23-26 February 2016, Fukuoka, Japan, February 2016.
URL: https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf.

21. NIST. Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process. Official Call for Pro-
posals, National Institute for Standards and Technology, December 2016.
URL: http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/

call-for-proposals-final-dec-2016.pdf.
22. NIST. Post-quantum cryptography – round 1 submissions. National Institute

for Standards and Technology, December 2017. URL: https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/Round-1-Submissions.

23. NSA/CSS. Information assurance directorate: Commercial national security
algorithm suite and quantum computing FAQ, January 2016. URL: https:

//www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/

algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm.
24. Henri J. Nussbaumer. Fast polynomial transform algorithms for digital convolu-

tion. IEEE Transactions on Acoustics, Speech and Signal Processing, 28:205–215,
1980. doi:10.1109/TASSP.1980.1163372.

25. John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm for
elliptic curves. Quantum Information & Computation, 3(4):317–344, July 2003.
Updated version available on arXiv. URL: https://arxiv.org/abs/quant-ph/

9508027.
26. Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-

phy. In STOC ’05, pages 84–93. ACM, May 2005. doi:10.1145/1060590.1060603.

14

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://eprint.iacr.org/2017/604
http://dx.doi.org/10.1007/978-3-319-70500-2_12
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://eprint.iacr.org/2018/682
https://eprint.iacr.org/2018/682
http://dx.doi.org/10.1007/978-3-642-19074-2_21
https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
http://dx.doi.org/10.1109/TASSP.1980.1163372
https://arxiv.org/abs/quant-ph/9508027
https://arxiv.org/abs/quant-ph/9508027
http://dx.doi.org/10.1145/1060590.1060603

27. Oded Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. Journal of the ACM, 56(6):34:1–34:40, September 2009. doi:10.1145/

1568318.1568324.
28. Markku-Juhani O. Saarinen. Ring-LWE ciphertext compression and error cor-

rection: Tools for lightweight post-quantum cryptography. In Proceedings of the
3rd ACM International Workshop on IoT Privacy, Trust, and Security, IoTPTS
’17, pages 15–22. ACM, April 2017. URL: https://eprint.iacr.org/2016/1058,
doi:10.1145/3055245.3055254.

29. Markku-Juhani O. Saarinen. HILA5: On reliability, reconciliation, and error cor-
rection for Ring-LWE encryption. In Carlisle Adams and Jan Camenisch, editors,
SAC 2017, volume 10719 of Lecture Notes in Computer Science, pages 192–212.
Springer, 2018. doi:10.1007/978-3-319-72565-9_10.

30. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In Proc. FOCS ’94, pages 124–134. IEEE, 1994. Updated version avail-
able on arXiv. URL: https://arxiv.org/abs/quant-ph/9508027, doi:10.1109/
SFCS.1994.365700.

31. Victor Shoup. A proposal for an iso standard for public key encryption, December
2001. Version 2.1. URL: http://shoup.net/papers/.

15

http://dx.doi.org/10.1145/1568318.1568324
http://dx.doi.org/10.1145/1568318.1568324
https://eprint.iacr.org/2016/1058
http://dx.doi.org/10.1145/3055245.3055254
http://dx.doi.org/10.1007/978-3-319-72565-9_10
https://arxiv.org/abs/quant-ph/9508027
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1109/SFCS.1994.365700
http://shoup.net/papers/

Table 4. All Round5 parameter sets, with performance estimates, post-quantum and classical security levels, and failure rate. Ciphertext
size for PKE variants does not include the overhead required for DEM (typically 16 bytes for an authentication tag). Quoted from [5].

Round5.KEM Round5.PKE
Parameters CPA NIST1 CPA NIST3 CPA NIST5 CCA NIST1 CCA NIST3 CCA NIST5

n
=

d
,
R
in
g
v
a
ri
a
n
ts
.

d, n, h 522, 522, 208 756, 756, 242 1018, 1018, 254 546, 546, 158 786, 786, 204 1108, 1108, 198
q, p, t 214, 28, 24 215, 28, 24 215, 28, 24 216, 28, 24 216, 28, 26 216, 28, 25

B, n̄, m̄, f 1, 1, 1, 3 1, 1, 1, 3 1, 1, 1, 3 1, 1, 1, 3 1, 1, 1, 3 1, 1, 1, 3
µ 128 + 91 192 + 103 256 + 121 128 + 91 192 + 103 256 + 121

Bandwidth 1170 B 1684 B 2257 B 1234 B 1842 B 2516 B
Public key 538 B 780 B 1050 B 562 B 810 B 1140 B
Ciphertext 632 B 904 B 1207 B 672 B 1032 B 1376 B

PQ Security 2117 2176 2242 2120 2181 2246

Classical 2128 2193 2257 2128 2193 2256

Failure rate 2−76 2−75 2−64 2−129 2−128 2−129

Version (f
(0)
d,d) R5ND_1KEM R5ND_3KEM R5ND_5KEM R5ND_1PKE R5ND_3PKE R5ND_5PKE

n
=

1
,
N
o
n
-r
in
g
v
a
ri
a
n
ts
.

d, n, h 635, 1, 266 929, 1, 268 1186, 1, 712 694, 1, 152 932, 1, 540 1198, 1, 574
q, p, t 215, 211, 210 214, 211, 210 214, 212, 27 213, 211, 210 214, 212, 29 214, 212, 210

B, n̄, m̄, f 4, 6, 6, 0 4, 6, 8, 0 4, 8, 8, 0 4, 5, 7, 0 4, 6, 8, 0 4, 8, 8, 0
µ 32 48 64 32 48 64

Bandwidth 10535 B 17969 B 28553 B 11553 B 19703 B 28925 B
Public key 5256 B 7690 B 14265 B 4789 B 8413 B 14409 B
Ciphertext 5279 B 10279 B 14288 B 6764 B 11290 B 14516 B

PQ Security 2119 2182 2233 2122 2176 2233

Classical 2128 2192 2256 2128 2192 2256

Failure rate 2−65 2−65 2−84 2−128 2−135 2−129

Version (f
(0)
d,d) R5T0_1KEM R5T0_3KEM R5T0_5KEM R5T0_1PKE R5T0_3PKE R5T0_5PKE

Version (f
(0)
d,d) R5T1_1KEM R5T1_3KEM R5T1_5KEM R5T1_1PKE R5T1_3PKE R5T1_5PKE

Version (f
(0)
d,d) R5T2_1KEM R5T2_3KEM R5T2_5KEM R5T2_1PKE R5T2_3PKE R5T2_5PKE

16

	Shorter Messages and Faster Post-Quantum Encryption with Round5 on Cortex M

