
Threshold Partially-Oblivious PRFs
with Applications to Key Management

Stanis law Jarecki1, Hugo Krawczyk2, and Jason Resch3

1 University of California, Irvine
2 IBM Research

3 IBM

Abstract. An Oblivious PRF (OPRF) is a protocol between a server
holding a key to a PRF and a user holding an input. At the end of the
interaction, the user learns the output of the OPRF on its input and noth-
ing else. The server learns nothing, including nothing about the user’s
input or the function’s output. OPRFs have found many applications in
multiple areas of cryptography. Everspaugh et al. (Usenix 2015) intro-
duced Partially Oblivious PRF (pOPRF) in which the OPRF accepts
an additional non-secret input that can be chosen by the server itself,
and showed applications in the setting of password hardening protocols.
We further investigate pOPRFs showing new constructions, including
distributed multi-server schemes, and new applications. We build sim-
ple pOPRFs from regular OPRFs, in particular obtaining very efficient
DH-based pOPRFs, and provide (n, t)-threshold implementation of such
schemes.
We apply these schemes to build Oblivious Key Management Systems
(KMS) as a much more secure alternative to traditional wrapping-based
KMS. The new system hides keys and object identifiers from the KMS,
offers unconditional security for key transport, enables forward security,
provides key verifiability, reduces storage, and more. Further, we show
how to provide all these features in a distributed threshold implemen-
tation that additionally protects the service against server compromise.
Finally, we extend the scheme to a threshold Oblivious KMS with up-
datable encryption so that upon the periodic change of OPRF keys by
the server, an efficient update procedure allows a client of the KMS ser-
vice to non-interactively update all its encrypted data to be decryptable
only by the new key. Our techniques improve on the efficiency and se-
curity of several recent works on updatable encryption from Crypto and
Eurocrypt.
We report on an implementation of the above schemes and their per-
formance, showing their practicality and readiness for use in real-world
systems. In particular, our pOPRF constructions achieve speeds of over
an order of magnitude relative to previous pOPRF schemes.

1 Introduction

Oblivious Pseudorandom Functions (OPRF) [44,23] are interactive schemes be-
tween a server holding a key to a PRF and a user holding an input. At the



end of the interaction the user learns the output of the PRF on its input
and the server learns nothing (neither the input nor the output of the func-
tion). OPRFs have found numerous applications including private set inter-
section [29,1,23,27,37,19], password protocols [22,34,36], searchable encryption
[23,14,33], file de-duplication [6], pseudonymization [12], and more, and have
served as a basis for other primitives such as Private Information Retrieval and
Oblivious Transfer. Very efficient implementations of OPRFs are known, partic-
ularly those based on the Diffie-Hellman (DH) problem in regular elliptic curve
groups [16,47,43,29,22] (see Fig. 1).

In this work we are concerned with OPRF applications where a server pro-
vides an “OPRF service” to multiple clients, allowing each client to compute
OPRF values under a client-dedicated OPRF key, with the server learning nei-
ther the queries nor the responses. Everspaugh et al. [20] observed that in many
OPRF-as-a-service applications it is essential for the server to be able to provide
its own input to the OPRF computation, e.g., entering the identity of clients
to enforce domain separation or to enact rate limits on OPRF responses. An
OPRF extension which allows for such server-side input was formalized in [20]
as a Partially Oblivious PRF (pOPRF).

The work of [20] considered two further important features desirable from
pOPRFs: Verifiability and Updatability. Verifiability refers to the ability of a
client receiving an output from the OPRF service to verify that the function
was computed correctly. Updatability refers to a setting where OPRF keys are
periodically refreshed, thus necessitating updates to data stored on the client side
that was generated using the OPRF. In this context [20] put forth the notion of
updatable (p)OPRF where upon the change of the (p)OPRF key, the client can
obtain from the server a short piece of information which it can use to update
all the relevant data on the client side without further server interaction.

Everspaugh et al. [20] put all these notions to work in a system, called Pythia,
designed as a password hardening service to aid against offline dictionary attacks
on stolen password hashes, where the pOPRF is implemented using bilinear
groups and pairings. Pythia also presents an architecture that serves multiple
clients and where individual client pOPRF keys are derived from a common
master key via a regular PRF f (e.g., AES, HMAC, etc.). That is, pOPRF keys
are computed as fK(i) where K is a master key and i and identifier for the
OPRF key, e.g. a client ID, version number, secret value, etc. This approach is
particularly beneficial when the master key K and the pOPRF operation are
protected inside a secure enclave (HSM, SGX, etc.). Using random independent
pOPRF keys would require storing such keys outside the often-limited secure en-
clave storage, reducing security and adding to the system cost. At the same time,
such an architecture can still support periodic updates of individual pOPRF keys
by varying the identifier i used to derive the OPRF key. While such identifiers
may require external storage, these are typically less sensitive than the OPRF
keys themselves.

Note, however, that such master key K for PRF f becomes a very valuable
secret and an attractive target for attack. A natural defense (ensuring both

2



availability and secrecy) is to protect the master key via a (n, t)-threshold scheme
where the pOPRF service is distributed across n servers such that t+ 1 of these
need to cooperate to compute the function while an attacker compromising t of
the servers can do nothing to subvert the service or learn its keys.

Our Contributions

In this paper we investigate new constructions of pOPRFs and Threshold pOPRFs,
showing their remarkable efficiency (particularly when compared to [20]), and we
present a range of novel applications of (Threshold) pOPRFs geared to building
more secure and reliable key management systems.

Simple pOPRF. While [20] offers a flexible and highly-functional pOPRF,
its use of bilinear groups and costly pairings and target-group exponentiations
makes it significantly less efficient than the known DH-based OPRF schemes (cf.,
Fig. 1) that require only three regular elliptic curve exponentiations: one for the
server and two for the client. We show that in many applications it suffices to use
a simple pOPRF construction whose cost matches the cost of an OPRF. Namely,
we define a pOPRF F ′ as F ′K(x, y) = FfK(y)(x), where F is any OPRF and fk a
regular PRF. Here, x is the oblivious input and y the non-oblivious one. We note
that the fact that each input y defines a different key for the OPRF F limits the
applicability of the scheme in some settings, e.g., it cannot simultaneously satisfy
the requirements of fine-grain rate limiting and efficient updatability as in [20].
But whenever it works (as is the case in our own applications), one obtains a far
more efficient scheme than Pythia. We will refer to this generic construction as
Simple pOPRF (SpOPRF).

Threshold pOPRF. While very efficient (when implemented with a DH-based
OPRF), the derivation of OPRF keys via a PRF raises difficulties in implement-
ing this scheme as a threshold system. Fortunately, we are able to show a prac-
tical implementation of a Threshold pOPRF using the above generic SpOPRF
approach and the share conversion technique of Cramer, Damgard and Ishai
[18]. Combining these techniques with recent results on Threshold OPRFs [36],
we present a threshold implementation of a DH-based SpOPRF with remarkable
performance for a moderate number of servers. To compute the SpOPRF func-
tion in a (n, t)-threshold setting, each server performs

(
n−1
t

)
regular-PRF oper-

ations (AES encryptions) and a single exponentiation, while the client performs
just two exponentiations, independently of t or n. (Without the share conversion
technique this scheme would cost

(
n−1
t

)
exponentiations by the server, making

it impractical.) We show that in spite of the exponential nature of
(
n−1
t

)
, our

threshold pOPRF scheme is highly efficient for moderate but realistic values of
(n, t).

Verifiable Threshold pOPRF. We allow clients to verify the pOPRF server
operations (as needed in our key management application to prevent loss of
data due to incorrect keys), through an interactive procedure which essentially
adds one OPRF exchange between server(s) and client that runs in parallel to

3



the regular OPRF instance, hence preserving two important properties of our
constructions (in the common case that verification succeeds): a single-round
and a constant number of exponentiations for each server and client, that is
independent of the threshold parameters n, t. Only if verification fails in the
threshold case, will the client do work proportional to the number of servers
that provided shares to the computation.

Oblivious Key Management Service (OKMS). Key Management Systems
(KMS) are essential components of storage systems responsible for providing
keys for the encryption and decryption of data. Existing KMS schemes (includ-
ing large cloud-based operations [3,42,30,25]) use the wrap-unwrap approach for
protecting data encryption keys (dek). Namely, when a client C encrypts a data
object under a dek key, it sends dek to the KMS who wraps (i.e., encrypts) dek
under a KMS key and returns the result (wrap) to C who stores wrap. When C
needs to retrieve dek for decryption, it sends wrap back to KMS who unwraps
(i.e., decrypts) it and sends dek back to C. In this approach dek is exposed to
the KMS and to attackers on the channel between KMS and client. Moreover,
dek is visible to any middlebox and endpoint where TLS traffic is decrypted.

Here we propose to greatly improve KMS security by resorting to a service,
called an Oblivious KMS (OKMS), that uses a pOPRF run between clients and
the KMS to derive dek keys. The client, in interaction with the KMS, inputs an
object identifier to the pOPRF and uses the output as a dek (either for encrypting
or decrypting that object). Thanks to the pOPRF properties, the KMS never
learns dek or even the object for which the key is computed. Moreover, the
system does not rely on an external secure channel (e.g., TLS) to transport dek;
instead dek is protected by the very nature of pOPRF (and with unconditional
security in the case of our DH-based implementation of pOPRF).

We further enhance our OKMS design by adding other features not available
to traditional KMS schemes: Verifiability (to prevent data loss upon provisioning
of incorrect keys), forward security when using unpredictable object identifiers,
self-authorization via oblivious inputs, and the strong security against server
compromise afforded by a threshold implementation. Moreover, when OKMS
derives per-client pOPRF keys via a single PRF, server-side storage costs for
storing keys is greatly reduced. Client-side storage is also reduced as the client
needs to keep only object identifiers and not key wraps.

Updatable OKMS. As an important and non-trivial extension of the above
OKMS design, we present an Updatable Oblivious KMS (UOKMS) that adds
to the OKMS the feature of updatable encryption [8]. As in the case of OKMS,
UOKMS provisions clients with data encryption keys derived via a pOPRF ser-
vice (keyed with a client-dedicated pOPRF key). However, in an OKMS system
a periodic update of a client’s pOPRF key would require decryption and re-
encryption of all the data stored at the client (with each operations requiring a
separate pOPRF call to the server to retrieve the corresponding dek). By con-
trast, an UOKMS system allows for far more efficient transitioning to a new key:
Upon change of a client’s pOPRF key, the KMS server sends to the client a single
short update token ∆, computed as a function of the old and new pOPRF keys.

4



The client can then use ∆ to locally update its storage so that its data becomes
decryptable by the new pOPRF key but not by the old one, thus providing
forward security. The system is very efficient in that the update is performed
without resorting to further interaction with the UOKMS and without decrypt-
ing and re-encrypting any data.

We implement our UOKMS system using a malleable variant of pOPRF that
allows for updatability4, and hence for forward security. In our solution a client
keeps a value called a wrap for each data object, from which the UOKMS server
derives the corresponding data-encryption key dek. Updates are implemented by
only changing these wraps. Our updatable KMS solution is more efficient than
all recently proposed updatable encryption schemes from Crypto and Eurocrypt
[8,9,21,40], and it is the first to support an oblivious KMS server. Moreover, ours
is the first treatment of updatable KMS with security in the presence of arbitrary
decryption and update queries.5 Most importantly, we are able to provide this
highly-secure solution with remarkable performance and full compatibility with
our threshold pOPRF scheme.

Formal analysis. As further contributions we provide definitions for pOPRF
(in a stronger sense than [20]) using the UC definitions of OPRF and thresh-
old OPRF from [35,36] and prove the security of our threshold pOPRF scheme
in this setting. Additionally, we introduce a model of oblivious updatable en-
cryption in which we analyze our updatable oblivious KMS. The latter model
improves on existing definitions of updatable encryption (or encryption with
key rotation) [8,9,21,40], most importantly by (1) allowing adversary unfettered
access to both decryption and update oracles, thus defining a CCA-like notion
of updatable encryption, and by (2) supporting interactive decryption protocols
which in particular can be oblivious to the KMS server.

Performance. In Section 7 we present detailed performance information from
our implementation of both OKMS and UOKMS solutions showing the practi-
cality of our techniques. For the OKMS threshold setting, we show the ability of
servers to support a large number of clients per second (with total times for serv-
ing a client under 1 millisecond) for practical values of (n, t+1). Examples of such
pairs include n ≤ 13 with any t < n/2, (15, 5), (20, 4) and any n ≤ 40 with recon-
struction threshold of 3. Client performance time is approximately 0.4 msec for a
wrap and 0.2 msec for an unwrap. For the UOKMS system, performance is even
better: a client can sustain over 41000/6000/14000 for wrap/unwrap/update op-
erations per second respectively, with a single CPU core, and server operations
are only needed for unwrapping. As a point of comparison, a single pairing in
the Pythia pOPRF computation [20] takes 1 msec, making our implementation
over an order of magnitude faster.

4 Technically, this variant dispenses with the outer hash in the OPRF instantiation
from Fig. 1. This results in a weaker primitive equivalent to what [20] defines as a
pOPRF, but which we show to be sufficient for the UOKMS system.

5 Everspaugh et al. [21] define CCA-like security for ciphertext-dependent updatable
encryption, where the KMS needs to compute a separate update token ∆ for each
updated ciphertext.

5



We conclude with impressive throughput and latency results from a pro-
totype implementation of the (U)OKMS Server deployed to an Amazon EC2
instance. We find this implementation capable of answering over 30,000 requests
per second with a single server node.

Organization. Section II presents our designs for Partially Obivious PRFs and
their threshold extensions. Section III provides the formal foundation to our anal-
ysis with UC definitions of secure pOPRFs and Threshold pOPRFs. Section IV
discusses verifiability techniques. Section V describes our OKMS solution (and
other threshold pOPRF applications) while Section VI presents the UOKMS
scheme and its formal analysis. Section VII describes our implementation and
performance results.

2 Building a Threshold Partially Oblivious PRF

In this section we present our main Threshold Partially OPRF construction
based on Diffie-Hellman that can accommodate very efficient elliptic curve groups.
It adapts the Threshold OPRF function from [36] to the partially OPRF setting
following the generic “Simple pOPRF” approach discussed in the introduction.
The practicality of the function uses in an essential way the share conversion
technique from Cramer, Damgard and Ishai [18].

Notation and basic components. [n] denotes the set {1, . . . , n}; “←” de-
notes a randomized assignment; “←R” denotes uniform sampling from a given
set. Across the paper we use the following functions. H,H ′ are hash functions
(modeled as random oracles) with arbitrary inputs and with G and {0, 1}`, re-
spectively, as their ranges. Here, G is a cyclic group of prime order q and ` is
a security parameter (|q| ≥ 2`). Functions f, f ′ denote regular pseudorandom
families, e.g., those built on top of AES or HMAC (sometimes with the range
reduced modulo q). We define secret sharing schemes with parameters (n, t), im-
plemented using Shamir’s scheme with polynomials of degree t over Zq. Thus, the
scheme requires the cooperation of t+ 1 parties to reconstruct a secret or com-
pute a threshold function. For generality, we denote by α1, . . . , αn the evaluation
points of such a scheme (one often uses αi = i).

2.1 DH-based OPRF Schemes

We first recall the DH-based OPRF constructions from [35,36] that we use as
a basis for our Partially Oblivious PRF (pOPRF) schemes. Figure 1 shows the
DH-based OPRF construction while Figure 2 shows a Threshold version of the
same function. The functions were called 2HashDH in the above papers but here
we rename them to dh-op (for DH-based OPrf) and tdh-op (’T’ for threshold),
respectively. We note that tdh-op is described in a simplified form in Figure 2
where the set of reconstruction parties SE is assumed to be known by U in
advance. If the reconstruction set SE is not known a-priori (i.e., more than t+ 1
servers are contacted), each Si would respond with aki and U would compute the

6



interpolation in the exponent at the cost of a single multi-exponentiation (which
can be further optimized when the αi’s are small, e.g., αi = i, using a recent
technique from [45]). An additional important feature of the tdh-op solution is
that the aggregation of server values bi into the dh-op result can be done by a
proxy server (one of the threshold servers or a special purpose one) so that the
threshold implementation is transparent to the user. The schemes we present
inherit this feature.

PRF Fk Definition
For key k ←R Zq and x ∈ {0, 1}∗, define

Fk(x) = H(x, (H ′(x))k)

Oblivious Fk Evaluation between user U and server S

1. On input x, U picks r←RZq; sends a = (H ′(x))r to S.
2. S verifies that the received a is in group G and if so it responds with b = ak.
3. U outputs Fk(x) = H(x, b1/r).

Fig. 1. DH-based OPRF function dh-op

Key and server initialization.
Random key k ←R Zq is secret shared using Shamir’s scheme with parameters
n, t; Each server Si, i ∈ [n], receives share ki.

Threshold Oblivious Computation of Fk(x).

– On input x, user U picks r ←R Zq and computes a := H ′(x)r; it chooses a
subset SE of [n] of size t+ 1 and sends to each server Si, i ∈ SE , the value a
and the subset SE .

– Upon receiving a from U , server Si verifies that a ∈ G and if so it responds
with bi := aλi·ki where λi is a Lagrange interpolation coefficient for index i
and index set SE .

– When U receives bi from each server Si, i ∈ SE , U outputs as the result of
Fk(x) the value H(x, (

∏
i∈SE bi)

1/r)).

Fig. 2. Protocol tdh-op [36]: (n, t)-threshold computation of dh-op from Fig. 1

7



2.2 Threshold Partially Oblivious PRF

Recall the “Simple pOPRF” (SpOPRF) generic scheme described in the intro-
duction that builds a pOPRF scheme F ′ from any OPRF F and regular PRF
f , namely,

F ′K(x, y) = FfK(y)(x) (1)

where x and y are the oblivious and non-oblivious inputs to F ′, respectively.
When using dh-op (Fig. 1) as the OPRF F and a regular PRF f with range in
Zq one gets the following DH-based SpOPRF that we denote by dh-popf :

dh-popfK(x, y) = H(x,H ′(x)fK(y)) (2)

Our goal is to provide a threshold implementation of this function. The idea is
to define a PRF f for which each threshold server can generate, independently
and for every value of y, linear shares of fK(y). These can then be used in
lieu of the shares ki in the threshold OPRF protocol tdh-op from Fig. 2. We
obtain such a scheme following the work of Cramer, Damgard and Ishai [18] in
two stages. First, in Fig. 3, we present an “intermediate” single-server pOPRF
scheme dh-popF that realizes the SpOPRF function from (2) with a special
PRF family F . Due to our intensive use of this function we will often omit the
F superscript when it’s clear from the context. The family F originates from the
work of Naor et al. [43] (based on the replicated secret sharing technique of Ito et
al. [32]). As shown in [43] this scheme can already be distributed as a threshold
scheme between n servers where each server Si, i ∈ [n], is given the set of

(
n−1
t

)
keys {kA : A ∈ Ai(n, t)}. Indeed, as it is easy to verify, no coalition of t servers
can reconstruct the full collection of keys K, hence no such coalition can compute
the sum K =

∑
kA∈K f

′
kA

(y) and obtain dh-popK(x, y). However, computing such

scheme would cost
(
n−1
t

)
exponentiations per each server. Instead, we transform

dh-popK(x, y) into a much more efficient scheme by applying to it the share
conversion technique from [18] (recalled below). Then, combining the resultant
protocol with the Threshold OPRF scheme of Fig. 2 we obtain our main DH-
based Threshold pOPRF scheme, tdh-pop, presented in Fig. 4.

We recall the share conversion technique next, followed by a lemma that
states the correctness of the tdh-pop construction.

Share conversion [18]. Let α1, · · · , αn denote n elements in Zq. For any subset
A of [n] of size t, define pA(x) as the unique polynomial of degree t over Zq such
that pA(0) = 1 and pA(αi) = 0 for i ∈ A. For i ∈ [n] and A ∈ Ai (i.e., any subset
of [n] of size t that does not contain i), denote pA,i = pA(αi). It is easy to see
that pA(x) =

∏
j∈A(1− x

αj
) and therefore pA,i =

∏
j∈A(1− αi

αj
).

Lemma 1.[18] Let f be a pseudorandom function and K = {kA : A ∈ A(n, t)}
a collection of sets as defined in Figure 3. Given y in the domain of f , the values
ki(y), i ∈ [n] defined as

ki(y) =
∑
A∈Ai

pA,i · f ′kA(y) (3)

8



Set collections. Given integers n, t, 0 ≤ t < n, let A(n, t) denote the collection
of subsets of [n] of size t and let Ai(n, t), for i ∈ [n], denote the collection {A ∈
A(n, t) : i /∈ A} (we often omit the explicit parameters n, t when referring to A
and Ai).

Key collection. Let f ′ be a PRF family with outputs in Zq and K be a set of(
n
t

)
values {kA : A ∈ A} where each kA is chosen at random from the space of

keys of PRF f ′.

pOPRF function dh-pop. Given a PRF f ′ and key collection K as above, we
define a PRF family FK(y) =

∑
kA∈K

f ′kA(y) on the same domain as f ′. We then
use F as the function f in the SpOPRF scheme (2) to define dh-pop:

dh-popK(x, y) = H(x,H ′(x)
∑

kA∈K
f ′kA

(y)
)

Note: dh-popK(x, y) = dh-opK(x) for K =
∑
kA∈K

f ′kA(y))

Fig. 3. DH-based Partially Oblivious PRF dh-pop (also denoted dh-popF )

form a (n, t)-secret sharing of K =
∑
kA∈K f

′
kA

(y) (i.e., all ki(y) lie on the same
polynomial of degree t whose free coefficient is K).

Performance. tdh-pop preserves the minimal number of exponentiations en-
joyed by tdh-op (Fig. 2); indeed the only additional computation is the calcu-
lation (3). While the latter has complexity

(
n−1
t

)
, we show in Section 7 that

for typical practical values of n, t, our schemes remain remarkably efficient. In
applications where servers reuse often the key ki(y), its value can be computed
once and cached, avoiding the cost of (3). Finally, we remark that the user-
side tdh-pop computation is the same as for the fully oblivious tdh-op function
hence the same client code works in both cases. See Sec. 7 for more performance
information.

Security of dh-pop and tdh-pop. The protocols are proven in the random oracle
model assuming the Gap One-More DH assumption (and its stronger version
from [36]) and the pseudorandomness of f ′. See Section 3.

Adding verification. Supporting verification of the server’s actions is crucial
for some applications. For example when using a (partially) OPRF to derive data
encryption keys, a wrong OPRF computation would produce an irrecoverable
encryption key which leads to irrecoverable loss of data. We present verification
techniques in Section 4.

Other OPRF variants. The above techniques for designing pOPRFs and
Threshold pOPRFs can apply to other schemes. First, we note that the BLS
scheme of Boneh et al. [10] can be seen as an implementation of the dh-op scheme
over a pairings-friendly group. While this results in a less efficient scheme (and a
more restrictive choice of groups), it provides a natural way of verifying the cor-
rect output from the OPRF using the BLS signature itself (at the cost of pairing

9



Key and server initialization. Given parameters n, t, 0 ≤ t < n, assume key
collection K = {kA : A ∈ A(n, t)} is chosen as in Fig. 3. Each server Si, i ∈ [n],
is given the set of

(
n−1
t

)
keys {kA : A ∈ Ai(n, t)} as its share.

In addition, for each i ∈ [n], server Si precomputes and stores values pA,i =∏
j∈A(1− αi

αj
) for all A ∈ Ai(n, t).

Threshold Evaluation of tdh-pop at Server Si on non-oblivious input y.
Si interacts with user U (holding an oblivious input x) according to the evaluation
procedure of tdh-op as described in Figure 2 where Si’s key ki is defined as ki =
ki(y) as in Equation 3, namely,

ki(y) =
∑
A∈Ai

pA,i · f ′kA(y).

Caching ki(y). Key share ki = ki(y) can be cached for use with multiple oblivious
inputs x from U .

Verification. In applications where the user verifies the server’s actions (with
respect to value y), any of the verification schemes from Section 4 can be applied
with vi = gki(y) as the verification key for server Si.

Fig. 4. Threshold Partially Oblivious PRF tdh-pop

operations at the user) – see Appendix A. Second, the function of Everspaugh et
al. [20], defined as e(H1(z), H2(x))k where e is a bilinear map e : G1×G2 → GT ,
and H1, H2 are hash functions, can replace dh-op in the previous constructions
of this section, thus allowing for a threshold implementation when the keys k to
this function are derived from a common master key via a PRF (as done in [20]).
While the resultant scheme is computationally costly (it requires pairings and
exponentiation in GT ), it allows for a non-oblivious input in addition to the input
y in our constructions that can benefit some applications (see Appendix B).

3 Model and Analysis of Threshold Partially Oblivious
PRF

3.1 Definitions

Jarecki et al. defined the notion of Oblivious PRF (OPRF) in the Universally
Composable (UC) model in [35] and extended it to the Threshold setting (T-
OPRF) in [36]. Here we adapt these functionalities to the “partially oblivious”
setting where the function receives, in addition to the oblivious input by the user,
a non-secret arbitrary input y that we model as an adversary-provided input.
We model the pOPRF as a collection of OPRFs where each OPRF is defined
by a value y in a domain set Y . Formally, pOPRF is defined via a functionality
FpOPRF that is identical to functionality FOPRF from [35] except for the inclusion

10



of the value y, which can be chosen arbitrarily by the adversary. This value is
used internally by the functionality as a parameter that determines the random
table that defines the outputs of the function on input y and oblivious input x.
We present the functionality FpOPRF in Fig. 5.

The case of a Threshold pOPRF is treated similarly by augmenting the T-
OPRF functionality FTOPRF from [36] with the additional parameter y that, as
before, is chosen by the adversary and fed into the functionality as a parameter
for determining the random table from which results of the Threshold pOPRF
are taken. We refer the reader to [36] for the details of the T-OPRF functionality.
Our extension, FTpOPRF, is analogous to the one for the single-server case in
Fig. 5 and is omitted here.

All tables and tickets are initially undefined.

p(x) is a polynomial that defines the length of the pOPRF output.

– Upon receiving (Eval, sid , S, x) from user U (resp. A∗), send (Eval, sid , U, S)
(resp. (Eval, sid ,A∗, S)) to A∗, receive back value y; record 〈sid , U, S, x, y〉
(resp. 〈sid ,A∗, S, x, y〉).

– Upon receiving (SndrComplete, sid , y, S) from A∗, increment tx(sid , y, S)
(or set to 1 if previously undefined) and send (SndrComplete, sid , y) to S
or to A∗ if S is not a sender’s identity.

– Upon receiving (RcvComplete, sid , P, S, S∗, y) from A∗, recover record
〈sid , P, S, x, y〉; abort if such tuple does not exist or S is honest and S∗ 6= S
or tx(sid , y, S∗) is 0 or undefined. Otherwise decrement tx(sid , y, S∗) and:
• If T (sid , S∗, x, y) is defined, then send (Eval, sid , T (sid , S∗, x, y)) to P .
• Otherwise pick ρ at random from {0, 1}p(`), set T (sid , S∗, x, y) := ρ and

send (Eval, sid , y, ρ) to P .

Fig. 5. Partially-Oblivious PRF Functionality FpOPRF

3.2 Security of tdh-pop

We first state the pOPRF security of the generic Simple pOPRF scheme and
the DH-based derivatives.

Lemma 2. Let F and f be OPRF and PRF families respectively, then the
SpOPRF scheme (1), F ′K(x, y) = FfK(y), is a pOPRF family, namely, it instan-

tiates functionality FpOPRF. In particular this applies to the dh-popf scheme of

equation (2) and dh-popF as described in Fig. 3.

11



proof Immediate from the pseudorandomness and (computational) independence
of the resulting OPRF keys fK(y) for different y’s (formally, a hybrid composi-
tion of OPRF with a PRF f).

The next theorem derives from the proof [36] showing that the scheme tdh-op
is a T-OPRF under the Gap One-More Diffie-Hellman assumption (see Sec-
tion 6.1 where a similar assumption is presented and replace the inversion oracle
with a DDH oracle).

Theorem 1. The tdh-pop protocol from Figure 4 is a Threshold pOPRF, namely,
it instantiates functionality FTpOPRF, in the RO model under the Gap One-More
Diffie-Hellman assumption.

proof We need to show that tdh-pop instantiates functionality FTpOPRF which
boils down to prove that for fixed y, tdh-pop is a Threshold OPRF according
to [36]. Namely, tdh-pop instantiates the functionality FTOPRF from that paper.
We first note that by fixing y, tdh-pop induces a sharing (k1(y), . . . , kn(y)) of the
key K =

∑
kA∈K f

′
kA

(y). The rest is an identical computation of tdh-op proven
a secure Threshold OPRF in [36]. Thus, for fixed y, tdh-pop inherits the OPRF
property from tdh-op, except that in tdh-pop the attacker’s view also includes
the set of keys {kA : A ∈ Ai(n, t)} for each compromised server Si, information
that does not exist in tdh-op. If we can prove that a tdh-op attacker can simulate
these sets of keys given only the shares of corrupted parties in tdh-op we are
done. We show this next.

To facilitate the proof, we consider a modified tdh-pop scheme where the
values f ′kA(y) are replaced with truly random values rA. Thus we need to prove
that the attacker (denoted Adv) against tdh-op can simulate these values given
the shares of compromised parties. (Note that by showing security of tdh-pop
under this modification, we imply security for tdh-pop for any PRF f ′ – indeed,
a successful attacker against tdh-pop with PRF f ′ would imply a distinguish-
ing (from random) attack against f). For simplicity, we also assume Adv has
corrupted parties S1, . . . , St. The case of less than t corruptions and of different
identities is analogous.

We show how Adv generates the values rA for all A ∈ A(n, t) using the
following linear system (over Zq) induced by equation (3) and by the values
pA,i = pA(αi) where pA(x) is the unique polynomial of degree t over Zq with
free coefficient 1 and roots αj , j ∈ A. The system is defined as P · r̄ = s̄ where
P is a t×m matrix with m =

(
n
t

)
; row i corresponds to party Si; each column `

corresponds to a set A` ∈ A(n, t) (in some fixed enumeration of sets in A(n, t)),
and Pi,` is defined as pA`

(αi). The vector s̄ has share si of party Si, i ∈ [t] in
its i-th entry. Finally, the m-coordinate vector r̄ represents the unknown in the
linear system and it is used to determine the values {rA : A ∈ A(n, t)}. Indeed,
note that the solutions to the above system correspond to the sets of values rA
that result in shares s1, . . . , st for parties S1, . . . , St. Thus, if Adv can sample a
random solution in this set we obtain the simulated view of a tdh-pop attacker
as required.

What remains to show is that this linear system has a solution for any
s1, . . . , st or, equivalently, that matrix P has rank t. For each i ∈ [t], consider

12



a set A`i that contains all values in [t] except i. Note that the columns of P
corresponding to A`i has zeros in all rows j, j ∈ A`i , and a non-zero value in
the i-th row (since by definition pA`i

(αj) = 0 if and only if j ∈ A`i). Thus, the
submatrix corresponding to the selected t sets A`i is diagonal, hence the rank of
P is t.

4 Verifiable Partially Oblivious PRF

As mentioned in Sections 1 and 2, supporting verification of the server’s actions is
crucial for many applications. For example, when a (partially) Oblivious PRF is
used to derive data encryption keys, a wrong OPRF computation would produce
an irrecoverable encryption key and lead to irrecoverable loss of data. Here we
describe mechanisms for implementing such verification for the pOPRF and
OPRF schemes from Sec. 2, including their threshold versions.

In the case of the dh-op scheme we assume that the client C has the (certified)
value v = gk where g is a generator of the group G and k is the server’s OPRF
key. We refer to v as the server’s OPRF verification key. For SpOPRF scheme like
dh-popf (equation 2), the verification key becomes gfk(y). In the threshold case,
to verify the scheme tdh-pop (Fig. 4), the client would need the values vi = gki

for each participant server Si as well as gk where k is the value shared through
ki, i ∈ [n] (v = gk can be computed from the vi values through interpolation in
the exponent).

There are several methods we can adopt for OPRF verification. Below we
describe an interactive procedure which we adopt for our implementation due
to its simplicity and performance. In Appendix A we recall alternative non-
interactive mechanisms for verifying exponentiation correctness.

The solution presented here works by running OPRF on two different values
and then verifying consistency via a single multi-exponentiation by the client.
This greatly simplifies the verification implementation as it is essentially a re-
peat of the operations in the basic schemes (this holds for the single-server and
threshold cases). The added computational cost is a single exponentiation for
the server(s) and two multi-exponentiations for the client, essentially doubling
the work for the non-verified case. It maintains the property that in normal
operation (in which verification succeeds) the number of exponentiations is in-
dependent of the parameters n, t in the system. In the threshold setting, only if
verification fails will the client test (without further interaction) the individual
contributions of the different threshold servers.

We first describe the scheme for the case of the single-server OPRF dh-op
from Fig. 1. The procedure is reminiscent of Chaum’s protocol for undeniable
signatures [15] but simplified by dispensing of zero-knowledge proofs that are
not needed here. The integrity guarantee is unconditional, namely against un-
bounded attackers.

– On input x, C sets h = H ′(x), sets r, c, d←R Zq, and sends to S the pair of
values a = hr, b = hcgd.

13



– S responds with A = ak, B = bk.
– C checks that

Ar
′

= Bc
′
v−dc

′
(4)

where r′ = r−1, c′ = c−1. It rejects if the equality does not hold, otherwise
C sets the value of (H ′(x))k to Ar

′
which it already computed for equation

(4).

Lemma 3. (1) If A 6= ak or B 6= bk, C accepts with probability at most 1/q.
(2) Security of the OPRF is preserved in spite of the additional verification
query.

proof The proof of (1) is standard: We write equation (4) as powers of g where we
denote A = ak1 , B = bk2 , h = g`. By equating the exponents in this expression
we get `(k1−k2) = `+e(k2−k1) where e = d/c. This equation has one solution at
k1 = k2 = k (the honest case), otherwise we have that for each value of k2 there
is a single value of k1 that satisfies the equation, namely, k1 = e(k2 − k)/`+ k2.
However, since e is uniformly distributed over Zq (since b hides the value of
c perfectly) then the probability to find such pair (k1, k2) is 1/q even for an
unbounded attacker.
Claim (2) follows from the fact that the only added computation relative to dh-op
is one more query to the oblivious function adding to the number of queries but
preserving the OPRF security.

Note on Security and Rate-Limitation. The double OPRF operation incurred by
the verification step needs to be considered in settings where the server imposes
rate limits on OPRF invocations. A corrupted client can abuse the verification
calls to obtain OPRF computations on two arbitrary inputs of the client’s choice,
but in typical applications of OPRF the server limits the rate of OPRF invoca-
tions, so using interactive verification means that a corrupted client can compute
OPRF values at the at most twice faster rate.

Interactive Verification in Threshold OPRF protocols. We now adapt the
scheme to the threshold functions tdh-op and tdh-pop. The client C sends the
same pair of values (a, b) to each participant server Si who responds with Ai =
aki , Bi = bki . Upon gathering t + 1 responses, C interpolates in the exponent
(one multi-exponentiation) to obtain values A,B and checks the identity (4). If
it holds, C sets (H ′(x))k to Ar

′
, else it applies the check (4) to each pair Ai, Bi

received by participating server Si using vi = gki instead of v. The cost of this
procedure in the normal case, where the verification against v = gk succeeds,
is the same as the single-server case except for one additional interpolation in
the exponent. If verification against v = gk fails then the cost is an additional
multi-exponentiation per each participating server.
Non-Interactive Verification for (Partially) Oblivious PRFs

In Appendix A we recall two standard non-interactive verification methods
that apply to our Partially Oblivious PRF protocols, including their threshold
versions.

14



Base case: KMS server S stores a separate OPRF key for each of its clients.

Functions: OPRF F and symmetric authenticated encryption scheme Enc.

OPRF Keys: S stores a client-specific OPRF key kc for each client.

Encryption of object Obj by client C: C runs OPRF protocol with S, where C
inputs object identifier ObjId and S inputs key kc. C sets dek = Fkc(ObjId) and
stores the pair (ObjId,Encdek(Obj))

Decryption of encrypted object ObjId by client C: As in the encryption case, C
interacts with S to compute dek = Fkc(ObjId) and decrypts Obj using dek.

Storage efficient variant: Client-specific OPRF keys kc are derived as fmk(Cid)
where f is a PRF, mk a server “master key”, and Cid a client identifier.

Threshold variant of base case: As above but OPRF replaced with a Threshold
OPRF (e.g., tdh-op of Fig. 2).

Threshold implementation of storage-efficient variant: Replace PRF f and
OPRF F with the tdh-pop scheme of Fig. 4.

Verification of correct computation of dek: Use the verification procedure
corresponding to the (p)OPRF in use (Sec. 4).

Fig. 6. Oblivious KMS

5 Applications to Key Management

We show applications of the techniques from the previous sections to the key
management setting. In the next section we will show another such application
but in the context of updatable encryption.

5.1 Oblivious Key Management System

Standard key management systems (KMS), e.g., [3,42,30,25], support applica-
tions that encrypt data by providing a “key wrapping service”. Consider, for
example, a storage application that encrypts objects (files, media, etc.) before
storing them. When object Obj is to be stored, the application running at a
client C chooses a key dek (for “data encryption key”) and encrypts Obj us-
ing a symmetric cipher under key dek. The application then sends dek to the
key management system KMS (together with credentials authenticating C) who
encrypts dek under a “client root key” dedicated to client C. This encryption
operation applied to the data encryption key dek is known as wrapping and the
ciphertext encrypting dek is called the wrap, which we denote by wrap. KMS
then sends back wrap to C which stores it with the encrypted object6. When
decryption of the same object is needed, the corresponding wrap is sent back to

6 In some implementations, dek is chosen by KMS itself and sent to the client together
with its wrap.

15



KMS who “unwraps” (i.e., decrypts under C’s root key) to obtain dek and send
it back to C. Note that the key dek travels from C to KMS (at the wrapping
request) and from KMS to C (at the unwrapping request) only protected by the
channel between KMS and C. This exposes dek to weaknesses of such channel,
e.g., certificate and other man-in-the-middle attacks on TLS, TLS termination
outside the safe boundaries of the application (e.g., at a middlebox or a CDN
service), and more.

As a powerful application of OPRFs in the KMS setting, we propose to
replace the wrapping approach with an OPRF service as shown in Figure 6.
When a client C needs to compute a dek for encrypting an object named ObjId,
C interacts with a key management server who runs an OPRF F on behalf of
the client and together they compute dek = Fkc(ObjId), where kc is an OPRF
key dedicated to C (a “client root key”) and ObjId is the name with which C
identifies the object. Thanks to the OPRF properties the value of dek is hidden
from the server and from the network (with perfect secrecy in the case of the
DH-based implementations from Section 2), dispensing with the need for secure
channels and their associated weaknesses. Also the value of ObjId (e.g., a file
or document name), which often carries confidential or private information, is
hidden from the network and server. Moreover, in the case that ObjId values
are chosen by C so that they are unpredictable to an attacker, a strong form
of forward security is achieved: dek remains secure even if the OPRF key is
eventually compromised. In addition, unpredictability of the input to the OPRF
acts as a form of “self-authorization” in that only those knowing this input can
access the corresponding dek.

We describe the OPRF-based KMS scheme, to which we refer as Oblivious
KMS Protocol, in Fig. 6. There we present several important variants that include
space-efficient schemes and threshold implementations. The space-efficient im-
plementation where client keys are derived from a single PRF can support O(1)
memory, namely, support an unbounded number of clients with fixed storage. In
some cases, however, in order to allow for key deletions, keys are associated with
secret identifiers that require storage [20]. However, such identifiers may use less
expensive storage (relative to OPRF keys that are stored in secure enclaves) and
their number is often significantly smaller than the number of OPRF keys (e.g.,
a full ensemble of keys can use the same identifier, say a project name, if these
keys are deleted or updated in tandem).

At the same time, any centralized KMS service becomes a target for at-
tack, hence it is important to be able to support it as a distributed service via a
threshold implementation. This is indeed another major advantage of the OPRF
approach over the traditional one as OPRFs admit very efficient threshold im-
plementations. Indeed, in the base scheme of Fig. 6, where the server stores
separate, independent OPRF keys for each of its clients, one can use the very
efficient tdh-op scheme (Fig. 2) as the Threshold OPRF solution applied to each
individual client key kc. Such a scheme also enjoys the benefits of an efficient
proactive security extension [28]. Thresholdizing the space-efficient variant is
more challenging but our tdh-pop method from Fig. 4 addresses this too. Note

16



that in this case, all the distributed servers enjoy the storage efficiency of the
scheme.

Finally, to allow the client to verify the correctness of a computed key dek
(which if incorrect would imply irrecoverable loss of data), the client will be
provisioned for each key kc with a certified verification key vkc = gkc . For the
threshold case the client is also given the individual verification keys gki . Any of
the verification methods in Sec. 4 apply here. (Note that verification is essential
for the encryption operation; for decryption one can test the key computed by
the OPRF against the stored authenticated ciphertext.)

We end by noting that upgrading an existing wrapping-based system to an
oblivious KMS as above is greatly simplified as one can adapt existing wrapping
APIs to the new functionalities. Also, note that the oblivious KMS dispenses
with the need to store wrap values leading to reduced storage on the client side.
One still needs object identifiers but these exist independently of encryption
(even if these identifiers are randomized, one can support that with a small
number of randomization seeds).

In all, we see that the Oblivious KMS scheme enjoys major advantages rel-
ative to today’s standard approach to KMS, including: (i) it provides a signif-
icantly more secure approach than the current wrapping approach in terms of
key transport, forward secrecy, and object identity confidentiality; (ii) supports
key verification; (iii) supports a threshold solution, including proactive security
in the base case; (iv) reduces the secure storage requirements on the KMS side;
(v) reduces client-side storage; and (vi) provides for an optional mechanism of
“self-authorization”.

In Section 6 we strengthen the above OKMS scheme even further with sup-
port for updatable encryption and with a detailed security model.

5.2 Distributed Password Manager with Unbounded Capacity

Shirvanian et al. [48] describe a password manager service, called SPHINX, based
on OPRFs. The idea is for the user to memorize a single master password pwd
that is then mapped via an OPRF into individual randomized keys rwd for
each service/account the user has access to. That is, the password that the user
registers for such an account is computed as rwd = Fk(pwd, “account@service”)
where F is an OPRF, k is the OPRF key, and the inputs are concatenated as
a single input to the function. When the user needs to login to an account,
it first retrieves the corresponding password rwd by communicating with the
OPRF. The key k can be held by a user’s device such as a smartphone or by
an online service. Compromising the device or server does not reveal the user
master password pwd or service-specific passwords rwd. Such a compromise does
allow to run an offline dictionary attack on the user’s master password pwd but
verifying a correct guess requires interacting with the corresponding service and
account, or comparing against a stolen password file which contains a hash of
rwd.

So, while such a solution adds significantly to the security of passwords, it
still presents an opportunity for an attacker to run offline dictionary attacks

17



upon device/server compromise. A major defense in this case is to distribute the
security via a multi-server threshold implementation, so that nothing is learned
about the user’s password as long as less than a threshold of servers is compro-
mised (and if such a threshold is compromised, an offline attack, possibly with
online interaction with a user’s account, is still needed).

In a single-server implementation of such an OPRF service, the server can
serve an unbounded number of users by deriving user-specific OPRF keys through
a regular PRF f and a server’s master key mk (i.e., the OPRF key for user U
is fmk(U), thus implementing an SpOPRF as in expression (1)). The only non-
constant memory in this case is related to the management of rate limitation (to
prevent attackers from running an online dictionary attack on a user’s account
or master password) but the memory requirements for this are more relaxed
than for storage of keys and requires less space. In particular, it only needs to
memorize recent queries to the service and can be implemented using efficient
data structures such as Bloom filters.

Our work allows for the first time to preserve such memory efficiency even in
the case of a multi-server threshold implementation of the above service. Indeed,
this is exactly what our threshold pOPRF scheme tdh-pop from Fig. 4 provides
and does so very efficiently. Note that verification of the server(s) operation is
not needed in this case, especially that the user is not required to remember a
verification key (only her master password pwd).

Thanks to the strong defense against offline dictionary attacks provided by
such a distributed system, this service can be extended to other uses beyond
password authentication, e.g., using rwd as a strong cryptographic key for pro-
tecting user secrets (e.g., stored bitcoin wallets, cloud storage decryption keys,
confidential credentials, etc.). The storage of secrets and other user’s information
can be done separately from the pOPRF servers, hence preserving their memory
efficiency and reduced system complexity.

In Appendix B we show the applicability of our techniques to a different
password hardening setting, namely, the password onion scheme from [20].

6 Updatable Oblivious KMS

We expand on the application of threshold partially oblivious PRF to Oblivious
KMS shown in Section 5.1 to show a design for a practical Updatable Oblivious
KMS, which also supports a threshold KMS implementation. An Updatable
KMS is otherwise known as Updatable Encryption [8,40] or Encryption with
Key Rotation [21]. Unlike the storage-efficient variant of the Oblivious KMS of
Section 5.1, we will use a traditional wrapping approach of storing the wrap
values at the client side together with ciphertext Encdek(Obj), i.e. treating triple
c = (ObjId,wrap,Encdek(Obj)) as an encryption of plaintext Obj under (the public
key corresponding to) the server-held key kc. An Updatable KMS allows the
KMS server to change, a.k.a. rotate, key kc assigned to client C to a fresh key
kc
′, and it allows the client to update all its stored wraps so that the updated

wraps can be decrypted using kc
′ to obtain the original dek keys. Note that this

18



mechanism updates only the short wrap part of the ciphertext, and does not re-
encrypt the data. Support for key updates provides forward security to clients’
OPRF keys, i.e. an attacker who learns kc will not be able to use it to decrypt
wraps that were updated after the change from kc to kc

′. This is the same goal
as in [8,21,40], but we provide it in a system that supports oblivious decryption
by the KMS server, and as we show in Section 6.2 it also efficiently supports
threshold KMS implementation.

The Updatable OKMS scheme shown in Figure 7 supports updates with a
single short value ∆ sent from KMS to C and requires no other interaction be-
tween C and KMS: The client C can locally use ∆ to update all its ciphertexts.
We note that our update uses 1 exponentiation per ciphertext while the non-
oblivious updatable encryption schemes [8,21,40] all use 2 exponentiations per
ciphertext. Moreover, the Updatable Oblivious KMS scheme in Figure 7 pre-
serves all the advantages of the Oblivious KMS solutions from the Section 5,
including partial blindness, verifiability, and efficient threshold implementation,
except that it trades the added storage of wraps for the efficient updatability
feature.

The Usage of Oblivious Weak PRF. We point out that in contrast to the
OKMS scheme of Figure 6 from Section 5.1, the Updatable OKMS scheme of
Figure 7 does not use an OPRF scheme, e.g. scheme dh-op of Fig. 1, as a black-
box: In the UOKMS scheme of Figure 7, the underlying function which maps
wraps h to keys dek is F ′kc(h) = H(hkc), while the dh-op of Fig. 1 defines
Fk(x) = H(x, (H ′(x))k). Even though the server-side in the protocol for oblivious
evaluation of F ′kc(·) in Fig. 7 is exactly the same as in OPRF for Fk(·) in
Fig. 1, the client-side in the two protocols is different, and in particular function
argument is not hashed in F ′. This lack of inner-hash is important, because even
though F ′ is a PRF, just like F , the oblivious evaluation of F ′ in Fig. 7 is not an
Oblivious PRF: Note that a client can use a single interaction with the server to
compute F ′kc(·) on multiple arguments, e.g. it learns F ′kc(hi) for any i simply by
computing H(vi/r) in the last step. Formally, the security of this protocol could
be modeled as an Oblivious Weak PRF, i.e. a single interaction with the server
allow the client to compute F ′kc(·) on only one argument in the polynomial-sized
set of random arguments {g1, ..., gN}. We do not formally model this Oblivious
Weak PRF primitive, but we use its properties in the security proof of this
UOKMS scheme. We note that even though the oblivious decryption protocol in
this UOKMS implements this weaker form of OPRF, all the technical benefits
discussed in Sections 2 and 4 for dh-op, i.e. extension to partial, threshold, and
verifiable OPRF, hold also for the Weak OPRF, i.e. for the oblivious decryption
in the UOKMS scheme of Fig. 7.

Efficient UOKMS Scheme. We present our basic Oblivious KMS with Up-
datable Key Rotation solution in Fig 7. We stress that the enhancements to
the base case from Fig. 6, namely, the storage-efficient and threshold schemes,
equally apply to the current updatable setting. The computation of the value ∆
and its transfer to client C in the case of the threshold schemes use the multi-
party technique from Section 6.2. Verification of the server’s action are needed

19



Functions: Function F : Zq × G → G where Fk(h) = hk; symmetric encryption
scheme Enc,Dec with keys over {0, 1}`; hash function H : G→ {0, 1}`.

Client keys: Server S stores a client-specific key kc (for function F ) for each
client; Client C stores certified value yc = gkc where g is a fixed generator of G.

Encryption of object Obj: To encrypt Obj under key yc, pick s ←R Zq, set
h = gs and dek = H(yc

s), and output ciphertext triple c = (ObjId, h,Encdek(Obj)).

Decryption of ciphertext c = (ObjId, h, e): C sends u = hr to S for r ←R Zq; S
returns v = ukc to C only if u ∈ G; C outputs Obj = Decdek(e) for dek = H(v1/r).

Key rotation and update: To change client’s key from kc to kc
′, S sends ∆ =

kc/kc
′ to C. C replaces yc with y′c = (yc)

1/∆ and replaces each ciphertext c =
(ObjId, h, e) in C’s storage with c′ = (ObjId, h′ = h∆, e).

Fig. 7. Updatable Oblivious KMS Scheme (base case)

only for the decryption operation and these can use the techniques from Sec-
tion 47 A crucial property of this updatable KMS is that the KMS server can
delete the key kc and start using kc

′ as soon as it has sent ∆ to the client. In-
deed, the client can transform any wrap that worked with kc to work with kc

′

by simply raising the wrap value to the power of ∆.
To show the correctness of the mechanisms in Fig. 7, note that at encryption

time, C sets h = gs for random s, then derives the encryption key dek from ysc ,
and finally stores h. For decryption, C computes hkc obliviously in interaction
with the server and derives dek from this value. Thus, one needs to show that
ysc = hkc . This is indeed the case since ysc = (gkc)s = (gs)kc = hkc .

Regarding the update operation, note that if we denote by ht and kt the
values of h and kc, respectively, after t updates (here h0 denotes the original
value of h computed at the time of deriving dek, and k0 denotes the client’s key
kc as it existed at that time), then we can prove inductively that if hktt = hk00
(the latter is the value from which dek is derived), then this is also true for t+1,

namely, (ht+1)kt+1 = (h0)k0 . Indeed, we have that ht+1 = h
∆t+1

t = h
kt/kt+1

t , thus

(ht+1)kt+1 = (h
kt/kt+1

t )kt+1 = hktt = hk00 .

6.1 Formal Model for Updatable Oblivious KMS

UOKMS Syntax. Formally, an Updateable Oblivious KMS (UOKMS) scheme
is a tuple of algorithms KGen, Enc, UGen, UKey, UEnc and an interactive protocol
Dec, where (1) the key generation algorithm KGen on input a security parameter
` generates a private public key pair (sk, pk), (2) the encryption algorithm Enc

7 The use of dek to decrypt/authenticate data can also serve as validation of the
retrieved dek; only if this operation fails one would use the mechanisms from Section 4
(this is especially useful for identifying cheating servers in the threshold case).

20



on input key pk and plaintext m generates ciphertext c (we write c ∈ Enc(pk,m)
if c is a possible output of Enc(pk,m)), (3) the decryption is implemented via an
interactive protocol Dec = (Dec.S,Dec.C) between Dec.S(sk) run by the server
and Dec.C(pk, c) run by the client, where Dec.S has no output and Dec.C outputs
m if c ∈ Enc(pk,m), (4) the update generation algorithm UGen on input sk
generates a new key pair (sk′, pk′) and an update token ∆, (5) the key update
algorithm UKey(pk, ∆) outputs the updated public key pk′ which matches the
public key pk′ generated by UGen (if both are executed on the matching (sk, pk)
pair), and (6) the cipheretxt update algorithm UEnc(c,∆) outputs an updated
ciphertext c′ s.t. c′ ∈ Enc(pk′,m) if c ∈ Enc(pk,m).8 For a set of ciphertexts
C = {ci}i=1,...,n we use UEnc(C,∆) to denote the set of corresponding updated
ciphertexts, {UEnc(ci, ∆)}i=1,...,n.

Defining UOKMS Security. We say that UOKMS scheme is oblivious if for
all efficient A, interaction with Dec.C(pk, c0) is indistinguishable from interac-
tion with Dec.C(pk, c1) for any (pk, c0, c1) output by A s.t. |c0| = |c1|. As for
UOKMS security, we model it with experiments involving adversary A and sim-
ulator SIM shown in Figure 8. We say that UOKMS scheme is secure if for all
efficient A there exist an efficient SIM s.t. there is a negligible (in `) difference
between the probability that Expreal(A, `) outputs 1 and the probability that
Expideal(A,SIM, `) outputs 1.

Experiment Expreal(A, `) in Figure 8 models adversary A’s interaction with
the real UOKMS scheme, while Expideal(A,SIM, `) models A’s interaction with
the simulator SIM which accesses an “ideal” UOKMS scheme. In both games
flag corr designates whether A in a current key epoch corrupts the server (srv)
or the client (clt). After the initialization which generates the initial KMS key
pair (sk, pk) and gives pk to A, we assume that A corrupts either the server
or the client in each epoch, modeled by resp. CorClt and CorSrv oracle calls.
(We assume w.l.o.g. that A corrupts one of the parties in each epoch, and that
initially A corrupts the client, which leaks no information beyond public key pk.)
Each corruption decision triggers a key update, i.e. the KMS key pair is updated
by (re)assigning (sk, pk, ∆)← UGen(sk). We also assume that before each update
the client maintains a list of ciphertexts, denoted C, which is updated as C ←
UEnc(C,∆). Adversary A receives the information corresponding to which party
it corrupts: The adversary always gets the new public key pk, but if corr = srv
then A also gets the server-held secret key sk (but not the client-held list C),
and if corr = clt then A also gets the client-held ciphertext list C (but not the
server-held key sk). Moreover, if A occupies the same party before and after the

8 UOKMS security does not enforce that the distribution of keys (sk′, pk′) created
by UGen is identical to the distribution of keys (sk, pk) created by KGen, but that
is the case in the scheme of Figure 7. Likewise the definition does not impose that
ciphertexts updated via UEnc(·,∆) are distributed identically to the fresh ciphertexts
generated via Enc(pk, ·), but that is also the case in the scheme of Figure 7.

21



update then A gets the update token ∆, but crucially, A misses this update
token ∆ whenever it moves from the server to the client or vice versa.9

We assume active client corruptions, and in each epoch where corr = clt we
give A unfettered access to the ciphertext update algorithm UEnc(·, ∆). (Note
that if A corrupts the client both before and after the update then A holds
∆ and can implement this oracle locally, but it is not so when A corrupts a
client after corrupting the server.) In addition, if corr = clt then A can (re)define
the client-held list C of ciphertexts which will be updated in the next update.
This plays no role if A continues to corrupt the client during subsequent epochs,
because in this case A could use either ∆ or the UEnc(·, ∆) oracle to update
any ciphertext itself, but if A corrupts the server in the next epoch then the
list C will be updated as C ← UEnc(C,∆) (and it will keep being updated
at each epoch increment), and the adversary will see a modified list C in any
epoch in the future when it decides to corrupt the client again. We note that, by
contrast, our model for server corruptions is passive, and in particular we do not
allow A to change the server’s key, to interfere in the update generation or the
dissemination of the resulting update token ∆, or to interfere in the interactions
of other clients with the update oracle UEnc(·, ∆).

Our UOKMS scheme is a public key encryption, so A can encrypt messages
at will, but we include oracle Enc(pk, ·) in Figure 8 to model the challenge ci-
phertexts in the security experiment. Namely, in the real game, accessing such
oracle on input m generates a ciphertext c← Enc(pk,m), but in the ideal game
such ciphertext must be produced by the simulator algorithm SIM on input only
(pk, |m|), while plaintext m is added to the list L of encrypted challenge plain-
texts. Adversary A can also decrypt challenge ciphertexts (or indeed any other
ciphertexts) using the decryption oracle Dec(sk, ·). Because we want to support
oblivious decryption algorithms, therefore without loss of generality we count
each decryption oracle access as an attempt to decrypt some challenge cipher-
text. Consequently, in the ideal game we give SIM access to a single location
on the current list L of challenge plaintexts per each Dec query of A. Observe
that we do not create challenge ciphertexts in an epoch where the server is cor-
rupted, because knowledge of the server’s private key makes all such ciphertexts
insecure. Likewise in the same epoch we disallow A from accessing an update
oracle because then A could update any challenge ciphertext from a previous
epoch to the current one and then decrypt it because A holds the current private
decryption key.

The Expreal security game allows any pattern of corruptions except corruption
of both a client and a server in a single epoch. However, our model of corruptions
is static in the sense that A must decide which party to corrupt at the beginning
of each epoch. (See also the discussion of other KMS models below.)

9 Indeed, in the scheme of Figure 7 an old private key sk together with update ∆
suffice to derive the new private key sk′. Likewise the new key sk′ together with ∆
suffice to derive the old key sk. Either case shows that receiving ∆ on transition
would imply corrupting both the client and the server in one epoch, in which case
no security could be provided.

22



Expreal(A, `)

Generate (sk, pk)← KGen(`) and initialize C as an empty list and set corr← clt.
Experiment output is set to the output of A(pk) after interaction with the
following oracles:

Enc(m): If corr = clt output Enc(pk,m);
Dec: If corr = clt respond to A using Dec.S(sk);
UEnc(c): If corr = clt output UEnc(c,∆);
CorSrv: Set (sk, pk,∆)← UGen(sk), C ← UEnc(C,∆);

If corr = srv output (pk, sk,∆) else output (pk, sk) and set corr← srv;
CorClt: Set (sk, pk,∆)← UGen(sk), C ← UEnc(C,∆);

If corr = clt output (pk, C,∆) else output (pk, C) and set corr← clt;
Let A (re)define set C;

Expideal(A, SIM, `)

Let SIM(`) generate pk and initialize empty challenge plaintext list L.
Experiment output is set to the output of A(pk) after interaction with the
following oracles:

Enc(m): If corr = clt add m to L, output SIM(enc,|m|);
Dec: If corr = clt respond to A using SIM(dec) and let SIM access one

chosen location in list L;
UEnc(c): If corr = clt output SIM(upd, c);
CorSrv: Set corr← srv, output SIM(srv);
CorClt: Set corr← clt, output SIM(clt), get C from A;

Fig. 8. Security Games for Updatable Oblivious KMS

Comparison to Other Updatable Encryption Models. Several recent
works considered Updatable KMS under the name Updatable Encryption or En-
cryption with Key Rotation [8,9,21,40]. Our notion corresponds to the ciphertext-
independent notion of Everspaugh et al. [21] and Lehmann and Tackmann [40],
but there are several differences between our model and [21,40]. Firstly, the
security notions of [8,9,21,40] all model only IND-CPA notion of encryption
indistinguishability and make no security claims in the presence of decryption
oracle. Restriction to IND-CPA security might appear natural since encryp-
tion updates must rely on some form of ciphertext malleability, which precludes
standard notion of IND-CCA security. However, our simulation-based security
notion does capture security in the presence of decryption oracle with a simple
counting method which enforces that Q accesses to the decryption oracle allow
for learning plaintext information in at most Q challenge ciphertexts. The sec-
ond major difference is that ours is the first treatment of Updatable Encryption
with oblivious decryption procedure, which indeed necessitates this “counting-

23



based” notion of security in the presence of decryption oracle. (We note that
Green [26] formalized IND-CCA security of encryption with oblivious decryp-
tion, but without updates.) On the other hand, [40] consider an adaptive model
of corruption, including in particular post-execution corruption of keys from
any past epoch, while our corruption model is static. Indeed, a combination of
an adaptive model and a decryption oracle seems to present significant tech-
nical challenges, akin to adaptive security in proactive cryptosystems, see e.g.
[13,2,41]. There are many other differences of seemingly lower importance, e.g.
we support public key encryption while [21,40] support symmetric-key encryp-
tion, and [21] enforces ciphertext integrity, a property which is relevant only to
symmetric-key encryption. Also, both [21,40] model update indistinguishability,
which we do not consider formally, although we think that our scheme could be
easily adapted to support it.

Security of our UOKMS Scheme. The UOKMS scheme shown in Figure
7 is information-theoretic oblivious, as is the OPRF protocol dh-op on which
the Decryption protocol in Fig. 7 is based, but the security of this scheme ac-
cording to the above real/ideal UOKMS security notion requires the following
computational assumption:

One-More DH with Inverse Oracle (OMDH-IO) Assumption. For any
PPT A the following probability is negligible:

Prob[A(·)k,(·)1/k(g, gk, g1, . . . , gN ) = {(gjs , gkjs)}s=1,...,Q+1]

with the probability going over random k in Zq, random choice of group ele-
ments g1, . . . , gN in G = 〈g〉, and A’s randomness, and where (·)k and (·)1/k are
exponentiation oracles, and Q is the number of queries that A poses to the (·)k
oracle.

In addition to the OMDH-IO assumption and the Random Oracle Model
(ROM) for hash function H, the security proof also relies on a technical property
of symmetric encryption (Enc,Dec) which we call adaptive security, defined as
follows:

Adaptive Security of SKE. We call symmetric encryption scheme (Enc,Dec)
adaptively secure if for any PPT A there exists PPT SIM s.t. A’s interaction
in the following real and ideal games is indistinguishable: (1) In the real game
A interacts with oracle Enc and Reveal, where oracle Enc on input (i,m) picks
random key ki and outputs c = Enc(ki,m) while oracle Reveal on input i reveals
ki; (2) In the ideal game A interacts with the stateful algorithm SIM, s.t. when
A sends (i,m) as its Enc oracle query, SIM computes c given (i, |m|) as input,
and when A sends i as its Reveal oracle query, SIM produces ki given (i,m) as
input.

Theorem 2. The UOKMS scheme in Figure 7 is unconditionally oblivious and
it is secure under the OMDH-IO assumption in ROM if the symmetric encryp-
tion scheme (Enc,Dec) is adaptively secure.

24



Proof: See paragraph below for an intuition and Appendix C for the full proof.

The following corollary follows because common encryption modes including
CTR and CBC satisfy the adaptive security property in the Ideal Cipher model.
This is easy to see: For |m| equal to n blocks for block cipher E, SIM chooses
random IV and sets ciphertext e = (IV, e1, ..., en) where ei’s are all random
blocks, and when SIM gets m = (m1, ...,mn) it sets n input/output points of
E(k, ·): For CTR SIM sets E(k, IV + i) = mi ⊕ ei for all i, and for CBC it sets
E(k,mi ⊕ ei−1) = ei for all i and e0 = IV . Either way by randomness of ei’s
this sets E(k, ·) outputs on n points to random values, it creates collisions in
E(k, ·) with negligible probability, and by randomness of k there is negligible
probability that any points of E(k, ·) were queried before.

Corollary 1. The UOKMS scheme in Figure 7 is secure under the OMDH-IO
assumption in the Ideal Cipher Model and ROM if the symmetric encryption is
implemented using CTR or CBC modes.

Proof rationale. The proof of Theorem 2 is in Appendix C, but here we briefly
explain why security reduces to OMDH-IO. If (ki, yi = gki) denotes the KMS
key for a given client in epoch i, the reduction will set (k0, y0) as the OMDH-
IO challenge key (k, gk), and compute all keys for rounds when A corrupts the
client as yi = y1/δi where δi =

∏
j≤i∆j where ∆j ’s are all chosen at random.

If the adversary corrupts the server in rounds j + 1, ..., t− 1 then the reduction
will pick random server keys kj+1, ..., kt−1 and use random “super-update” value
∆j+1,t in place of ∆j+1 · ... · ∆t in the equation for δi for i ≥ t. The same δi
values suffice to update the ciphertexts written by A in client-held ciphertext
list C, and they also suffice to translate (·)k OMDH challenges g1, ..., gN into
epoch-i ciphertexts in Enc(·) oracle calls, and to translate epoch-i decryption
queries Dec(·) to OMDH queries (·)k. However, when A corrupts the server in
round t − 1 and then corrupts the client in round t, it gets random key kt−1
and then gains access to the update oracle which implements exponentiation
(·)∆t for ∆t = kt−1/kt. Since kt−1 is known, this is equivalent to gaining access
to exponentiation oracle (·)1/kt , and since kt is linked to the OMDH challenge
key k as kt = k/δi, this is in turn equivalent to accessing exponentiation oracle
(·)1/k. Thus the security of the UOKMS scheme in Figure 7 requires hardness of
One More Diffie-Hellman in the presence of the inversion oracle (·)1/k, but the
reduction sketched above implies that the OMDH-IO assumption also suffices
for its security. The full proof is shown in Appendix C.

6.2 Threshold Updates

The Updatable Oblivious KMS of Fig. 7 can be efficiently implemented in the
threshold setting using the same share conversion technique of [18] shown in the
tdh-pop protocol in Fig. 4. However, note that in this setting, keys kc, kc

′ are
secret-shared between the servers, so also the update value ∆ = kc/kc

′ needs
to be computed in a distributed way such that only the client learns ∆ and

25



no one learns (anything about) the keys kc, kc
′. For obtaining such distributed

computation of ∆ we resort to two tools from threshold cryptography. The first
is a protocol that given the Shamir sharing of a secret a and a sharing of a
secret b, generates a sharing of the product a ·b without learning anything about
either secret or their product. We denote such protocol by ProdShare(a, b) and
we recall an implementation from [24] in Appendix D. The second tool allows
for the joint generation of a secret sharing of a random secret (e.g., [46] or Fig. 7
of [24]). Using these tools we obtain the following procedure.

Client computation of ∆ = kc/kc
′ from sharings of kc and kc

′. Assum-
ing servers S1, . . . , Sn secret-share keys kc and kc

′ in (n, t)-threshold Shamir
secret-sharing, servers S1, . . . , Sn first generate a joint (n, t)-threshold sharing
ρ1, . . . , ρn of a secret value ρ which is randomly chosen in Zq. Then they run
the protocol ProdShare(kc, ρ) and ProdShare(kc

′, ρ), generating (n, t) sharings
(r1, . . . , rn) and (r′1, . . . , r

′
n) of the products ρ ·kc and ρ ·kc′, respectively. Finally,

each server Si sends to the client the shares ri, r
′
i, and the client reconstructs

r = ρ · kc and r′ = ρ · kc′ and computes ∆ = r/r′.

Security of this protocol follows from (1) security of ProdShare; (2) the fact
that if kc, kc

′ 6= 0 then r, r′ are distributed as two random elements in Z∗q sub-

ject to the constrain that r/r′ = kc/kc
′; and (3) the fact that the (n, t)-threshold

secret-sharings (r1, . . . , rn) and (r′1, . . . , r
′
n) reveal no additional information ex-

cept for values r, r′ that can be reconstructed (by the client in our application)
from this sharing.

In the resulting protocol servers S1, . . . , Sn calculate and transmit to the
client the value ∆ = kc/kc

′ where keys kc, kc
′ are secret-shared between these

servers, and in fact their sharing is non-interactively obtained using the exact
same share conversion technique we use to derive the shares of the Threshold
(p)OPRF key in tdh-pop.

7 Implementation and Performance

We report on implementation and performance of the OKMS and UOKMS
schemes from Section 5.1 (Fig. 6) and Section 6 (Fig. 7), respectively.

Microbenchmarks. Implementations of all necessary client and server opera-
tions were written in C++ using the OpenSSL library (version 1.1.1-pre5) to
provide cryptographic functionality. Performance tests were conducted on a ma-
chine with an Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz having 15 GB of
memory. The implementation was compiled with the gcc compiler with opti-
mization level 3.

The following tables detail the run times of each operation averaged over
10,000 trials. These tests used only a single thread and CPU core; results could
be improved by taking advantage of the parallelism that is readily possible with
share conversion (expression (3)) or by performing these operations concurrently
across multiple CPU cores.

26



In these tests, all elliptic curve operations were based on NIST P-256, using
AES-256 keys for CMAC operations. Field operations (for Shamir, and blinding
factors) were defined over the prime order of NIST P-256. Hashing to the curve
was performed using SHA-256 together with the constant time Simplified SWU
algorithm[11].

OKMS Client Operations (Single Thread)

Wrap Unwrap

Hash to Curve 58.26 58.26
Generate Blind 1.58 1.58
Apply Blind 68.07 68.07
Create Challenge 83.27 -
Interpolate Result 7.67 7.67
Inverse Blind 16.95 16.95
Remove Blind 68.07 68.07
Verify Response 106.67 -

Total Time (µs) 410.53 220.60
Operations / Second 2,435.86 4,533.14

Fig. 9. Client operation time and Op/s in OKMS

Client operations in the OKMS scheme are shown in Fig. 9 for both encryp-
tion (“wrapping”) and decryption (“unwrapping”). The two operations differ
only in that interactive verifiability is performed for wrap operations, while for
unwrapping (the more common operation) regular symmetric key verification
suffices.

In comparison to the client microbenchmark of pOPRF operations presented
in [20], which required 5500 µs for the client to perform a verifiable pOPRF, our
result of 410.53 µs is 13.40 times faster. This result was achieved on equivalent
hardware as reported in the Pythia paper: a third-generation Intel Xeon with 8
cores at 2.9 GHz.

Server operations, measured for the storage-efficient threshold variant of this
(U)OKMS scheme (implemented with protocol tdh-pop) are shown in Fig. 10 for
different pairs (n, t+1). This includes performing share conversion, computing a
Lagrange coefficient, multiplying the server’s ki by the coefficient, and perform-
ing an exponentiation (EC scalar multiply) in the curve for each input provided
by the client (the wrap operation is more costly as it includes an additional expo-
nentiation to support the interactive verification procedure from Section 4). The
percent of time the server spends performing share conversion in a wrap varies
from 3.44% on the low end (3-of-5) to 85.63% on the high end for the 5-of-15
sharing. Caching share conversion results would improve performance radically
in the high-end cases.

In comparison to the server microbenchmark of pOPRF presented by [20],
which required 4000 µs to perform a verifiable pOPRF and 1500 µs to perform an

27



unverified pOPRF, our equivalent operations of wrap and unwrap require 136.93
µs and 68.87 µs respectively, yielding a 29x and 21x performance improvement
(again on equivalent hardware).

(U)OKMS Server Operations (Single Thread)

(t+1)-of-N Wraps / Second Unwraps / Second

1-of-1 7,302.47 14,519.13
3-of-5 6,946.99 13,178.35
4-of-7 6,427.64 11,426.89
6-of-11 2,736.95 3,363.56
7-of-13 1,107.56 1,197.86
5-of-15 1,033.98 1,112.26
4-of-20 1,054.51 1,136.05
3-of-40 1,266.33 1,385.77

Fig. 10. (U)OKMS Server Op/s for practical threshold parameters

Client performance in the UOKMS scheme (Sec. 6) is shown in Fig. 11.
This setting benefits from being able to perform wrap operations without server
involvement, and can further benefit from precomputation tables for exponenti-
ation of g and gk. In our testing, precomputation provided more than a 600%
speed up (11.33 vs. 68.20 µs). We summarize the number of operations per sec-
ond the client can perform in the UOKMS.

UOKMS Operations (Single Thread)

Time (µs) Operations / Second

Wrap 24.24 41,261.68
Unwrap 162.33 6,160.14
Update 68.07 14,691.77

Fig. 11. Client operation time and Op/s in UOKMS

(U)OKMS Server. To evaluate performance and scalability we hosted our
(U)OKMS server implementation on Amazon’s Elastic Compute Cloud (EC2)[4]
using a c4.2xlarge instance type. This instance type provides 8 virtual CPUS with
an Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz having 15 GB of memory and
was the same instance type used to obtain the microbenchmark numbers above.

Requests to this server were issued over HTTP and the web server, nginx,
was configured with 8 worker processes (one per CPU). OKMS functionality was
added to this web server as a natively compiled module which used the OpenSSL
library (version 1.1.1-pre5) to provide cryptographic functionality. The server ran
Ubuntu 16.04 as its operating system.

28



Throughput. To measure throughput a client machine (also c4.2xlarge) was
deployed in the same Amazon Web Service (AWS) availability zone as the server.
We used the HTTP load generating tool hey to measure the throughput for each
scheme. hey was configured with a concurrency level of 80 and all results were
averaged over 50,000 requests. All requests were for an unwrap operation and
were sent over HTTPS using (TLS 1.2 with ECDHE-ECDSA-AES256-GCM-
SHA384). The server used a self-signed certificate with an EC key on the NIST
P-256 curve. Computation time dominates in the LAN setting due to almost
negligible network latency, with the CPU cores reaching near 100% utilization
during the LAN throughput tests. To gauge the limits of the server performance,
client-side operations of blinding and verification were not performed by the load
generator.

For each scheme, we tested with session KeepAlive on and off. When off,
a new TCP connection and TLS session must be negotiated for each request.
When on, the connection setup costs are amortized over all requests, which is in
line with a client that must unwrap many keys.

The table in Figure 12 details the observed throughput in requests per second
(RPS) for the various schemes and two KeepAlive configurations (all over TLS).
We compare these schemes to a static page as a baseline.

(U)OKMS Server Throughput (8 CPU cores)

Scheme KeepAlive No KeepAlive

Static Page 65,018.02 6,462.29
OPRF / Cached pOPRF 32,094.31 6,349.80
3-of-5 pOPRF 31,053.97 6,833.13
6-of-11 pOPRF 12,511.51 5,122.76

Fig. 12. (U)OKMS Server Requests/s on EC2 instance (LAN setting)

We observe that for the No KeepAlive configuration, the cost of creating the
new connection and establishing the TLS session dominates resulting in very
little difference in RPS between the schemes. For the KeepAlive configuration,
throughput is significantly better, achieving over 30,000 RPS for the cached
pOPRF case and the 3-of-5 share conversion case. The 6-of-11 is the slowest as it
must perform a more expensive share conversion involving 252 PRF operations,
but still achieves over 10,000 RPS. Thus our (U)OKMS implementation can
handle a large number of clients with a single server. For comparison, Google
processes 40,000 search queries per second[31]. If needed, the implementation
can be scaled with standard techniques, such as deploying a greater number of
servers.

The RPS achieved by the server with its 8 CPU cores does not reflect the
idealized rate of 8x the Unwraps/Second given in Fig. 10 for the 3-of-5 and 6-of-
11 configurations. The server achieves improvement ratios of 2.4x to 3.7x over
the microbenchmarks respectively. Falling short of the ideal is expected given a

29



constant overhead introduced by HTTPS and the web server. Different improve-
ment ratios are also explained by this overhead. The more time-consuming the
case is (e.g., 6-of-11), the less significant the constant overhead is and the better
the improvement ratio will be.

Latency. We measured wide-area network latency for various configurations
and access patterns. In our test the server was located in the Amazon’s us-east-
1 availability zone which is in Northern Virginia while the client machine was
located in Chicago and had an Intel(R) Core(TM) i7-4980HQ CPU @ 2.80GHz
having 16 GB of memory.

For a base-line, round trip time (RTT) was measured using the ping utility.
All measurements below are the average of 10 operations. For the 10-request
cases, keep-alive was used. Without keep-alive, the 10-request cases would be
equal to 10 times the respective single request case.

(U)OKMS Server Latency

Operation Latency (ms) Latency in RTTs

ping (baseline) 25.93 1.00
1 HTTP request 84.60 3.26
1 HTTPS request 129.30 4.99
10 HTTP requests 310.40 11.97
10 HTTPS requests 378.10 14.58

Fig. 13. Observed Latencies over WAN

In Figure 13 we see the total time for the (U)OKMS server to process 6-
of-11 pOPRF requests for various access patterns. In this view, total perceived
time per operation is dominated by network latencies. Even without the TLS
handshake, a single HTTP requests requires 3.26 RTTs (84.6 milliseconds) to
complete, while introducing TLS for the HTTPS case increases this time to
nearly 5 RTTs. Reusing an established HTTP or HTTPS connection greatly
reduces the per-request time, with the 10-request cases being approximately
equal to the single request case plus 9 RTTs.

Since client and server CPU processing times are a sub-millisecond per re-
quest, WAN latencies are expected to dominate in any cross-regional network.

Conventional engineering improvements such as parallelization and concur-
rency can reduce latency for the multiple request access pattern. Further latency
improvements can be obtained with less expensive connection-establishment pro-
tocols, e.g., TLS with session resumption, TLS 1.3, QUIC [38], or a custom pro-
tocol. We note that when using the pOPRF verifiability mechanism in our KMS
protocols, TLS or other channel security mechanisms are unnecessary for the
confidentiality or integrity of returned keys. In principle a secure protocol could
be designed that required only a single round trip between the client and server,
yielding a total access latency for unwrapping one or more keys approximately
to a single RTT.

30



8 Conclusions

We have presented very efficient realizations of partially-oblivious PRFs (pOPRF)
with over an order of magnitude performance improvements over the previous
Pythia pOPRF construction from [20] and have showed how to extend these
schemes to threshold implementations. We demonstrate the utility of the schemes
by building a novel key management system (KMS) on top of our pOPRFs. The
resultant Oblivious KMS (OKMS) offers major improvements in security rela-
tive to traditional systems. Whereas in standard wrapping-based KMS across
the industry [3,42,30,25] the server learns all of its clients’ encryption keys, in
our OKMS, keys and data object identifiers are hidden from the KMS with un-
conditional security (in the DH-based schemes). Additionally, the solution offers
unconditional security for key transport, enables forward security, provides key
verifiability, and reduces storage. Our distributed (threshold) implementation of
such a service additionally protects against the corruption of a subset of servers.

We further extend our (threshold) OKMS into an Updatable OKMS to sup-
port updatable encryption so that upon the periodic change of a client’s pOPRF
key by the server, a short update token ∆ sent from server to client allows the
latter to update its state so that all its encrypted data can be decrypted through
the updated pOPRF key but none of it can be decrypted using past pOPRF keys
(hence providing forward secrecy). The client update operation requires no in-
teraction with the server (except for receiving the update token), and involves
no encryption/decryption of data by the client. Our techniques improve in both
efficiency and security on several recent works on updatable encryption, includ-
ing the work of [21] from Crypto’17 and [40] from Eurocrypt’18. Improvements
include the use of a single exponentiation per updated item vs. two exponentia-
tions per item in [21,40]. Morevoer, our KMS scheme is oblivious, i.e. the server
does not learn the decrypted messages (or even which ciphertexts are decrypted).
Finally, we show much stronger security of encryption in the form of CCA-type
security against adversaries who can decrypt (and update) adaptively-chosen ci-
phertexts. By contrast, [21,40] show only CPA-type security for KMS schemes
with efficient updates. In particular, in the context of Updatable KMS (whose
goal is recovery from adaptive corruptions), we guarantee security even if an
attacker observes decryption of ciphertexts.

We prove our protocols in the strongest security model: universal composabil-
ity (UC). In particular, while the previous security definition of Partial OPRF
(pOPRF) from [20]) was somewhat ad-hoc, here we define this primitive via a
UC functionality that inherits the strength of the UC OPRF definition from
[35,36]. We additionally provide an analysis of the security properties of the
UOKMS system as listed above, improving on definitions (and security) from
[8,9,21,40] to capture a CCA-like notion of updatable encryption and oblivious
operations.

Finally, we reported on our implementation work and performance testing
showing the practicality of our solutions and the major performance improve-
ment relative to prior pOPRF constructions. We show gains of 13x for client
performance and 29x for the server relative to Pythia [20]. This efficiency trans-

31



lates into our implementation of the OKMS and UOKMS services, including
their threshold versions. In all, we believe that the security properties of our
schemes together with their excellent performance make them great candidates
for real-world deployment as a replacement to existing storage and key manage-
ment systems.

References

1. R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across private
databases. In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’03, pages 86–97, New York, NY, USA, 2003.
ACM.

2. J. F. Almansa, I. Damg̊ard, and J. B. Nielsen. Simplified threshold rsa with adap-
tive and proactive security. In S. Vaudenay, editor, Advances in Cryptology -
EUROCRYPT 2006, pages 593–611, Berlin, Heidelberg, 2006. Springer Berlin Hei-
delberg.

3. Amazon Web Services. Aws key management service cryptographic details, 2016.
https://d1.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf.

4. Amazon Web Services. Aws elastic compute cloud, 2018. https://aws.amazon.

com/ec2/.

5. M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular expo-
nentiation and digital signatures. In K. Nyberg, editor, EUROCRYPT’98, volume
1403 of LNCS, pages 236–250. Springer, Heidelberg, May / June 1998.

6. M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption and
secure deduplication. In T. Johansson and P. Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 296–312. Springer, Heidelberg, May
2013.

7. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor, PKC 2003,
volume 2567 of LNCS, pages 31–46. Springer, Heidelberg, Jan. 2003.

8. D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic
prfs and their applications. In Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, pages 410–428, 2013.

9. D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic
prfs and their applications. IACR Cryptology ePrint Archive, 2015:220, 2015.

10. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
In C. Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532.
Springer, Heidelberg, Dec. 2001.

11. E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi. Efficient
indifferentiable hashing into ordinary elliptic curves. Cryptology ePrint Archive,
Report 2009/340, 2009. http://eprint.iacr.org/2009/340.

12. J. Camenisch and A. Lehmann. Privacy for distributed databases via (un)linkable
pseudonyms. Cryptology ePrint Archive, Report 2017/022, 2017. http://eprint.
iacr.org/2017/022.

13. R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security
for threshold cryptosystems. In M. Wiener, editor, Advances in Cryptology —
CRYPTO’ 99, pages 98–116, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

32

https://d1.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
http://eprint.iacr.org/2009/340
http://eprint.iacr.org/2017/022
http://eprint.iacr.org/2017/022


14. D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner. Highly-
scalable searchable symmetric encryption with support for Boolean queries. In
R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 353–373. Springer, Heidelberg, Aug. 2013.

15. D. Chaum. Zero-knowledge undeniable signatures. In I. Damg̊ard, editor, EU-
ROCRYPT’90, volume 473 of LNCS, pages 458–464. Springer, Heidelberg, May
1991.

16. D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg,
Aug. 1993.

17. S. S. M. Chow, C. Ma, and J. Weng. Zero-knowledge argument for simultaneous
discrete logarithms. In M. T. Thai and S. Sahni, editors, Computing and Combi-
natorics, pages 520–529, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

18. R. Cramer, I. Damg̊ard, and Y. Ishai. Share conversion, pseudorandom secret-
sharing and applications to secure computation. In J. Kilian, editor, TCC 2005,
volume 3378 of LNCS, pages 342–362. Springer, Heidelberg, Feb. 2005.

19. E. De Cristofaro and G. Tsudik. Practical private set intersection protocols with
linear complexity. In International Conference on Financial Cryptography and
Data Security, pages 143–159. Springer, 2010.

20. A. Everspaugh, R. Chaterjee, S. Scott, A. Juels, and T. Ristenpart. The pythia
PRF service. In 24th USENIX Security Symposium (USENIX Security 15), pages
547–562, Washington, D.C., 2015. USENIX Association.

21. A. Everspaugh, K. G. Paterson, T. Ristenpart, and S. Scott. Key rotation for
authenticated encryption. In Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part III, pages 98–129, 2017.

22. W. Ford and B. S. Kaliski Jr. Server-assisted generation of a strong secret from a
password. In 9th IEEE International Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WETICE 2000), pages 176–180, Gaithers-
burg, MD, USA, June 4–16, 2000. IEEE Computer Society.

23. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and obliv-
ious pseudorandom functions. In J. Kilian, editor, TCC 2005, volume 3378 of
LNCS, pages 303–324. Springer, Heidelberg, Feb. 2005.

24. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fact-track multiparty
computations with applications to threshold cryptography. In B. A. Coan and
Y. Afek, editors, 17th ACM PODC, pages 101–111. ACM, June / July 1998.

25. Google Cloud. Google cloud key management service, 2018. https://cloud.

google.com/kms/.
26. M. Green. Secure blind decryption. In Proceedings of the 14th International Confer-

ence on Practice and Theory in Public Key Cryptography Conference on Public Key
Cryptography, PKC’11, pages 265–282, Berlin, Heidelberg, 2011. Springer-Verlag.

27. C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern match-
ing with security against malicious and covert adversaries. In R. Canetti, editor,
TCC 2008, volume 4948 of LNCS, pages 155–175. Springer, Heidelberg, Mar. 2008.

28. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or:
How to cope with perpetual leakage. In D. Coppersmith, editor, CRYPTO’95,
volume 963 of LNCS, pages 339–352. Springer, Heidelberg, Aug. 1995.

29. B. A. Huberman, M. K. Franklin, and T. Hogg. Enhancing privacy and trust in
electronic communities. In EC, 1999.

30. IBM. Ibm key protect, 2018. https://console.bluemix.net/catalog/services/
key-protect.

33

https://cloud.google.com/kms/
https://cloud.google.com/kms/
https://console.bluemix.net/catalog/services/key-protect
https://console.bluemix.net/catalog/services/key-protect


31. Internet Live Stats. Google Search Statistics, 2018. http://www.

internetlivestats.com/google-search-statistics/.
32. M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access

structure. In Proc. IEEE Global Telecommunication Conf. (Globecom’87), pages
99–102, 1987.

33. S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner. Outsourced sym-
metric private information retrieval. In A.-R. Sadeghi, V. D. Gligor, and M. Yung,
editors, ACM CCS 13, pages 875–888. ACM Press, Nov. 2013.

34. S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In P. Sarkar and T. Iwata, edi-
tors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 233–253. Springer,
Heidelberg, Dec. 2014.

35. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Highly-efficient and composable
password-protected secret sharing (or: how to protect your bitcoin wallet online).
In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on, pages
276–291. IEEE, 2016.

36. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: Cost-minimal password-
protected secret sharing based on threshold OPRF. In D. Gollmann, A. Miyaji,
and H. Kikuchi, editors, ACNS 17, volume 10355 of LNCS, pages 39–58. Springer,
Heidelberg, July 2017.

37. S. Jarecki and X. Liu. Fast secure computation of set intersection. In J. A. Garay
and R. D. Prisco, editors, SCN 10, volume 6280 of LNCS, pages 418–435. Springer,
Heidelberg, Sept. 2010.

38. Jim Roskind. QUIC: Multiplexed stream transport over UDP, 2013. Google work-
ing design document.

39. R. W. F. Lai, C. Egger, D. Schröder, and S. S. M. Chow. Phoenix: Rebirth of a
cryptographic password-hardening service. In USENIX Security Symposium, 2017.

40. A. Lehmann and B. Tackmann. Updatable encryption with post-compromise secu-
rity. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29 - May 3, 2018 Proceedings, Part III, pages 685–716, 2018.

41. A. Y. Lindell. Adaptively secure two-party computation with erasures. In M. Fis-
chlin, editor, Topics in Cryptology – CT-RSA 2009, pages 117–132, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg.

42. Microsoft Azure. Azure key vault, 2018. https://docs.microsoft.com/en-us/

azure/key-vault/key-vault-overview.
43. M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and

KDCs. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 327–346.
Springer, Heidelberg, May 1999.

44. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th FOCS, pages 458–467. IEEE Computer Society Press,
Oct. 1997.

45. A. Patel and M. Yung. Fully dynamic password protected secret sharing, 2017.
manuscript.

46. T. P. Pedersen. A threshold cryptosystem without a trusted party (extended
abstract) (rump session). In D. W. Davies, editor, EUROCRYPT’91, volume 547
of LNCS, pages 522–526. Springer, Heidelberg, Apr. 1991.

47. K. Sakurai and Y. Yamane. Blind decoding, blind undeniable signatures, and their
applications to privacy protection. In Proceedings of the First International Work-
shop on Information Hiding, pages 257–264, London, UK, UK, 1996. Springer-
Verlag.

34

http://www.internetlivestats.com/google-search-statistics/
http://www.internetlivestats.com/google-search-statistics/
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview


48. M. Shirvanian, S. Jarecki, H. Krawczyk, and N. Saxena. Sphinx: A password
store that perfectly hides passwords from itself. In Distributed Computing Systems
(ICDCS), 2017 IEEE 37th International Conference on, pages 1094–1104. IEEE,
2017.

A Non-interactive Verification for (Partially) Oblivious
PRFs

Here we complement the material in Section 4 by recalling two standard tech-
niques for exponentiation verification that apply to the verifiability of our pOPRF
constructions, including the threshold variants.

Verification via Non-Interactive Zero-Knowledge (NIZK). The standard
approach to verification uses non-interactive zero-knowledge proofs which for our
application means proofs of equality of discrete logarithms. For example, in the
case of protocol dh-op in Fig. 1, the server would produce a NIZK proof showing
that its response b (specified as ak) satisfies dloga(b) = dlogg(v) where v is the
OPRF verification key.

The most efficient NIZK protocol for this task is due to Chow et al [17] which
for the single-server case only takes one 2-element multi-exp for the server (it
costs 1.17 regular exponentiation) and one 4-element multi-exp for the client (at
the cost about 1.25 regular exponentiation), making it somewhat more efficient
than the above interactive solution for the client. However, for the threshold
case, it requires individual zero-knowledge proofs from the servers and their ver-
ification. Performance can be optimized via batch verification [5] which reduces
the verification of the individual proofs to two multi-exponentiation with many
factors. A very optimized implementation may be competitive with the cost of
the interactive proof but at higher implementation complexity.

Verification via Signature-based OPRFs. At the end of Section 2, we men-
tioned BLS signatures [10] whose signature operation, an exponentiation over
a pairings-friendly group G1, can serve as an alternative implementation of our
DH-based OPRFs and pOPRF schemes. While its use of bilinear groups results
in performance degradation relative to the most efficient elliptic curve groups,
the advantage of this scheme is that verification of exponentiation can be done
via the signature verification procedure of the BLS scheme. The scheme requires
no additional action from the server but verification is costly as it involves two
pairing operations for the client. This scheme works in the single-server case
by verifying the response b = ak from the server and also in the threshold case
where individual exponentiations bi = aki can be verified against a certified value
vi = gki . More precisely, the client would first interpolate the received values bi
to obtain b = ak and then use BLS verification against the aggregated key gk.
Only if this fails would the client verify the individual pieces bi. We note that
other blind signature schemes, e.g., RSA [19,7], can be adapted for a similar use
as above.

35



B Threshold Password Onion Scheme

The Pythia system [20] utilizes a variant of the pOPRF notion10 to implement
a “password hardening” system. Their application (very different from the one
in the previous subsection) considers the typical practice of password servers
that store a salt-hash pair for each user where the hash value is computed on
a password-salt pair using a deterministic hash function. The compromise of a
salt-hash pair can then be used to mount an offline dictionary attack on the pass-
word (an attack responsible for the compromise of billions of passwords). Pythia
avoids this vulnerability by replacing the deterministic hash with a pOPRF com-
putation carried by a pOPRF service (to which we will refer to as Pythia) that
is separate from the server storing the salt-hash values. When the latter server
needs to compute a hash value for verifying a password, it queries Pythia on
oblivious inputs (password, salt). An attacker learning a salt-hash pair cannot
mount an attack on the password value without talking directly to Pythia.

This application, referred in [20] as “password onion”, requires setting fine-
granular rate limitations for which the Pythia system uses non-oblivious in-
puts. In addition, in order to serve multiple clients, Pythia derives the per-client
pOPRF keys from a single master key via a regular PRF. This implements a
SpOPRF as in expression (1), except that the Pythia function allows for a non-
oblivious input in addition to the value y, namely, their scheme has the form
F ′K(x, z, y) = FfK(y)(x, z) where both y and z are non-oblivious. Clearly, the
password onion application would enjoy additional security if the Pythia server
could be distributed through a threshold implementation. Our tdh-pop scheme
from Fig. 4 can be used in this case too, except that one would replace the under-
lying dh-op scheme (Fig. 1) with the Pythia function defined as e(H1(z), H2(x))k

where e is a bilinear map e : G1 × G2 → GT , and H1, H2 are hash functions.
Note that while this scheme is significantly more computationally expensive than
dh-op due to the use of pairings and exponentiation in GT , its cost may be jus-
tified in applications that require an extra non-oblivious input.

Recently, Lai et al. [39] have shown a more efficient single-server solution than
[20] for the specific password hardening application that motivated the Pythia
system in the first place. However, we don’t know of any solution (including the
one from [39]) that works in the multi-server case (with per-client key derivation)
other than the above adaptation of tdh-pop to the Pythia function.

C Security Proof for Updatable Oblivious KMS

Below we include the proof of Theorem 2 from Section 6.1 about security of the
Updatable Oblivious KMS scheme shown in Figure 7 in Section 6.

proof Below we show an efficient simulator algorithm SIM which having access
to (any) adversary algorithm A, interacts with the ideal UOKMS game Expideal.

10 The Pythia application requires key updates similar to those used in the updatable
encryption scheme of Sec. 6, hence they cannot use the outer hashing of the DH-
based schemes from Sec. 2, resulting in a weaker form of OPRF.

36



We will then re-write SIM as a reduction algorithm R s.t. if A has ε advantage
in distinguishing an interaction with the real UOKMS game Expreal and an
interaction with SIM and Expideal, i.e. if

ε = | Pr[1← Expreal(A, `)]− Pr[1← Expideal(A,SIM, `)] |

then reduction R, given access to A, has the same probability ε of solving the
OMDH-IO problem. It follows that under the OMDH-IO assumption quantity ε
must be negligible, which implies that the UOKMS scheme is secure.

The proof relies on the ROM model for function H : G→{0, 1}` used in
UOKMS scheme in Figure 7. Specifically, we treat H as an external entity A
needs to query to compute H outputs, simulator SIM and reduction R intercept
A’s calls to H, and we measure probabilities p0 = Pr[1←Expreal(A, `)] and
p1 = Pr[1←Expideal(A,SIM, `)] over the randomness of H. For simplicity of
notation we assume that group G is fixed for every security parameter ` and we
assume a non-uniform security model both for the OMDH-IO assumption and
UOKMS security.

We will first describe game G, which reproduces the same distribution A sees
in the real security game Expreal, but does it in a way which makes it easier to
understand simulator SIM which we will describe next. Game G picks k ∈ Zq
and sets the first epoch key as (k0, y0) = (k, gk). Game G also picks a list of
N random group elements g1, ..., gN in G. Then for every i > 0, G picks the
following values: If A corrupts the server in epoch i, via a call to CorSrv, then G
picks random ki ← Zq and outputs (ki, yi) for yi ← gki . (If A corrupts the server
for two epochs in the row G also outputs ∆i = ki−1/ki.) If A corrupt a client in
epoch i, via a call to CorClt, then G acts depending on which party A corrupted
in epoch i − 1: (case 1) If it was the client then G picks random ∆i ← Zq and
outputs (yi, C

′, ∆i) for C ′ ← {(h∆i , e) |, (h, e) ∈ C} and yi ← yi−1
1/∆i ; (case

2) If it was the server then G picks random ∆j+1,i ← Zq and outputs (yi, C
′)

for yi ← yj
1/∆j+1,i C ′ ← {(h∆j+1,i , e) |, (h, e) ∈ C}, where j was the last epoch

when A corrupted the client before A corrupted the server in epoch i − 1. Let
ES be the set of epochs when A corrupts the server and EC the set of epochs
when A corrupts the client. The above process defines value δi for each i ∈ EC
s.t. yi = y1/δi (hence ki = k/δi), and G can compute this δi as either δi−1 ·∆i,
if (i − 1) ∈ EC , or as δj ·∆j+1,i, if j ∈ EC and {j + 1, ..., i − i} ⊆ ES . Given
these values, G services oracles Enc, Dec, and UEnc at round i ∈ EC (note that
these calls are disallowed if i ∈ ES) as follows:

– G replies to n-th call to Enc(m) with c = (h,Encdek(m)) where h = (gn)δi

and dek = H(z) for z = (gn)k; (Note that z = hk/δi , hence c is distributed
as in the real interaction.)

– G replies to message u to Dec with v = (u1/δi)k;
– G replies to UEnc(c) for c = (h, e) with (h′, e) for h′ = h∆i if (i−1) ∈ EC ,

and h′ = (hδj ·∆j+1,i·ki−1)1/k if (i−1) ∈ ES .

The correctness of Enc and Dec responses follows because ki = k/δi, and as
for UEnc, note that ki = k/δi where δi = δj · ∆j+1,i and at the same time

37



ki = ki−1/∆i, which together implies that ∆i = δj · ∆j+1,i · ki−1 · (1/k). Thus

game G reproduces the exact same view as security game Expreal.
Simulator SIM interacts with the ideal security game Expideal and executes

the same algorithm as game G in all steps – including picking the initial key k and
keys ki if i ∈ ES and update-related values ∆i or ∆j+1,i if i ∈ EC as desrcibed
above (and defining corresponding δi’s and ki’s) – except for handling of oracles
Enc and Dec, which SIM does as follows. (Note that by adaptive security of SKE
Enc there is a simulator SIME for this SKE, which simulator SIM can utilize.)
When A sends t-th query m to oracle Enc in epoch i ∈ EC then SIM receives
|m| and replies to A with c = (h, e) for h = (gt)

δi and e computed by SIME

on input (t, |m|). (2) When A sends u to Dec, SIM replies with v = (u1/δi)k

but then monitors A’s queries to H: If A makes query z to H s.t. z1/k = gt
for gt ∈ {g1, ..., gN} then SIM asks Expideal to reveal message m at the t-th
position in list L, and then sends (t,m) as the Reveal query to SIME , gets key
dek as SIME ’s response, and defines H(z) = dek. By the adaptive security of the
SKE, pair (dek, e) produced by SIME is indistinguishable from random dek and
e = Encdek(m), in particular this process sets H(z) to a value indistinguishable
from random.

The only difference between A’s interaction with G and A’s interaction with
SIM (which in turn interacts with Expideal) is if in the latter case A queries
H on arguments (gi)

k for more than Q elements in {g1, ..., gN} where Q is the
number of A’s decryption queries: Given Q decryption queries SIM is allowed to
learn only Q items in list L, so it can embed correct messages as decryptions
of Q challenge ciphertexts, involving Q challenge points {gjs}s=1,...,Q, but SIM
will not be able to decrypt correctly the (Q + 1)-st ciphertext (h, e) formed as
h = (gjQ+1

)δi s.t. A queries H on z = (gjQ+1
)k = hki . In other words, if there is

ε difference between Pr[1← Expreal(A, `)] and Pr[1← Expideal(A,SIM, `)] then
ε is upper-bounded by the probability that A queries H on values (gj)

k for Q+1
points gj in {g1, ..., gN}. But by inspection of SIM one can see that SIM can be
readily changed to reduction R against the OMDH-IO problem: R follows the
algorithm of SIM except that uses the OMDH-IO challenge key gk as y, it gets
points (g1, . . . , gN ) as part of the OMDH-IO challenge, and it uses OMDH-IO
oracles (·)k, (·)1/k instead of using exponent k directly. Note that SIM uses (·)k
only Q times, to service the Q decryption oracle queries, and if A makes queries
to H on Q+ 1 arguments (gj)

k with probability ε, then R will break OMDH-IO
with probability ε because R can identify such queries with oracle (·)1/k. This
completes the proof of Theorem 2.

D Protocols for multiplying shared secrets

Section 6.2 requires the use of protocols for generating shares of the product
of two values that are shared using Shamir’s secret sharing. We recall such a
protocol here.

Let ProdShare(a, b) be a protocol (or functionality) with n participants (re-
ferred to as servers) S1, . . . , Sn who hold shares of secrets a, b ∈ Zq shared

38



with (n, t)-threshold Shamir secret-sharing. Namely, each Si holds ai, bi where
ai = P (αi), bi = Q(αi), where P (resp., Q) is a random polynomial of degree t
over Zq with free coefficient a (resp., b), and α1, . . . , αn are n evaluation points in
Zq. The output of the protocol is a fresh sharing of a·b, i.e. shares c1, . . . , cn where
ci = p(αi) for a random polynomial p of degree t over Zq s.t. p(0) = c = a · b.

Efficient implementations of ProdShare are presented by Gennaro et al. [24].
For reference, we present a variant of the protocol for honest-but-curious servers
in Fig. 14. To withstand malicious servers the protocol is amended by one or
more rounds of verifiable secret sharing (VSS), i.e. it can be replaced by any of
the protocols in Figures 3, 5, 6 of [24] (which differ in performance tradeoffs).

Parameters. n ≥ 2t+ 1, n distinct elements {αi}i∈[n] in Zq.
Server inputs. Each server Si holds (ai, bi) = (P (αi), Q(αi)), for t-degree
polynomials P,Q over Zq s.t. (a, b) = (P (0), Q(0)).

Protocol.

1. Let T ⊆ [n] be any subset of 2t+ 1 indices. For all j ∈ T , Sj chooses a
random polynomial Rj of degree t over Zq s.t. Rj(0) = aj · bj , and for each
i ∈ [n] (including i = j), Sj sends rji = Rj(αi) to Si.

2. Each server Si for i ∈ [n] computes its share ci of c = a · b as
ci =

∑
j∈T λjrji, where {λj}j∈T are Lagrange coefficients s.t.

f(0) =
∑
j∈T λjf(αj) for any 2t-degree polynomial f .

Note that f(x) = P (x) ·Q(x) is a 2t-degree polynomial s.t. f(0) = a · b and
f(αj) = aj · bj , hence c =

∑
j∈T λjRj(0), and by linearity of Shamir

secret-sharing, p(x) =
∑
j∈T λjRj(x) is a t-degree polynomial s.t. c = p(0) and

ci = p(αi) for each i.

Fig. 14. Honest-but-Curious Protocol ProdShare [24]

39


	Threshold Partially-Oblivious PRFs with Applications to Key Management

