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Abstract

We give a simple construction of indistinguishability obfuscation for Turing machines where
the time to obfuscate grows only with the description size of the machine and otherwise, inde-
pendent of the running time and the space used. While this result is already known [Koppula,
Lewko, and Waters, STOC 2015], our construction and its analysis are conceptually much sim-
pler. In particular, the main technical component in the proof of our construction is a simple
combinatorial pebbling argument [Garg and Srinivasan, EUROCRYPT 2018]. Our construction
makes use of indistinguishability obfuscation for circuits and laconic oblivious transfer.

1 Introduction

Indistinguishability Obfuscation (iO) [BGI+12, GGH+13] is a central primitive in cryptography
giving rise to new and powerful cryptographic applications [SW14, GGHR14]. iO requires that
for any two circuits C0 and C1 computing the exact same functionality, obfuscation of C0 is com-
putationally indistinguishable from the obfuscation of C1. While circuits are powerful enough to
simulate other models of computation such as Turing machines or RAM programs [PF79], a draw-
back of using them is that size of the circuit (and hence the size of obfuscation) grows with both
the running time and the space of the computation. In a beautiful work Koppula, Lewko and
Waters [KLW15] (building on prior work [BGL+15, CHJV15]) showed a method for removing this
limitation by giving a construction of succinct iO for Turing machines from iO for circuits and
injective pseudorandom generators. By succinct, we mean that the time to obfuscate a machine
grows only with its description size and is otherwise independent of its running time and its space
complexity.

Our Contribution. In this paper, we give a simple construction of succinct indistinguishability
obfuscation for Turing machines from iO for circuits and laconic oblivious transfer [CDG+17,
DG17]. Our new construction is simple to describe and its analysis is much simpler than the
previous works. Inspired by [GS18], the main technical component in our security proof is a simple
combinatorial pebbling argument.

In a bit more detail, we achieve the above new result by first giving a new construction of succinct
randomized encoding [AIK04, CHJV15, BGL+15, App17] from indistinguishability obfuscation for
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circuits and laconic oblivious transfer [CDG+17, DG17, BLSV18, DGHM18]. A randomized en-

coding allows to encode a Turing machine M , an input x and a time bound t to M̂x,t. Given

M̂x,t, the decoding procedure recovers M(x) which is the output of M on input x obtained in time

t. The security property requires that the distribution of M̂x,t does not leak anything about x
except M(x). A randomized encoding is said to be succinct if the encoding procedure runs in time
that is polynomial in the security parameter, the machine description size and the input size and is
otherwise independent of the time and space complexity of M . Next, we use the simple transforma-
tion from [CHJV15, BGL+15] that given any succinct randomized encoding (with sub-exponential
security) yields succinct iO for Turing machines. This yields the desired result.

2 Overview

In this section, we give a high level overview of our construction of succinct randomized encodings
and the security proof.

Starting point. The starting point of our work is the construction of semi-succinct randomized
encodings for Turing machines in [CHJV15, BGL+15] based on iO for circuits and Yao’s garbling
scheme. Semi-succinct randomized encodings require that the time to encode a machine is inde-
pendent of its running time but could depend on the space complexity of the computation. Below
we start by recalling this construction and explain why it achieves only semi-succinctness when
compared to full succinctness.

The encoding procedure is given as input a Turing machine M , an input x and a time bound
t and it has to output a randomized encoding M̂x,t. The first step in the above works is to reduce
the machine M to a “succinctly describable” circuit C that computes the same function as that of
M . We say that a circuit is succinctly describable if there exists a “small” circuit Csc that on input
any gate number outputs the binary function computed by that gate along with the description of
its input and output wires. Given such a succinct description, these works rely on the locality of
Yao’s garbling procedure to obfuscate a circuit that on input any gate number outputs the garbled
encryption table corresponding to that gate. Specifically, this circuit uses the succinct description
to obtain the binary logic computed by the gate along with the description of the input and output
wires. It uses a (puncturable) PRF key to obtain the labels corresponding to the input and the
output wires and outputs the Yao’s garbled table corresponding to that gate (using randomness
derived from the puncturable PRF key). The encoding procedure outputs this obfuscation along
with the labels corresponding to the input x. The decoding procedure evaluates this obfuscation
on every gate number to obtain the garbled tables corresponding to every gate and then evaluates
the garbled circuit to obtain the output.

Let us now describe the simulator for the above construction. Recall that the simulator on
input M(x) must output a randomized encoding such that the distribution of the simulator’s
output is computationally indistinguishable to the distribution of an honestly generated encoding.
The simulator in these works obfuscates a circuit that on input any gate number, outputs the
simulated Yao’s garbled table. Intuitively, it should follow from the security of Yao’s garbled circuit
construction that the real garbled tables are computationally indistinguishable to the simulated
garbled tables. However, for the proof to go through, these works cannot change the distribution
of all the garbled gates from the real to simulated in one shot. Rather, they use a careful hybrid
argument wherein they change the distribution of the garbled tables from the real to simulated for
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one gate at a time and this where the succinctness takes a hit. Let us now explain this in more
detail.

Recall from the proof of Yao’s garbled circuit construction [LP09] that to change a garbled table
from the real mode to a simulated mode, we must go via an intermediate hybrid wherein we first
change all the entries of the garbled table to encrypt a single label. This label in fact, corresponds
to the output of that gate when the circuit is evaluated on input x. Following [HJO+16], we call
this hybrid as an input dependent simulation mode where the gate is simulated but the simulated
distribution depends on the actual input. Further, as shown in [LP09, HJO+16], we can change a
garbled table from input dependent simulation mode to the simulated mode1 if all the gates that
fan-out from this particular gate are in input dependent simulation mode. Thus, to change one
garbled gate from an input dependent simulation mode to the simulated mode, we must maintain
all the gates that fan-out from this gate in the input dependent simulation mode. Since the fan-out
of a gate could be as large as the space of the computation, the size of the obfuscated circuit in the
intermediate hybrids grows with this space.2 Thus, to use iO security, the real world obfuscation
must also be padded to the size of the circuit in the intermediate hybrid and hence, these works
could only achieve semi-succinctness. Because of the above-mentioned challenges, this approach
seemed insufficient for realizing full succinctness. Thus, Koppula, Lewko and Waters [KLW15] gave
a very different approach for realizing full succinctness. However, unfortunately, their realization
is rather involved.

Our Approach. In this work, we try to obtain full-succinctness starting with the above-mentioned
approach followed in the realization of semi-succinct iO constructions. In particular, we use the
same high level idea as above but with a crucial twist. Specifically, to achieve full succinctness,
we use a linearized garbling scheme [GS18] in place of Yao’s garbling scheme. Informally, a lin-
earized garbled circuit helps in “flattening” the underlying circuit which may have large width into
a circuit with width 1. Intuitively, such a flattening would be helpful as the size of intermediate
obfuscations may not have to grow with the width of the circuit (which is proportional to the space
complexity). In the rest of the overview, we give an informal description of the linearlized garbled
circuit, state its properties and explain the combinatorial pebbling game that forms the main crux
of the proof. This approach allows us to achieve a simpler construction than Koppula, Lewko and
Waters [KLW15].

Linearized Garbled Circuits. To understand the concept of linearized garbled circuits3, it is
best to view the circuit C as a sequence of step circuits. In more details, we will consider C as a
sequence of step circuits along with a database/memory D. The i-th step circuit implements the
i-th gate (with some topological ordering of the gates) in the circuit C. The database D is initially
loaded with the input x and contents of the database represent the state of the computation. That
is, the snapshot of the database before the evaluation of the i-th step circuit contains the output
of every gate g < i in the execution of C on input x. The i-th step circuit reads contents from
two pre-determined locations in the database and writes a bit to location i. The bits that are read

1The simulated mode corresponds to the distribution of the garbled encryption table wherein all the entries of the
garbled gate table encrypt the label corresponding to the bit 0 instead of encrypting the label corresponding to the
output of the gate.

2In particular, the obfuscated circuit in the intermediate hybrid must encode the outputs of all the gates that are
in the input dependent simulation mode.

3This paragraph is taken verbatim from [GS18].
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correspond to the values in the input wires for the i-th gate. The output of the circuit is easily
derived from the contents of the database at the end of the computation.

To garble the circuit C, we must garble each of the step circuits and the database D. To draw
a parallel with the Yao’s garbling scheme, the garbled encryption tables are now replaced with
garbled step circuits. Furthermore, we can think of the distributions wherein a step circuit is in
real mode (or honestly generated mode), or in input dependent simulation mode, or in simulated
mode as natural extensions of the same notions for a garbled gate.

Now we are ready to state the properties of a linearized garbled circuit. We say a garbling
scheme to be linearized if it satisfies the following two properties:

1. Rule A: A step circuit can be changed from the real mode to an input dependent simulation
mode (or, vice-versa) if the previous step circuit is in input dependent simulation mode. This
restriction however, does not apply to the first step circuit i.e., it can always be changed from
real to input dependent simulation mode (or, vice-versa).

2. Rule B: A step circuit can be changed from input dependent simulation mode to the sim-
ulated mode if the previous step circuit is in input dependent simulation mode and all the
subsequent step circuits are in simulated mode. This rule must be contrasted with the corre-
sponding rule for Yao’s garbled circuits wherein we must maintain all the gates which fan-out
from this particular gate in input dependent simulation mode.

Garg and Srinivasan [GS18] constructed such a linearized garbling scheme from updatable laconic
oblivious transfer [CDG+17]. We will now show that how this linearized garbling structure is
helpful in obtaining a fully succinct randomized encoding scheme.

Pebbling Game. The simulator for our construction of succinct randomized encoding is exactly
same as in the previous constructions [CHJV15, BGL+15]. In particular, it obfuscates a circuit
that outputs garbled step circuits in the simulated mode. In the real world distribution, all the
step circuits are garbled honestly whereas in the simulated distribution all the step circuits are
garbled in the simulated mode. The goal is to change all the step circuits from the real mode to the
simulated mode where in each step/hybrid, we can use either one of the above two rules to change
the configuration of a particular gate. In order to keep the size of the intermediate obfuscations
small, we need to minimize the number of step circuits that are present in the input dependent
simulation mode. This is because for every step circuit that is present in the input dependent
simulation mode, we must hardcode the output of the gate in the obfuscation and hence the size
of the obfuscation grows with this number. These requirements can be abstractly modeled as the
following pebbling game whose description is taken verbatim from [GS18].

Consider the positive integer line 1, 2, . . . N . We are given pebbles of two colors: gray and black .
A black pebble corresponds to a step circuit in the simulated mode and a gray pebble corresponds to
a step circuit in the input dependent simulation mode. A position without any pebble corresponds
to real garbling. We can place the pebbles on this positive integer line according to the following
two rules:

Rule A: We can place or remove a gray pebble in position i if and only if there is a gray pebble in
position i− 1. This restriction does not apply to position 1: we can always place or remove
a gray pebble at position 1.
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Rule B: We can replace a gray pebble in position i with a black pebble as long as all the positions
> i have black pebbles and there is a gray pebble in position i− 1 or if i = 1.

Optimization goal of the pebbling game. The goal is to pebble the line [1, N ] such that every
position has a black pebble while minimizing the number of gray pebbles that are present on the
line at any point in time.

Any strategy for the above pebbling game that uses a maximum of ` gray pebbles gives a
randomized encoding scheme where the time to encode grows with `. We note that the same
pebbling game was considered in the work of [GS18] in the context of constructing adaptive garbled
circuits with optimal online complexity. Using the pebbling strategy considered in their work (that
uses logN gray pebbles), we give a construction of randomized encoding scheme where the time
to encode grows only with poly(|M |, |x|, λ, log T ) where T is the running time of the computation.
This gives us the desired succinctness.

3 Preliminaries

Let λ denote the security parameter. A function µ(·) : N → R+ is said to be negligible if for any
polynomial poly(·) there exists λ0 ∈ N such that for all λ > λ0 we have µ(λ) < 1

poly(λ) . For a

probabilistic algorithm A, we denote A(x; r) to be the output of A on input x with the content
of the random tape being r. When r is omitted, A(x) denotes a distribution. For a finite set S,
we denote x ← S as the process of sampling x uniformly from the set S. We will use PPT to
denote Probabilistic Polynomial Time. We denote [a] to be the set {1, . . . , a} and [a, b] to be the
set {a, a + 1, . . . , b} for a ≤ b and a, b ∈ Z. For a binary string x ∈ {0, 1}n, we will denote the ith

bit of x by xi. We assume without loss of generality that the length of the random tape used by
all cryptographic algorithms is λ. We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function.

3.1 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [Yao82, Yao86, AIK04] with selective
security (see Lindell and Pinkas [LP09] and Bellare et al. [BHR12] for a detailed proof and further
discussion). A garbling scheme for circuits is a tuple of PPT algorithms (GarbleCkt,EvalCkt). Very
roughly, GarbleCkt is the circuit garbling procedure and EvalCkt is the corresponding evaluation
procedure. We use a formulation where input labels for a garbled circuit are provided as input to
the garbling procedure rather than generated as output. (This simplifies the presentation of our
construction.) More formally:

• C̃ ← GarbleCkt
(
1λ, C, {labw,b}w∈[n],b∈{0,1}

)
: GarbleCkt takes as input a security parameter λ,

a circuit C, and input labels labw,b where w ∈ [n] ([n] is the set of input wires to the circuit

C) and b ∈ {0, 1}. This procedure outputs a garbled circuit C̃. We assume that for each w, b,
labw,b is chosen uniformly from {0, 1}λ.

• y ← EvalCkt
(
C̃, {labw,xw}w∈[n]

)
: Given a garbled circuit C̃ and a sequence of input labels

{labw,xw}w∈[n] (referred to as the garbled input), EvalCkt outputs a string y.
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Correctness. For correctness, we require that for any circuit C, input x ∈ {0, 1}|[n]| and input
labels {labw,b}w∈[n],b∈{0,1} we have that:

Pr
[
C(x) = EvalCkt

(
C̃, {labw,xw}w∈[n]

)]
= 1

where C̃← GarbleCkt
(
1λ, C, {labw,b}w∈[n],b∈{0,1}

)
.

Selective Security. For security, we require that there exists a PPT simulator SimCkt such that
for any circuit C and input x ∈ {0, 1}|[n]|, we have that{

C̃, {labw,xw}w∈[n]
}

c
≈
{
SimCkt

(
1λ, 1|C|, C(x), {labw,xw}w∈[n]

)
, {labw,xw}w∈[n]

}
where C̃ ← GarbleCkt

(
1λ, C, {labw,b}w∈[n],b∈{0,1}

)
and for each w ∈ [n] and b ∈ {0, 1} we have

labw,b ← {0, 1}λ. Here
c
≈ denotes that the two distributions are computationally indistinguishable.

Theorem 3.1 ([Yao86, LP09]) Assuming the existence of one-way functions, there exists a con-
struction of garbling scheme for circuits.

3.2 Updatable Laconic Oblivious Transfer

In this subsection, we recall the definition of updatable laconic oblivious transfer from [CDG+17].

Definition 3.2 ([CDG+17]) An updatable laconic oblivious transfer consists of the following al-
gorithms:

• crs← crsGen(1λ) : It takes as input the security parameter 1λ (encoded in unary) and outputs
a common reference string crs.

• (d, D̂) ← Hash(crs, D) : It takes as input the common reference string crs and database D ∈
{0, 1}∗ as input and outputs a digest d and a state D̂. We assume that the state D̂ also
includes the database D.

• d∗ ← HashUpdate(crs, d, (L, b), aux) : It takes as input the common reference string crs, a
digest d, position L ∈ N , a bit b and some auxiliary information of size poly(log |D|, λ) and
outputs d∗.

• e ← Send(crs, d, L,m0,m1) : It takes as input the common reference string crs, a digest d, a
location L ∈ N and two messages m0,m1 ∈ {0, 1}p(λ) and outputs a ciphertext e.

• m ← ReceiveD̂(crs, e, L) : This is a RAM algorithm with random read access to D̂. It takes
as input a common reference string crs, a ciphertext e, and a database location L ∈ N and
outputs a message m.

• ew ← SendWrite(crs, d, L, b, {mj,0,mj,1}|d|j=1) : It takes as input the common reference string
crs, a digest d, a location L ∈ N, a bit b ∈ {0, 1} to be written, and |d| pairs of messages

{mj,0,mj,1}|d|j=1, where each mj,c is of length p(λ) and outputs a ciphertext ew.
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• {mj}|d|j=1 ← ReceiveWriteD̂(crs, L, b, ew) : This is a RAM algorithm with random read/write

access to D̂. It takes as input the common reference string crs, a location L, a bit b ∈ {0, 1}
and a ciphertext ew. It updates the state D̂ (such that D[L] = b) and outputs messages

{mj}|d|j=1.

We require an updatable laconic oblivious transfer to satisfy the following properties.

Correctness: We require that for any database D of size at most M = poly(λ), any memory
location L ∈ [M ], any pair of messages (m0,m1) ∈ {0, 1}p(λ) where p(·) is a polynomial that

Pr

m = mD[L]

crs ← crsGen(1λ)

(d, D̂) ← Hash(crs, D)
e ← Send(crs, d, L,m0,m1)

m ← ReceiveD̂(crs, e, L)

 = 1,

Correctness of Hash updates: We require that for any database D of size M = poly(λ), any
memory location L ∈ [M ], any bit b ∈ {0, 1}, we require HashUpdate(crs, d, (L, i), aux) to be
same as Hash(crs, D∗) where D∗ is same as D except that D∗[L] = b. Here, aux corresponds
to an auxiliary information that is specific to position L.

Correctness of Writes: Let database D be of size at most M = poly(λ) and let L ∈ [M ] be any
memory location. Let D∗ be a database that is identical to D except that D∗[L] = b. For any
sequence of messages {mj,0,mj,1}j∈[λ] ∈ {0, 1}p(λ) we require that

Pr


m′j = mj,d∗j

∀j ∈ [|d|]

crs ← crsGen(1λ)

(d, D̂) ← Hash(crs, D)

(d∗, D̂∗) ← Hash(crs, D∗)

ew ← SendWrite
(
crs, d, L, b, {mj,0,mj,1}|d|j=1

)
{m′j}

|d|
j=1 ← ReceiveWriteD̂(crs, L, b, ew)

 = 1,

Sender Privacy: There exists a PPT simulator Sim`OT such that the for any non-uniform PPT
adversary A = (A1,A2) there exists a negligible function negl(·) s.t.,∣∣Pr[SenPrivExptreal(1λ,A) = 1]− Pr[SenPrivExptideal(1λ,A) = 1]

∣∣ ≤ negl(λ)

where SenPrivExptreal and SenPrivExptideal are described in Figure 1.

Sender Privacy for Writes: There exists a PPT simulator Sim`OTW such that the for any non-
uniform PPT adversary A = (A1,A2) there exists a negligible function negl(·) s.t.,∣∣Pr[WriSenPrivExptreal(1λ,A) = 1]− Pr[WriSenPrivExptideal(1λ,A) = 1]

∣∣ ≤ negl(λ)

where WriSenPrivExptreal and WriSenPrivExptideal are described in Figure 2.

Efficiency: The algorithm Hash runs in time |D|poly(log |D|, λ). The algorithms Send, SendWrite,
Receive, ReceiveWrite run in time poly(log |D|, λ).
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SenPrivExptreal[1λ,A]

1. crs← crsGen(1λ).

2. (D,L,m0,m1, st)← A1(crs).

3. (d, D̂)← Hash(crs, D).

4. Output A2(st,Send(crs, d, L,m0,m1)).

SenPrivExptideal[1λ,A]

1. crs← crsGen(1λ).

2. (D,L,m0,m1, st)← A1(crs).

3. (d, D̂)← Hash(crs, D).

4. Output A2(st,Sim`OT(crs, D, L,mD[L])).

Figure 1: Sender Privacy Security Game

WriSenPrivExptreal[1λ,A]

1. crs← crsGen(1λ).

2. (D,L, b, {mj,0,mj,1}j∈[λ], st)← A1(crs).

3. (d, D̂)← Hash(crs, D).

4. ew ← SendWrite(crs, d, L, b,

{mj,0,mj,1}|d|j=1)

5. Output A2(st, ew).

WriSenPrivExptideal[1λ,A]

1. crs← crsGen(1λ).

2. (D,L, b, {mj,0,mj,1}j∈[λ], st)← A1(crs).

3. (d, D̂)← Hash(crs, D).

4. (d∗, D̂∗)← Hash(crs, D∗) where D∗ be a database
that is identical to D except that D∗[L] = b.

5. ew ← Sim`OTW(crs, D, L, b,
{mj,d∗j

}j∈[λ])

6. Output A2(st, ew).

Figure 2: Sender Privacy for Writes Security Game

Theorem 3.3 ([CDG+17, DG17, BLSV18, DGHM18]) Assuming either the Computational
Diffie-Hellman assumption or the Factoring assumption or the Learning with Errors assumption,
there exists a construction of updatable laconic oblivious transfer.

Remark 3.4 We note that the security requirements given in Definition 3.2 is stronger than the
one in [CDG+17] as we require the crs to be generated before the adversary provides the database
D and the location L. However, the constructions given in [CDG+17, DG17, BLSV18, DGHM18]
already satisfies this stronger definition and this was noted in [GS18].

A Note on Hash Updates. The construction of updatable Laconic Oblivious Transfer given
in [CDG+17] uses a Merkle Hash to hash the database. Thus, to compute the hash we need the
contents of the entire database to be specified. But in our construction of succinct randomized
encodings, we need a methodology to compute the Merkle tree “on the fly.” More specifically, let
us consider a scenario wherein we are not initially specified the entire database D ∈ {0, 1}M but
are only given the contents of the first n locations. We give a methodology to compute the Merkle
hash which “binds” the first n locations, keeps the other locations to be unspecified and runs in
time poly(n, λ, logM). A similar trick has been used in [OPWW15].

Let us assume that we are given a hash function H : {0, 1}2λ → {0, 1}λ. To store a database
of size M , the Merkle tree consists of M leaves where each leaf stores a λ bit string which either
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corresponds to the bit 0, or the bit 1 or a special symbol ⊥ (using some canonical encoding). We
construct the Merkle tree in a bottom-up fashion by labeling all the internal nodes. The label of
the root node gives the hash value. We label each internal node of the Merkle tree with children
given labels lab` and labr as follows:

• If both lab` and labr are given labels ⊥, then node is given ⊥ as its label.

• Otherwise, the node is given H(lab`‖labr) as the label where ‖ denotes concatenation.

Note that if all the locations are unspecified then the label of the root corresponds to ⊥. For each
additional location L that is specified, we just fix the auxiliary information aux to be labels of the
all the nodes in the root to the leaf given by L along with their siblings. Note we only need to
maintain the state of all labels which are not equal ⊥ when performing an hash update. Given this
information, we can easily recompute the label of the root. This gives the required methodology
to update the hash value in time poly(n, λ, logM) where n is the number of specified locations.

3.3 Puncturable Pseudorandom Function

We recall the notion of puncturable pseudorandom function from [SW14]. The construction of pseu-
dorandom function given in [GGM86] satisfies the following definition [BW13, KPTZ13, BGI14].

Definition 3.5 A puncturable pseudorandom function PPRF is a tuple of PPT algorithms (KeyGenPPRF,
PRF,Punc) with the following properties:

• Efficiently Computable: For all λ and for all S ← KeyGenPPRF(1λ), PRFS : {0, 1}λ →
{0, 1}λ is polynomial time computable.

• Functionality is preserved under puncturing: For all λ, for all y ∈ {0, 1}λ and ∀x 6= y,

Pr[PRFS{y}(x) = PRFS(x)] = 1

where S ← KeyGenPPRF(1λ) and S{y} ← Punc(S, y).

• Pseudorandomness at punctured points: For all λ, for all y ∈ {0, 1}λ, and for all poly
sized adversaries A

|Pr[A(PRFS(y), S{y}) = 1]− Pr[A(Uλ, S{y}) = 1]| ≤ negl(λ)

where S ← KeyGenPPRF(1λ), S{y} ← Punc(S, y) and Uλ denotes the uniform distribution
over {0, 1}λ.

Remark 3.6 We can generalize the puncturing procedure to puncture at multiple points y1, . . . , ym.
The security requirement now is that even given the punctured key S{y1, . . . , ym}, the PRF evalu-
ations on inputs y1, . . . , ym are computationally indistinguishable to random. We note that in the
case of multiple puncturings, the size of the punctured key S{y1, . . . , ym} grows polynomially in m
and λ.
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3.4 Succinct Circuits

We now recall the definition of succinct circuits. Most of this subsection is taken verbatim from
[BGL+15].

Definition 3.7 (Succinct Circuits) Let C : {0, 1}n → {0, 1} be a circuit with N − n binary
gates. The gates of the circuit are numbered as follows. The input gates are given the numbers
{1, . . . , n}. The intermediate gates are numbered {n + 1, n + 2, . . . , N − 1} such that a gate that
receives its input from gates i and j is given a number greater than i and j. The output gate is
numbered N . Each gate g ∈ [n + 1, N ] is described by a tuple (i, j) ∈ [g − 1]2 where outputs of
gates i and j serves as inputs to gate g.

We say that C is succinctly represented by a circuit Csc, if Csc given a gate label g ∈ [n+ 1, N ]
gives out its description (i, j) as well as the binary operation fg : {0, 1}× {0, 1} → {0, 1} computed
by the gate. Furthermore, |Csc| < |C|.

We now recall the lemma from [PF79] that converts any uniform Turing machine to a succinct
circuit.

Lemma 3.8 ([PF79]) Any Turing machine M , which for inputs of size n, requires a maximal
running time t(n) and space s(n), can be converted in time O(|M |+ log(t(n))) to a circuit Csc that
succinctly represents C : {0, 1}n → {0, 1} where C computes the same function as M (for inputs of
size n), and is of size Õ(t(n) · s(n)).

3.5 Succinct Randomized Encoding

We now recall the definition of succinct randomized encoding.

Definition 3.9 ([BGL+15]) A succinct randomized encoding (SRE) consists of two algorithms
(sRE.Enc, sRE.Dec) with the following syntax:

• M̂x,t ← sRE.Enc(1λ,M, x, t) : takes as input the security parameter λ, a machine M , input x,

time bound (encoded in binary) t and outputs the randomized encoding M̂x,t.

• y ← sRE.Dec(M,M̂x,t) : takes as input the machine M and the randomized encoding M̂x,t

and deterministically computes the output y.

We require the scheme to satisfy the following three properties.

• Correctness: For every x and M such that M halts on input x within t steps, it holds that
y = M(x) with probability 1 over the random coins of sRE.Enc.

• Security: there exists a PPT simulator Sim such that for any poly size adversary A there
exists a negligible negl(·) such that for all λ ∈ N, machine M , input x, and time bound t:∣∣∣Pr[A(M̂x,t) = 1]− Pr[A(Sim(1λ, y,M, t, 1|x|)) = 1]

∣∣∣ ≤ negl(λ)p(t)

where M̂x,t ← sRE.Enc(1λ,M, x, t), y is the output of M(x) after t steps and p(·) is a fixed
polynomial that does not depend on (M,x, t).

• Succinctness: The running time of sRE.Enc and the size of the encoding M̂x,t are poly(|M |, |x|, log t, λ).
The running time of sRE.Dec is poly(t, λ).
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3.6 Indistinguishability Obfuscation

We now define indistinguishability obfuscator from [BGI+12, GGH+13].

Definition 3.10 A PPT algorithm iO is an indistinguishability obfuscator for a family of circuits
{Cλ}λ that satisfies the following properties:

• Correctness: For all λ and for all C ∈ Cλ and for all x,

Pr[iO(C)(x) = C(x)] = 1

where the probability is over the random choices of iO.

• Security: For all C0, C1 ∈ Cλ such that for all x, C0(x) = C1(x) and for all poly sized
adversaries A,

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(λ)

We now give the definition of a succinct indistinguishability obfuscation.

Definition 3.11 (Succinct Indistinguishability Obfuscator [BGL+15]) A succinct indistin-
guishability obfuscator for a machine class {Mλ}λ∈N consists of a uniform PPT machine iOM that
works as follows:

• iOM takes as input the security parameter 1λ, the machine M to obfuscate, and an input
length n and time bound t for M .

• iOM outputs a machine obM which is an obfuscation of M corresponding to input length n
and time bound t. obM takes as input x ∈ {0, 1}n and t′ ≤ t.

The scheme should satisfy the following three requirements.

• Correctness: For all security parameters λ ∈ N, for all M ∈Mλ, for all inputs x ∈ {0, 1}n,
time bounds t and t′ ≤ t, let y be the output of M on t′ steps, then we have that:

Pr[obM(x, t′) = y : obM ← iOM(1λ, 1n, 1log t,M)] = 1

• Security: For any (not necessarily uniform) PPT distinguisher D, there exists a negligible
function α such that the following holds: For all security parameters λ ∈ N, time bounds t,
and pairs of machines M0,M1 ∈ Mλ of the same size such that for all running times t′ ≤ t
and for all inputs x, M0(x) = M1(x) when M0 and M1 are executed for time t′, we have that:∣∣∣Pr

[
D(iOM(1λ, 1n, 1log t,M0)) = 1

]
− Pr

[
D(iOM(1λ, 1n, 1log t,M1)) = 1

]∣∣∣ ≤ α(λ)

• Efficiency and Succinctness: We require that the running time of iOM and the length of
its output, namely the obfuscated machine obM , is poly(|M |, log t, n, λ). We also require that
the obfuscated machine on input x and t′ runs in time poly(|M |, t′, n, log t, λ) (or poly(t′, λ)
for short).
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4 Construction of Succinct Randomized Encoding

In this section, we give a construction of succinct randomized encoding for succinctly describable
Turing machines. More formally, we show that:

Theorem 4.1 Assuming the existence of indistinguishability obfuscation, one-way functions and
updatable laconic oblivious transfer, there exists a construction of succinct randomized encoding.

As shown in [BGL+15], a succinct randomized encoding with sub-exponential security gives a
construction of succinct iO for Turing machines. We sketch the details of this transformation in
Appendix A. We give the formal description of our construction of succinct randomized encodings
in Figure 3 and give an overview below.

Overview. Let us start with an overview of the encoding scheme. The encoding procedure takes
as input a description of the Turing machine M and an input x on which the machine has to be
evaluated. The procedure first reduces M to a circuit Csc (as given in Lemma 3.8) that succinctly
represents the circuit C which computes the same function as that of M . Let C consist of N − n
binary gates with N being the output gate. Each gate g ∈ [n + 1, N ] is described by a tuple
(i, j, fg) ∈ [g − 1]2 where outputs of gates i and j serves as inputs to gate g and fg is the binary
function computed by gate g. Given an input g ∈ [n + 1, N ], the succinct circuit Csc outputs
(i, j, fg).

For our construction, we consider an alternate view of the circuit C. We view the circuit C
as a sequence of step circuits SCn+1, . . . ,SCN along with a database D. The database is initially
loaded with the input x and each step circuit writes a single bit to the database. More precisely,
for each g ∈ [n+ 1, N ], the step circuit SCg implements the functionality of the gate g and writes
the output of that gate to position g in the database. Further, the step circuits access the database
via an updatable laconic OT. Specifically, the step circuit SCg takes as input the digest of the
database where the first g − 1 cells are filled appropriately and the rest of the positions being ⊥.
Using the digest, it reads the contents of the database in positions i and j (where (i, j) are the
inputs to gate g) using the Send function of laconic OT. Once it has read the contents of those two
locations, it applies the function fg on those two bits and writes the output to the location g using
the SendWrite function. It passes on the updated digest to the next circuit SCg+1. Thus, each of
the step circuits faithfully model the computation of the corresponding gate and the contents in
location N of the database gives the output of the circuit C.

Let us now explain how the encoding procedure uses the above view of the circuit. The encoding
procedure obfuscates the function Gate (formally described in Figure 4). The function Gate on input
g ∈ [n+ 1, N ], uses the succinct circuit Csc to get the description of gate g. Next, it constructs the
step circuit SCg (formally described in Figure 5) and garbles the circuit (the randomness and the
labels are derived using a puncturable pseudorandom function). The Gate function finally outputs

the garbled step circuit S̃Cg. The output of the encoding function is this obfuscation along with
the labels corresponding to the initial digest of the database (where the input is loaded).

Given an obfuscation of the function Gate, a decoder can run this obfuscation on every gate
g ∈ [n+ 1, N ] to obtain the garbled step circuit S̃Cg. Given the labels corresponding to the initial
digest, the decoder evaluates each of the garbled step circuits from n+1 to N (labels corresponding
to the gth step circuit are output by the (g − 1)th circuit). At the end of the computation, the
content of the database at location N gives the output.
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However, there is one technical issue. Recall that the laconic OT is not guaranteed to hide
the contents of the database. In order to hide the contents of the database, we use a one-time
pad to mask each bit that is written. This one time pad is succinctly derived using a puncturable
pseudorandom function.

sRE.Enc(1λ,M, x, t): On input a Turing machine M , an input x ∈ {0, 1}n and a time bound t do:

1. Reduce M to a succinct circuit Csc from Lemma 3.8 that describes the circuit C : {0, 1}n →
{0, 1} computing the same function as that of M . Let N − n be the number of binary gates
in C.

2. Sample crs← crsGen(1λ) and three PRF keys S,R,K ← KeyGenPPRF(1λ). We will truncate
the output length of PRFR(·) to one bit.

3. For each k ∈ [λ] and b ∈ {0, 1}, compute lab1k,b = PRFK((1, k, b)).

4. Compute iO(pad`(Gate[Csc, crs, S,R,K])) where the circuit Gate is described in Figure 4 and
pad`(·) pads the circuit to size ` which will be specified in the proof.

5. For each i ∈ [n], set yi = xi ⊕ PRFR(i).

6. Set d = ⊥ and for each i ∈ [n],

(a) Recompute d = HashUpdate(crs, d, (i, yi), aux) where aux is the auxiliary information for
updating position i.

7. Compute rN = PRFR(N).

8. Output
(
iO(pad`(Gate[Csc, crs, S,R,K])), {lab1k,dk}k∈[λ], {yi}i∈[n], rN

)
.

sRE.Dec(M,M̂x,t) : On input the machine M and the randomized encoding M̂x,t do:

1. Initialize the Merkle tree D̂ with the leaf node i storing bit yi for every i ∈ [n]. Initialize all
other leaves with special symbol ⊥.

2. For each g ∈ [n+ 1, N ] do:

(a) S̃Cg := iO(pad`(Gate[Csc, crs, S,R,K]))(g).

3. Set lab = {lab1k,dk}k∈[λ].

4. for each g from n+ 1 to N do:

(a) Let (i, j, fg) be the description of gate g.

(b) Compute (γ, e) := ReceiveD̂(crs,ReceiveD̂(crs,EvalCkt(S̃Cg, lab), i), j).

(c) Set lab := ReceiveWriteD̂(crs, g, γ, e).

5. Recover the contents of the leaves D from the final state D̂.

6. Output DN ⊕ rN .

Figure 3: Succinct Randomized Encoding

Correctness. This argument is taken verbatim from [GS18]. Let Dg∗ be the contents of the
database at the beginning of g∗-th iteration of the for loop in AdpEvalCkt. We first argue via an
inductive argument that for each gate g∗ ∈ [1, N ], Dg∗+1,g is the output of gate g masked with rg
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Gate

Input: A gate g ∈ [n+ 1, N ].
Hardcoded: The circuit Csc, common reference string crs, a triplet of PRF keys (S,R,K).

1. Run Csc on input g to obtain (i, j, fg).

2. Set ri = PRFR(i), rj = PRFR(j) and rg = PRFR(g).

3. Compute labgk,b = PRFK(g, k, b) and labg+1
k,b = PRFK(g + 1, k, b) for each k ∈ [λ] and b ∈ {0, 1}.

(We use {labgk,b} to denote {labgk,b}k∈[λ],b∈{0,1}.)

4. Compute (where the step-circuit SC is described in Figure 5)

S̃Cg ← GarbleCkt
(

1λ,SC[crs, (ri, rj , rg), (i, j), fg, {labg+1
k,b }, 0], {labgk,b};PRFS(g)

)
.

5. Output S̃Cg.

Figure 4: Description of Gate

Step Circuit SC

Input: A digest d.
Hardcoded: The common reference string crs, a triplet of masking bits (ri, rj , rg), a description (i, j)
of gate g, a binary function fg : {0, 1}2 → {0, 1}, a set of labels {labk,b} and a bit τ (τ = 1 case is only
relevant for the proof).

1. Compute eb ← SendWrite(crs, d, g, b, {labk,0, labk,1}k∈[λ]) for b ∈ {0, 1}.

2. Define for all α, β ∈ {0, 1}, γ(α, β) :=

{
fg(α⊕ ri, β ⊕ rj)⊕ rg if τ = 0

rg if τ = 1

3. Generate
c0 ← Send

(
crs, d, j, (γ(0, 0), eγ(0,0)), (γ(0, 1), eγ(0,1))

)
,

c1 ← Send
(
crs, d, j, (γ(1, 0), eγ(1,0)), (γ(1, 1), eγ(1,1))

)
.

4. Output Send (crs, d, i, c0, c1)

Figure 5: Description of the Step Circuit

for every g ∈ [1, g∗]. Given this, the correctness follows by setting g∗ := N and observing that the
DN+1,N is unmasked using rN in Step 7 of AdpEvalCkt.

The base case is g∗ = n which is clearly true since in the beginning Dn+1 is set as (r[1,n] ⊕
x||⊥N−n). In order to prove the inductive step for a gate g∗ (with description (fg∗ , i, j)), we now ar-
gue that that the γ recovered in Step 4.(b) of AdpEvalCkt corresponds to fg∗(Dg∗,i ⊕ riDg∗,j ⊕ rj)⊕
rg∗ which by inductive hypothesis corresponds to output of the gate g∗ masked with rg∗ . This is
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shown as follows.

(γ, e) := ReceiveD̂(crs,ReceiveD̂(crs,EvalCkt(S̃Cg, lab), i), j)

= ReceiveD̂(crs,ReceiveD̂(crs, Send (crs, d, i, c0, c1) , i), j)

= ReceiveD̂(crs, cDg∗,i , j)

= ReceiveD̂
(
crs,Send

(
crs, d, j, (γ(Dg∗,i, 0), eγ(Dg∗,i,0)), (γ(Dg∗,i, 1), eγ(Dg∗,i,1))

)
, j
)

=
(
γ(Dg∗,i, Dg∗,j), eγ(Dg∗,i,Dg∗,j)

)
=

(
fg∗(Dg∗,i ⊕ riDg∗,j ⊕ rj)⊕ rg∗ , eNAND(Dg∗,i⊕ri,Dg∗,j⊕rj)⊕rg∗

)

5 Security Proof

In this section, we prove that the construction presented in the Section 4 satisfies security property
given in Definition 3.9. In Subsection 5.1, we start by defining circuit configurations. Next, in
Subsection 5.2 we show that both the real world garbling procedure and the simulated distributions
are special cases of this circuit configuration. Finally, in the rest of the subsection we show that
the real garbling and the simulated distributions are indistinguishable.

5.1 Circuit Configuration

Our proof of security proceeds via a hybrid argument over different circuit configurations which
we describe in this section. A circuit configuration denoted by conf = (I, i) consists of a set
I ⊆ [n+1, N ] and an index i ∈ [n+1, N ]. Intuitively, each circuit configuration defines a distribution

of the randomized encoding M̂ conf
x,t . Let us now explain the semantics of the set I and the index i.

Recall that from our construction described in Figure 3, iO(pad`(Gate)) outputs S̃Cg when
given a gate g ∈ [n + 1, N ] as input. Intuitively, a configuration of a circuit defines a particular

distribution of S̃Cg for each g ∈ [n + 1, N ]. In particular, for each gate g, the distribution of S̃Cg
can be in one of the three modes: White mode, Gray mode and the Black mode. We say that S̃Cg
is said to be in White mode if for the distribution of S̃Cg is same as the honest garbling procedure

given in Figure 4. We say that S̃Cg is in Gray mode if its distribution depends only on the output

of the gate g when the circuit C is evaluated with input x. We say that S̃Cg is in Black mode if its
distribution is independent of the input x. Looking ahead, initially all the step circuits will be in
White mode and the goal will be to convert all of them to Black in the simulation. We will achieve
this in the reverse order i.e., we first change SCN to Black mode and then change SCN−1 and so
on. The index i (given as part of defining the circuit configuration) is such that for all g > i the

distribution of the garbled step circuit S̃Cg is in Black mode. The subset I indicates the set of gates

g such that the distribution of the garbled step circuit S̃Cg is in Gray mode. The rest of the garbled

step circuits S̃Cg where g 6∈ I and g < i are generated in White mode.
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Simulation in a valid configuration. In Figure 6, we describe the simulated encoding proce-
dure SimsRE.Enc for any given configuration conf. Note that these simulated encoding function also
takes x as input whereas the ideal world simulation does not. We describe our simulator functions
with these additional inputs so that it captures simulation in all of our intermediate hybrids. We
note that final ideal world simulation does not use these values.

SimsRE.Enc(1λ,M, x, t): On input a Turing machine M , an input x ∈ {0, 1}n and a time bound t do:

1. Reduce M to a succinct circuit Csc from Lemma 3.8 that describes the circuit C : {0, 1}n →
{0, 1}. Let N − n be the number of binary gates in C.

2. Sample crs← crsGen(1λ) and three PRF keys S,R,K ← KeyGenPPRF(1λ). We will truncate
the output length of PRFR(·) to one bit.

3. Notation: For g ∈ [n+ 1, N + 1], we let Dg be such that

Dg,w =


xw ⊕ PRFR(w) w ≤ n,
Ew ⊕ PRFR(w) n+ 1 ≤ w < g,

⊥ otherwise,

where Ew is the bit assigned to wire w of the circuit C computed on input x. Finally, we
let dg be the digest of Dg (i.e., (dg, ·) := Hash(crs, Dg)) and dg,k be the kth bit of dg.

4. For each k ∈ [λ] and b ∈ {0, 1}, compute lab1k,b = PRFK((1, k, b)).

5. for each g from N down to n+ 1 such that g ∈ I:

(a) Set e← Sim`OTW(crs, Dg, g,Dg+1,g, {labg+1
k,dg+1,k

}k∈[λ]).

(b) Set outg ← Sim`OT (crs, Dg, i,Sim`OT (crs, Dg, j, e))

6. Compute iO(pad`(SimGate[Csc, crs, S,R,K, (I, i), {outg, dg}g∈I ])) where the circuit SimGate
is described in Figure 7 and pad`(·) pads the circuit to size ` which will be specified later.

7. For each w ∈ [n], set yw = PRFR(w) if w > i and yw = xw ⊕ PRFR(w) otherwise.

8. Set d = ⊥ and for each w ∈ [n],

(a) Recompute d = HashUpdate(d, aux, w, yw) where aux is the auxiliary information for
updating position w.

9. If i < N then compute r′N = PRFR(N)⊕M(x); else, compute r′N = PRFR(N).

10. Output
(
iO(pad`(Gate[Csc, S,R,K])), {labk,dk}k∈[λ], {yi}i∈[n], r

′
N

)
.

Figure 6: Succinct Randomized Encoding in configuration conf = (I, i).

5.2 Our Hybrids

For every circuit configuration conf = (I, i), we define Hybridconf to be a distribution of M̂x,t as given
in Figure 6. We start by observing that both real world and ideal distribution from Definition 3.9
can be seen as instance of Hybridconf where conf = (∅, N) and conf = (∅, 0), respectively. In other
words, the real world distribution corresponds to having all gates in White mode and the ideal
world distribution corresponds to having all gates in Black mode. The goal is to move from the real
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SimGate

Input: A gate g ∈ [n+ 1, N ].
Hardcoded: The circuit Csc, common reference string crs, a triplet of PRF keys (S,R,K), the config-
uration (I, i), {outg}g∈I and {dg}g∈I .

1. Run Csc on input g to obtain fg, (i, j).

2. Set ri = PRFR(i), rj = PRFR(j) and rg = PRFR(g).

3. Compute labgk,b = PRFK(g, k, b) and labg+1
k,b = PRFK(g + 1, k, b) for each k ∈ [λ] and b ∈ {0, 1}.

(We use {labgk,b} to denote {labgk,b}k∈[λ],b∈{0,1}.)

4. If g ≤ i and g 6∈ I then compute (where the step-circuit SC is described in Figure 5)

S̃Cg ← GarbleCkt
(

1λ,SC[crs, (ri, rj , rg), (i, j), fg, {labg+1
k,b }, 0], {labgk,b};PRFS(g)

)
.

5. Else if g > i, compute

S̃Cg ← GarbleCkt
(

1λ,SC[crs, (0, 0, rg), (i, j), {labg+1
k,b }, 1], {labgk,b};PRFS(g)

)
.

6. Else, compute S̃Cg ← SimCkt

(
1λ, 1|SC|, outg, {labgk,dg,k}k∈[λ];PRFS(g)

)
.

7. Output S̃Cg.

Figure 7: Description of SimGate

world distribution to the ideal world distribution while minimizing the maximum number of gates
in the Gray mode in any intermediate hybrid.4

5.2.1 Rules of Indistinguishability

We will now describe the two rules (we call these rule A and rule B) to move from one valid circuit
configuration conf to another valid configuration conf ′ such that Hybridconf is computationally
indistinguishable from Hybridconf′ .

Rule A: Rule A says that for any valid configuration conf we can indistinguishably change gate
g∗ in White mode to Gray mode if it is the first gate or if its predecessor is also in Gray mode.
More formally, let conf = (I, i) and conf ′ = (I ′, i′) be two valid circuit configurations and
g∗ ∈ [n+ 1, N ] be a gate such that:

• i = i′.

• g∗ 6∈ I, I ′ = I ∪ {g∗} and g∗ < i.

• Either g∗ = n+ 1 or g∗ − 1 ∈ I.

4This is because the number of gates in the Gray mode increases the circuit size of SimGate by a proportional
factor.
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conf g∗ i

conf ′ g∗ i

Figure 8: Example of Rule A

conf g∗

conf ′ g′ g∗

Figure 9: Example of Rule B

In Lemma 5.3 we show that for two valid configurations conf, conf ′ satisfying the above con-

straints we have that Hybridconf
c
≈ Hybridconf′ . Note that we can also use this rule to move a

gate g∗ from Gray mode to White mode. We refer to those invocations of the rule as inverse
A rule. Rule A is illustrated in Figure 8.

Rule B: Rule B says that for any configuration for any valid configuration conf we can indis-
tinguishably change gate g∗ in Gray mode to Black mode if all gates subsequent to g∗ is
in Black mode and the predecessor is in Gray mode. More formally, let conf = (I, g∗) and
conf ′ = (I ′, g′) be two valid circuit configurations such that:

• g∗ = g′ + 1.

• g∗ ∈ I, I ′ = I \ {g∗}.
• Either g∗ = n+ 1 or g∗ − 1 ∈ I.

In Lemma 5.4 we show that for an valid configurations conf, conf ′ satisfying the above con-

straints we have that Hybridconf
c
≈ Hybridconf′ . Rule B is illustrated in Figure 9.

5.2.2 Interpreting the rules of indistinguishability as a pebbling game

Sections 5.2.2 and 5.2.3 are taken verbatim from [GS18]. Our sequence of hybrids from the real to
the ideal world follow an optimal strategy for the following pebbling game. The two rules described
above correspond to the rules of our pebbling game below.

Consider the positive integer line n+1, n+2, . . . N . We are given pebbles of two colors: gray and
black . A black pebble corresponds to a gate in the Black (i.e., input independent simulation) mode
and a gray pebble corresponds to a gate in the Gray (i.e., input dependent simulation) mode. A
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position without any pebble corresponds to real garbling or in the White mode. We can place the
pebbles on this positive integer line according to the following two rules:

Rule A: We can place or remove a gray pebble in position i if and only if there is a gray pebble
in position i − 1. This restriction does not apply to position n + 1: we can always place or
remove a gray pebble at position n+ 1.

Rule B: We can replace a gray pebble in position i with a black pebble as long as all the positions
> i have black pebbles and there is a gray pebble in position i− 1 or if i = n+ 1.

Optimization goal of the pebbling game. The goal is to pebble the line [n+ 1, N ] such that
every position has a black pebble while minimizing the number of gray pebbles that are present on
the line at any point in time.

5.2.3 Optimal Pebbling Strategy

To provide some intuition, we start with the näıve pebbling strategy. The näıve pebbling strategy
involves starting from position n+ 1 and placing a gray pebble at every position in [n+ 1, N ] and
then replacing them with black pebbles from N to n + 1. However, this strategy uses a total of
N − n gray pebbles. Using a more clever strategy, it is actually possible to do the same using only
log(N − n) gray pebbles. We first recall the following lemma from [GPSZ17].

Lemma 5.1 ([GPSZ17]) For any integer n + 1 ≤ p ≤ n + 2k − 1, it is possible to make O((p −
n)log2 3) ≈ O((p− n)1.585) moves and get a gray pebble at position p using k gray pebbles.

Proof For completeness we give the proof. This proof is taken verbatim from [GPSZ17].
First we observe to get a gray pebble placed at p, for each i ∈ [n + 1, p − 1] there must have

been at some point a gray pebble placed at location i.
Next, we observe that it suffices to show we can get a gray pebble at position p = n + 2k − 1

for every k using O(3k) = O((p − n)log2 3) steps. Indeed, for more general p, we run the protocol
for p′ = n + 2k − 1 where k = dlog2(p − n − 1)e, but stop the first time we get a gray pebble at
position p. Since p′/p ≤ 3, the running time is at most O((p− n)log2 3).

Now for the algorithm. The sequence of steps will create a fractal pattern, and we describe the
steps recursively. We assume an algorithm Ak−1 using k−1 gray pebbles that can get a gray pebble
at position n+ 2k−1 − 1. The steps are as follows:

• Run Ak−1. There is now a gray pebble at position n+ 2k−1 − 1 on the line.

• Place the remaining gray pebble at position n + 2k−1, which is allowed since there is a
gray pebble at position n+ 2k−1 − 1.

• Run Ak−1 in reverse, recovering all of the k − 1 gray pebbles used by A. The result is that
there is a single gray pebble on the line at position n+ 2k−1.

• Now associate the portion of the number line starting at n+2k−1 +1 with a new number line.
That is, associate n+ 2k−1 + a on the original number line with n′+ a (where n′ = n+ 2k−1)
on the new number line. We now have k − 1 gray pebbles, and on this new number line, all
of the same rules apply. In particular, we can always add or remove a gray pebble from the
first position n′ + 1 = n+ 2k−1 + 1 since we have left a gray pebble at n+ 2k−1. Therefore,
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we can run Ak+1 once more on the new number line starting at n′ + 1. The end result is a
pebble at position n′ + 2k−1 − 1 = n+ 2k−1 + (2k−1 − 1) = n+ 2k − 1.

It remains to analyze the running time. The algorithm makes 3 recursive calls to Ak−1, so by
induction the overall running time is O(3k), as desired.

Using the above lemma, we now give an optimal strategy for our pebbling game.

Lemma 5.2 ([GS18]) For any N ∈ N, there exists a strategy for pebbling the line graph [n+1, N ]
according to rules A and B by using at most logN gray pebbles and making poly(N) moves.

Proof The proof is taken verbatim from [GS18].
The strategy is given below. For each g from N down to n+ 1 do:

1. Use the strategy in Lemma 5.1 to place a gray pebble in position g. Note that there exists a
gray pebble in position g − 1 as well.

2. Replace the gray pebble in position g with a black pebble. This replacement is allowed since
all positions > g have black pebbles and there is a gray pebble in position g − 1.

3. Recover all the gray pebbles by reversing the moves.

The correctness of this strategy follows by inspection and the number of moves is polynomial in N .

5.3 Proof of Indistinguishability for the Rules

In this subsection, we will use the security of underlying primitives to implement the two rules.

5.3.1 Implementing Rule A

Lemma 5.3 (Rule A) Let conf and conf ′ be two valid circuit configurations satisfying the con-
straints of rule A, then assuming the security of garbling scheme for circuits, updatable laconic

oblivious transfer, indistinguishability obfuscation and puncturable PRFs we have that Hybridconf
c
≈

Hybridconf′.

Proof We prove this via a hybrid argument.

• Hybridconf : This is our starting hybrid and is distributed as Hybrid(I,i).

• Hybrid1: In this hybrid, instead of hardwiring the PPRF keys K and S in the circuit SimGate,
we hardwire the key K that is punctured at (g∗, k, b) for every k ∈ [λ], b ∈ {0, 1} and S

punctured at g∗. We additionally hardwire {labg
∗

k,b}k∈[λ],b∈{0,1} and PRFS(g∗). This blows up
the size of the circuit by a factor poly(λ). On input g∗ − 1 and g∗, the circuit now uses the
hardwired labels/randomness instead of computing them using the PPRF.

It can be noted that the SimGate circuits in both Hybridconf and Hybrid1 computes the exact
same functionality and hence the indistinguishability between Hybridconf and Hybrid1 follows
from the security of iO.
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• Hybrid2: We make three changes to the SimGate.

– By conditions of Rule A, we have that g∗−1 ∈ I (if g∗ 6= n+1). Therefore, we note that

all the input labels {labg
∗

k,b} are not used in SimGate but only the labels corresponding

to dg∗ i.e., {labg
∗

k,dg∗,k
}k∈[λ]. We just hardwire these labels in SimGate.

– We also hardwire S̃Cg∗ (that is computed using randomness PRFS(g∗)) in SimGate instead
of generating it inside SimGate.

– We remove the hardwired randomness PRFS(g∗).

The computational indistinguishability between Hybrid2 from Hybrid1 follows from the security
of iO since the function computed by SimGate in Hybrid1 and Hybrid2 is exactly the same.

• Hybrid3 : In this hybrid, we sample the labels {labk,dg∗,k}k∈[λ] and the randomness used in

generating S̃Cg∗ uniformly at random instead of generating them as outputs of the puncturable
PRF. The computational indistinguishability between Hybrid2 and Hybrid3 follows from the
security of puncturable PRF.

• Hybrid4: In this hybrid, we generate S̃Cg∗ (that is hardwired inside SimGate) from the simu-
lated distribution. More formally, we generate

S̃Cg∗ ← Simckt(1
λ, 1|SC|, out, {labg

∗

k,dg∗,k
}k∈[λ])

where out← SC[crs, (ri, rj , rg), (i, j, fg), {labg
∗+1
k,b }, 0](dg∗).

The only change in hybrid Hybrid3 from Hybrid2 is in the generation of the garbled circuit

S̃Cg∗ and the security follows directly from the selective security of the garbling scheme.

• Hybrid5: In this hybrid, we change how the output value out hardwired in S̃Cg∗ is generated.
Recall that in Hybrid4 this value is generated by first computing c0 and c1 as in Figure 5 and
then generating out as Send (crs, d, i, c0, c1). In this hybrid, we just generate cDg∗,i and use
the laconic OT simulator to generate out. More formally, out is generated as

out← Sim`OT

(
crs, Dg∗ , i, cDg∗,i

)
.

Computational indistinguishability between hybrids Hybrid4 and Hybrid5 follows directly from
the sender privacy of the laconic OT scheme.

• Hybrid6: In this hybrid, we change how the value cDg∗,i is generated. Recall from Figure 5
that cDg∗,i is set as Send(crs, d, j, (γ(Dg∗,i, 0), eγ(Dg∗,i,0)), (γ(Dg∗,i, 1), eγ(Dg∗,i,1))). We change
the distribution of cDg∗,i to Sim`OT(crs, Dg∗ , j, eDg∗+1,g∗ ), where eDg∗+1,g∗ is sampled as in
Figure 5.

Computational indistinguishability between hybrids Hybrid6 and Hybrid5 follows directly from
the sender privacy of the laconic OT scheme. The argument is analogous to the argument of
indistinguishability between Hybrid4 and Hybrid5.
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• Hybrid7: In this hybrid, we change how eDg∗+1,g∗ is generated. More specifically, we generate
it using the simulator Sim`OTW. In other words, eDg∗+1,g

is generated as

Sim`OTW(crs, Dg∗ , g
∗, Dg∗+1,g∗ , {labg

∗+1
k,dg∗+1,k

}k∈[λ]).

Computational indistinguishability between hybrids Hybrid6 and Hybrid7 follows directly from
the sender privacy for writes of the laconic OT scheme.

• Hybrid8 − Hybrid10: In this hybrid, we reverse the changes made in Hybrid1 to Hybrid3 except

that we hardwire {outg∗ , dg∗} in SimGate and use it to generate S̃Cg∗ . The indistinguishability
between Hybrid7 to Hybrid10 follows in analogous manner to the indistinguishability between
Hybridconf to Hybrid3.

Finally, observe that hybrid Hybrid10 is the same as Hybridconf′ .

This completes the proof of the lemma. We additionally note that the above sequence of hybrids
is reversible. This implies the inverse rule A.

5.3.2 Implementing Rule B

Lemma 5.4 (Rule B) Let conf and conf ′ be two valid circuit configurations satisfying the con-
straints of rule B, then assuming the security of somewhere equivocal encryption, garbling scheme

for circuits and updatable laconic oblivious transfer, we have that Hybridconf
c
≈ Hybridconf′.

Proof We prove this via a hybrid argument starting with Hybridconf′ and ending in hybrid
Hybridconf . We follow this ordering of the hybrids as this keeps the proof very close to the proof of
Lemma 5.3.

• Hybridconf′ : This is our starting hybrid and is distributed as Hybrid(I′,g′).

• Hybrid1: In this hybrid, instead of hardwiring the PPRF keys K, R and S in the circuit
SimGate, we hardwire the key K that is punctured at (g∗, k, b) for every k ∈ [λ], b ∈ {0, 1}, R
and S are punctured at g∗. We additionally hardwire {labg

∗

k,b}k∈[λ],b∈{0,1}, (ri, rj ,g ), PRFR(g∗)
and PRFS(g∗). This blows up the size of the circuit by a factor poly(λ). On input g∗− 1 and
g∗, the circuit now uses the hardwired labels/randomness instead of computing them using
the PPRF. Note that by constraints on conf and conf ′, PRFR(g∗) is only needed on input g∗.
This is because all gates g > g∗ are in Black mode.

It can be noted that the SimGate circuits in both Hybridconf and Hybrid1 computes the exact
same functionality and hence the indistinguishability between Hybridconf and Hybrid1 follows
from the security of iO.

• Hybrid2: We make three changes to the SimGate.

– By conditions of Rule A, we have that g∗−1 ∈ I (if g∗ 6= n+1). Therefore, we note that

all the input labels {labg
∗

k,b} are not used in SimGate but only the labels corresponding

to dg∗ i.e., {labg
∗

k,dg∗,k
}k∈[λ]. We just hardwire these labels in SimGate.
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– We also hardwire S̃Cg∗ (where SCg∗ has rg∗ hardwired and S̃Cg∗ is computed using
randomness PRFS(g∗)) in SimGate instead of generating it inside SimGate.

– We remove the hardwired randomness PRFS(g∗) and PRFR(g∗).

The computational indistinguishability between Hybrid2 from Hybrid1 follows from the security
of iO since the function computed by SimGate in Hybrid1 and Hybrid2 is exactly the same.

• Hybrid3 : In this hybrid, we sample the labels {labk,dg∗,k}k∈[λ], PRFR(g∗) and the randomness

used in generating S̃Cg∗ uniformly at random instead of generating them as outputs of the
puncturable PRF. The computational indistinguishability between Hybrid2 and Hybrid3 follows
from the security of puncturable PRF.

• Hybrid4: In this hybrid, we generate S̃Cg∗ (that is hardwired inside SimGate) from the simu-
lated distribution. More formally, we generate

S̃Cg∗ ← Simckt(1
λ, 1|SC|, out, {labg

∗

k,dg∗,k
}k∈[λ])

where out← SC[crs, (0, 0, rg), (i, j, fg), {labg
∗+1
k,b }, 1](dg∗).

The only change in hybrid Hybrid3 from Hybrid4 is in the generation of the garbled circuit

S̃Cg∗ and the security follows directly from the selective security of the garbling scheme.

• Hybrid5: In this hybrid, we set change how the output value out hardwired in S̃Cg∗ is generated.
Recall that in hybrid Hybrid4 this value is generated by first computing c0 and c1 as in Figure 5
and then generating out as Send (crs, d, i, c0, c1). In this hybrid, we just generate cDg∗,i and
use the laconic OT simulator to generate out. More formally, out is generated as

out← Sim`OT

(
crs, Dg∗ , i, cDg∗,i

)
.

Computational indistinguishability between hybrids Hybrid4 and Hybrid5 follows directly from
the sender privacy of the laconic OT scheme.

• Hybrid6: In this hybrid, we change how the how the value cDg∗,i is generated in hybrid Hybrid5.

Recall from Figure 5 that cDg∗,i is set as Send
(
crs, d, j, erg∗ , erg∗

)
. We change the distribution

of cDg∗,i to Sim`OT

(
crs, Dg, j, erg∗

)
, where erg∗ is sampled as in Figure 5.

Computational indistinguishability between hybrids Hybrid5 and Hybrid6 follows directly from
the sender privacy of the laconic OT scheme. The argument is analogous to the argument of
indistinguishability between Hybrid4 and Hybrid5.

• Hybrid7: In this hybrid, we change how erg∗ is generated. More specifically, we generate it
using the simulator Sim`OTW. In other words, erg∗ is generated as

Sim`OTW(crs, Dg∗ , g
∗, rg∗ , {labg

∗+1
k,dg∗+1,k

}k∈[λ]).

Computational indistinguishability between hybrids Hybrid6 and Hybrid7 follows directly from
the sender privacy for writes of the laconic OT scheme.
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• Hybrid8 : The only difference between Hybrid7 and Hybrid8 is how Dg∗+1,g∗ is set. Namely, in
Hybrid7 this value is set to be rg∗ while in Hybrid8 this value is set as rg∗⊕fg∗(Dg∗,i ⊕ ri, Dg∗,j ⊕ rj).
We argue that the distributions Hybrid7 and Hybrid8 are identical. Two cases arise:

– g∗ ≤ N−1: In this case, note that since rg∗ is not hardwired anywhere else, we have that
the distribution rg∗ and rg∗ ⊕ fg∗(Dg∗,i ⊕ riDg∗,j ⊕ rj) are both uniform and identical.

– g∗ = N : In this case, we have that rg∗ = M(x) ⊕ r′g∗ which is again identical to the
distribution of rg∗ in Hybrid8.

• Hybrid9 − Hybrid11: In this hybrid, we reverse the changes made in Hybrid1 to Hybrid3 except

that we hardwire {outg∗ , dg∗} in SimGate and use it to generate S̃Cg∗ .. The indistinguishability
between Hybrid8 to Hybrid11 follows in analogous manner to the indistinguishability between
Hybridconf′ to Hybrid3.

Observe that Hybrid11 is distributed identically to Hybridconf .

This completes the proof of the lemma.

5.3.3 Completing the Hybrids

The strategy given in Lemma 5.2 yields a sequence of configurations conf0 . . . confm for an appropri-

ate polynomial m with conf0 = (∅, N) and confm = (∅, n), where Hybridconfi−1

c
≈ Hybridconfi either

using rule A (i.e., Lemma 5.3) or using rule B (i.e., Lemma 5.4). We now show that Hybridconfm
is computationally indistinguishable to the ideal world distribution given by Hybrid(∅,0). This is
argued using the security property of puncturable PRF using the key R and the security of iO as
follows.

• Hybrid1 : In this hybrid, we puncture the PRF key R at points {1, . . . , n} and hardwire it in
SimGate. Note that in Hybrid(∅,n), the function SimGate never uses the PRF key on inputs
{1, . . . , n} and hence the functionality computed by the SimGate is exactly the same in this
hybrid and Hybrid(∅,n). The computational indistinguishability follows from the security of
iO.

• Hybrid2 : In this hybrid, we replace yw with a random bit rw for each w ∈ [n]. The compu-
tational indistinguishability between Hybrid1 and Hybrid2 follows from the security of punc-
turable PRF.

• Hybrid3 : In this hybrid, we replace yw with PRFR(w) for every w ∈ [n]. The computational
indistinguishability between Hybrid2 and Hybrid3 follows from the security of puncturable
PRF.

• Hybrid4 : In this hybrid, we reverse the change made in Hybrid1 and the indistinguishability
follows from the security of iO. Notice that Hybrid4 is distributed identically to Hybrid(∅,φ).

Finally, the padding size ` is set to be maximum over the sizes of SimGate in every intermediate
hybrid in the proof of Lemma 5.3, Lemma 5.4 and in the proof of indistinguishability between
Hybrid(∅,n) and Hybrid(∅,0). This is observed to be poly(|M |, logN,λ, n). This completes the proof
of security.
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A Succinct iO for Turing Machines

In this section, we describe the construction of succinct iO for Turing machines from succinct RE.
This section is taken verbatim from [BGL+15].

Construction. The succinct obfuscator iOM is very simple and we describe it formally in Fig-
ure 10. Our construction uses a succinct randomized encoding scheme, an Indistinguishability
Obfuscator for P/poly and a Puncturable Pseudo-Random function.

Theorem A.1 ([BGL+15]) Assuming that a sub-exponentially secure succinct randomized en-
coding scheme, a sub-exponentially secure Indistinguishability Obfuscator for P/poly and a sub-
exponentially secure Puncturable Pseudo-Random function exist, then the obfuscator iOM in Fig-
ure 10 satisfies the security Definition 3.11.
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Let (sRE.Enc, sRE.Dec) be a succinct randomized encoding scheme (satisfying Definition 3.9),
iO be an Indistinguishability Obfuscator for P/poly and a (KeyGenPPRF,PRF,Punc) be a Punc-
turable Pseudo-Random function.

• Obfuscation: iOM(1λ, 1n, 1log t,M): The obfuscation algorithm iOM on input a security
parameter λ, an input size n, a time bound log t and a machine M ∈ M, samples K ←
KeyGenPPRF(1λ+n+log t) and outputs obM = iO(1λ+n+log t, pad`(C[K,M, λ + n + log t]))
where pad`(C[K,M, λ + n + log t]) is the circuit C[K,M, λ + n + log t] described below,
padded to size ` (where ` is fixed polynomial in n, |M | and x):

1. C[K,M, 1λ+n+log t] on input x, t′ first generates rx,t = PRF(K,x||t′), where || denotes
the concatenation operation.

2. Next output sRE.Enc(1λ+n+log t, UM, (M,x), t′) using rx,t as the random coins. Here
UM is a Universal Machine5 that takes as input a Machine M and value x. UM
when executed for time t′ outputs the output of M on input x when executed for
time t′.

- Evaluation: Given an obfuscated machine obM , an evaluator can evaluates obM on
input (x, t′) obtaining M̂x,t′ . It then outputs sRE.Dec(M̂x,t′).

Figure 10: Succinct Indistinguishability Obfuscation
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